多普勒效应的研究

多普勒效应的研究
多普勒效应的研究

多普勒效应的研究

一、实验目的:

1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。

2、利用多普勒效应测量物体运动过程中多个时间点的速度,由显示屏显示V -t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究:

a.匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第2定律。

b.自由落体运动,并由V-t关系直线的斜率求重力加速度。

c.简谐振动,可测量简谐振动的周期等参数,并与理论值比较。

d.其它变速直线运动。

二、实验仪器:

多普勒效应综合实验仪。

三、实验原理:

根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为:

f = f

0(u+V

1

cosα

1

)/(u–V

2

cosα

2

)(1)

式中f

0为声源发射频率,u为声速,V

1

为接收器运动速率,α

1

为声源与接收

器连线与接收器运动方向之间的夹角,V

2为声源运动速率,α

2

为声源与接收器

连线与声源运动方向之间的夹角。

若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为:

f = f

(1+V/u)(2)

当接收器向着声源运动时,V取正,反之取负。

若f

保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f-V关系图可直观验证多普勒效应,且由实验

点作直线,其斜率应为 k=f

0/u ,由此可计算出声速 u=f

/k 。

由(2)式可解出:

V = u(f/f

– 1)(3)

若已知声速u及声源频率f

,通过设置使仪器以某种时间间隔对接收器接收到的频率f采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。

实验内容及步骤:

1、实验仪的预调节

实验仪开机后,首先要求输入室温,这是因为计算物体运动速度时要代入声速,而声速是温度的函数。

第2个界面要求对超声发生器的驱动频率进行调谐。调谐时将所用的发射器与接收器接入实验仪,2者相向放置,调节发生器驱动频率,并以接收器谐振电流达到最大作为谐振的判据。在超声应用中,需要将发生器与接收器的频率匹配,并将驱动频率调到谐振频率,才能有效的发射与接收超声波。

2、验证多普勒效应并由测量数据计算声速

将水平运动超声发射/接收器及光电门、电磁铁按实验仪上的标示接入实验仪。调谐后,在实验仪的工作模式选择界面中选择“多普勒效应验证实验”,按确认键后进入测量界面。用键输入测量次数6,用键选择“开始测试”,再次按确认键使电磁铁释放,光电门与接收器处于工作准备状态。

将仪器按图2安置好,当光电门处于工作准备状态而小车以不同速度通过光电门后,显示屏会显示小车通过光电门时的平均速度与此时接收器接收到的平均频率,并可选择是否记录此次数据,按确认键后即可进入下一次测试。

完成测量次数后,显示屏会显示f-V关系与1组测量数据,若测量点成直线,符合(2)式描述的规律,即直观验证了多普勒效应。翻阅数据并记入表1中,用作图法或线性回归法计算f-V关系直线的斜率k,由k计算声速u并与声速的理论值比较,声速理论值由u

= 331(1+t/273)1/2 (米/秒)计算,t表示

室温。

=

表1 多普勒效应的验证与声速的测量 f

3、研究匀变速直线运动,验证牛顿第二运动定律

实验时仪器的安装如图4所示,质量为 M的垂直运动部件与质量为m的砝码托及砝码悬挂于滑轮的两端,测量前砝码托吸在电磁铁上,测量时电磁铁释放砝码,系统在外力作用下加速运动。运动系统的总质量为 M+m,所受合外力为 (M -m)g(滑轮转动惯量与摩擦力忽略不计)。

根据牛顿第2定律,系统的加速度应为:

a = (M-m)g/M+m (4)

用天平称量垂直运动部件,砝码托及砝码质量,每次取不同质量的砝码放于砝码托上,记录每次实验对应的m。

将垂直运动发射/接收器接入实验仪,在实验仪的工作模式选择界面中选择“频率调谐”调谐垂直运动发射/接收器的谐振频率,完成后回到工作模式选择界面,选择“变速运动测量实验”确认后进入测量设置界面。设置采样点总数8,采样步距100ms,选择“开始测试”,按确认键使电磁铁释放砝码托,同时实验仪按设置的参数自动采样。

采样结束后会以类似图3的界面显示 V-t直线,选择“数据”,将显示的采样次数及相应速度记入表2中(为避免电磁铁剩磁的影响,第1组数据不记。为采样次数与采样步距的乘积)。由记录的t ,V数据求得V-t直线的斜率t

n

即为此次实验的加速度a。

在结果显示界面中选择返回,确认后重新回到测量设置界面。改变砝码质量,按以上程序进行新的测量。

将表2得出的加速度a作纵轴,(M-m)/(M+m)作横轴作图,若为线性关系,符合(4)式描述的规律,即验证了牛顿第2定律,且直线的斜率应为重力加速度。

表2 匀变速直线运动的测量 M= (kg)

M-m

M+m

图4匀变速直线运动安装示意图

4.研究自由落体运动,求自由落体加速度

实验时仪器的安装如图5所示,将电磁铁移到导轨的上方,测量前垂直运动部件吸在电磁铁上,测量时垂直运动部件自由下落1段距离后被细线拉住。

在实验仪的工作模式选择界面中选择“变速运动测量实验”,设置采样点总数8,采样步距50ms。选择“开始测试”,按确认键后电磁铁释放,接收器自由下落,实验仪按设置的参数自动采样。将测量数据记入表3中,由测量数据求得V-t直线的斜率即为重力加速度g。

为减小偶然误差,可作多次测量,将测量的平均值作为测量值,并将测量值与理论值比较,求百分误差。

表3 自由落体运动的测量

4、研究简谐振动

当质量为m的物体受到大小与位移成正比,而方向指向平衡位置的力的作用时,若以物体的运动方向为x轴,其运动方程为:

(5)

由(5)式描述的运动称为简谐振动,当初始条件为t = 0时,x = -A

,V = dx/dt = 0,则方程(5)的解为:

x = -A

0cosω

t (6)

将(6)式对时间求导,可得速度方程:

V = ω

0A

sinω

t (7)

由(6)(7)式可见物体作简谐振动时,位移和速度都随时间周期变化,式

中ω

= (k/m)1/2,为振动的角频率。

测量时仪器的安装类似于图5,将弹簧通过1段细线悬挂于电磁铁上方的挂钩孔中,垂直运动超声接收器的尾翼悬挂在弹簧上,若忽略空气阻力,根据胡克定律,作用力与位移成正比,悬挂在弹簧上的物体应作简谐振动,而(5)式中的k为弹簧的倔强系数。

实验时先称量垂直运动超声接收器的质量M,测量接收器悬挂上之后弹簧的

伸长量Δx,记入表4中,就可计算k及ω

测量简谐振动时设置采样点总数150,采样步距100ms。

选择“开始测试”,将接收器从平衡位置下拉约20cm,松手让接收器自由振荡,同时按确认键,让实验仪按设置的参数自动采样,采样结束后会显示如(7)式描述的速度随时间变化关系。查阅数据,记录第1次速度达到最大时的采样次

数N

1max 和第11次速度达到最大时的采样次数N

11max

,就可计算实际测量的运动周

期T及角频率ω,并可计算ω

与ω的百分误差。

表4 简谐振动的测量

6、其它变速运动的测量

以上介绍了部分实验内容的测量方法和步骤,这些内容的测量结果可与理论比较,便于得出明确的结论,适合学生基础实验,也便于使用者对仪器的使用及性能有所了解。若让学生根据原理自行设计实验方案,也可用作综合实验。

与传统物理实验用光电门测量物体运动速度相比,用本仪器测量物体的运动具有更多的设置灵活性,测量快捷,既可根据显示的V-t图一目了然的定性了解所研究的运动的特征,又可查阅测量数据作进一步的定量分析。特别适合用于综合实验,让学生自主的对一些复杂的运动进行研究,对理论上难于定量的因素进行分析,并得出自己的结论(如研究摩擦力与运动速度的关系,或与摩擦介质的关系)。

附:

仪器介绍:

整套仪器由实验仪,超声发射/接收器,导轨,运动小车,支架,光电门,电磁铁,弹簧,滑轮,砝码等组成。实验仪内置微处理器,带有液晶显示屏,图1为实验仪的面板图。

图1 实验仪面板图

实验仪采用菜单式操作,显示屏显示菜单及操作提示,由键选择菜单或修改参数,按确认键后仪器执行。操作者只须按提示即可完成操作,学生可把时间和精力用于物理概念和研究对象,不必花大量时间熟悉特定的仪器使用,提高了课时利用率。

验证多普勒效应时,仪器的安装如图2所示。导轨长1.2m,两侧有安装槽,所有需固定的附件均安装在导轨上。

测量时先设置测量次数(选择范围5~10),然后使运动小车以不同速度通过光电门(既可用砝码牵引,也可用手推动),仪器自动记录小车通过光电门时的平均运动速度及与之对应的平均接收频率,完成测量次数后,仪器自动存储数据,根据测量数据作f-V图,并显示测量数据。

作小车水平方向的变速运动测量时,仪器的安装类似图2,只是此时光电门不起作用。

测量前设置采样次数(选择范围8~150)及采样间隔(选择范围50~100ms),经确认后仪器按设置自动测量,并将测量到的频率转换为速度。完成测量后仪器根据测量数据自动作V-t图,也可显示f-t图,测量数据,或存储实验数据与曲线供后续研究。图3表示了采样数60,采样间隔80ms时,对用两根弹簧拉着的小车(小车及支架上留有弹簧挂钩孔)所做水平阻尼振动的1次测量及显示实例。

图3 测量阻尼振动

V

V-t f-t 数据存储返回

t

为避免摩擦力对测量结果的影响,也可将导轨竖直放置,让垂直运动部件上下运动。在底座上装有超声发射器,在垂直运动部件上装有超声接收器作垂直运动测量,实验时随测量目的不同而需改变少量部件的安装位置,具体可见下节的描述及图4,图5。

大学物理实验多普勒效应

多普勒效应实验报告 学院化学与生物工程学院班级化学1701 学号姓名 一、实验目的与实验仪器 实验目的 1、了解多普勒效应原理,并研究相对运动的速度与接收到的频率之间的关系。 2、利用多普勒效应,研究做变速运动的物体其运动速度随时间的变化关系,以及机械 能转化的规律。 实验仪器 ZKY-DPL-3多普勒效应综合实验仪、电子天平、钩码等。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 1、声波的多普勒效应 当声源相对介质静止不动时,声波的频率f0,波长λ0以及波速U0表示为 f0=U0/λ0 则观测频率f、观测波长λ和观测波速U的关系 f=U/λ 当接收器以一定的速率向声源移动时U=U0+V0,则 f=(U0+V0)/λ0 联立,得f=(U0+V0)/λ0=(f0λ0)/λ0=(1+V/U0)f0 当声源以一定的速率向接收器移动时V =U0-V0,则 f’=U’/λ’=U0/( U0-V0)/T= U0/( U0-V0) f 当声源与接收器运动如图时 f=(U0+V1COSθ1)/( U0-V2 COSθ2) 2、马赫锥 a=arcsin(U0/V0)=arcsin(1/M) U0为波速,V为飞行器速率,a为马赫角,M为V/U0马赫数

3、天文学中的多普勒效应 观察两波面的时间 t=(λc/(C+Vc))/(1/(1-V2c/C2c)1/2) =(1-V2c/C2c)1/2/((1+Vc/Cc)fc) 三、实验步骤 (要求与提示:限400字以内) 1、超声波的多普勒效应 (1)、组装仪器 (2)、打开实验控制箱,调至室温,记录共振频率f0 (3)、选择多普勒效应验证实验 (4)、修改测试总数 (5)、为仪器充电,确定失锁指示灯处于灯灭状态 (6)、选定滑车速率,开始测试 (7)、选择存入或者重测 (8)、重新选择速度,重复(6)、(7) (9)、记录实验数据 2、用多普勒效应研究恒力下物体的运动规律 (1)、测量钩码质量和滑车质量 (2)、连接仪器 (3)、选中变速运动测量 (4)、修改测量总次数 (5)、选中开始测试,立即松开钩码 (6)、记录测量数据 (7)、改变砝码质量,重复(1)到(6) 四、数据处理 (要求与提示:对于必要的数据处理过程要贴手算照片) 表4.12-1 多普勒效应的验证与声速的测量 t c = 24 ℃f0 = 40001 Hz 次数i 1 2 3 4 5 v/(m/s) 0.41 0.59 0.75 0.87 0.98 Fi/Hz 40049 40070 40089 40103 40116

多普勒效应及其应用1

多普勒效应及其应用 中文摘要:本文介绍了多普勒效应的发展过程和理论解释,通过具体例子重点讲述了声波和光波的多普勒效应, 并且介绍了多普勒效应在各领域中的应用及多普勒效应的应用原理。说明了多普勒效应在生活中的普遍性以及研究多普勒效应的重要性 主题词:多普勒效应; 原理,应用 正文: 引言:在日常生活中,我们有过这样的经验,在铁路旁听行驶中火车的汽笛声,当火车鸣笛而来时,人们会听到汽笛声的音调变高.相反,当火车鸣笛而去时,人们则听到汽笛声的音调变低.像这样由于波源或观察者相对于介质有相对运动时,观察者所接收到的波频率有所变化的现象就叫做多普勒效应.这种现象是奥地利物理学家多普勒(1803~1853)于1842年首先发现的,因此以他的名字命名.多普勒效应的正式提出是1842年在布拉格举行的皇家波西米亚学会科学分会会议上的论文《论天体中双星和其他一些星体的彩色光》。该论文的主要结论是: (1)如果一个物体发光,在沿观察者的视线方向以可与光速相比拟的速度趋近我们,或后退,那么这一运动必然导致光的颜色和强度的变化。 (2)如果在另一方面一个发光物体静止不动。而代之以观察者直接朝向或者背离物体非常快速的运动,那么所有的这些频率变化都会随之发生。 (3)如果这一“趋向”和“背离”不是按照上述假定的那样,沿着原来视线的方向,而是与视线成一夹角的方向,那么除了颜色和光强的变化,星体的方向也要变化,这样一星体同时会在位置上发生明显变化。[1] 论文首次发表出来因为没有足够的实验数据和理论依据,因此被很多人质疑和批评。1845年在荷兰进行的火车笛声实验验证了多普勒效应的正确性,多普勒效应才开始得到广泛重视并应用于实际。多普勒效益的第一次应用始于战争服务,第一次世界大战末期,军用飞机开始出现,英国由于国土面积小在遭遇空袭预警能力很弱,饱受了来自空中的洗劫。第二次世界大战前期,英国物理学家罗伯特·沃森-瓦特根据多普勒效应的原理研制出了最早期的雷达,在英国的东海岸建立了对空雷达警戒网,该雷达墙天线有100米高,能测到160千米以外的敌机,依靠这个雷达墙,英国总能及时准确的测出德国飞机的架数、航向、速度和抵达英国本土的时间,牢牢把握住了战争主动权,有效的降低了德国空军的杀伤力,在这场英国保卫战中扮演着不可替代的决定性的作用。 多普勒效应的原理 波在波源移向观察者时接收频率变高,而在波源远离观察者时接收频率变低。当观察者移动时也能得到同样的结论。 假设原有波源的波长为λ,波速为c,观察者移动速度为v:当观察者走近波源时观察到的波源频率为(c+v)/λ,如果观察者远离波源,则观察到的波源频率为(c-v)/λ 声波中的原理 设声源的频率为v,声波在媒质中的速度为V,波长λ=V/v。声波在媒质中传播的速度与波源是否运动无关,故总是以决定于媒质特性的速度V来传

多普勒效应的研究

多普勒效应的研究 一、实验目的: 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,由显示屏显示V -t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: a.匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第2定律。 b.自由落体运动,并由V-t关系直线的斜率求重力加速度。 c.简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 d.其它变速直线运动。 二、实验仪器: 多普勒效应综合实验仪。 三、实验原理: 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为: f = f 0(u+V 1 cosα 1 )/(u–V 2 cosα 2 )(1) 式中f 0为声源发射频率,u为声速,V 1 为接收器运动速率,α 1 为声源与接收 器连线与接收器运动方向之间的夹角,V 2为声源运动速率,α 2 为声源与接收器 连线与声源运动方向之间的夹角。 若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为:

f = f (1+V/u)(2) 当接收器向着声源运动时,V取正,反之取负。 若f 保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f-V关系图可直观验证多普勒效应,且由实验 点作直线,其斜率应为 k=f 0/u ,由此可计算出声速 u=f /k 。 由(2)式可解出: V = u(f/f – 1)(3) 若已知声速u及声源频率f ,通过设置使仪器以某种时间间隔对接收器接收到的频率f采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。 实验内容及步骤: 1、实验仪的预调节 实验仪开机后,首先要求输入室温,这是因为计算物体运动速度时要代入声速,而声速是温度的函数。 第2个界面要求对超声发生器的驱动频率进行调谐。调谐时将所用的发射器与接收器接入实验仪,2者相向放置,调节发生器驱动频率,并以接收器谐振电流达到最大作为谐振的判据。在超声应用中,需要将发生器与接收器的频率匹配,并将驱动频率调到谐振频率,才能有效的发射与接收超声波。 2、验证多普勒效应并由测量数据计算声速 将水平运动超声发射/接收器及光电门、电磁铁按实验仪上的标示接入实验仪。调谐后,在实验仪的工作模式选择界面中选择“多普勒效应验证实验”,按确认键后进入测量界面。用键输入测量次数6,用键选择“开始测试”,再次按确认键使电磁铁释放,光电门与接收器处于工作准备状态。

多普勒效应

高中物理粤教版选修3-4 第二章第五节多普勒效应 一、教学任务分析 1、教材分析: 《多普勒效应》是继波的干涉、衍射现象后的又一波动过程共有现象,是高中物理教材中新增内容,体现了生活物理的重要性。本节课力图贯彻“以学生发展为本”的教学理念,在课堂教学模式上有所突破,同时根据学生认识过程而致力于教学环节的设计,使学生掌握基础知识,提高基本能力。具体而言这一节内容要求不是太高,在教学中不要求推导速度与频率变化关系,但频率变化与相对运动关系却是要求学生掌握的。教学过程中,将以实验探究为主,让学生由感性到理性,逐步理解多普勒效应。同时在教学过程中,教师应做好学生的反馈工作,及时了解学生实验情况,做好课堂整体的宏观把握。 2、学情分析 1、知识背景: ①学生已经知道了波及声音等相关的基本概念; ②学生已经掌握了波的形成和传播机理,熟悉了波的干涉、衍射等内容。 2、能力背景: ①学生已具备一定的对物理现象的观察理解能力; ②学生已具有一定的对物理过程分析归纳总结的能力。 二、教学目标 1、知识与技能 ①知道什么是多普勒效应,知道它是波源与观察者之间有相对运动时产生的现象。 ②知道观察者接收到的频率与波源发出的频率的区别。 ③知道波源与观察者之间相互靠近(远离)时,接收频率大于(小于)发出频率。 ④了解多普勒效应的一些应用。 2、过程与方法 ①通过了解多普勒效应,提高学生对波的认识水平。 ②通过多普勒效应形成过程的分析,提高学生的分析、推理能力。 3、情感、态度与价值观 ①培养学生树立理论联系实际的观念。

②培养合作与分享的学习习惯。 ③体验生活物理,激发学习科学知识的热情。 三、教学重难点 1、重点 ①知道什么是多普勒效应。 ②知道波源与观察者间相对运动时,观察者接受到的频率与发射频率的关系。 2、难点 ①理解多普勒效应的形成过程。 四、教学资源 相关影像资料、自制多媒体课件 五、教学方法 结合多媒体手段进行探究式教学。 六、教学流程 1、教学流程图 2、教学主要环节 本设计可分为四个环节 第一环节:通过情景导入,借助火车、汽车的行驶,提出汽车驶近时汽笛声频率的变化关系。第二环节:通过讨论交流,借出CAI动态模拟课件,探讨波源频率与接受频率的关系。因此多普勒效应的概念。 第三环节:学习多普勒效应在生活中的应用。 第四环节:进一步讨论总结相关知识,加深对多普勒效应的理解。

多普勒效应及其应用

多普勒效应及其应用 姓名:许涛班级:应物二班学号:20143444 天津理工大学理学院 摘要:在多普勒效应中有多普勒频移产生,并且与波源和观测者的相对运动情况有关,以此为基础讨论了多普勒效应在卫星定位、医学诊断、气象探测中的应用。 关键词:多普勒效应;定位;测速。 引言: 在日常生活中,人们都有这样的经验,火车汽笛的音调,在火车接近观察者时比其远离观察者时高.此现象就是多普勒效应.它是由奥地利物理学家多普勒于1842年首先发现的.多普勒效应是波动过程的共同特征.光波(电磁波)也有多普勒效应,并于1938年得到证实.此效应在卫星定位、医学诊断、气象探测等许多领域有着广泛的应用。 多普勒效应及其表达式 由于波源和接收器(或观察者)的相对运动,使观测到的频率与波源的实际频率出现差别.这种现象称为多普勒效应。 机械波多普勒效应的普遍公式 设波源S发出的波在媒质中的传播速度为v、频率为fS,接受器R接收到的频率为fR,以媒质为参考系,波源与接收器相对于媒质的运动速度分别为uS和uR,uS和uR与波源和接收器连线的夹角分别为θS和θR,如图1所示.此时可以推导得到 fR= v+uRcosθR /v-uScosθS fS. (1) 此式为波源和接收器沿任意方向彼此接近时的多普勒效应公式.如果波源和接收器沿任意方向彼此远离时如图2所示,同理可推导出 fR=v-uRcosθR /v+uScosθS fS. (2) (1)、(2)两式就是机械波多普勒效应的普遍公式,由两式我们可以得到诸如S 和R在同一直线上运动时多普勒效应各公式的表示形式.由此可以看出多普勒效应不但与波源S和接收器R的运动速度有关,而且还与S和R的相对位置有关。 1.2 光波(电磁波)多普勒效应的普遍公式 因为光波(电磁波)的传播不依赖弹性介质,它与机械波需要靠媒质而传播有所不同,所以公式 (1)和(2)对光波(电磁波)不再适用.但是从理论上我们可以推证出光波的多普勒效应公式.若光源发出光波的频率记作f0,观测者测得该光的频率为f,通过计算可得: f=f0√(1-β) /1-βcosθ. (3) 其中,β= v c ,c为真空中的光度,v为光源相对于观测者的运动速度,θ为光源

多普勒效应综合实验

多普勒效应综合实验 【引言】 当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f -V 关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V -t 关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: (1)自由落体运动,并由V -t 关系直线的斜率求重力加速度。 (2)简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 (3)匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 (4)其它变速直线运动。 【实验原理】 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f 为: 2 21 10cos -cos ααV u V u f f +? = (1) 式中f 0为声源发射频率,u 为声速,V 1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V 2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角(如图1)。 若声源保持不动,运动物体上的接收器沿声源与接收器连线方向(α=0)以速度V 运动,则从(1)式可得接收器接收到的频率应为: ?? ? ??+?=u V f f 10 (2) 当接收器向着声源运动时,V 取正,反之取负。

多普勒效应

目录 绪论…………………………………………………………………………………………1多普勒及多普勒效应简介…………………………………………………… 1.1多普勒…………………………………………………………………………… 1.2多普勒效应………………………………………………………………………2多普勒效应的原理…………………………………………………………… 2.1多普勒效应的解析……………………………………………………… 2.2多普勒效应及其表达式…………………………………………………… 2.2.1机械波多普勒效应的普遍公式……………………………………………… 2.2.2光波(电磁波)多普勒效应的普遍公式…………………………………… 2.3机械波的多普勒效应……………………………………………………… 2.3.1普遍公式……………………………………………………………………… 2.3.2几种特例……………………………………………………………………… 2.4声波的多普勒效应………………………………………………………… 2.5电磁波的多普勒效应……………………………………………………… 3 多普勒效应的应用……………………………………………………………… 3.1医学上的应用………………………………………………………………… 3.2交通的应用…………………………………………………………………… 结论…………………………………………………………………………………………致谢…………………………………………………………………………………………参考文献……………………………………………………………………………………

12.5 多普勒效应 习题

12.5 多普勒效应 1.当观测者和波源之间有________________时,观测者测得的频率与波源频率________的现象叫多普勒效应. 2.当波源与观测者相对静止时,观测到的频率________波源振动的频率;当波源与观测者相向运动时,观测到的频率________波源的频率;当波源与观测者相互远离时,观测到的频率________波源的频率. 3.多普勒效应在科学技术中有广泛的应用,可以利用多普勒效应测________速度,测星球靠近或远离我们的速度,测________速度. 4.关于多普勒效应,下列说法中正确的是( ) A.当波源与观测者有相对运动时,才会发生多普勒效应 B.当波源与观测者运动的速度相同时,不会发生多普勒效应 C.只有机械波才能发生多普勒效应 D.只要波源运动,就一定会发生多普勒效应 5.下列说法中不正确的是( ) A.发生多普勒效应时波源的频率保持不变 B.要发生多普勒效应,波源和观测者间必须有相对运动 C.只有声波会发生多普勒效应 D.机械波、电磁波和光波都会发生多普勒效应 6.当火车进站鸣笛时,我们在车站听到的音调( ) A.变低 B.不变 C.变高 D.不知声速和火车车速,不能判断 概念规律练 知识点一对多普勒效应的理解 1.下列说法中正确的是( ) A.发生多普勒效应时,波源的频率变化了 B.发生多普勒效应时,观测者接收到的频率发生了变化 C.多普勒效应是在波源与观测者之间有相对运动时产生的 D.多普勒效应是由奥地利物理学家多普勒首先发现的 2.如图1,由波源S发出的波某一时刻在介质平面中的情形,实线为波峰,虚线为波谷,设波源频率为20 Hz,且不运动,而观测者在1 s内由A运动到B,观测者接收到多少个完全波?设波速为340 m/s,则要让观测者完全接收不到波,他每秒要运动多少米? 图1

多普勒效应综合实验报告及数据处理图

多普勒效应综合实验 (附数据处理图) (注:由于上传后文库中数据图看不清楚,须下载后才能看清楚) 当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: ①匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 ②自由落体运动,并由V-t关系直线的斜率求重力加速度。 ③简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 ④其它变速直线运动。 【实验原理】 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为: f = f0(u+V1cosα1)/(u–V2cosα2)(1) 式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。 若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为: f = f0(1+V/u)(2) 当接收器向着声源运动时,V取正,反之取负。 若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为k=f0/u,由此可计算出声速u=f0/k 。 由(2)式可解出: V = u(f/f0– 1)(3)若已知声速u及声源频率f0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f 采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。 2、超声的红外调制与接收 早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。由于超声接收器安装在运动体上,导线的存在对运动状态有一定影响,导线的折断也给使用带来麻烦。新仪器对接收到的超声信号采用了无线的红外调制-发射-接收方式。即用超声接收器信号对红外波进行调制后发射,固定在运动导轨一端的红外接收端接收红外信号后,再将超声信号解调出来。由于红外发射/接收的过程中信号的传输是光速,远远大于声速,它引起的多谱勒效应可忽

多普勒效应在生活中的应用(1)

东南大学 课程小论文 题目多普勒效应的应用 院系土木工程学院 专业土木工程 姓名赵天辉 年级 05110229 2011年12月13日 摘要

所谓多普勒效应就是,当声音,光和无线电波等振动源与观测者以相对速度V相对运动时,观测者所收到的振动频率与振动源所发出的频率有所不同。因为这一现象是奥地利科学家多普勒最早发现的,所以称之为多普勒效应。 【关键词】:多普勒效应应用雷达农业 多普勒效应的应用 多普勒效应在我们的生活中已经用到了方方面面,比如车辆测速,灾后救援,超声波诊断病情等,而这些都基于多普勒效应在在实际生活中的应用。为了更好地理解下面我们举几个个例子来看看多普勒效应在生活中的实使用。 一、多普勒效应 当波源和观察者之间有相对运动时,观察者会感到频率发生变化的现象,叫多普勒效应。多普勒效应是在波源与观察者之间有相对运动时产生的现象。波源相对于介质不动,当观察者朝着波源运动时,观察者接收到的频率增大;当观察者远离波源时,观察者接收到的频率减小。当观察者的速度与波速相等时接收不到波,此时接收到的频率变为零。观察者相对于介质不动,当波源接近观察者时,观察者接收到的频率增大;波源远离观察者时,观察者接收到的频率减小。波源和观察者同时相对于介质运动,综合以上两种情况可知,一方面由于观察者运动,使波面通过观察者的速度增大或减小;另一方面由于波源的运动,使观察者所在处的波的波长缩短或伸长。不仅机械波有多普勒效应,电磁波也有多普勒效应。 二、多普勒效应的应用 1.雷达测速仪 检查机动车速度的雷达测速仪也是利用这种多普勒效应。交通警向行进中的车辆发射频率已知的电磁波,通常是红外线,同时测量反射波的频率,根据反射波频率变化的多少就能知道车辆的速度.装有多普勒测速仪的警车有时就停在公路旁,在测速的同时把车辆牌号拍摄下来,并把测得的速度自动打印在照片上。这样就可以对超速的汽车做出记录了。 2.多普勒效应在医学上的应用 在临床上,多普勒效应的应用也不断增多,近年来迅速发展起来的超声脉冲检查仪就是一个很好的例子。当声源或反射界面移动时,比如当红细胞流经心脏大血管时,从其表面散射的声音频率发生改变,由这种频率偏移就可以知道血流的方向和速度,如红细胞朝向探头时,根据Doppler原理,反射的声频则提高,如红细胞离开探头时,反射的声频则降低。医生向人体内发射频率已知的超声波,超声波被血管中的血流反射后又被仪器接收,测出反射波的频率变化,就能知道血流的速度.这

多普勒效应习题精选二

第七节多普勒效应习题精选(二) 1.火车驶近我们时,汽笛的音调听起来比火车静止时汽笛的音调______,这时,人耳感觉到的频率比汽笛发出的频率_______。 2.设想您随同一个波峰一起远离波源,则您接收到的频率将变为________。 3.如图所示,波源S不动,每秒发出30个完全波,观察者1s内由位置A移到位置B,则观察者每秒将接收到______个完全波. 4.有一种用钢丝操纵做圆周飞行的模型飞机,装有两冲程的活塞式发动机作为动力.操纵者站在圆心,在他听来,发动机工作时发出的声音的音调是平稳不变的.场边的观察者则听到发动机的声音的音调忽高忽低地做周期性变化,这是由于________,这种现象叫做____________。 5.如果接收器接收到的声音频率只是声源频率的三分之一,则声源必须以声速的几倍远离接收器的方向运动? 6.火车以20m/s的速度向一静止观察者驶近,机车鸣汽笛2s之久,声速为340m/s,问: (1)观察者听到的汽笛声持续多久? (2)如果火车以同样的速度从观察者身边驶过,则观察者前后听到的声音的频率之比是多少? 7.多普勒效应是指:当波源和观察者之间有相对运动时.使频率发生变化的现象. 8.在铁路旁听行驶中的火车的汽笛声,当火车迎面驶来时,音调变高,火车远离时,音调变低,是因为 A.火车驶来时,声源的频率变大 B.火车远离时,声源的频率变小 C.火车驶来及远离时,声源的频率都不变 D.以上说法均不正确 9.关天多普勒效应,下列说法正确的是 A.多普勒效应是由波的干涉引起的 B.多普勒效应说明波源的频率发生改变 C.只有声波才可以产生多普勒效应 D.多普勒效应是由于波源与观察者之间有相对运动而产生的 10.当火车进站鸣笛时,我们可听到的声调 A.越来越高 B.不高 C.越来越沉 D.不知声速和火车车速,不能判断 11.当火车驶近时.观察者觉得它的汽笛的基音比驶去时高1个音(即频率高到倍),设声速为m/s.求火车的速率. 参考答案: 1.高增大了

多普勒效应测量超声声速

北京航空航天大学 物理研究性实验报告 实验项目名称: 对多普勒效应测量超声声速实验的扩展 多普勒效应测量超声声速 摘要:本实验通过学习多普勒效益的相关原理,利用BHWL-Ⅱ多普勒超声测速仪测量超声声速,结合光电门测速的方法验证多普勒超声测速仪测量小车速度的精准程度。在本次试验报告中,将探讨多普勒勒效应试验数据的误差分析;将对试验仪器进行改进;利用多普勒超声测速仪进行更多实验的操作。

一、实验重点: (1)通过该实验进一步了解多普勒效应原理及其应用; (2)熟悉BHWL-Ⅱ多普勒超声测速仪的使用; (3)熟悉数字示波器的使用。 二、仪器相关原理简介与相应计算: 在无色散情况下,波在介质中的传播速度是恒定的,不会因波源运动而改变,也不会因观察者运动而改变。但当波源(或观察者)相对介质运动时,观察者所接收到的频率却可以改变。当我们站在铁路旁,有火车高速经过时,汽笛声会由高亢变得低沉,就是这个缘故。如果观察者运动,而火车静止,也有类似的现象。这种由于波源或观察者(或两者)相对介质运动而造成的观察者接收频率发生改变的现象,称为多普勒效应。 (一)实验原理: 多普勒超声测速仪是一套综合性的超声测速仪器,该仪器利用多普勒频移效应实现对运动物体速度的测量,并可与光电方式测速进行比较。实验装置如图1所示,电机与超声头固定于导轨上面,小车可以由电机牵引沿导轨左右运动,超声发射头与接收头固定于导轨右端,若超声发射频率为接收回波频率为f,超声波在静止介质中传播速度为u,小车运动速度为v(向右为正)。 依据多普勒频移公式,回波频率、多普勒频移和小车运动的速度分别为: 由于电路中不能表征负频移(即不论靠近还是远离超声头Δf恒为正),所以在该系统中采用了标量表示(Δf不区分正负,以靠近或远离超声头进行标识)。

多普勒效应

多普勒效应 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,研究:①匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 实验原理 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f 为: (1) 式中为声源发射频率,为声速,V 1为接收器运动速率,α 1 为声源与接 收器连线与接收器运动方向之间的夹角,V 2为声源运动速率,α 2 为声源与接收 器连线与声源运动方向之间的夹角。 若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V 运动,则从(1)式可得接收器接收到的频率应为: (2) 图2 测量阻尼振动 当接收器向着声源运动时,V取正,反之取负。 若保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由 实验点作直线,其斜率应为,由此可计算出声速。 由(2)式可解出:(3)

若已知声速及声源频率,通过设置使仪器以某种时间间隔对接收器接收到的频率采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示关系图(如图2),或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。 2、超声的红外调制与接收 早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。由于超声接收器安装在运动体上,导线的存在对运动状态有一定影响,导线的折断也给使用带来麻烦。新仪器对接收到的超声信号采用了无线的红外调制-发射-接收方式。即用超声接收器信号对红外波进行调制后发射,固定在运动导轨一端的红外接收端接收红外信号后,再将超声信号解调出来。由于红外发射/接收的过程中信号的传输是光速,远远大于声速,它引起的多谱勒效应可忽略不计。采用此技术将实验中运动部分的导线去掉,使得测量更准确,操作更方便。信号的调制-发射-接收-解调,在信号的无线传输过程中是一种常用的技术。 实验仪器 【实验仪器及简介】 多普勒效应综合实验仪由实验仪,超声发射/接收器,红外发射/接收器,导轨,运动小车,支架,光电门,电磁铁,弹簧,滑轮,砝码等组成。实验仪内置微处理器,带有液晶显示屏,图1为实验仪的面板图。 实验仪采用菜单式操作,显示屏显示菜单及操作提示,由 p q t u 键选择菜单或修改参数,

多普勒效应综合实验

多普勒效应综合实验 【摘要】:多普勒效应是一基本的物理现象,当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。 【关键词】:超声波多普勒效应匀加速简谐振动 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: ①匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 ②自由落体运动,并由V-t关系直线的斜率求重力加速度。 ③简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 ④其它变速直线运动。 【实验原理】 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为: f = f 0(u+V 1 cosα 1 )/(u–V 2 cosα 2 )(1) 式中f 0为声源发射频率,u为声速,V 1 为接收器运动速率,α 1 为声源与接收器连线与接 收器运动方向之间的夹角,V 2为声源运动速率,α 2 为声源与接收器连线与声源运动方向之 间的夹角。 若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为: f = f (1+V/u)(2)当接收器向着声源运动时,V取正,反之取负。 若f 保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应 为 k=f 0/u ,由此可计算出声速 u=f /k 。 由(2)式可解出: V = u(f/f – 1)(3) 若已知声速u及声源频率f ,通过设置使仪器以某种时间间隔对接收器接收到的频率f 采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。 2、超声的红外调制与接收 早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。由于超声接收器安装

多普勒效应的应用

多普勒效应的应用 摘要:所谓多普勒效应就是,当声音,光和无线电波等振动源与观测者以相对速度V相对运动时,观测者所收到的振动频率与振动源所发出的频率有所不同。因为这一现象是奥地利科学家多普勒最早发现的,所以称之为多普勒效应。在日常生活中,人们都有这样的经验,火车汽笛的音调在火车接近观察者时比其远离观察者时高此现象就是多普勒效应。它是由奥地利物理学家多普勒于1842年首先发现的。多普勒效应是波动过程的共同特征。光波也有多普勒效应。此效应在卫星定位、医学诊断、气象探测等许多领域有着广泛的应用。 The so-called doppler effect is When sound is light and radio waves such as vibration source and the observer to the relative velocity v relative motion Observers received from the frequency of the vibration frequency and vibration source of the different Because this phenomenon is the earliest discovered Austrian scientist doppler So called the doppler effect In daily life People have such experience The tones of the train whistle when the train approaching observer is higher than its far away from the observer this phenomenon is called the doppler effect It is by the Austrian physicist doppler first found in 1842 The doppler effect is a common characteristic of wave process Light waves have the doppler effect This effect in the satellite positioning medical diagnosis of meteorological observation and many other fields has been widely used 关键词:多普勒效应、声波、光波、电磁波 Doppler effect Acoustic waves are electromagnetic waves 正文: 一、声波的多普勒效应及运用 当一列呜笛的火车经过某观察者时,他会发现火车汽笛音调由高变低。这是因为声调的高低是由观察者耳膜振动频率的不同决定的,如果频率高,听起来声调就高,反之听起来声调就低,这就是声波的多普勒效应。当火车以恒定速度驶近观察者时,汽笛发出的声波在空气中的传播结果是波长缩短。因此,在一定时间间隔内进入人耳的声波频率就增加了,这就是观察感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大、频率变低,因此听起来就显得低沉。 定量分析可得观测到的波的频率f'=(v+u)f/(v-w),式中w为波源相对于介质的运动速度、u为观察者相对于介质的速度、v表示波在静止介质中的传播速度、f表示波源的固有频率。当观察者朝波源运动时,u取正;当观察者背离波源运动时,u取负。当波源朝观察者运动时,w取负;当波源背离观察者动时,w取正。从上式易知,当观察者与声源相互靠近时,f'>f;当观察者与声源相互远离时f'

机械波第56节多普勒效应惠更斯原理讲义-人教版高中物理选修3-4讲义练习

第5、6节多普勒效应惠更斯原理 1.多普勒效应:波源与观察者互相靠近或者互相 远离时,观察者接收到的波的频率都会发生变化的 现象。 2.波源与观察者如果相互靠近,观察者接收到 的频率增大,二者如果远离,观察者接收到的频率 减小。 3.利用多普勒效应可以测车辆速度、星球速度、 血流速度等。 4.惠更斯原理:介质中任一波面上的各点,都 可以看做发射子波的波源,其后任意时刻,这些子 波在波前进方向的包络面就是新的波面。 一、多普勒效应 1.多普勒效应 (1)音调:音调由频率决定,频率高则音调高,频率低则音调低。 (2)多普勒效应:波源与观察者互相靠近或者互相远离时,接收到的波的频率都会发生变化的现象。 2.多普勒效应产生的原因 (1)波源与观察者相对静止时,1 s内通过观察者的波峰(或密部)的数目是一定的,观察者观测到的频率等于波源振动的频率。 (2)当波源与观察者相互靠近时,1 s内通过观察者的波峰(或密部)的数目增加,观察到的频率增加;反之,当波源与观察者互相远离时,观察到的频率变小。 二、多普勒效应的应用 1.测车辆速度:交警向行进中的车辆发射频率已知的超声波,同时测量反射波的频率,根据反射波频率变化的多少就能知道车辆的速度。 2.测星球速度:测量星球上某些元素发出的光波的频率。然后与地球上这些元素静止时发光的频率对照,可得星球的速度。 3.测血流速度:向人体内发射已知频率的超声波,超声波被血管中的血流反射后又被仪器接收,测出反射波的频率变化就可得血流速度。 三、惠更斯原理 1.波面与波线 (1)波面和波线的概念:

①波面:波源发出的波,向四周传开,波峰组成了一个个圆,波谷也组成一个个圆,振动状态相同的点都组成了一个个圆,这些圆叫作一个个波面。 ②波线:指与波面垂直的那些线,代表了波的传播方向。 如图所示。 (2)波的分类: ①球面波:由空间一点发出的波,它的波面是以波源为球心的一个个球面,波线就是这些球面的半径。 ②平面波:指波面是平面的波。 2.惠更斯原理 (1)内容:介质中任一波面上的各点,都可以看做发射子波的波源,其后任意时刻,这些子波在波前进方向的包络面就是新的波面。 (2)应用: ①如果知道某时刻一列波的某个波面的位置,还知道波速,利用惠更斯原理可以得到下一时刻这个波面的位置,从而确定波的传播方向。 ②利用惠更斯原理只能解释衍射现象中波的传播方向,不能解释波的强度。无法说明衍射现象与狭缝或障碍物大小的关系。 3.波的反射与折射 (1)反射现象:波遇到介质界面会返回来继续传播的现象。 (2)折射现象:波从一种介质射入另一种介质时,波的传播方向发生改变的现象。 1.自主思考——判一判 (1)发生多普勒效应时,波源的频率没有发生变化。(√) (2)当波源和观察者向同一个方向运动时,一定发生多普勒效应。(×) (3)只有横波才能发生多普勒效应。(×) (4)波面一定是平面。(×) (5)波的传播方向与波面平行。(×) (6)用惠更斯原理能够解释波的衍射现象与障碍物大小的关系。(×) 2.合作探究——议一议 (1)炮弹由远处飞来从头顶呼啸而过的整个过程中,我们所听到的音调会发生怎样的变

实验14多普勒效应

多普勒效应综合实验 当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: ①匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 ②自由落体运动,并由V-t关系直线的斜率求重力加速度。 ③简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 ④其它变速直线运动。 【实验原理】 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为: f = f0(u+V1cosα1)/(u–V2cosα2)(1) 式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。 若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为:

相关文档
最新文档