第一章 丰富的图形世界单元测试卷(含答案与解析)

合集下载

北师大版七年级上册 第1章丰富的图形世界单元测试卷(含解析)

北师大版七年级上册 第1章丰富的图形世界单元测试卷(含解析)

北师大版七年级上第1章丰富的图形世界单元测试卷一.选择题(共10小题)1.下列七个图形中是正方体的平面展开图的有()A.1个B.2个C.3个D.4个2.如图是由相同的小正方体木块粘在一起的几何体,则该几何体从正面看到的图形是()A.B.C.D.3.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个4.下列几何体中,其面既有平面又有曲面的有()A.1个B.2个C.3个D.4个5.如图,是一个正方体的平面展开图,叠成正方体后,在正方体中写有“心”字的对面的字是()A.祝B.你C.事D.成6.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A.B.C.D.7.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C的三个数依次是()A.0,﹣3,4B.0,4,﹣3C.4,0,﹣3D.﹣3,0,48.如图是一个正方体的表面展开图,若折叠成正方体后相对面上的两个数之和都为5,则x+y+z的值为()A.0B.4C.10D.309.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为()A.7B.8C.9D.1010.已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是()A.3,6B.3,4C.6,3D.4,3二.填空题(共4小题)11.如图,是一个长方体的主视图,左视图与俯视图,根据图中数据计算这个长方体的表面积是.12.在正方体的六个面分别标上A、B、C、D、E、F,现有完全相同的四个正方体,如图拼成一个长方体,请写出三对对面:.13.如图,将此长方形绕虚线旋转一周,得到的是体,其体积是.(结果保留π)14.如图所示,把底面直径是8厘米,高是20厘米的圆柱切成若干等分,拼成一个近似的长方体,这个近似长方体的表面积是cm2,体积是cm3.三.解答题(共12小题)15.如图所示为8个立体图形.其中,是柱体的序号为;是锥体的序号为;是球的序号为.16.马小虎准备制作一个封闭的正方体盒子,他先用4个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)17.指出下列平面图形各是什么几何体的展开图.18.如图,这是一个正方体的展开图,折叠后它们的相对两面的数字之和相等,请你求出y﹣x的值.19.如图是由8个相同的小立方体组成的几何体,请在下列方框内画出它的三视图.20.如图所示,在边长为4的正方形中包含16个一样的边长为1的小正方形,这两图中已经将6个小正方形涂黑.恰好是正方体的平面展开图,开动脑筋,你还能在空图中画出不同的展开方式吗?21.如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱,6个顶点,观察图形,填写下面的空.(1)四棱柱有个面,条棱,个顶点;(2)六棱柱有个面,条棱,个顶点;(3)由此猜想n棱柱有个面,条棱,个顶点.22.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B();C();D();E().23.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是、、;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.24.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)求此几何体表面展开图的面积.25.探究:有一长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?26.在直角三角形,两条直角边分别为6cm,8cm,斜边长为10cm,若分别以一边旋转2h,V球体=,一周(①结果用π表示;②你可能用到其中的一个公式,V圆柱=πrV圆锥=h)(1)如果绕着它的斜边所在的直线旋转一周形成的几何体是?(2)如果绕着它的直角边6所在的直线旋转一周形成的几何体的体积是多少?(3)如果绕着它的斜边10所在的直线旋转一周形成的几何体的体积与绕着直角边8所在的直线旋转一周形成的几何体的体积哪个大?参考答案与试题解析一.选择题(共10小题)1.下列七个图形中是正方体的平面展开图的有()A.1个B.2个C.3个D.4个【分析】由平面图形的折叠及正方体的表面展开图的特点进行判断即可.【解答】解:由题可得,是正方体的平面展开图的有:故选:B.2.如图是由相同的小正方体木块粘在一起的几何体,则该几何体从正面看到的图形是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边两个小正方形,故选:A.3.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【解答】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选:B.4.下列几何体中,其面既有平面又有曲面的有()A.1个B.2个C.3个D.4个【分析】根据立体图形的特征,可得答案.【解答】解:球只有1个曲面;圆锥既有曲面又有平面;正方体只有平面;圆柱既有平面又有曲面;故选:B.5.如图,是一个正方体的平面展开图,叠成正方体后,在正方体中写有“心”字的对面的字是()A.祝B.你C.事D.成【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:正方体的平面展开图中,相对的面一定相隔一个正方形,所以在正方体中写有“心”字的那一面的对面的字是成.故选:D.6.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A.B.C.D.【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有4列,从左到右分别是1,2,3,2个正方形.【解答】解:由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,3,2个正方形.故选:B.7.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A、B、C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C的三个数依次是()A.0,﹣3,4B.0,4,﹣3C.4,0,﹣3D.﹣3,0,4【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“0”是相对面,“B”与“3”是相对面,“C”与“﹣4”是相对面,∵相对面上的两数互为相反数,∴A、B、C内的三个数依次是0、﹣3、4.故选:A.8.如图是一个正方体的表面展开图,若折叠成正方体后相对面上的两个数之和都为5,则x+y+z的值为()A.0B.4C.10D.30【分析】正方体的对面不存在公共部分可确定出对面,然后可得到x、y、z的值.【解答】解:x与10为对面,y与﹣2为对面,z与3为对面,∴x=﹣5,y=7,z=2,∴x+y+z=4.故选:B.9.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为()A.7B.8C.9D.10【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:根据三视图知,该几何体中小正方体的分布情况如下图所示:所以组成这个几何体的小正方体个数最多为9个,故选:C.10.已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到的三种情况,那么1和5的对面数字分别是()A.3,6B.3,4C.6,3D.4,3【分析】本题可从图形进行分析,结合正方体的基本性质,得到底面的数字,即可求得结果.【解答】解:第一个正方体已知2,3,5,第二个正方体已知2,4,5,第三个正方体已知1,2,4,且不同的面上写的数字各不相同,可求得第一个正方体底面的数字为3,5对应的底面数字为4.故选:B.二.填空题(共4小题)11.如图,是一个长方体的主视图,左视图与俯视图,根据图中数据计算这个长方体的表面积是52.【分析】根据三视图我们可以得出这个几何体应该是个长方体,进而得出其表面积.【解答】解:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,依题意可求出该几何体的表面积为:2×(2×3+3×4+2×4)=52.故答案为:52.12.在正方体的六个面分别标上A、B、C、D、E、F,现有完全相同的四个正方体,如图拼成一个长方体,请写出三对对面:A对面是F,B对面是E,C对面是D.【分析】如图,以B为突破口,B与C、F、A、D相邻,所以B的对面是E;C与B、F、A、E相邻,所以C的对面是D,则剩余的A与F相对.【解答】解:A对面是F,B对面是E,C对面是D.故答案为:A对面是F,B对面是E,C对面是D.13.如图,将此长方形绕虚线旋转一周,得到的是圆柱体,其体积是16π.(结果保留π)【分析】将长方形旋转可得出圆柱体,根据圆柱体积公式即可求出该圆柱的体积.【解答】解:将此长方形绕虚线旋转一周,得到的是圆柱体,V=πr2h=π×22×4=16π.故答案为:圆柱;16π.14.如图所示,把底面直径是8厘米,高是20厘米的圆柱切成若干等分,拼成一个近似的长方体,这个近似长方体的表面积是176π+160cm2,体积是320πcm3.【分析】根据圆的周长、面积公式、正方体的体积公式计算.【解答】解:长方体的表面积是:8π×20+8π×2+4×20×2=176π+160(cm2),体积是:4×20×4π=320π(cm3),故答案为:176π+160;320π.三.解答题(共12小题)15.如图所示为8个立体图形.其中,是柱体的序号为①②⑤⑦⑧;是锥体的序号为④⑥;是球的序号为③.【分析】分别根据柱体、锥体、球体的定义得出即可.【解答】解:是柱体的序号为①②⑤⑦⑧;是锥体的序号为④⑥;是球的序号为③.故答案为:①②⑤⑦⑧,④⑥,③.16.马小虎准备制作一个封闭的正方体盒子,他先用4个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)【分析】根据正方体的展开图中每个面都有对面,可得答案.【解答】解:如图所示:17.指出下列平面图形各是什么几何体的展开图.【分析】根据几何体的平面展开图的特征可知:(1)是圆柱的展开图;(2)是圆锥的展开图;(3)是三棱柱的展开图;(4)是三棱锥的展开图;(5)是长方体的展开图.【解答】解:(1)圆柱;(2)圆锥;(3)三棱柱;(4)三棱锥;(5)长方体.18.如图,这是一个正方体的展开图,折叠后它们的相对两面的数字之和相等,请你求出y﹣x的值.【分析】利用正方体的表面展开图,相对的面之间一定相隔一个正方形,可得x+3x=2+6,y﹣1+5=2+6,解方程求出x与y的值,进而求解即可.【解答】解:由题意,得x+3x=2+6,y﹣1+5=2+6,解得x=2,y=4,所以y﹣x=4﹣2=2.19.如图是由8个相同的小立方体组成的几何体,请在下列方框内画出它的三视图.【分析】主视图有3列,每列小正方形数目分别为3,1,2;左视图有2列,每列小正方形数目分别为3,1;俯视图有3列,每列小正方形数目分别为2,2,1.【解答】解:20.如图所示,在边长为4的正方形中包含16个一样的边长为1的小正方形,这两图中已经将6个小正方形涂黑.恰好是正方体的平面展开图,开动脑筋,你还能在空图中画出不同的展开方式吗?【分析】利用立方体的组成特点,分别得出画出即可.【解答】解:如图所示:21.如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱,6个顶点,观察图形,填写下面的空.(1)四棱柱有6个面,12条棱,8个顶点;(2)六棱柱有8个面,18条棱,12个顶点;(3)由此猜想n棱柱有(n+2)个面,3n条棱,2n个顶点.【分析】结合已知三棱柱、四棱柱、五棱柱和六棱柱的特点,可知n棱柱一定有(n+2)个面,3n条棱和2n个顶点.【解答】解:(1)四棱柱有6个面,12条棱,8个顶点;(2)六棱柱有8个面,18条棱,12个顶点;(3)由此猜想n棱柱有(n+2)个面,3n条棱,2n个顶点.故答案为:(1)6,12,8;(2)8,18,12;(3)(n+2),3n,2n.22.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B();C();D();E().【分析】分别分析其余四种图形的所有的截面情况,再写出答案.【解答】解:B三棱锥,截面有可能是三角形,正方形,梯形C正方体,截面有可能是三角形,四边形(矩形,正方形,梯形),五边形,六边形D球体,截面只可能是圆E圆柱体,截面有可能是椭圆,圆,矩形,因此应该写B(1、3、4);C(1、2、3、4);D(5);E(3、4、5、6).23.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是③、②、①;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.【分析】(1)根据从上面、左面、正面看到的三视图,可得答案.(2)依据三视图的面积,即可得到这个几何体的表面积.【解答】解:(1)由题可得,从上面、左面、正面看到的平面图形分别是③,②,①;故答案为:③,②,①;(2)∵大正方体的边长为20cm,小正方体的边长为10cm,∴这个几何体的表面积为:2(400+400+400)=2×1200=2400(cm2).24.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)求此几何体表面展开图的面积.【分析】(1)由三视图的特征,可得这个几何体应该是圆柱柱;(2)这个几何体的表面积应该等于两个圆的面积和一个矩形的面积和.【解答】解:(1)根据题意,这个几何体是圆柱;(2)该圆柱的高为40,底面直径为20,表面积为:2×π×102+20π×40=1000π.25.探究:有一长6cm,宽4cm的矩形纸板,现要求以其一组对边中点所在直线为轴,旋转180°,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图①;方案二:以较短的一组对边中点所在直线为轴旋转,如图②.(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?【分析】(1)根据矩形旋转是圆柱,可得几何体,根据圆柱的体积公式,可得答案;(2)根据矩形旋转是圆柱,可得几何体,根据圆柱的体积公式,可得答案;(3)根据矩形旋转所的几何体的大小比较,可得答案.【解答】解:(1)方案一:π×32×4=36π(cm3),方案二:π×22×6=24π(cm3),∵36π>24π,∴方案一构造的圆柱的体积大;(2)方案一:π×()2×3=π(cm3),方案二:π×()2×5=π(cm3),∵π>π,∴方案一构造的圆柱的体积大;(3)由(1)、(2),得以较长一组对边中点所在直线为轴旋转得到的圆柱的体积大.26.在直角三角形,两条直角边分别为6cm,8cm,斜边长为10cm,若分别以一边旋转2h,V球体=,一周(①结果用π表示;②你可能用到其中的一个公式,V圆柱=πrV圆锥=h)知识像烛光,能照亮一个人,也能照亮无数的人。

《第一章丰富的图形世界》单元检测试卷含答案

《第一章丰富的图形世界》单元检测试卷含答案

第一章 丰富的图形世界一、选择题(每小题3分,共36分) 1.下列几何体中,为棱锥的是()2.下面几何体中,没有曲面的是( )A.圆锥B.圆柱C.球D.棱柱 3.下列各选项中,不是正方体表面展开图的是()4.下列图形中,能通过折叠围成一个三棱柱的是()5.用5个完全相同的小正方体组合成如图1-5-1所示的立体图形,它的主视图为()图1-5-16.将如图1-5-2所示的直角△ABC 绕直角边AC 所在直线旋转一周,所得几何体从正面看得到的形状图是()图1-5-27.图1-5-3是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字所在面相对的面上的汉字是()图1-5-3A.钓B.鱼C.岛D.中8.如图1-5-4,用平面去截圆锥,所得截面的形状图是( )图1-5-49.将如图1-5-5所示的立方体展开后得到的图形是( )图1-5-510.一个正方体礼盒如图1-5-6所示,六个面分别写有“祝”“福”“祖”“国”“万”“岁”,其中“祝”的对面是“祖”,“万”的对面是“岁”,则它的表面展开图可能是( )图1-5-611.图1-5-7是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少..是()图1-5-7A.5B.6C.7D.812.图1-5-8是由8个相同的小正方体搭成的几何体,它从三个方向看到的形状图都是2×2的正方形.若拿掉若干个小正方体后(几何体不倒掉),其从三个方向看到的形状图仍都为2×2的正方形,则最多能拿掉小正方体的个数为( ) 图1-5-8A.1B.2C.3D.4 二、填空题(每小题3分,共18分)13.如图1-5-9所示的几何体中,属于柱体的有 (填序号).图1-5-914.棱柱的侧面是 ,分为 棱柱和 棱柱.15.如图1-5-10所示的几何体中有个面,面面相交成线.图1-5-10 图1-5-1116.如图1-5-11,将五角星沿虚线折叠,使得A、B、C、D、E五个点重合,得到的立体图形是.17.(2018山东滕西中学月考)一个棱柱有8个面,则这个棱柱有条侧棱.18.用一个平面去截一个五棱柱,最多可以截出边形.三、解答题(共46分)19.(10分)请你画出如图1-5-12所示的几何体的三视图.图1-5-1220.(11分)图1-5-13是由几个小正方体所组成的几何体的俯视图,小正方形中的数字表示在该位置上小正方体的个数.请画出这个几何体从正面看和从左面看到的形状图.图1-5-1321.(12分)图1-5-14是一张铁皮.(1)计算该铁皮的面积;(2)能否用它做成一个长方体盒子?若能,画出这个长方体,并计算该长方体盒子的体积;若不能,请说明理由.图1-5-1422.(13分)把正方体的六个面分别涂上六种不同颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况见下表:如图1-5-15,现将上述大小相同,颜色、花朵分布也完全相同的四个正方体拼成一个水平放置的长方体.问长方体的下底面共有多少朵花?图1-5-15第一章 丰富的图形世界一、选择题(每小题3分,共36分) 1.下列几何体中,为棱锥的是()答案 B A 、D 选项是柱体,B 选项是棱锥,C 选项是圆锥. 2.下面几何体中,没有曲面的是( )A.圆锥B.圆柱C.球D.棱柱 答案 D 圆锥、圆柱的侧面都是曲面,球是曲面,只有棱柱的所有面都是平面,所以选D.3.下列各选项中,不是正方体表面展开图的是()答案 C 根据正方体的表面展开图的特征或通过动手操作,易知C 不是正方体的表面展开图.4.下列图形中,能通过折叠围成一个三棱柱的是()答案 C 动手操作易知只有C 能折成三棱柱.5.用5个完全相同的小正方体组合成如图1-5-1所示的立体图形,它的主视图为()图1-5-1答案 A 观察几何体,从正面看得到的平面图形是,故选A.6.将如图1-5-2所示的直角△ABC 绕直角边AC 所在直线旋转一周,所得几何体从正面看得到的形状图是()图1-5-2答案 A 直角三角形ABC绕直角边AC所在直线旋转一周,得到的几何体是圆锥,它从正面看得到的形状图为等腰三角形,故选A.7.图1-5-3是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字所在面相对的面上的汉字是()图1-5-3A.钓B.鱼C.岛D.中答案 B 根据正方体的表面展开图的特征,易知与“中”字所在面相对的面上的汉字是“的”,与“钓”字所在面相对的面上的汉字是“岛”,从而可得与“国”字所在面相对的面上的汉字是“鱼”,故选B.8.如图1-5-4,用平面去截圆锥,所得截面的形状图是()图1-5-4答案 D 通过截面的角度和圆锥的侧面是曲面来判断.9.将如图1-5-5所示的立方体展开后得到的图形是()图1-5-5答案 D 采用排除法,A、C选项中,将展开图还原成立方体后,两个黑色三角形所在的面为相对面,所以不正确;B选项中,将展开图还原成立方体后,两个黑色三角形有公共边,所以不正确.10.一个正方体礼盒如图1-5-6所示,六个面分别写有“祝”“福”“祖”“国”“万”“岁”,其中“祝”的对面是“祖”,“万”的对面是“岁”,则它的表面展开图可能是()图1-5-6答案 C 四个选项都是正方体的表面展开图,但只有C 选项符合题目中的“祝”的对面是“祖”,“万”的对面是“岁”的要求.故选C.11.(2016黑龙江齐齐哈尔中考)图1-5-7是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少..是()图1-5-7A.5B.6C.7D.8答案 A 如图为该几何体中小正方体个数最少时的俯视图,从图中可以看出小正方体个数最少为5,故选A.12.图1-5-8是由8个相同的小正方体搭成的几何体,它从三个方向看到的形状图都是2×2的正方形.若拿掉若干个小正方体后(几何体不倒掉),其从三个方向看到的形状图仍都为2×2的正方形,则最多能拿掉小正方体的个数为()图1-5-8A.1B.2C.3D.4答案 B 若拿掉小正方体后几何体不倒掉,则底层四个小正方体不能拿,只能拿上层对角的两块. 二、填空题(每小题3分,共18分)13.如图1-5-9所示的几何体中,属于柱体的有 (填序号).图1-5-9答案(1)(2)(4)(6)(7)解析柱体包括圆柱和棱柱.14.棱柱的侧面是,分为棱柱和棱柱.答案平行四边形;直;斜15.如图1-5-10所示的几何体中有个面,面面相交成线.图1-5-10答案3;曲解析这个几何体有3个面,其中两个底面是平面,一个侧面是曲面,底面和侧面的交线是曲线.16.如图1-5-11,将五角星沿虚线折叠,使得A、B、C、D、E五个点重合,得到的立体图形是.图1-5-11答案五棱锥17.(2018山东滕西中学月考)一个棱柱有8个面,则这个棱柱有条侧棱.答案 6解析因为n棱柱共有(n+2)个面,所以这个棱柱是一个六棱柱,共有6条侧棱.18.用一个平面去截一个五棱柱,最多可以截出边形.答案七解析因为五棱柱一共有7个面,所以最多可以截出七边形.三、解答题(共46分)19.(10分)请你画出如图1-5-12所示的几何体的三视图.图1-5-12解析如图所示.20.(11分)图1-5-13是由几个小正方体所组成的几何体的俯视图,小正方形中的数字表示在该位置上小正方体的个数.请画出这个几何体从正面看和从左面看到的形状图.图1-5-13解析 如图所示:21.(12分)图1-5-14是一张铁皮.图1-5-14(1)计算该铁皮的面积;(2)能否用它做成一个长方体盒子?若能,画出这个长方体,并计算该长方体盒子的体积;若不能,请说明理由.解析 (1)该铁皮的面积为1×3×2+2×3×2+1×2×2=22(m 2). (2)能做成一个长方体盒子.如图所示,该长方体盒子的体积为3×1×2=6(m 3).22.(13分)把正方体的六个面分别涂上六种不同颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况见下表:如图1-5-15,现将上述大小相同,颜色、花朵分布也完全相同的四个正方体拼成一个水平放置的长方体.问长方体的下底面共有多少朵花?图1-5-15解析由题图可知:红色面对绿色面,黄色面对紫色面,蓝色面对白色面,故长方体下底面的颜色从左到右依次是紫色、黄色、绿色、白色,再由表格中颜色对应花的朵数可知,长方体的下底面共有17朵花.。

第一章 丰富的图形世界单元测试卷(含答案)

第一章 丰富的图形世界单元测试卷(含答案)

第一章丰富的图形世界单元测试卷(含答案)Chapter 1: Rich World of Shapes Unit TestPart 1: Multiple Choice (12 ns)1.Which of the following is the net of a triangular prism。

(A。

B。

C。

or D)2.If the shape on the left is folded to form a cube。

whichcube is correct。

(A。

B。

C。

or D)3.If the net of a cube is shown as below。

what number is opposite to 0 after it is folded into a cube。

(A。

B。

C。

or D)4.Figure 1 XXX。

If it is cut as shown in Figure 2.which ofthe following nets correctly shows all the cut lines。

(A。

B。

C。

or D)5.Among the four geometric shapes shown below。

howmany of them have different front and top views。

(A。

B。

C。

or D)6.Which of the following geometric shapes has a circularfront view。

(A。

B。

or D)7.The left view of a triangular prism is shown below。

Which one is it。

(A。

B。

or C)8.The solid figure made up of six small cubes is shown below。

Which of the following is its top view。

【2024秋】最新鲁教版五四制六年级上册数学第一章《丰富的图形世界》测试卷(含答案)

【2024秋】最新鲁教版五四制六年级上册数学第一章《丰富的图形世界》测试卷(含答案)

【2024秋】最新鲁教版五四制六年级上册数学第一章《丰富的图形世界》测试卷(含答案)一、选择题(每题3分,共36分)1.[2024·潍坊安丘市月考母题·教材P5习题T3]下列几何体是柱体的有()A.2个B.3个C.4个D.5个2.下列几何体中,可以由平面图形绕某条直线旋转一周得到的是()A B C D3.下列物体中,从三个方向看到的都是圆的是()A B C D4.如图,沿线段OA将该圆锥的侧面剪开并展平,得到的圆锥的侧面展开图是()(第4题)A.三角形B.正方形C.扇形D.圆5.[2024·青岛期中]如图,往一个密封的正方体容器中持续注入一些水,注水的过程中,可将容器任意放置,水平面的形状不可能是()(第5题)A.三角形B.正方形C.六边形D.七边形6.[2023·枣庄滕州市西岗中学期末]一个棱柱有10个顶点,所有侧棱长的和是40cm,则每条侧棱长是()A.7cm B.8cm C.9cm D.10cm7.下列说法错误的是()A.长方体、正方体都是棱柱B.六棱柱有18条棱、6个侧面、12个顶点C.三棱柱的侧面是三角形D.圆柱由2个平面和1个曲面围成8.[立德树人爱国教育]如图是一个多面体的表面展开图,每个面都标注了字.若该多面体的底面的字是5,则该多面体的上面的字是()(第8题)A.建B.国C.周D.年9.[2024·济南市中区期末母题·教材P14习题T3]如图,图①和图②中所有的正方形都完全相同,将图①的正方形放在图②中的某一位置,其中所组成的图形不能围成正方体的是()(第9题)A.①B.②C.③D.④10.[2023·烟台]如图,对正方体进行两次切割,得到如图⑤所示的几何体,则图⑤几何体从上面看到的平面图形为()A B C D 11.[2024·烟台牟平区期中]用大小相同的小立方体搭成如图所示的几何体,现拿掉其中的一个小立方体后,从左面看这个几何体得到的平面图形的面积与拿掉前相同,则这个拿掉的小立方体可以是()(第11题)A.②或④B.②或③C.①或②或③D.②或③或④12.[新视角规律探究题]如图①,将正方体骰子放置于水平桌面上(相对面上的点数分别为1和6,2和5,3和4),在图②中,将骰子向右旋转90°,然后在桌面上按顺时针方向旋转90°,则完成一次变换.若骰子的初始位置为图①所示的状态,那么按上述规则连续完成2023次变换后,骰子朝上一面的点数是()(第12题)A.6 B.5 C.3 D.1二、填空题(每题3分,共18分)13.将一枚硬币在桌面上快速旋转,可看到一个球,这种现象说明.14.[2024·淄博一模]用相同的小正方体摆成某种模型,从三个不同方向看到的模型的形状图如图所示,则这个模型是由个小正方体摆放而成的.(第14题)15.从三个不同方向看同一个几何体的形状图如图所示,则这个几何体的侧面积是cm2.(第15题)16.[2024·青岛城阳区期末]如图,将此长方形绕虚线旋转一周,得到的几何体的侧面积是cm2.(结果保留π)(第16题)17.如图,用经过A,B,C三点的平面截去正方体的一角,变成一个新的多面体,若这个多面体的面数为m,棱数为n,则m+n=.(第17题)18.[2024·烟台芝罘区期末]如图是由相同大小的小正方体搭成的几何体从不同方向看到的形状图,搭这个几何体最多需要用个小正方体.(第18题)三、解答题(共66分)19.(10分)写出如图所示的平面展开图折叠后所得几何体的名称.20.(10分)[2024·济南济阳区期中]从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.21.(10分)如图是一个几何体从正面、左面、上面看到的形状图,求这个几何体的表面积.(结果保留π)22.(12分)[2024·泰安新泰市期中]如图,加工一个长5cm,宽3cm,高4cm 的长方体铁块,选择面积最小的一个面,从该面的正中间打一个直径为2cm 的圆孔,一直贯穿到对面就可以做成一个零件.(1)这个零件的体积大约是多少立方厘米(π取3)?(2)为了防止零件生锈,工人师傅给该零件与空气接触的面都喷上油漆,则所喷油漆的面积大约是多少平方厘米(π取3)?23.(12分)[新考向知识情境化]某同学的茶杯是圆柱形,如图①所示,有一只蚂蚁从A处沿侧面爬行到母线CD的中点B处,如果蚂蚁爬行的路线最短,请利用展开图画出这条最短路线.解:将圆柱的侧面展开成一个长方形,如图②所示,则A,B分别位于图②中所示的位置,连接AB,AB即是这条最短路线.问题:一个正方体放在桌面上,如图③所示,有一只蚂蚁从A处沿正方体表面爬行到侧棱GF的中点M处,如果蚂蚁爬行的路线最短,最短路线有几条?请利用展开图画出最短路线.24.(12分)[新视角归纳猜想题]如图①②③是将正方体截去一部分后得到的几何体.(1)根据要求填写表格:(2)猜想(3)根据(2)中的猜想计算,若一个几何体有2024个顶点,3036条棱,试求出它的面数.答案一、1.C【点拨】如图,各个几何体的名称如下:因此这些几何体中,是柱体的有四棱柱、三棱柱、圆柱、三棱柱,共有4个.2.B3.C【点拨】A.从正面、上面、左面看到的形状图分别是长方形、圆、长方形;B.从正面、上面、左面看到的形状图分别是三角形、圆(有圆心)、三角形;D.从正面、上面、左面看到的形状图都是正方形.4.C5.D【点拨】正方体有六个面,注水的过程中,可将容器任意放置,水平面最多与六个面相交得六边形,最少与三个面相交得三角形,所得水平面的形状可能是三角形、四边形、五边形和六边形,不可能出现七边形.6.B【点拨】因为一个棱柱有10个顶点,所以该棱柱是五棱柱,所以它的每条侧棱长是40÷5=8(cm).7.C【点拨】三棱柱的侧面是长方形.8.A9.A【点拨】根据正方体的展开图的特征,11种情况中,“1-4-1型”6种,“2-3-1型”3种,“2-2-2型”1种,“3-3型”1种,逐一对四个位置进行判断,发现只有放在①处时,不能围成正方体.10.A【点拨】注意所有看到的棱都应表现在看到的平面图形中.11.D【点拨】拿掉小立方体②或③或④后,从左面看这个几何体所得到的平面图形都与原几何体从左面看所得到的平面图形相同,因此可以拿掉小立方体②或③或④.12.B【点拨】根据题意可知,连续3次变换是一个循环,因为2023÷3=674……1,所以第2023次变换与第1次变换相同.所以连续完成2023次变换后,骰子朝上一面的点数是5.二、13.面动成体14.515.36【点拨】这个几何体是三棱柱,4×3×3=36(cm2).故这个几何体的侧面积是36cm2.16.12π【点拨】由题意可知该长方形绕虚线旋转得到圆柱体,其侧面积=2π×2×3=12π(cm2).17.19【点拨】根据题意得m=6+1=7,n=12,所以m+n=7+12=19.18.7【点拨】由从正面看到的形状图可以看出,几何体从左到右共三列,第一列最多2层,第二列最多1层,第三列最多1层;由从左面看到的形状图可以看出,几何体从左到右共两列,第一列最多1层,第二列最多2层,所以第一层最多有6个,第二层最多有1个,最多需要小正方体6+1=7(个).三、19.【解】①圆锥.②五棱柱.③圆柱.20.【解】几何体的形状图如图所示.21.【解】由题图可得这个几何体的表面展开后是3个长方形与2个扇形,其侧面积为3×3×2π×2+3×2+3×2=9π+12,上、下底面的面积和为4π×22=6π,2×34故这个几何体的表面积为9π+12+6π=15π+12.=1(cm).22.【解】(1)圆孔的半径r=22根据题意,得5×3×4-πr2×5≈45(cm3),所以这个零件的体积大约是45cm3.(2)由题意,得(3×4+3×5+4×5)×2-2×πr2+2πr×5≈118(cm2).所以所喷油漆的面积大约是118cm2.23.【解】将正方体的部分侧面展开,作出线段AM,最短路线有2条,如图①②所示.24.【解】(1)7;9;14;6;8;12;7;10;15(2)f+v-e=2.(3)因为v=2024,e=3036,f+v-e=2,所以f+2024-3036=2,解得f=1014,即它的面数是1014.。

六年级上册数学第一章丰富的图形世界单元检测试题附答案鲁教版五四制

六年级上册数学第一章丰富的图形世界单元检测试题附答案鲁教版五四制

六年级上册数学第一章丰富的图形世界单元检测试题附答案鲁教版五四制考试时间:120分钟满分:120分____________ ____________考号:__________一、单选题(每小题3分,共12题;共36分)1.一个棱柱有12个面,30条棱,则它的顶点个数为()A. 10B. 12C. 15D. 202.如图是一个正方体纸盒的展开图,每个面内都标注了字母或数字,则面a在展开前所对的面的数字是()A. 2B. 3C. 4D. 53.直棱柱的侧面都是()A. 正方形B. 长方形C. 五边形D. 菱形4.下列四幅图均由五个全等的小正方体堆成,其中主视图与其他三个不同的是()A. B. C. D.5.由n个相同的小正方体堆成的几何体,其主视图、俯视图如下所示,则n的最大值是( )A. 16B. 18C. 19D. 206.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A. B. C. D.7.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A. 白B. 红C. 黄D. 黑8.(2013•百色)一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为()A. 6cm2B. 4πcm2C. 6πcm2D. 9πcm29.用一个平面去截一个圆柱体,截面不可能的是()A. B. C. D.10.如图是某几何体的三视图,其侧面积()A. 6B. 4πC. 6πD. 12π11.如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()A. B. C. D.12.(2013•大连)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的俯视图是()A. B. C. D.二、填空题(每空3分;共18分)13.如图,下面两个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么黄色的对面是________ .14.用一些棱长为a的正方形,摆成如图所示的形状,请你求出该物体的表面积.________.15.把一个体积是64立方厘米的立方体木块的表面涂上红漆,然后锯成体积为1立方厘米的小立方体,从中任取一块,则取出的这一块至少有一面涂红漆的概率是________.16.如图,某长方体的表面展开图的面积为430,其中BC=5,EF=10,则AB=________.17.一三棱锥的三视图如下,这个三棱锥最长棱的长度为________.18.(2011•扬州)如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等.则这六个数的和为________.三、解答题(共7题;共66分)19.(6分)我们知道,将一个长方形绕它的一边旋转一周得到的几何体是圆柱,现有一个长是5cm,宽是3cm的长方形,分别绕它的长和宽所在的直线旋转一周,得到不同的圆柱几何体,分别求出它们的体积.20.(6分)正方体是由六个平面图形围成的立体图形,设想沿着正方体的一些棱将它剪开,就可以把正方体剪成一个平面图形,但同一个正方体,按不同的方式展开所得的平面展开图是不一样的;如图所示,请至少再画出三种不同的平面展开图.21.(12分)如图①所示是一个长方体盒子,四边形ABCD是边长为a的正方形,DD′的长为b.(1)写出与棱AB平行的所有的棱。

北师大版七年级数学上册 第一章《丰富的图形世界》单元试卷(有答案)

北师大版七年级数学上册 第一章《丰富的图形世界》单元试卷(有答案)

七年级数学(北师大版)上册第一章《丰富的图形世界》单元试卷(有答案)时间:100分钟满分:120分班级____________姓名____________成绩________________一.选择题(本大题共12小题,共36分,每小题只有一个正确选项)1.如图所示,属于棱柱的有( )A.2个 B.3个 C.4个 D.5个2.将图的表面带有图案的正方体沿某些棱展开后,得到的图形是()3.图是一个长方体形状包装盒的表面展开图.折叠制作完成后得到长方体包装盒的容积是(包装材料厚度不计)()A.40×40×70 B.70×70×80C.80×80×80 D.40×70×804.若过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图的几何体,则其表面展开图正确的为()5.如图是由6个相同的小正方体搭成的几何体,那么从上面看这个几何体得到的图形是()6. 如图(1)是放置的一个水管三叉接头,若从正面看这个接头时,看到的图形如图(2),则从上面看这个接头时,看到的图形是()7.如图是正方体的表面展开图,则与“前”字相对的字是()A.认 B.真 C.复 D.习8.如图所示的几何体,它的左视图是()A. B. C. D.9.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.4个B.5个 C.6个D.7个10.用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能;④可能是平行四边形.其中所有正确结论的序号是()A.①②B.①④ C. ①②④D.①②③④11.如图,这是一个机械模具,则它的主视图是( )A.B.C. D.12.,用4个完全相同的小正方体搭成如图所示的几何体,该几何体的( )A.主视图和左视图相同B.主视图和俯视图相同C.左视图和俯视图相同D.各种视图都相同二.填空题(本大题共6小题,每题4分,共24分)13.雨滴从空中落下、流星从空中划过,这些现象都给我们以_____的形象;汽车的雨刷摆动、将教室前的投影幕展开,这些现象给我们以_____的形象;硬币在桌面上快速旋转、向玻璃杯中注水水面的上升,这些现象给我们以______的形象.14.若要使图中的平面展开图折叠成正方体后,相对面上两个数之和为6,则x=___,y=____.15.图是将正方体切去一个角后的几何体,则该几何体有_____个面,_____条棱.16.沿图示的箭头方向用平面去截图中的三个几何体,截面的形状依次为____、_____和_____.17.三棱柱有5个面、6个顶点、9条棱,四棱柱有6个面、8个顶点、12条棱,五棱柱有7个面、10个顶点、15条棱,……由此可推测n棱柱有____个面、____ 个顶点、____条棱. 18.一个圆柱的侧面展开图为如图所示的长方形,则这个圆柱的底面面积为.三.解答题(共7小题共60分)19.(6分)如图所示的几何体,分别由哪个平面图形绕某条直线旋转一周得到?请画出相应的平面图形.20.(6分)如图所示是一个工件的示意图,请你画出从正面、左面、上面看这个工件时所得到的图形.21.(8分)小毅设计了某个产品的包装盒(如图所示),由于粗心少设计了其中一部分,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有种添补的方法;(2)任意画出一种成功的设计图.22.(8分)如图①,把一张长10厘米、宽6厘米的长方形纸板分成两个相同的直角三角形.(1)甲三角形(如图②)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?(2)乙三角形(如图③)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米(π取3.14)?23. (8分)如图所示是一张铁皮.(1)计算该铁皮的面积.(2)它能否做成一个长方体盒子?若能,画出它的几何图形,并计算它的体积;若不能,说明理由.24.(12分).如图,图①为一个正方体,其棱长为10,图②为图①的表面展开图(数字和字母写在外表面上,字母也可以表示数),请根据要求回答问题:(1)如果正方体相对面上的两个数字之和相等,则x=,y=;(2)如果面“2”是右面,面“4”在后面,则上面是(填“6”“10”“x”或“y”);(3)如图①所示,M,N为所在棱的中点,试在图②中找出点M,N的位置.25.(12分)把正方体的六个面分别涂上六种不同颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况见下表:如图所示,现将上述大小相同,颜色、花朵分布也完全相同的四个正方体拼成一个水平放置的长方体.问长方体的下底面共有多少朵花?2019-2020学年度山东省滕州市鲍沟中学七年级数学(北师大版)上册第一章《丰富的图形世界》单元试卷参考答案13.点动成线线动成面面动成体14.x=5,y=3.15.7 14 16.正方形长方形椭圆17.(n+2) 2n 3n18.4π或π19.20.解:从正面、左面、上面看这个工件时所得到的图形如图21. 解:(1)4 (2)答案不唯一,如图.22.解:(1)甲三角形旋转一周可以形成一个圆锥,它的体积是13×3.14×62×10=376.8(立方厘米).(2)乙三角形旋转一周可以形成一个空心的圆柱,它的体积是 3.14×62×10-13×3.14×62×10=753.6(立方厘米).23. 解:(1)该铁皮的面积为(1×3)×2+(2×3)×2+(1×2)×2=22(m2). (2)能做成一个长方体盒子,如图所示 其体积为3×1×2=6(m3). 24. 解:(1)12 8 (2)y(3)点N 在与DC 相对的棱上,点M 的位置有两种情况,如图甲、图乙所示.25解:由题图可知:红色面对绿色面,黄色面对紫色面,蓝色面对白色面,故长方体下底面的颜色从左到右依次是紫色、黄色、绿色、白色,再由表格中颜色对应花的朵数可知,长方体的下底面共有17朵花.。

六年级数学上册第一章《丰富的图形世界》单元检测及答案解析

六年级数学上册第一章《丰富的图形世界》单元检测及答案解析

第一章《丰富的图形世界》单元检测(本检测题满分:100 分,时间: 90 分钟)一、选择题(每题 3 分,共 30 分)1. 以下说法正确的选项是()① 教科书是长方形;② 教科书是长方体,也是棱柱;③教科书的封面是长方形 . A.①②B.①③C.②③D.①②③2. 以下平面图形不可以够围成正方体的是()A B C D3. 将一个正方体沿着某些棱剪开,展成一个平面图形,起码需要剪的棱的条数是()4.以下四个相关生活、生产中的现象:① 用两个钉子就能够把一根木条固定在墙上;② 植树时,只需定出两棵树的地点,就能确立同一行树所在的直线;③从A地到B地架设电线,老是尽可能沿着线段架设;④ 把曲折的公路改直,就能缩短行程 .此中可用“两点之间,线段最短”来解说的现象有()A. ①②B. ①③C. ②④D. ③④5. 以下图,从 A 地抵达 B 地,最短的路线是()第5题图A. A→ C→ E→B B. A→ F→ E→BC.A→ D→ E→B D. A→ C→ G→ E→B6. 以下图形中,不是三棱柱的表面睁开图的是()7. 以下图的立体图形从上边看到的图形是()第7题图8.圆柱是由长方形绕着它的一边所在直线旋转一周所获得的,那么左图是以下四个图中的哪一个绕着直线旋转一周获得的()9.如图是一个立体图形从三个不一样方向看到的形状图,这个立体图形是由一些同样的小正方体构成,这些同样的小正方体的个数是()10.如图,三个正方体的六个面都按同样规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂黄色、白色、红色的对面分别是()A.蓝色、绿色、黑色B.绿色、蓝色、黑色1C.绿色、黑色、蓝色D.蓝色、黑色、绿色 2 3二、填空题(每题 3 分,共24 分)第 11题图11.如图,若要使图中平面睁开图折叠成正方体后,相对面上两个数字之和为 6,则_ ___,A B C D ______.A B C D12.以下表面睁开图对应的立体图形的名称分别是:______、 ______、 ______、 ______.13.将以下图的图形剪去一个小正方形,使余下的部分恰巧能折成一个正方体,应剪去____(填序号) .14.假如一个几何体从三个方向看到的图形之一是三角形,这个几何体可能是(写出3个即可) .15.若几何体从正面看是圆,从左面和上边看都是长方形,则该几何体是.16.如图甲,用一块边长为10 cm 的正方形的厚纸板做了一套七巧板.将七巧板拼成一座桥(如图乙),这座桥的暗影部分的面积是.第16题图17.在桌上摆有一些大小同样的正方体木块,其从正面看和从左面看到的图形以下图,则要摆出这样的图形起码需要块正方体木块,至多需要块正方体木块 .18.(2012 ·江西中考)一个正方体有个面.三、解答题(共46 分)19.(6 分)如图,将以下几何体与它的名称连结起来.20.(6 分)如图是一个正方体骰子的表面睁开图,请依据要求回答以下问题:(1)假如 1 点在上边, 3 点在左面,则几点在前面(2)假如 5 点在下边,则几点在上边21. ( 6 分)如图是一个由若干个小正方体搭成的几何体从上边看获得的图形,此中小正方形内的数字是该地点小正方体的层数,请你画出它从正面看和从左面看获得的图形.22. (6 分)以下图是由四个小立方体构成的立体图形,请你分别画出从它的正面、左面、上边三个方向看所获得的平面图形.上面左面正面第 22题图第 23题图23.( 6 分)马小虎准备制作一个关闭的正方体盒子,他先用 5 个大小同样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个关闭的正方体盒子.(注:① 只需增添一个切合要求的正方形;② 增添的正方形用暗影表示)24.( 8 分)如图是一个正方体的平面睁开图,若要使得图中平面睁开图折叠成正方体后,相对面上的两个数字之和均为5,求的值.25.( 8 分)一只蜘蛛在一个正方体的极点 A 处,一只蚊子在正方体的极点 B 处,以下图,此刻蜘蛛想赶快地捉到这只蚊子,那么它所走的最短路线是如何的,在图上画出来,这样的最短路线有几条第一章《丰富的图形世界》单元检测参照答案分析:教科书是立体图形,因此①不对,②③都是正确的,应选 C.分析:利用空间想象能力或许自己着手实践一下,可知答案选 B.分析:假如把一个正方体剪睁开平的图形画出来,发现最多有 5 条棱没剪(没剪的棱为两个正方形的公共边),正方体总合12 条棱,∴ 12- 5=7(条)即为起码需要剪的棱.分析:①②是“两点确立一条直线”的表现,③④能够用“两点之间,线段最短”来解说应选 D.分析:考察了“两点之间,线段最短”.分析: A、 B、C 中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面睁开图. D 围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故 D 不可以围成三棱柱.分析:从上边看到的图形为 C.分析:依据选项中图形的特色剖析可知:.A能够经过旋转获得两个圆柱,故本选项正确;B能够经过旋转获得一个圆柱,一个圆筒,故本选项错误;C能够经过旋转获得一个圆柱,两个圆筒,故本选项错误;D能够经过旋转获得三个圆柱,故本选项错误.分析:如图,由从上边看获得的图形,我们可知该立体图形共由五摞小正方体构成,由从正面看到的图形我们可知,第 1 摞只有一个小正方体,由从左面看到的图形我们可知,第 3 摞和第 5 摞也只有一个小正方体,只有第有两个小正方体.故这些同样的小正方体共有7 个 .分析:剖析可知黄色的对面是绿色,白色的对面是蓝色,红色的对面是黑色.3分析:自己着手折一下,可知与1相对,与3相对,因此2、 4 两摞因此12.圆柱13.1 或2圆锥或 6四棱锥三棱柱分析:此题主要考察常有几何体的睁开与折叠分析:依占有“田”字格的睁开图都不是正方体的表面睁开图可知,应剪去.1 或2 或 6,答案不独一.14.圆锥,三棱柱,三棱锥等分析:此题主要考察从不一样方向察看实物所获得的几何图形.15.圆柱分析:几何体从正面看是圆,从左面和上边看都是长方形,切合这个条件的几何体只有圆柱.分析:暗影部分的面积等于整个正方形面积的一半,正方形的面积为100,因此暗影部分的面积为5016分析:易得第一层最罕有 4 块正方体,最多有12 块正方体;第二层最罕有 2 块正方体,最多有 4 块正方体,故总合起码需要 6 块正方体,至多需要16 块正方体.18. 6分析:正方体有上、下、左、右、前、后 6 个面,均为正方形.19.剖析:正确划分各个几何体的特色.解:20.解:( 1)假如 1 点在上边, 3 点在左面,那么 2 点在前面 .( 2)假如 5 点在下边,那么 2 点在上边 .21.剖析:由已知图形能够看出该几何体有三行、四列,以及每行(每列)的最高层数 .因此从正面看到的图形中共四列,(自左到右数)第一列最高一层,第二列最高两层,第三列最高三层,第四列最高一层,进而确立从正面看到的图形的形状.再从左面看到的图形中共三行,(自左到右数)第一行最高三层,第二行最高两层,第三行最高一层,进而确立从左面看到的图形的形状.解:从正面看和从左面看到的图形以下图:第 23 题答图22.解:以下图 .23.解:答案不独一,如图.24.解:因为正方体的平面睁开图共有六个面,此中面“”与面“3相”对,面“ ”与面“-2”相对,面“”与面“10相”对,则,,,解得,,.故.25.剖析:欲求从 A 点到 B 点的最短路线,在立体图形中难以解决,能够考虑把正方体睁开成平面图形来考虑.如右图所示,我们都有这样的实质经验,在两点之间,走直线行程最短,因此沿着从 A 到 B 的虚线走行程最短.而后再把睁开图折叠起来 .解:所走的最短路线是正方体平面睁开图中从 A 点到 B 点的连线,在正方体上,像这样的最短路线一共有六条,以以下图所示.。

七年级上第1章《丰富的图形世界》单元测试卷(含答案解析)

七年级上第1章《丰富的图形世界》单元测试卷(含答案解析)

2020-2020学年度北师大版数学七年级上册第1章《丰富的图形世界》单元测试卷考试范围:第1章;考试时间:100分钟;满分:120分学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,30分)1.下列图形中,属于圆锥的是()A.B. C.D.2.将下面平面图形绕直线l旋转一周,可得到如图所示立体图形的是()A.B.C.D.3.设棱长都为a的六个正方体摆放成如图所示的形状,则摆放成这种形状的表面积是()A.36a2B.30a2 C.26a2 D.25a24.如图所示的图形,是下面哪个正方体的展开图()A.B.C.D.5.如图表示一个正方体的平面展开图,把它折成一个正方体时,与顶点K重合的点是()A.点F、点N B.点F、点B C.点F、点M D.点F、点A6.一个正方体的每一个面都有一个汉字,其平面展开图如图所示,那么在该正方体中和“好”字相对的字是()A.共B.创C.美D.园7.用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是()A.①②B.①④C.①②④D.①②③④8.如图所示,用一个平面分别去截下列水平放置的几何体,所截得的截面不可能是三角形的是()A.B.C.D.9.下面四个几何体中,主视图与俯视图相同的几何体共有()A.1个 B.2个 C.3个 D.4个10.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.第Ⅱ卷(非选择题)评卷人得分二.填空题(共10小题,20分)11.雨点从高空落下形成的轨迹说明了点动成线,那么一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了.12.一个圆柱的底面直径为6cm,高为10cm,则这个圆柱的侧面积是cm2(结果保留π).13.一个棱柱共有15条棱,那么它是棱柱,有个面.14.如图是一个长方体的表面展开图,其中四边形ABCD是正方形,根据图中标注的数据可求得原长方体的体积是.15.如图,纸上有10个小正方形(其中5个有阴影,5个无阴影),从图中5个无阴影的小正方形中选出一个,与5个有阴影的小正方形折出一个正方体的包装盒,不同的选法有种.16.按照如图的平面展开图折叠成正方体后,相对面上的两个数都互为相反数,那么(a+b)c=.17.下列图形中:①等腰三角形;②矩形;③正五边形;④六边形,只有三个是可以通过切正方体(如图)而得到的切口平面图形,这三个图形的序号是.18.一矩形纸片绕其一边旋转180度后,所得的几何体的主视图和俯视图分别为.19.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是.20.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的所有侧面积之和为.评卷人得分三.解答题(共7小题,70分)21.如图是一个长为4cm,宽为3cm的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π)22.如图,在无阴影的方格中选出两个画出阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图1和图2中任选一个进行解答,只填出一种答案即可)23.一个正方体的表面展开图如图所示,已知这个正方体的每一个面上都有一个数字,且各相对面上所填的数字互为倒数,请写出x、y、z的值.24.如图①,从大正方体上截去一个小正方体之后,可以得到图②的几何体.(1)设原大正方体的表面积为S,图②中几何体的表面积为S1,那么S1与S的大小关系是A.S1>S B.S1=S C.S1<S D.无法确定(2)小明说:“设图①中大正方体各棱的长度之和为l,图②中几何体各棱的长度之和为l1,那么l1比l正好多出大正方体3条棱的长度.”你认为这句话对吗?为什么?(3)如果截去的小正方体的棱长为大正方体棱长的一半,那么图③是图②中几何体的表面展开图吗?如有错误,请予修正.25.如图是某几何体的三视图,其中主视图、左视图都是腰为13cm,底为10cm 的等腰三角形,求这个几何体的体积.26.分别画出图中几何体的主视图、左视图、俯视图.27.如图是某几何体的三视图(1)说出这个几何体的名称;(2)若主视图的宽为4cm,长为15cm,左视图的宽为6cm,俯视图中直角三角形的斜边为10cm,求这个几何体中所有棱长的和是多少?它的表面积是多少?参考答案与试题解析一.选择题(共10小题)1.【分析】根据圆锥、圆柱、圆台、棱柱的特点分别进行分析即可.【解答】解:A、此图属于圆锥,故此选项正确;B、此图属于圆柱,故此选项错误;C、此图属于圆台,故此选项错误;D、此图属于棱柱,故此选项错误,故选:A.2.【分析】根据面动成体,所得图形是两个圆锥体的复合体确定答案即可.【解答】解:由图可知,只有B选项图形绕直线l旋转一周得到如图所示立体图形.故选:B.3.【分析】解此类题应利用视图的原理从不同角度去观察分析以进行解答.【解答】解:从上面看到的面积是5个正方形的面积,下面共有5个正方形的面积,前后左右共看到4×4=16个正方形的面积,所以表面积是26a2故选:C.4.【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图解答即可.【解答】解:根据正方体展开图的特点可得:两个三角形相邻.故选:D.5.【分析】当把这个平面图形折成正方体时,左面五个正方形折成一个无盖的正方体,此时,G与M重合、F与K重合、L与C重合、N与J重合,右面一个正方形折成正方体的盖,此时B与F、K的重合点重合,A与G、M的重合点重合.【解答】解:当把这个平面图形折成正方体时,与顶点K重合的点是F、B.故选:B.6.【分析】利用正方体及其表面展开图的特点解题.方法比较灵活可让“好”字面不动,分别把各个面围绕该面折成正方体,这需要空间想象能力,如果想象不出就动手操作,或者拿手边的正方体展成该形状观察.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“好”与面“园”相对.故选:D.7.【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形.【解答】解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,而三角形只能是锐角三角形,不能是直角三角形和钝角三角形.故选:B.8.【分析】根据球的主视图只有圆,即可得出答案.【解答】解:∵球的主视图只有圆,∴如果截面是三角形,那么这个几何体不可能是球.故选:B.9.【分析】根据主视图、俯视图是分别从物体正面和上面看,所得到的图形进行分析.【解答】解:①正方体的主视图与俯视图都是正方形;②圆锥主视图是三角形,俯视图是圆;③球的主视图与俯视图都是圆;④圆柱主视图是矩形,俯视图是圆;故选:B.10.【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【解答】解:由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选:C.二.填空题(共10小题)11.【分析】根据点动成线,线动成面,面动成体进行解答.【解答】解:一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了面动成体,故答案为:面动成体.12.【分析】直接利用圆柱体侧面积公式求出即可.【解答】解:∵一个圆柱的底面直径为6cm,高为10cm,∴这个圆柱的侧面积是:πd×10=60π(cm2).故答案为:60π.13.【分析】根据棱柱的概念和定义,可知有15条棱的棱柱是五棱柱.【解答】解:一个棱柱共有15条棱,那么它是五棱柱,有7个面,故答案为:五;7.14.【分析】利用正方形的性质以及图形中标注的长度得出AB=AE=4cm,进而得出长方体的长、宽、高,进而得出答案.【解答】解:∵四边形ABCD是正方形,∴AB=AE=4cm,∴立方体的高为:6﹣4=2(cm),∴EF=4﹣2=2(cm),∴原长方体的体积是:2×4×2=16(cm3).故答案为:16cm3.15.【分析】利用正方体的展开图即可解决问题,共2种.【解答】解:如图所示,不同的选法有2处,故答案为:2.16.【分析】利用正方体及其表面展开图的特点,分别求得a,b,c的值,然后代入求解.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“a”与面“﹣1”相对,面“c”与面“2”相对,“﹣3”与面“b”相对,∵相对面上的两个数都互为相反数,∴a=1,b=3,c=﹣2,则(a+b)c=(1+3)﹣2=.故答案为:.17.【分析】根据正方体的特性即截面图的定义即可解.【解答】解:正方体利用斜截面可以截得等腰三角形和正六边形,当截面与经过相对棱的面成45°时就可得到.当截面与棱平行时,得到的切口就是矩形.故答案为:①②④.18.【分析】应先得到旋转后得到的几何体,找到从正面和上面看所得到的图形即可.【解答】解:一矩形硬纸板绕其竖直的一边旋转180°,得到的几何体是半圆柱,它的主视图和俯视图分别为矩形,半圆.故答案为:矩形,半圆19.【分析】根据从上面看得到的图形是俯视图,可得俯视图,根据矩形的面积公式,可得答案.【解答】解:从上面看三个正方形组成的矩形,矩形的面积为1×3=3.故答案为:3.20.【分析】观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其侧面积即可.【解答】解:由三视图知该几何体是底面边长为2、高为4的正六棱柱,∴其侧面积之和为2×4×6=48,故答案为:48.三.解答题(共7小题)21.【分析】绕长旋转得到的圆柱的底面半径为4cm,高为6cm,从而计算体积即可;绕宽旋转得到的圆柱底面半径为6cm,高为4cm,从而计算体积即可.【解答】解:如图1,绕长边旋转得到的圆柱的底面半径为3cm,高为4cm,体积=π×32×4=36πcm3;如图2,绕短边旋转得到的圆柱底面半径为4cm,高为3cm,体积=π×42×3=48πcm3.22.【分析】和一个正方体的平面展开图相比较,可得出一个正方体11种平面展开图.【解答】解:只写出一种答案即可.(4分)图1:图2:23.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再根据相对面上的两个数字互为倒数解答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“2”是相对面,“y”与“3”是相对面,“z”与“1”是相对面,∵各相对面上所填的数字互为倒数,∴x=﹣2,y=﹣3,z=﹣1.24.【分析】(1)根据平移的性质可得出S1与S的大小关系;(2)利用立方体的性质得出得出棱长之间的关系;(3)利用立方体的侧面展开图的性质得出即可.【解答】解:(1)设原大正方体的表面积为S,图②中几何体的表面积为S1,那么S1与S的大小关系是相等;故选:B;(2)设大正方体棱长为1,小正方体棱长为x,那么l1﹣l=6x.只有当x=时,才有6x=3,所以小明的话是不对的;(3)如图所示:.25.【分析】由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥,求出圆锥的高,然后根据圆锥的体积公式求解即可.【解答】解:由三视图可知此几何体是圆锥,依题意知母线长l=13,底面半径r=5,所以底面上的高h=,∴圆锥的体积=πr2•h==100π.26.【分析】从正面看从左往右4列正方形的个数依次为1,3,1,1;从左面看从左往右3列正方形的个数依次为3,1,1;从上面看从左往右4列正方形的个数依次为1,3,1,1.【解答】解:27.【分析】(1)从三视图的主视图看这是一个矩形,而左视图是一个扁平的矩形,俯视图为一个三角形,故可知道这是一个三棱柱;(2)根据直三棱柱的棱长的和以及表面积公式计算即可.【解答】解:(1)这个几何体为三棱柱.(2)这个几何体的所有棱长之和为:(6+4+10)×2+15×3=85(cm);它的表面积为:2××6×4+(6+4+10)×15=324(cm2).。

北师大版七年级数学(上):第1章 丰富的图形世界 单元达标测试卷(一)含答案与解析

北师大版七年级数学(上):第1章  丰富的图形世界 单元达标测试卷(一)含答案与解析

北师大版七年级(上)第一单元达标测试卷(一)数学(考试时间:100分钟满分:120分)学校:班级:考号:得分:一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.一个圆锥的底面直径是圆柱底面直径的3倍,如果它们的高相等,那么圆锥体积是圆柱体积的()A.3倍B.13C.9倍D.192.如图是一个粉笔盒的表面展开图,若字母A表示粉笔盒的上盖,B表示侧面,则底面在表面展开图中的位置是()A.①B.②C.③D.④3.下列几何体中,圆柱体是()A.B.C.D.4.一个几何体的正视图如图所示,则这个几何体可能为()A .B .C .D . 5.下列四个图形中是三棱柱的表面展开图的是( )A .B .C .D .6.如图是一个正方体的表面展开图,把展开图折叠成正方体后,“有”字一面相对面上的字是()A .者B .事C .竟D .成7.如图,是某几何体的展开图,16AD π=,则r =( )A .2B .4C .8D .168.如图是一个由5个相同的正方体组成的立体图形,它的左视图是( )A .B .C .D .9.正方体的表面展开图可能是( )A.B.C.D.10.如图是某个几何体的展开图,该几何体是()A.三棱柱B.四棱柱C.圆柱D.圆锥11.用一个平面去截正方体,截面形状不可能是()A.B.C.D.12.下列选项中的图形折叠后,能得到如图所示的正方体的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①、②、③、④某一位置,所组成的图形不能围成正方体的位置是___.14.如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是面___.(填字母,注意:字母只能在多面体外表面出现)15.下图是某个几何体的展开图,该几何体是________.16.将如图所示的平面展开图折叠成正方体后,“爱”的对面的汉字是_____.17.如图,在长方体中,与棱AB平行的棱有__条.18.用一个平面去截一个几何体,截面形状为圆,则这个几何体可能为__________(填序号).①正方体;②圆柱;③圆锥;④正三棱柱三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.如图,由几个相同的小正方体搭成一个几何体,请画出这个几何体的三种视图.(在所提供的方格内涂上相应的阴影即可)20.下面是一个多面体的表面展开图每个面上都标注了字母,(所有字母都写在这一多面体的外表面)请根据要求回答问题:(1)如果面F在前面,从左边看是B,那么哪一面会在上面?(2)如果从右面看是面C面,面D在后边那么哪一面会在上面?(3)如果面A在多面体的底部,从右边看是B,那么哪一面会在前面.21.如图所示是一个圆柱体,它的底面半径为3cm,高为6cm.(1)请求出该圆柱体的表面积;(2)用一个平面去截该圆柱体,你能截出截面最大的长方形吗?截得的长方形面积的最大值为多少?22.把如图图形沿虚线折叠,分别能折叠成什么几何体(图中的五边形均为正五边形)?观察折成的几何体,回答下列问题:(1)每个几何体有多少条棱?哪些棱的长度相等?(2)每个几何体有多少个面?它们分别是什么图形?哪些面的形状、大小完全相同?23.如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为5元,则制作10个这样的包装盒需花费多少钱?(不考虑边角损耗)24.用平面截下列几何体,写出下列截面的形状.参考答案二、选择题(本大题共12小题,每小题3分,共36分。

北师大版七年级数学上册 第一章丰富的图形世界 单元测试卷(含答案)

北师大版七年级数学上册   第一章丰富的图形世界   单元测试卷(含答案)

第一章丰富的图形世界综合测试卷一、选择题(每题3分,共30分)1.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A.富B.强C.文D.民2.如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.3.下列几何体中,从正面和上面看都为矩形的是()A.B.C.D.4.圆柱是由下列哪一种图形绕虚线旋转一周得到的?()A.B.C.D.5.如图1所示,将一个正四棱锥(底面为正方形,四条测棱相等)的其中四条边剪开,得到图2,则被剪开的四条边有可能是()A.PA,PB,AD,BCB.PD,DC,BC,ABC.PA,AD,PC,BCD.PA,PB,PC,AD6.下列图形不是立体图形的是()A.球B.圆柱C.圆锥D.圆7.将一个圆围绕它的直径所在的直线旋转180°形成的几何体是()A.圆锥B.半球C.球体D.圆柱8.如图是一个长方体的表面展开图,6个面上分别标有数字1,2,3,4,5,6(数字都在表表面),与标有数字6的面相对面上的数字是()A.3 B.5 C.2 D.19.下列水平放置的几何体中,从上面看是矩形的是()A.圆柱B.长方体C.三棱柱D.圆锥10.埃及金字塔类似于几何体()A.圆锥B.圆柱C.棱锥D.棱柱二、填空题(每题3分,共30分)11.假如我们把水滴看成一个点,当水滴向下落时,就能形成水线,说明了____________;钟的时针旋转时,形成一个面,说明了____________;正方形铁丝框架绕它的一边所在的直线旋转一周,形成一个圆柱,说明了____________.12.如果某六棱柱的一条侧棱长为5 cm,那么所有侧棱长之和为__________.13.下列图形中,属于棱柱的有________个.14.如图所示的几何体有______个面、______条棱、______个顶点.15.下列各图是几何体的平面展开图,请写出对应的几何体的名称.16.如图,将七个小正方形中的一个去掉,就能成为一个正方体的展开图,则去掉的小正方形的序号是____________________________________.17.用平面去截正方体,在所得的截面中,边数最少的截面形状是__________.18.从不同方向观察一个几何体,所得的平面图形如图所示,那么这个几何体的侧面积是__________(结果保留π).19.如图,这是从不同方向观察由一些相同的小立方块搭成的几何体得到的形状图,则该几何体是由______个小立方块搭成的.20.图②是圆柱被一个平面斜切后得到的几何体,请类比梯形面积公式的推导方法(如图①),推导图②中几何体的体积为__________(结果保留π).三、解答题(22题8分,26题12分,其余每题10分,共60分)21.根据如图所示的图形,完成下列各题:(1)将以上图形按平面图形与立体图形分类;(2)把立体图形按柱体、锥体、球分类;(3)指出立体图形中各面都是平面的图形.22.如图所示的平面图形折叠成正方体后,相对面上的两个数之和为10,求x+y+z的值.23.一个几何体从三个方向看到的图形如图所示(单位:cm). (1)写出这个几何体的名称:__________;(2)若从上面看该几何体为正方形,根据图中数据计算这个几何体的体积.24.由7个相同的小立方块搭成的几何体如图所示. (1)请画出该几何体从三个方向看到的形状图; (2)若每个小立方块的棱长为1,请计算它的表面积.25.如图①,把一张长10 cm 、宽6 cm 的长方形纸板分成两个相同的直角三角形(圆锥的体积公式为V 圆锥=13πr 2h ,π取3.14).(1)甲三角形(如图②)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米? (2)乙三角形(如图③)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方厘米?26.把如图①所示的正方体切去一块,可得到如图②~⑤所示的几何体.(1)所得几何体各有多少个面?多少条棱?多少个顶点?(2)举例说明把其他形状的几何体切去一块,得到的几何体的面数、棱数和顶点数各是多少.(3)若面数记为f,棱数记为e,顶点数记为v,则f,e,v应满足什么关系式?参考答案一、1.【答案】A【解析】由图1可得,“富”和“文”相对;“强”和“主”相对;“民”和“明”相对;由图2可得,小正方体从图2的位置依次翻到第4格时,“文”在下面,则这时小正方体朝上面的字是“富”,故选A.2.【答案】A【解析】由四棱柱四个侧面和上下两个底面的特征可知,A.可以拼成一个长方体;B,C,D不符合长方体的展开图的特征,故不是长方体的展开图.故选A.3.【答案】B【解析】A.此几何体从正面是等腰三角形,从上面看是圆,故此选项错误;B.此几何体从正面是矩形,从上面看是矩形,故此选项正确;C.此几何体从正面是矩形,从上面看是圆,故此选项错误;D.此几何体从正面是梯形,从上面看是矩形,故此选项错误;故选B.4.【答案】B【解析】圆柱是由长方形绕它的一条边旋转而成的,故选B.5.【答案】A【解析】根据图2中的展开图可知,底面正方形ABCD的左边一个三角形是独立的,据此可知,需剪开图1中的PA、PB,根据正方形右边三个三角形脱离正方形的上下两边可知,需剪开AD、BC,综上,被剪开的四条边可能是:PA、PB、AD、BC,故选A.6.【答案】D【解析】立体图形是指图形的各个面不都在一个平面上,由此可判断出答案.由题意得:只有D选项符合题意.故选D.7.【答案】C【解析】一个圆围绕它的直径所在的直线旋转180°形成的几何体是球体,故选C.8.【答案】C【解析】根据题意和图示可知:“1”的对面是4,“6”的对面是2,“3”的对面是5.故选C.9.【答案】B【解析】A.圆柱从上面看是圆,故此选项错误;B.长方体从上面看是矩形,故此选项正确;C.三棱柱从上面看是三角形,故此选项错误;D.圆锥从上面看是圆,故此选项错误;故选B.10.【答案】C【解析】埃及金字塔底面是多边形,侧面是有公共顶点的三角形,所以是棱锥.故选C.二、11. 点动成线,线动成面,面动成体12.30 cm13.314.9;16;915.圆锥;三棱锥;圆柱16.6或717.三角形18.6π19.1020.63π三、21.解:(1)平面图形:②④⑦⑧;立体图形:①③⑤⑥⑨.(2)柱体:①③⑤;锥体:⑨;球:⑥.(3)立体图形中各面都是平面的图形:①⑤.22.解:由题意知x+5=10,y+2=10,2z+4=10,解得x=5,y=8,z=3.所以x+y+z=5+8+3=16.23.解:(1)长方体(2)由题图可知长方体的底面是边长为3 cm的正方形,高为4 cm,则这个几何体的体积是3×3×4=36(cm3).24.解:(1)如图所示.(2)从正面看有5个正方形,从后面看有5个正方形,从上面看有5个正方形,从下面看有5个正方形,从左面看有3个正方形,从右面看有3个正方形,中间空处的两边共有2个正方形,所以表面积为(5+5+3)×2+2=26+2=28. 25.解:(1)甲三角形旋转一周可以形成一个圆锥, 它的体积是13×3.14×62×10=376.8(cm 3).(2)乙三角形旋转一周可以形成一个圆柱,里面被挖去一个圆锥,它的体积是3.14×62×10-13×3.14×62×10=753.6(cm 3).26.解:(1)题中图②有7个面、15条棱、10个顶点, 图③有7个面、14条棱、9个顶点, 图④有7个面、13条棱、8个顶点, 图⑤有7个面、12条棱、7个顶点. (2)答案不唯一,例如:把三棱锥切去一块,如图所示,得到的几何体有5个面、9条棱、6个顶点.(3)f ,e ,v 满足的关系式为f +v -e =2.。

七年级数学上册《第一章丰富的图形世界》单元测试卷及答案-北师大版

七年级数学上册《第一章丰富的图形世界》单元测试卷及答案-北师大版

七年级数学上册《第一章丰富的图形世界》单元测试卷及答案-北师大版一、选择题1.将下列平面图形绕轴旋转一周,可以得到图中所示的立体图形是()A.B.C.D.2.如图是正方体的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,那么在正方体的表面与“!”相对的汉字是()A.一B.起C.向D.来3.用一个平面分别去截球、圆柱、圆锥、正方体,截面形状不可能...是圆的几何体有()A.1个B.2个C.3个D.4个4.如图所示,几何体由6个大小相同的立方体组成,其俯视图是()A.B.C.D.5.下面四个立体图形中,从正面去观察它,得到的平面图形是三角形的是()A.B.C.D.6.在朱自清的《春》中描写春雨“像牛毛、像花针、像细丝,密密麻麻地斜织着”的语句,这里把雨看成了线,这说明了()A.点动成线B.线动成面C.面动成体D.以上都不对7.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.8.某正方体的每一个面上都有一个汉字,如图是它的种表面展开图,那么在原正方体的表面上,与“洗”字相对的面上的汉字是()A.罩B.勤C.口D.戴9.用一个平面分别去截长方体,圆锥,三棱柱,圆柱,能得到截面是三角形的几何体有()A.1个B.2个C.3个D.4个10.学生玩一种游戏,需按墙上的空洞造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,一个几何体恰好无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为()A.B.C.D.二、填空题11.截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.如图,截面平行于底面,则这个几何体的截面是.12.六棱柱有条棱.13.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则3x+2y 的值为.14.分别从正面、上面、左面观察下列物体,得到的平面图形完全相同的是(填写序号).三、解答题15.一个正方体.六个面上分别写着6个连续整数.且每两个相对面上的两个数的和都相等,如图所示.能看到的三个面上所写的数为16,19,20,问这6个整数的和为多少?16.如图所示的是一个正方体的表面展开图,折成正方体后其相对面上的两个数互为相反数,求a﹣b的值.17.把正方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况见下表:颜色红黄蓝白紫绿花的朵数123456现将上述大小相同,颜色.花朵分布也完全相同的四个正方体拼成一个水平放置的长方体,如图所示.问:长方体的下底面共有多少朵花?18.如图,已知一个几何体的主视图与俯视图,求该几何体的体积.( 取3.14,单位: cm)四、综合题19.把棱长为1cm的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)(1)该几何体中有小正方体?(2)其中两面被涂到的有个小正方体;没被涂到的有个小正方体;(3)求出涂上颜色部分的总面积.20.如图1所示,从大正方体中截去一个小正方体之后,可以得到图2的几何体.(1)设原大正方体的表面积为a,图2中几何体的表面积为b,那么a与b的大小关系是;A.a>b;B.a<b;C.a=b;D.无法判断.(2)小明说“设图1中大正方体的棱长之和为m,图2中几何体的各棱长之和为n,那么n比m 正好多出大正方体的3条棱的长度.”你认为小明的说法正确吗?为什么?(3)如果截去的小正方体的棱长为大正方体的棱长的一半,那么图3是图2几何体的表面展开图吗?如有错误,请予修正.21.如图是由棱长都为lcm的6块小正方体组成的简单几何体.(1)请在方格中画出该几何体的三个视图.(2)如果在这个几何体上再添加一些小正方体,并保持主视图和左视图不变,最多可以再添加块小正方体(3)直接写出添加最多的小正方体后该几何体的表面积(包含底面).参考答案与解析部分1.【答案】D【解析】【解答】A、绕轴旋转一周,得不到图中所示的立体图形,故不合题意;B、绕轴旋转一周,得不到图中所示的立体图形,故不合题意;C、绕轴旋转一周,得不到图中所示的立体图形,故不合题意;D、绕轴旋转一周,可得到图中所示的立体图形,故符合题意;故答案为:D.【分析】从运动的观点来看,点动成线,线动成面,面动成体,分别判断各选项即可求解. 2.【答案】A【解析】【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“!”字相对的字是“一”.故答案为:A.【分析】根据正方体的展开图的特征“相对的面之间一定相隔一个正方形”并结合题意可求解. 3.【答案】A【解析】【解答】解:用一个平面分别去截球,截面形状是圆;用一个平面分别去截圆柱和圆锥,截面形状可能是圆;用一个平面分别去截正方体,截面形状不可能是圆;∴截面形状不可能是圆的几何体有1个.故答案为:A【分析】根据几何体的形状,可知用一个平面分别去截球,截面的形状一定是圆,用一个平面分别去截圆柱,圆锥截面形状可能是圆;用一个平面分别去截正方体,截面形状不可能是圆;据此可求解.4.【答案】C【解析】【解答】解:从上边看,底层是一个小正方形,上层是四个小正方形.故答案为:C.【分析】根据从上边看得到的图形是俯视图,可得答案.5.【答案】A【解析】【解答】解:A、从正面去观察,得到的平面图形是三角形,符合题意;B、从正面去观察,得到的平面图形是圆,不符合题意;C、从正面去观察,得到的平面图形是长方形,不符合题意;D、从正面去观察,得到的平面图形是长方形,不符合题意;故答案为:A【分析】根据三视图的定义求解即可。

第1章 丰富的图形世界综合素质评价单元测试(含答案)

第1章 丰富的图形世界综合素质评价单元测试(含答案)

第一章 丰富的图形世界综合素质评价一、选择题(每题3分,共30分)1.下列立体图形中,是圆锥的是 ( )2.下列现象,能说明“线动成面”的是 ( ) A.天空划过一道流星 B.汽车雨刷在挡风玻璃上刷出的痕迹C.用钢笔写字 D.旋转一扇门,门在空中运动的痕迹3.下列几何体中,截面不可能是长方形的是 ( )4.[母题教材P19复习题T2]下列图形能折叠成圆锥的是 ( )5.我们知道,圆柱是由长方形绕着它的一边所在直线旋转一周得到的,下列绕着直线旋转一周能得到下图的是 ( )6.如图,方格纸(每个小正方形边长都相同)中的5个白色小正方形已剪掉,若使余下部分恰好能折成一个正方体,应再剪去小正方形 ( )(第6题)A.①或②B.②或⑥C.⑤或⑦D.⑥或⑦7.如图是一个正方体的展开图,把展开图折叠成正方体后,有“国”字一面的对面上的字是 ( )(第7题)A.诚B.信C.友D.善8.用n个棱长为1的小正方体组成一个棱长为3的大正方体,则n为 ( ) A.3 B.6 C.9 D.279.[母题教材P20复习题T7]如图是从由几个小正方体搭成的几何体的上面看到的图,小正方形中的数字表示该位置的小正方体的个数.能表示从左面看到的该几何体的形状图是 ( )10.一个画家有14个棱长为1m的正方体,他在地面上把它们摆成如图所示的形式,然后他把露出的表面都涂上颜色,那么被涂上颜色的总面积为 ( )(第10题)A.19m2B.21m2C.33m2D.34m2二、填空题(每题3分,共15分)11.用一个平面去截下列几何体:①球体;②圆锥;③圆柱;④正三棱柱;⑤长方体,得到的截面形状可能是三角形的有 (填序号).12.有11个面的棱柱有 个顶点,有 条侧棱.13.如图①是边长为18cm的正方形纸板,截掉阴影部分后将其折叠成如图②所示的长方体.已知该长方体的宽是高的2倍,则它的体积是 cm3.(第13题)14.将六棱柱沿某些棱剪开,展成一个平面图形,至少需要剪开 条棱. 15.[2024·荆州期末母题·教材P17习题T8]正方体木块的六个面分别标有数字1,2,3,4,5,6,如图是从不同方向观察这个正方体木块看到的数字情况,数字1和5对面的数字的和是 .(第15题)三、解答题(共75分)16.(8分)将下列几何体与它的名称连接起来.17.(8分)如图,图中的几何体由7块相同的立方体组成,请画出从正面、左面、上面看到的该几何体的形状图.18.(10分)[情境题垃圾分类]垃圾分类,从我做起.易拉罐是可回收垃圾,1t易拉罐熔化后能结成1t很好的铝块,可少采20t铝矿.生活中的易拉罐是一种类似于圆柱体的立体图形.(1)圆柱体的侧面展开图是 ;(填“长方形”“圆”或“扇形”)(2)圆柱体的铝制易拉罐上、下两个底面的半径都是4cm,高为15cm,制作这样一个易拉罐需要多大面积的铝材?(不计接缝,结果保留π)19.(10分)如图①为一个棱长为8的正方体,图②为图①的表面展开图(数字和字母写在外表面上,字母也可以表示数),请根据要求回答问题:(1)如果正方体相对面上的两个数字之和相等,则x= ,y= ;(2)如果面“10”在左面,面“6”在前面,则上面是 ;(填“x”“y”或“2”)(3)图①中,点M为所在棱的中点,在图②中找出点M的位置,直接写出图②中三角形ABM的面积.20.(12分)[2024·连云港赣榆区月考母题·教材P20复习题T9]用小立方块搭一个几何体,使它从正面和上面看到的形状图如图所示,从上面看到的形状图中小正方形中的字母表示该位置小立方块的个数,请解答下列问题:(1)a= ,b= ,c= ;(2)这个几何体最少由 个小立方块搭成,最多由 个小立方块搭成;(3)当d=e=1,f=2时,画出从左面看到的这个几何体的形状图.21.(12分)[新视角操作实践题]图①所示的三棱柱,高为7cm,底面是一个边长为5cm的等边三角形.(1)这个三棱柱有 条棱,有 个面;(2)图②方框中的图形是该三棱柱的表面展开图的一部分,请将它补全;(3)要将该三棱柱的表面沿某些棱剪开,展开成一个平面图形,需剪开 条棱,需剪开棱的棱长的和的最大值为 cm.22.(15分)[2024·长治期末立德树人·环境保护]【问题情境】某综合实践小组参加废物再利用环保小卫士活动,他们准备用废弃的宣传单制作装垃圾的无盖纸盒.【操作探究】(1)若准备制作一个无盖的正方体纸盒,如图①的四个图形中哪个图形经过折叠能围成无盖正方体纸盒?(2)图②是小明的设计图,把它折成无盖正方体纸盒后与“保”字相对的字是 .(字在盒外)(3)如图③,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成一个无盖长方体纸盒.①请你在图③中画出示意图,用实线表示剪切痕迹,虚线表示折痕;②若四角各剪去了一个边长为x cm(x<10)的小正方形,用含x的代数式表示这个纸盒的底面周长为 cm;③当四角剪去的小正方形的边长为4cm时,请求出纸盒的容积.参考答案一、1.B2.B3.C 【点拨】长方体、圆柱体、三棱柱的截面都可能出现长方形,只有球体的截面只与圆有关,故选C.4.B 【点拨】A.可以折叠成三棱柱,故此选项不符合题意;B.可以折叠成圆锥,故此选项符合题意;C.可以折叠成正方体,故此选项不符合题意;D.可以折叠成圆柱,故此选项不符合题意.故选B.5.A6.D 【点拨】由题图知,②③④⑤正好折成正方体的四个侧面,则上下两个面只能是①与⑥或①与⑦,故应剪去的是⑥或⑦.故选D.7.B8.D 【点拨】因为大正方体的体积为3×3×3=27,每个小正方体的体积为1×1×1=1,27÷1=27,所以n=27.故选D.9.C10.C 【点拨】被涂上颜色的总面积为6×2+6×2+9=33(m2).故选C.二、11.②④⑤ 【点拨】①球体不能截出三角形;②圆锥沿着母线截可以截出三角形;③圆柱不能截出三角形;④正三棱柱能截出三角形;⑤长方体能截出三角形.故截面形状可能是三角形的有②④⑤.12.18;9 【点拨】有11个面的棱柱有2个底面,9个侧面,所以有18个顶点,有9条侧棱.13.216 【点拨】设该长方体的高为x cm,则它的宽为2x cm,长为(18-2x)cm.由题意得,2x+2x+x+x=18,解得x=3.所以该长方体的高为3cm,宽为6cm,长为18-2×3=12(cm),所以它的体积为3×6×12=216(cm3).14.11 【点拨】六棱柱有18条棱,其展开图中没有剪开的棱的条数是7条,则至s少需要剪开的棱的条数是18-7=11(条).15.7 【点拨】由题图①知,1对面的数字可能是3,4,6,再由题图②③知,4和1相邻,6和1也相邻,则1对面的数字只可能是3.同理,4对面的数字是5,故数字1和5对面的数字的和是3+4=7.三、16.【解】如图所示:17.【解】从正面、左面、上面看到的该几何体的形状图如图所示.18.【解】(1)长方形(2)由题意得,2π×4×15+π×42×2=152π(cm 2),故制作这样一个易拉罐需要面积为152πcm 2的铝材.19.【解】(1)12;8【点拨】因为正方体相对面上的两个数字之和相等,所以2+x =4+10=6+y .所以x =12,y =8.(2)2(3)因为点M 所在的棱为两个面共用,所以它的位置有两种情况,第一种情况:如图①,设点M 左边的顶点为点D ,则S 三角形ABM =12AB ·DM =12×8×12×8=16.第二种情况:如图②,S 三角形ABM =12AB ·AM =12×8×8+8+12×8=80.综上所述,三角形ABM 的面积为16或80.20.【解】(1)3;1;1【点拨】由从正面看到的形状图可知,第二列小立方块的个数均为1,第3列小立方块的个数为3,所以a=3,b=1,c=1.(2)9;11【点拨】这个几何体最少由4+2+3=9(个)小立方块搭成,最多由6+2+3=11(个)小立方块搭成.(3)如图所示.21.【解】(1)9;5(2)如图(答案不唯一).(3)5;31【点拨】由展开图可知,没有剪开的棱的条数是4条,则需要剪开的棱的条数是9-4=5(条),故需剪开棱的棱长的和的最大值为7×3+5×2=31(cm). 22.【解】(1)C(2)卫(3)①如图所示.②(80-8x)【点拨】因为边长为20cm的正方形,四角各剪去了一个边长为x cm(x<10)的小正方形,所以底面是边长为(20-2x)cm的正方形,所以底面周长为4(20-2x)=(80-8x)cm.③易知折叠后的长方体的底面是边长为(20-2x)cm的正方形,高为x cm,所以容积为(20-2x)2·x cm3.当x=4时,(20-2x)2·x=(20-2×4)2×4=122×4=576.所以当四角剪去的小正方形的边长为4cm时,纸盒的容积为576cm3.。

【七年级数学】七年级数学上第1章丰富的图形世界单元测试(北师大含答案和解释)

【七年级数学】七年级数学上第1章丰富的图形世界单元测试(北师大含答案和解释)

七年级数学上第1章丰富的图形世界单元测试(北师大含答
案和解释)
《第1 丰富的图形世界》
一填空
1.圆柱体是由个面围成,其中个平面,个曲面.
2.面与面相交成,线与线相交成.
3.把下列展开图的立体图形名称分别写在图的下边横线上
、、、.
4.如图,六棱柱的底面边长都是5厘米,侧棱长为4厘米,则(1)这个六棱柱一共有个面,有个顶点;
(2)这个六棱柱一共有条棱,它们的长度分别是.
(3)这个六棱柱顶点数+面数﹣棱数= .
5.如图中的截面分别是(1)(2).
6.如图所示,截去正方体一角变成一个多面体,这个多面体有个面,有条棱,有个顶点.
7.若要使图中平面展开图折叠成正方体后,使得相对面的数的和相等,则 x= ,= .
二、选择题
8.下列几何体的截面形状不可能是圆的是()
A.圆柱B.圆锥c.球D.棱柱
9.用平面去截图中的正方体,截面形状不可能是()
A. B. c. D.
10.下列图形中,不是正方体平面展开图的是()
A. B. c. D.
11.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【新北师大版七年级数学(上)单元测试卷】第一章《丰富的图形世界》(含答案与解析)一.选择题:(每小题3分,共36分)1.下面的几何体中,主视图不是矩形的是()A. B.C.D.2.如图是一个几何体的三视图,则这个几何体的形状是()A.圆柱B.圆锥 C.圆台 D.长方体3.如图是由四个相同小正方体摆成的立体图形,它的俯视图是()A. B.C. D.4.圆锥的截面不可能为().A.三角形B.圆C.椭圆D.矩形5.如图,放置的一个机器零件(图1),若其主视图如(图2)所示,则其俯视图为()A.B.C. D.6.下列几何体的主视图与其他三个不同的是()A.B.C.D.7.下面四个几何体中,左视图是四边形的几何体共有()A.1个 B.2个C.3个D.4个8.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变9.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①② B.②③ C.②④ D.③④10.如图是由七个棱长为1的正方体组成的一个几何体,其俯视图的面积是()A.3 B.4 C.5 D.611.一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为()A.2π B.6πC.7πD.8π12.图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是()A.主视图相同 B.俯视图相同 C.左视图相同 D.主视图、俯视图、左视图都相同二.填空题:(每小题3分共12分)13.如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有(填编号).14.某几何体的三视图如图所示,则这个几何体的名称是_____.15.如图所示,截去正方体一角变成一个新的多面体,这个新多面体有7个面,有___条棱,有______个顶点,截去的几何体有____个面,图中虚线表示的截面形状是_________三角形.16.由几个相同的小正方体搭成一个几何体,从不同的方向看几何体所得到的图形如图所示,则组成这个几何体的小正方体的个数可能是___________个.三.解答题:(共52分)17.仔细观察图所示几何体,并完成以下问题:(1)请你写出几何体的名称;(2)柱体有______________;(3)构成几何体的面不超过3个的几何体有____________.①②③④⑤⑥18.下面图形是由小正方体木块搭成的几何体的三视图示意图,则该几何体的实物图形是什么模样的?它由多少个小正方体木块搭成.请用小木块实地操作一下吧!正视图左视图俯视图19.如图,是一个几何体的二视图,求该几何体的体积.(π取3.14)20.一间长为8米,宽为5米的房间,用半径为0.2米的圆形磨光机磨地板,不能磨到的部分的面积共多少平方米?(提示:不论房间面积多大,其四个角各有一部分不能磨到.)21. 画出下面几何体的主视图、左视图与俯视图.22.已知n棱柱中的棱长都是15 cm,且该棱柱共有16个顶点.(1)该棱柱的底面是______边形;(2)求该棱柱所有棱长的和;(3)求该棱柱侧面展开图的面积.23.用5个棱长都是1的小正方体木块摆成如图所示的几何体.(1)该几何体的体积为_______;(2)如果在该几何体的基础上,用同样的小正方体木块m块,摆成一个大正方体,则m的最小值为________;(3)如果给该几何体的表面刷漆,那么刷漆部分的面积是多少?【新北师大版七年级数学(上)单元测试卷】第一章《丰富的图形世界》(答案与解析)一.选择题:(每小题3分,共36分)1.下面的几何体中,主视图不是矩形的是()A. B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:A为圆柱体,它的主视图应该为矩形;B为长方体,它的主视图应该为矩形;C为圆台,它的主视图应该为梯形;D为三棱柱,它的主视图应该为矩形.故选C.2.如图是一个几何体的三视图,则这个几何体的形状是()A.圆柱 B.圆锥 C.圆台 D.长方体【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥.故选B.3.如图是由四个相同小正方体摆成的立体图形,它的俯视图是()A. B.C. D.【分析】根据从上面看得到的视图是俯视图,可得答案.【解答】解:从上边看第一层是一个小正方形,第二层在第一层的上面一个小正方形,右边一个小正方形,故选:B.4.圆锥的截面不可能为().(A)三角形(B)圆(C)椭圆(D)矩形【答案】D【解析】试题分析:从圆锥的顶点沿着高切得到的截面是三角形,平行于底面切得到的截面是圆,斜着切得到的截面是椭圆,所以不可能得到矩形,故选D.5.如图,放置的一个机器零件(图1),若其主视图如(图2)所示,则其俯视图为()A.B.C.D.【分析】俯视图是从上面看所得到的图形,此几何体从上面看可以看到一个长方形,中间有一个长方形.【解答】解:其俯视图为.故选:D.6.下列几何体的主视图与其他三个不同的是()A.B.C.D.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:A、从正面看第一层三个小正方形,第二层中间一个小正方形;B、从正面看第一层三个小正方形,第二层中间一个小正方形;C、从正面看第一层三个小正方形,第二层右边一个小正方形、中间一个小正方形;D、从正面看第一层三个小正方形,第二层中间一个小正方形;故选:C.7.下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个【分析】四个几何体的左视图:球是圆,圆锥是等腰三角形,正方体是正方形,圆柱是矩形,由此可确定答案.【解答】解:由图示可得:球的左视图是圆,圆锥的左视图是等腰三角形,正方体的左视图是正方形,圆柱的左视图是矩形,所以,左视图是四边形的几何体是圆柱和正方体.故选B.8.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变【分析】分别得到将正方体①移走前后的三视图,依此即可作出判断.【解答】解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.9.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①② B.②③ C.②④ D.③④【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,分别得到每个几何体的三视图,进而得到答案.【解答】解:正方体主视图、左视图、俯视图都是正方形;圆柱主视图和左视图是长方形,俯视图是圆;圆锥主视图和左视图是三角形、俯视图是带圆心的圆;球主视图、左视图、俯视图都是圆,故选:B.10.如图是由七个棱长为1的正方体组成的一个几何体,其俯视图的面积是()A.3 B.4 C.5 D.6【分析】根据从上面看得到的图形是俯视图,根据题意画出图形即可求解.【解答】解:由七个棱长为1的正方体组成的一个几何体,其俯视图如图所示;∴其俯视图的面积=5,故选C.11.一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为()A.2πB.6πC.7πD.8π【分析】从三视图可以看正视图以及俯视图为矩形,而左视图为圆形,可以得出该立体图形为圆柱,再由三视图可以圆柱的半径,长和高求出体积.【解答】解:∵正视图和俯视图是矩形,左视图为圆形,∴可得这个立体图形是圆柱,∴这个立体图形的侧面积是2π×3=6π,底面积是:π•12=π,∴这个立体图形的表面积为6π+2π=8π;故选D.12.图中的两个圆柱体底面半径相同而高度不同,关于这两个圆柱体的视图说法正确的是()A.主视图相同B.俯视图相同C.左视图相同D.主视图、俯视图、左视图都相同【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,可得答案.【解答】解:A、主视图的宽不同,故A错误;B、俯视图是两个相等的圆,故B正确;C、主视图的宽不同,故C错误;D、俯视图是两个相等的圆,故D错误;故选:B.二.填空题:(每小题3分共12分)13.如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的左视图一定完全相同的几何体有①②③(填编号).【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:①圆锥主视图是三角形,左视图也是三角形,②圆柱的主视图和左视图都是矩形;③球的主视图和左视图都是圆形;④长方体的主视图是矩形,左视图也是矩形,但是长和宽不一定相同,故选:①②③.14.某几何体的三视图如图所示,则这个几何体的名称是_____.【答案】圆柱【解析】试题解析:根据主视图和左视图为长方形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱.15.如图所示,截去正方体一角变成一个新的多面体,这个新多面体有7个面,有___条棱,有______个顶点,截去的几何体有____个面,图中虚线表示的截面形状是_________三角形.【答案】(1). 12(2). 7(3). 4(4). 等边【解析】试题分析:按照如图所示的截法,截面是一个正三角形,有12条棱,顶点比原来少一个变成7个,截去的几何体是三棱锥,有4个面,截面是等边三角形。

16.由几个相同的小正方体搭成一个几何体,从不同的方向看几何体所得到的图形如图所示,则组成这个几何体的小正方体的个数可能是___________个.【答案】8或9或10【解析】解:∵俯视图有4个正方形,∴最底层有4个正方体,由主视图可得第2层最少有2个正方体,第3层最少有2个正方体;由主视图可得第2层最多有3个正方体,第3层最多有3个正方体;∴该组合几何体最少有4+2+2=8个正方体,最多有4+3+3=10个正方体,∴可能为8或9或10.三.解答题:(共52分)17.仔细观察图所示几何体,并完成以下问题:(1)请你写出几何体的名称;(2)柱体有______________;(3)构成几何体的面不超过3个的几何体有____________.①②③④⑤⑥【答案】(1)几何体的名称依次为圆锥,长方体,圆柱,三棱柱,球,正方体;(2)②③④⑥;(3)①③⑤ .【解析】解:(1)几何体的名称依次为圆锥,长方体,圆柱,三棱柱,球,正方体.(2)②③④⑥(3)①③⑤18.下面图形是由小正方体木块搭成的几何体的三视图示意图,则该几何体的实物图形是什么模样的?它由多少个小正方体木块搭成.请用小木块实地操作一下吧!正视图左视图俯视图【答案】见解析【解析】试题分析:结合俯视图和左视图,可以知道B处应该是3个小正方体,从正视图可以看出A、D均为1个小正方体,从左视图可以分析B处为3个,C处有2个。

相关文档
最新文档