波的多普勒效应

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

波的多普勒效应

(应化2,闻庚辰,学号:130911225)

摘要:在生活中,我们常常遇到波源与观测者发生相对运动的情形,如站在铁路旁听着高速行驶的列车拉着响笛飞驰而过,此时你会感觉到响笛音调的明显变化,这就是人们常说的多普勒效应。本文从多普勒效应的基本原理出发,结合声波中的具体实例,介绍了多普勒效应在天文学、医学和公共交通方面的应用。最后,发散地想了原理变化后的一些现象,简要说了冲击波、马赫锥的相关内容。

关键词:波,多普勒效应,生活,现象,物理,应用。

一、多普勒效应基本原理

首先,先来让我们以声波为例具体分析一下多普勒效应的三种情况。物理量的定义:设波源为S,观察者相对介质的运动速度是v0,波源相对介质的运动速度是vs,声波在介质中的传播速度为u,波源的频率、波的频率、观察者收到的频率分别是,,B

二、多普勒效应的简单理解

如果把声波视为有规律间隔发射的脉冲,可以想象若你每走一步,便发射了一个脉冲,那么在你之前的每一个脉冲都比你站立不动时更接近你自己。而在你后面的声源则比原来不动时远了一步。或者说,在你之前的脉冲频率比平常变高,而在你之后的脉冲频率比平常变低了。

三、多普勒效应的应用

(一)、天文学

我们应该知道,宇宙中的天体是有它们特有的光谱的。科学家爱德文〃哈勃通过研究光谱,使用多普勒效应得出宇宙正在膨胀的结论:他发现远离银河系的天体发射的光线频率变低,即移向光谱的红端,称为红移,天体离开银河系的速度越快红移越大,这说明这些天体在远离银河系。反之,如果天体正移向银河系,则光线会发生蓝移。

(二)、医学

我们知道血管内血流速度和血液流量,它对心血管的疾病诊断具有一定的价值,特别是对

循环过程中供氧情况、闭锁能力、有无紊流、血管粥样硬化等均能提供有价值的诊断信息。为了检查心脏、血管的运动状态,了解血液流动速度,可以通过发射超声来实现。由于血管内的血液是流动的物体,所以超声波振源与相对运动的血液间就产生多普勒效应。血管向着超声源运动时,反射波的波长被压缩,因而频率增加。血管离开声源运动时,反射波的波长变长,因而在单位时向里频率减少。反射波频率增加或减少的量,是与血液流运速度成正比,从而就可根据超声波的频移量,测定血液的流速。我们主要说说超声频移诊断法,即D超,此法应用多普勒效应原理,当声源与接收体(即探头和反射体)之间有相对运动时,回声的频率有所改变,此种频率的变化称之为频移,D超包括脉冲多普勒、连续多普勒和彩色多普勒血流图像。彩色多普勒超声一般是用自相关技术进行多普勒信号处理,把自相关技术获得的血流信号经彩色编码后实时地叠加在二维图像上,即形成彩色多普勒超声血流图像。由此可见,彩色多普勒超声(即彩超)既具有二维超声结构图像的优点,又同时提供了血流动力学的丰富信息,实际应用受到了广泛的重视和欢迎,在临床上被誉为“非创伤性血管造影”。(三)、公共交通

在一些高速公路上常常装有多普勒测速仪的监视器,在测速的同时把车辆牌号拍摄下来,并把测得的速度自动打印在照片上,用作扣分罚款的依据。

(四)电磁波的多普勒效应及运用

电磁波同样存在多普勒效应。但电磁波与声波不同:一是声速远小于光速,不需要考虑相对论效应,但电磁波在真空传播时,无论相对于波源、还是相对于观察者,波速都等于光速c=3.0×10^8m/s;二是电磁波的传播并不需要介质,因此对于电磁波而言,波源和观察者相对于介质的速度是没有意义的,有意义的只是波源和观察者之间的相对速度。设电磁波源与观察者在同一直线上相对于观察者运动的速度为v,则电磁波的多普勒效应公式为f'=f[(1-v/c)/(1+v/c)]^0.5,只要能够测得波源频率和观察频率,便可以求出波源相对于观察者的速度。

(五)宇宙学研究中多普勒效应及其应用

1957年,原苏联发射了人类历史个第一颗人造地球卫星,美国科学家在对其跟踪研究中发现,当卫星飞向他们的无线电接收机时,收到的电波信号频率增大;卫星离去时,收到的电波信号频率减小,这就是电磁波的多普勒效应。根据电磁波的多普勒效应,在卫星通过无线电接收机上空期间,利用测定的各个电波信号的频率变化量,就可以确定卫星的整个轨道。后来,另一位科学家逆向思维,提出了一个相反的想法:如果事先知道卫星的精确轨道,根据电磁波的多普勒效应,就可以确定无线电接收机的位置。这个设想很快被美国有关部门采

用,天上的“交通警察”——多普勒卫星导航定位系统应运而生。多普勒卫星导航定位系统,在军用和民用过程中取得了极大成功,是导航定位史上的一次飞跃。但由于多普勒卫星轨道高度低、信号载波频率低,难以满足精确测量的需要。为了提高精度,美国从1973年开始筹建全球定位系统(GPS)。在经过方案论证、系统试验阶段后,于1989年开始发射正式工作卫星,并于1994年全部建成、投入使用。 GPS系统包括24颗人造卫星,每12小时绕地球1圈,每个卫星都能发出包含其位置、时间数据编码的信号,精确度可达10^-9秒,这些卫星按照一定方式排列,使地球上任何一点都至少能同时接收到4颗卫星发出的信号,无论地球的任何地方、任何时候、任何天气条件,地面接收者都可以通过解读这些信号准确定出自己所处的位置。

参考文献

【1】《南阳师范学院学报》2006年第06期作者:刘广生;李慧;

【2】豆丁网/p-239463137.html

【3】现代物理技术[M].北京:国防工业出版社,2002。作者:马延均。

【4】百度文库/view/ed95d28ad0d233d4b14e6906.html

【5】超声治疗学[M].北京:中国医药出版社,1994。作者:冯若,汪荫棠。

相关文档
最新文档