北师大版七下第一章 《整式的乘除》单元测试卷及答案-精选
整式的乘除测试题[3套]与答案解析
北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -, ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
北师大版七年级下《第一章整式的乘除》单元测试(含答案)
北师大七下第一章整式的乘除单元测试1.已知多项式 x2+kx+36 是一个完整平方式,则 k=()A. 12B.6C. 12 或—12D. 6或—62.以下计算正确的选项是( )A. b3b3 2b3B. (x+2)(x—2)=x2—2C. (a+b)2= a2 + b2D. (- 2a)2= 4a2 3.一个长方体的长、宽、高分别是3x-4, 2x 和 x,则它的体积是()A. 3x3-4x2B. 22x2-24xC. 6x2-8xD. 6x3-8x24.以下运算正确的选项是()A. a 2a3a6B. a6a2 3C. a2 3a6D. a3 2a5a5.计算 a 1 a 1 a2 1 a4 1 的结果是().A. a8 1 B. a8 1 C. a16 1 D. 以上答案都不对6.已知多项式2是一个完整平方式,则k=()x +kx+36A. 12B. 6C. 12或—12D. 6或—67.已知x m a , x n b ,则x m 2n能够表示为().A. ab 2B. a b2C. a 2bD. a b28.有三种长度分别为三个连续整数的木棒,小明利用中等长度的木棒摆成了一个正方形,小刚用其他两种长度的木棒摆出了一个长方形,则他们两人谁摆的面积大?()A. 小刚 B. 小明 C. 相同大 D. 没法比较9.已知 a+b =3, ab= 1,则 a 2+ b2= _______10.已知2m5,2 n9 ,则2m + n=11.如图1是一个边长为4a 、宽为 b 的长方形,沿图中虚线用剪刀均匀分红四块小长方形,而后用四块小长方形拼成的一个“回形”正方形(如图 2 ).(1)图 2 中的暗影部分的面积为__________.(用含a、 b 的代数式表示)(2 )依据图 2 ,写出一个切合图形的因式分解的等式__________.12.我们已经学过用面积来说明公式,如x y 2x22xy y2就能够用如图甲中的面积来说明.请写出图乙的面积所说明的公式:p x q x.13.已知x2 2 m 1 xy 16 y2是一个完整平方式,则m 的值是.14.已知 x 知足x2162 ,则 x1的值为 __________. x2 x15.化简.22441616 (1)( x- y)( x+ y) ( x + y ) ( x + y ) · ·+ y(x );(2)(2 2+1)(24 +1)(28+1)(216+1).2-5x 3 ,求(2 x-1)( 2x-1)-(2 x 2 1的值.16.已知x 1)17.如图,最大正方形的面积可用两种形式表示:①;②,这两个代数式表示同一块面积,由此获得完整平方公式.18 .已知 a b 5, ab 6 ,求:(1)a2b ab2的值;(2)a2 b2的值;(3)a b的值 .19 .阅读后作答 : 我们知道, 有些代数恒等式能够用平面图形的面积来表示, 比如(2a+b)(a+b)=2a2+3ab+b2,就能够用图 1 所示的面积关系来说明 .(1) 依据图 2 写出一个等式 ;(2) 已知等式 (x+p)(x+q)=x2+(p+q)x+pq,请画出一个相应的几何图形加以说明.20.从边长为 a 的正方形中剪掉一个边长为 b 的正方形(如图 1),而后将节余部分拼成一个长方形(如图 2).( 1)上述操作能考证的等式是;(请选择正确的一个)A、 a2﹣ 2ab+b2=( a﹣ b)2B、 a2﹣b 2=( a+b)( a﹣ b)C、 a2+ab=a( a+b)(2)应用你从( 1)选出的等式,达成以下各题:①已知 x2﹣4y2=12, x+2y=4,求 x﹣ 2y 的值.②计算:( 1﹣1)( 1﹣ 1 )(1﹣ 1 )(1﹣ 1 )( 1﹣ 1 ).22 32 42 19 2 20 2参照答案1. C2. D3. D4. C5. A6. C7. A8. B9. 710. 4511.2 2 2b a a b 4ab b a12.x2xq xp pq 13.3或 514.8或-815. (1)x32- y32(2)1(232-1) .316. 717.a 22ab b222ab b2b ;a2 ;a ba218.( 1) -30;(2)37 ;( 3)719. (1) 2a2+5ab+2b2;(2)略20.(1)答案是B;(2)①x﹣2y=3;原式= 21 .40。
北师大版七年级数学下册第一章《整式的乘除》单元测试卷附答案
第一章《整式的乘除》单元测试卷(最新题型卷共23小题,满分120分,考试用时90分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.计算(-2)0等于()A.1B.0C.-2D.122.(跨学科融合)叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.000 05米.其中,0.000 05用科学记数法表示为()A.5×10-5B.5×10-4C.0.5×10-4D.50×10-33.下列各式计算正确的是()A.a+2a2=3a3B.(a+b)2=a2+ab+b2C.2(a-b)=2a-2bD.2ab·ab=2ab24.若24×22=2m,则m的值为()A.8B.6C.5D.25.计算(8a2b3-2a3b2+ab)÷ab的结果是()A.8ab2-2a2b+1B.8ab2-2a2bC.8a2b2-2a2b+1D.8a2b-2a2b+16.若(y+3)(y-2)=y2+my+n,则m,n的值分别为()A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-67.若(a+2b)2=(a-2b)2+A,则A等于()A.-8abB.8abC.8b2D.4ab8.下面四个整式中,不能表示图中阴影部分面积的是()A.(m+5)(m+3)-3mB.m(m+5)+15C.m2+5(m+3)D.m2+8m第8题图第10题图9.已知M=79a-1,N=a2-119a(a≠1),则M,N的大小关系为()A.M=NB.M<NC.M>ND.不能确定10.(创新题)如图,两个正方形的边长分别为a,b,若a+b=10,ab=18,则阴影部分的面积为()A.21B.22C.23D.24二、填空题(本大题共5小题,每小题3分,共15分)11.比较大小:2-2π0.(选填“>”“<”或“=”)12.计算:2a2(3a2-5b)=.13.若x2-(m+1)x+1是完全平方式,则m的值为.14.若a+3b-2=0,则3a·27b=.15.(数学文化)我国宋朝数学家杨辉在其著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律:杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.例如:(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,中间项系数2等于上方数字1加1,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,中间项系数3等于上方数字1加2,系数分别为1,3,3,1,系数和为8;……则(a+b)4的展开式中系数和为.三、解答题(一)(本大题共3小题,每小题8分,共24分)16.计算:2-1+(π-3.14)0+(-2)-(-1)2 023.。
北师大版七下第一章 《整式的乘除》单元测试卷及答案
七下第一章 整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分) 1.下列运算正确的是( )A. 954a a a =+ B. 33333a a a a =⋅⋅ C. 954632a a a =⨯ D. ()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( )A. 1-B. 1C. 0D. 1997 3.设()()A b a b a +-=+223535,则A=( )A. 30abB. 60abC. 15abD. 12ab 4.已知,3,5=-=+xy y x 则=+22y x ( )A. 25. B 25- C 19 D 、19-5.已知,5,3==ba x x 则=-ba x23( ) A 、2527 B 、109C 、53D 、52 6. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n );③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a ²+b 2的值等于( )A 、84B 、78C 、12D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为 ( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定 二、填空题(共6小题,每小题4分,共24分)11.设12142++mx x 是一个完全平方式,则m =_______。
北师大版七年级数学下册《第一章整式的乘除》单元测试题(含答案)
北师大版七年级数学下册《第一章整式的乘除》单元测试题(含答案)814.简化:(2a-3b)(-a+b)=________.2a^2+7ab-3b^215.若x=3,y=5,则x^2+y^2=________.3416.已知函数f(x)=2x-3,则f(5)=________.7三、解答题(共52分)17.(6分)已知a,b是正整数,且a+b=10,求a和b的值。
解:根据题意,得到方程a+b=10,移项得到a=10-b。
由于a和b都是正整数,所以b最小为1,最大为9.代入方程可得到a的取值分别为9、8、7、6、5、4、3、2、1.因此,a和b的值可能为(9,1),(8,2),(7,3),(6,4),(5,5),(4,6),(3,7),(2,8),(1,9)。
18.(6分)已知函数f(x)=2x+1,求f(3)和f(a+1)。
解:代入x=3,可得到f(3)=2×3+1=7.代入x=a+1,可得到f(a+1)=2(a+1)+1=2a+3.19.(8分)已知直角三角形的斜边长为5,一条直角边长为3,求另一条直角边长。
解:设另一条直角边长为x,则根据勾股定理可得到x^2+3^2=5^2,即x^2=16,因此x=4.20.(8分)已知等差数列的前两项为3和7,公差为4,求第10项的值。
解:设等差数列的第10项为a10,则根据等差数列的通项公式可得到a10=3+4×(10-1)=39.21.(12分)已知函数f(x)=x^2-2x+1,求f(x+1)和f(x-1)。
解:代入x+1,可得到f(x+1)=(x+1)^2-2(x+1)+1=x^2+2x+1=f(x)+4x。
代入x-1,可得到f(x-1)=(x-1)^2-2(x-1)+1=x^2-4x+1=f(x)-4x。
因此,f(x+1)=f(x)+4x,f(x-1)=f(x)-4x。
14.计算:(3a-2b)·(2b+3a) = 12a^2 - 4b^215.若a+b=5,ab=2,则(a+b)^2 = 2516.如图4,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙。
北师大版数学七年级下册第一章整式的乘除-测试卷及答案
北师大版七年级数学下册第一章整式的乘除评卷人得分一、单选题1.计算(a3)2的结果是()A.a5B.a6C.a8D.a9 2.下列计算正确的是()A.a3-a2=a B.a2·a3=a6C.(3a)3=9a3D.(a2)2=a4 3.已知x+y﹣4=0,则2y•2x的值是()A.16B.﹣16C.18D.84.下列运算正确的是()A.﹣2x2﹣3x2=﹣5x2B.6x2y3+2xy2=3xyC.2x3•3x2=6x6D.(a+b)2=a2﹣2ab+b25.下列计算正确的是()A.a3•a=a3B.(2a+b)2=4a2+b2C.a8b÷a2=a4b D.(﹣3ab3)2=9a2b66.下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是()A.①②B.①③C.②③D.②④7.如果x2+10x+_____=(x+5)2,横线处填()A.5B.10C.25D.±108.若a+b=5,ab=﹣24,则a2+b2的值等于()A.73B.49C.43D.239.已知a=96,b=314,c=275,则a、b、c的大小关系是()A.a>b>c B.a>c>b C.c>b>a D.b>c>a10.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b )10的展开式第三项的系数是()A .36B .45C .55D .66评卷人得分二、填空题11.如果x n y 4与2xy m 相乘的结果是2x 5y 7,那么mn=_____.12.若162482m m ⋅⋅=,则m =______.13.若3x =12,3y =4,则3x ﹣y =_____.14.3108与2144的大小关系是__________15.已知长方形的面积为4a 2-4b 2,如果它的一边长为a+b ,则它的周长为______.16.若4x 2+2(k-3)x+9是完全平方式,则k=______.17.已知x 2+y 2+10=2x +6y ,则x 21+21y 的值为_______18.已知△ABC 的三边长为整数a ,b ,c ,且满足a 2+b 2-6a-4b +13=0,则c 为______评卷人得分三、解答题19.化简:(x 4)3+(x 3)4﹣2x 4•x 820.化简:4(a+2)(a+1)-7(a+3)(a -3)21.化简:(x 3)2÷x 2÷x+x 3•(﹣x)2•(﹣x 2)22.化简:[a(a 2b 2-ab)-b(-a 3b-a 2)]÷a 2b23.化简:(x+2)(x-2)+(3x-1)(3x+1).24.化简:(a ﹣2b ﹣3c)(a ﹣2b+3c)25.化简:(2a+1)2﹣(2a+1)(﹣1+2a)26.化简:(x-1)2(x+1)2-1.27.(1)如图是用4个全等的长方形拼成的一个“回形”正方形,图中阴影部分面积用2种方法表示可得一个等式,这个等式为______.(2)若(4x﹣y)2=9,(4x+y)2=169,求xy的值.28.若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=______;(2)代数式为完全平方式,则k=______;(3)解方程:=6x2+7.参考答案1.B【解析】试题分析:(a3)2=a6,故选B.考点:幂的乘方与积的乘方.2.D【解析】A.a3与a2不能合并,故A错误;B.a2⋅a3=a5,故B错误;C.(3a)3=27a3,故C错误;D.(a2)2=a4,故D正确.故选D.3.A【解析】∵x+y-4=0,∴x+y=4,∴2y·2x=2x+y=24=16.故选A.点睛:a m·a n=a m+n.4.A【解析】【分析】根据合并同类项法则、单项式乘单项式法则、完全平方公式逐一判断即可.【详解】A、-2x2-3x2=-5x2,此选项正确;B、6x2y3与2xy2不是同类项,不能合并,此选项错误;C、2x3•3x2=6x5,此选项错误;D、(a+b)2=a2+2ab+b2,此选项错误;故选A.【点睛】本题主要考查合并同类项、单项式乘单项式、完全平方公式,熟练掌握法则和公式是解题的关键.5.D【解析】【分析】根据同底数幂的除法、完全平方公式、单项式除以单项式进行计算即可.【详解】A.a3•a=a4,故A错误;B.(2a+b)2=4a2+b2+4ab,故B错误;C.a8b÷a2=a6b,故C错误;D.(﹣3ab3)2=9a2b6,故D正确;故选D.【点睛】本题考查的是整式的计算,熟练掌握计算法则是解题的关键.6.A【解析】试题分析:将4个算式进行变形,看那个算式符合(a+b)(a﹣b)的形式,由此即可得出结论.解:①(x﹣2y)(2y+x)=(x﹣2y)(x+2y)=x2﹣4y2;②(x﹣2y)(﹣x﹣2y)=﹣(x﹣2y)(x+2y)=4y2﹣x2;③(﹣x﹣2y)(x+2y)=﹣(x+2y)(x+2y)=﹣(x+2y)2;④(x﹣2y)(﹣x+2y)=﹣(x﹣2y)(x﹣2y)=﹣(x﹣2y)2;∴能用平方差公式计算的是①②.故选A.点评:本题考查了平方差公式,解题的关键是将四个算式进行变形,再与平方差公式进行比对.本题属于基础题,难度不大,解决该题型题目时,牢记平分差公式是解题的关键.7.C【解析】试题解析:设需要填空的数为A,则原式为:x2+10x+A=(x+5)2.∴x2+10x+A=x2+10x+25,∴A=25.故选C.8.A【解析】∵a+b=5,∴a2+2ab+b2=25,∵ab=﹣24,∴a2+b2=25+2×24=73,故选A.【点睛】本题考查了完全平方公式的应用,熟记完全平方公式是解题的关键.9.C【解析】【分析】根据幂的乘方可得:a=69=312,c=527=315,易得答案.【详解】因为a=69=312,b=143,c=527=315,所以,c>b>a故选C【点睛】本题考核知识点:幂的乘方.解题关键点:熟记幂的乘方公式.10.B【解析】【分析】归纳总结得到展开式中第三项系数即可.【详解】解:解:(a+b )2=a 2+2ab+b 2;(a+b )3=a 3+3a 2b+3ab 2+b 3;(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4;(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5;(a+b )6=a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6;(a+b )7=a 7+7a 6b+21a 5b 2+35a 4b 3+35a 3b 4+21a 2b 5+7ab 6+b 7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b )10的展开式第三项的系数为45.故选B .【点睛】本题考查了完全平方公式的规律,根据给的式子得出规律是解题的关键.11.12【解析】41457222n m n m x y xy x y x y ++⋅==,∴n +1=5,m +4=7,解得:m =3,n =4,∴mn =12.故答案为12.12.3【解析】【分析】先将4m 、8m 化成底数为2的幂,然后利用同底数幂的乘法求解即可.【详解】∵248m m ⋅⋅=23511622222m m m +⨯⨯==,∴m=3.故答案为:3.【点睛】此题主要考查了同底数幂相乘的运算方法以及幂的逆运算,熟练掌握运算法则是解题的关键.13.3【解析】【分析】首先应用含3x,3y的代数式表示3x-y,然后将3x,3y的值代入即可求解.【详解】解:∵3x=12,3y=4,∴3x-y=3x÷3y,=12÷4,=3.故答案为:3.【点睛】本题主要考查同底数幂的除法性质的逆用,熟练掌握运算性质并灵活运用是解题的关键.14.3108>2144【解析】【分析】把3108和2144化为指数相同的形式,然后比较底数的大小.【详解】解:3108=(33)36=2736,2144=(24)36=1636,∵27>16,∴2736>1636,即3108>2144.故答案为3108>2144.【点睛】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.【解析】【分析】直接利用多项式除法运算法计算得出其边长,进而得出答案.【详解】由题意得,长方形的另一边长为:(4a2-4b2)÷(a+b)=4a-4b,∴该长方形的周长为:(4a-4b+a+b)×2=10a-6b,故:应填10a-6b【点睛】本题主要考查多项式的除法运算,解题关键是正确掌握运算法则.16.9或﹣3【解析】原式可化为(2x)2+2(k-3)x+32,又∵4x2+2(k-3)x+9是完全平方式,∴4x2+2(k-3)x+9=(2x±3)2,∴4x2+2(k-3)x+9=4x2±12x+9,∴2(k-3)=±12,解得:k=9或-3,故答案为9或-3.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,熟记完全平方公式对解题非常重要.17.64【解析】∵x2+y2+10=2x+6y,∴x2+y2+10-2x-6y=0,∴(x-1)2+(y-3)2=0,∵(x-1)2≥0,(y-3)2≥0,∴x-1=0,y-3=0,解得:x=1,y=3;∴x21+21y=121+21×3=63+1=64,故答案为:64.18.2或3或4【解析】【分析】由a2+b2-6a-4b+13=0,,得(a-3)2+(b-2)2=0,求得a、b的值,再根据三角形的三边关系定理求得c的取值范围,根据c为整数即可求得c值.【详解】∵a2+b2-6a-4b+13=0,∴(a-3)2+(b-2)2=0,∴a-3=0,b-2=0,解得a=3,b=2,∵1<c<5,且c为整数,∴c=2、3、4,故答案为:2或3或4.【点睛】本题主要考查了非负数的性质、完全平方公式、三角形三边关系,根据非负数的性质求得a、b的值,再利用三角形的三边关系确定c的值是解决此类题目的基本思路.19.0【解析】【分析】直接利用整式运算法-乘方的运算则计算得出答案.【详解】解:原式=x12+x12-2x12=0【点睛】本题主要考查整式的混合运算,正确运用整式运算法-乘方的运算是解答题目的关键. 20.-3a2+12a+71【解析】【分析】根据整式四则混合运算的顺序和法则计算即可.【详解】解:4(a+2)(a+1)-7(a+3)(a-3)=4(a2+3a+2)-7(a2-9)=4a2+12a+8-7a2+63=-3a2+12a+71.故答案为:-3a2+12a+71.【点睛】本题考查了整式的混合运算.21.x3﹣x7【解析】【分析】直接利用整式运算法则-乘方的运算计算得出答案.【详解】(x3)2÷x2÷x+x3•(﹣x)2•(﹣x2)=x6÷x2÷x-x3•x2•x2=x6-2-1-x3+2+2=x3﹣x7【点睛】本题主要考查整式的混合运算,正确运用整式运算法-乘方的运算是解答题目的关键. 22.2ab【解析】【分析】先算乘法,再合并同类项,最后算除法.【详解】解:[a(a2b2-ab)-b(-a3b-a2)]÷a2b=(a3b2-a2b+a3b2+a2b)÷a2b=2a3b2÷a2b=2ab.故答案为:2ab.【点睛】本题考查了整式的混合运算,能正确根据整式的运算法则进行化简是解此题的关键.23.10x2-5.【解析】【分析】根据平方差公式以及整式的运算法则即可求出答案.【详解】原式=x 2-4+9x 2-1=10x 2-5.【点睛】本题考查了平方差公式,解答本题的关键是掌握平方差公式的形式,这是需要我们熟练记忆的内容,属于基础题型.24.a 2+4b 2﹣4ab ﹣9c 2【解析】【分析】原式利用平方差公式化简,再利用完全平方公式展开即可得到结果.【详解】原式=[][]a 2b 3c a 2b 3c---+=22a 2b 3c ()--=222449a b ab c +--.故答案为222449a b ab c +--.【点睛】本题考查平方差公式,完全平方公式.25.4a+2【解析】【分析】运用完全平方和公式、多项式乘多项式法则去括号后,再合并同类项即可.【详解】(2a+1)2﹣(2a+1)(﹣1+2a)=4a 2+4a+1-4a 2+1=4a+2【点睛】考查了整式的混合运算,解本题的关键运用完全平方和公式((a+b)2=a2+2ab+b2)和多项式乘多项式法则((a+b)(c+d)=ac+ad+bc+bd).26.x4-2x2.【解析】【分析】先利用平方差公式进行计算,然后利用完全平方公式进行计算.【详解】解:(x-1)2(x+1)2-1=[(x-1)(x+1)]2-1=(x2-1)2-1=x4-2x2+1-1=x4-2x2.故答案为:x4-2x2.【点睛】本题考查了利用平方差公式和完全平方公式对整式进行化简.27.(1)4ab;(2)10.【解析】【分析】(1)根据长方形面积公式列①式,根据面积差列②式,得出结论;(2)由(1)的结论得出(2x+y)2-(2x-y)2=8xy,把已知条件代入即可.【详解】=4ab①,(1)S阴影=4S长方形S阴影=S大正方形-S空白小正方形=(a+b)2-(b-a)2②,由①②得:(a+b)2-(a-b)2=4ab,故答案为:(a+b)2-(a-b)2=4ab;(2)∵(4x+y)2-(4x-y)2=16xy,∴16xy=169-9,∴xy=10.【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.28.(1)32-;(2)±3;(3)x=-4.【解析】【详解】解:(1)=[2×(-3)×1]÷[(-1)4+31]=-6÷4=-3 2.故答案为3 2-;(2)=[x2+(3y)2]+xk•2y=x2+9y2+2kxy,∵代数式为完全平方式,∴2k=±6,解得k=±3.故答案为±3;(3)=6x2+7,(3x-2)(3x+2)]-[(x+2)(3x-2)+32]=6x2+7,解得x=-4.。
新北师大版七下第一章 《整式的乘除》单元测试卷及答案[精品]
七下第一章 整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分) 1.下列运算正确的是( )A. 954a a a =+ B. 33333a a a a =⋅⋅ C. 954632a a a =⨯ D. ()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( )A. 1-B. 1C. 0D. 1997 3.设()()A b a b a +-=+223535,则A=( )A. 30abB. 60abC. 15abD. 12ab 4.已知,3,5=-=+xy y x 则=+22y x ( )A. 25. B 25- C 19 D 、19-5.已知,5,3==bax x 则=-ba x23( ) A 、2527 B 、109C 、53D 、52 6. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n );③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(+m)与(+3)的乘积中不含的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a ²+b 2的值等于( )A 、84B 、78C 、12D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 8 10.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为 ( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定 二、填空题(共6小题,每小题4分,共24分)11.设12142++mx x 是一个完全平方式,则m =_______。
北师大版七年级下册--第一章-整式的乘除---单元测试题-含答案
北师大版七年级下册第一章整式的乘除单元测试题一、选择题1 •下列计算正确的是()3 2 2 3 6A. a — a = aB. a a = a3 3 2、2 4C. (3a) = 9aD. (a ) = a2. PM2.5是指大气中直径小于或等于 0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A . 0.25 X0—3B. 0.25 X0—4C . 2.5 X0—5 D. 2.5 X0—63 . 若 102a= x,10b= y,则 104a+ 23的值为()A . xy B. 2xyC .2 2xy D.2xy4 . 下列各式中不能用平方差公式进行计算的是( )A . (m— n )(m+ n) B. (—x—y)( —x—y)C . / 4 4 4 | 4、(x — y )(x +y)D. (a3—b3)(b3+a3)5. 2x y g 3xy+ y3)的计算结果是()A .2 43 2 | 22x y — x y + x y B. —x2y+ 2x2y4C . 2x y + x y — 6x y D. —6x3y2+ 2x2y6.下列计算中正确的是()A. (— 2a2b3)十—2ab)= a2b22 4 2 2 2B. (— 2a b)十一2ab) = a b1C. 2 a bc^a b=4c1 2, 3D. ga b c 讯一5abc) = 5b7.已知 a+ b= m, ab= — 4,化简(a — 2)(b— 2)的结果是()A . 6B . 2m— 8C. 2m D . — 2m8 .算式999032 + 888052 + 777072之值的十位数字为()A . 1B . 2、填空题9. (1)若 2m = 3,2n = 5,则 4m+n⑵若3x= 4,0 = 7,则3x为的值为_________ .10._______________________________ 计算:(4a— b2)2= .11.____________________________________ 计算:20152— 2X2015X2014+ 20142 = .12. 已知 P = 3xy— 8x+ 1,Q= x— 2xy— 2,当 x^0时,3P— 2Q= 7 恒成立,则 y 的值为13 .如果a与b异号,那么(a+ b)2与(a— b)2的大小关系是三、解答题14. 计算:"八 3 2「7 ,2、z 2 3(1) m m + m 讯一m )+ (m );2 23 42(2) (x — 2xy) 9x — (9xy — 12x y ) -3xy.15. 计算:(1) (3a+ 5b — 2c)(3a — 5b— 2c);(2) (x+ 1)(x2— 1)(x— 1).16. 如图,要设计一幅长为3xcm、宽为2ycm的长方形图案,其中有两横两竖的彩条,横彩条的宽度为acm,竖彩条的宽度为bcm,问空白区域的面积是多少?17. 试说明:两个连续奇数的积加上1, 一定是一个偶数的平方.18. 当x、y为何值时,代数式x2 + y2+ 4x— 6y+ 15有最小值?并求出最小值.。
北师大版初中数学七年级下册第一单元《整式的乘除》单元测试卷(较易)(含答案解析)
北师大版初中数学七年级下册第一单元《整式的乘除》单元测试卷(较易)(含答案解析)考试范围:第一单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 计算a2·a3的结果等于( )A. a5B. a9C. a6D. a−12. 计算(a−b)3(b−a)4的结果有:①(a−b)7; ②(b−a)7; ③−(b−a)7; ④−(a−b)7,其中正确的是( )A. ① ③B. ① ④C. ② ③D. ② ④3. 计算a⋅a5−(−2a3)2的结果为( )A. −3a6B. −a6C. a6−4a5D. a6−2a54. 计算a·a5−(2a3)2的结果为( )A. a6−2a5B. −a6C. a6−4a5D. −3a65. 10m=2,10n=3,则103m+2n−1的值为( )A. 7B. 7.1C. 7.2D. 7.46. PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有一定量的有毒、有害物质,对人体健康和大气环境质量有很大影响.2.3μm用科学记数法可表示为( )A. 23×10−5mB. 2.3×10−5mC. 2.3×10−6mD. 0.23×10−7m7. 下列运算正确的是( )A. a+2a=3a2B. a2·a3=a5C. (ab)3=ab3D. (−a3)2=−a68. 若(x−4)(x+3)=x2+mx−12,则m的值是( )A. 1B. −1C. 9D. −99. 如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形,根据图形的变化过程写出的一个正确的等式是( )A. (a−b)2=a2−2ab+b2B. a(a−b)=a2−abC. (a−b)2=a2−b2D. a2−b2=(a+b)(a−b)10. 下列计算中,正确的是( )A. (x+y)2=x2+y2B. (x−y)2=x2−2xy−y2C. (x+2y)(x−2y)=x2−2y2D. (−x+y)2=x2−2xy+y211. 计算(m−2n−1)(m+2n−1)的结果为( )A. m2−4n2−2m+1B. m2+4n2−2m+1C. m2−4n2−2m−1D. m2+4n2−2m−112. 如果(3x2y−2xy2)÷m=−3x+2y,则单项式m为( )A. xyB. −xyC. xD. −y第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 计算a3⋅a的结果是.14. 若a x=2,a y=5,则a x−y=______.15. 已知x−y=2,x+y=−4,则x2−y2=______.16. 已知(a+b)2=11,(a−b)2=7,则ab的值是.三、解答题(本大题共9小题,共72.0分。
北师大七年级下《整式的乘除》单元测试(一)含答案
单元测试(一) 整式的乘除(BJ)(时间:120分钟 满分:150分) 一、选择题(本大题共15小题每小题3分,共45分) 题1.计算 A .a 4 B .-a 4 C .a -3 D .-a 32.计算(xy 2)3结果正确的是(B )A .xy 5B .x 3y 6C .xy 6D .x 3y 53.计算(-2)0+9÷(-3)的结果是(B )A .-1B .-2C .-3D .-44.下列运算正确的是(C )A .x 4·x 3=x 12B .(x 3)4=x 81C .x 4÷x 3=x (x ≠0)D .x 3+x 4=x 75.人体中成熟的红细胞的平均直径为0.000 007 7 m ,用科学记数法表示为(D )A .7.7×10-5 mB .77×10-6 mC .77×10-5 mD .7.7×10-6 m6.若□×3xy =3x 2y ,则□内应填的单项式是(C )A .XyB .3xyC .xD .3x7.计算a 5·(-a )3-a 8的结果是(B )A .0B .-2a 8C .-a 16D .-2a 168.2-3可以表示为(A )A .22÷25B .25÷22C .22×25D .(-2)×(-2)×(-2)9.下列运算正确的是(C )A .2x (x 2+3x -5)=2x 3+3x -5B .a 6÷a 2=a 3C .(-2)-3=-18D .(a +b )(a -b )=(a -b )2 10.已知x +y -3=0,则2y ·2x 的值是(D )A .6B .-6 C.18D .8 11.如果x 2+ax +9=(x +3)2,那么a 的值为(C )A .3B .±3C .6D .±612.如果(2x +m)(x -5)展开后的结果中不含x 的一次项,那么m 等于(D )A .5B .-10C .-5D .1013.已知a =2 0162,b =2 015×2 017,则(B )A .a =bB .a >bC .a <bD .a ≤b14.如果3a =5,3b =10,那么9a -b 的值为(B )A.12B.14C.18D .不能确定 15.已知(x -2 015)2+(x -2 017)2=34,则(x -2 016)2的值是(D )A .4B .8C .12D .16提示:把(x -2 015)2+(x -2 017)2=34变形为(x -2 016+1)2+(x -2 016-1)2=34.二、填空题(本大题共5小题,每小题5分,共25分)16.若(2x +1)0=1,则x 的取值范围是x ≠-12. 17.化简:6a 6÷3a 3=2a 3.18.某班墙上的“学习园地”是一个长方形,它的面积为6a 2-9ab +3a ,已知这个长方形“学习园地”的长为3a ,则宽为2a -3b +1.19.当x =-2时,代数式ax 3+bx +1的值是2 017,那么当x =2时,代数式ax 3+bx +1的值是-2__015.20.已知a 是-2的相反数,且|b +1|=0,则[-3a 2(ab 2+2a)+4a(-ab)2=÷(-4a)的值为5.三、解答题(本大题共7小题,共80分)21.(8分)计算:(1)2x 3·(-x)2-(-x 2)2·(-3x); (2)(2x -y)2·(2x +y)2.解:原式=2x 3·x 2-x 4·(-3x)=2x 5+3x 5=5x 5. 解:原式=[(2x -y)·(2x +y)]2=(4x 2-y 2)2=16x 4-8x 2y 2+y 4.22.(8分)计算:(1)(-3)0+(-12)-2÷|-2|; (2)2017×1967.(用简便方法计算) 解:原式=1+2 解:原式=(20+17)(20-17) =3. =202-(17)2 =3994849.23.(10分)若a(x m y 4)3+(3x 2y n )2=4x 2y 2,求a 、m 、n 的值.解:因为a(x m y 4)3÷(3x 2y n )2=4x 2y 2,所以ax 3m y 12÷9x 4y 2n =4x 2y 2.所以a÷9=4,3m -4=2,12-2n =2.解得a =36,m =2,n =5.24.(12分)化简求值:[(2x -y)(2x +y)+y(y -6x)+x(6y -2)]÷2x ,其中x =1 009.解:原式=(4x 2-y 2+y 2-6xy +6xy -2x)÷2x=(4x 2-2x)÷2x=2x -1.当x =1 009时,原式=2×1 009-1=2 017.25.(12分)黄老师在黑板上布置了一道题,小亮和小新展开了下面的讨论:根据上述情景,你认为谁说得对?为什么?解:原式=4x 2-y 2+2xy -8x 2-y 2+4xy +2y 2-6xy =-4x 2,因为这个式子的化简结果与y值无关,所以只要知道了x的值就可以求解,故小新说得对.26.(14分)图1是一个长为2x,宽为2y的长方形,沿图中虚线用剪刀剪成四个完全相同的小长方形,然后按图2所示拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于x-y;(2)试用两种不同的方法求图2中阴影部分的面积.方法1:(x-y)2;方法2:(x+y)2-4xy.(3)根据图2你能写出下列三个代数式之间的等量关系吗?(x+y)2,(x-y)2,4xy:(x-y)2=(x+y)2-4xy.(4)根据(3)题中的等量关系,解决如下问题:若x+y=4,xy=3,求(x-y)2.解:(x-y)2=(x+y)2-4xy=42-12=4.27.(16分)如下数表是由从1开始的连续自然数组成的,观察规律并完成各题的解答.(1)表中第8行的最后一个数是64,它是自然数8的平方,第8行共有15个数;(2)用含n的代数式表示:第n行的第一个数是(n-1)2+1,最后一个数是n2,第n行共有(2n-1)个数;(3)求第n行各数之和.解:第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×13;类似地,第n行各数之和等于(2n-1)(n2-n+1)=2n3-3n2+3n-1.。
北师大版七年级数学下册第一章《整式的乘除》单元测试卷含答案
七年级数学下册第一章《整式的乘除》单元测试卷满分:150分题号一二三四总分得分一、选择题(本大题共15小题,共45.0分)1.下列计算正确的是()A. b3⋅b3=2b3B. (ab2)3=ab6C. (a3) 2⋅a4=a9D. (a5)2=a102.数学家赵爽公元3~4世纪在其所著的《勾股圆方图注》中记载如下构图,图中大正方形的面积等于四个全等长方形的面积加上中间小正方形的面积.若大正方形的面积为100,小正方形的面积为25,分别用x,y(x>y)表示小长方形的长和宽,则下列关系式中不正确的是A. x+y=10B. x−y=5C. xy=15D. x2−y2=503.若x2+(m−3)x+16是完全平方式,则m=()A. 11或−7B. 13或−7C. 11或−5D. 13或−54.计算(2a2b)2÷(ab)2的结果是()A. 4a3B. 4abC. a3D. 4a25.若x+y=7,xy=10,则x2−xy+y2的值为()A. 30B. 39C. 29D. 196.如图,对一个正方形进行了分割,通过面积恒等,能够验证下列哪个等式()A. x2−y2=(x−y)(x+y)B. (x−y)2=x2−2xy+y2C. (x+y)2=x2+2xy+y2D. (x−y)2+4xy=(x+y)27.下列计算正确的是A. a2·a3=a6B. (a2)3=a6C. (2a)3=2a3D. a10÷a2=a58.如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一矩形如图,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A. (a−b)(a+2b)=a2−2b2+abB. (a+b)2=a2+2ab+b2C. (a−b)2=a2−2ab+b2D. (a−b)(a+b)=a2−b29.观察下面图形,从图1到图2可用式子表示为()A. (a+b)(a−b)=a2−b2B. a2−b2=(a+b)(a−b)C. (a+b)2=a2+2ab+b2D. a2+2ab+b2=(a+b)210.下列语句中正确的是()A. (−1)−2是负数B. 任何数的零次幂都等于1C. 一个不为0的数的倒数的−p次幂(p是正整数)等于它的p次幂D. (23−8)0=111.下列四个算式: ①2a3−a3=1; ②(−xy2)⋅(−3x3y)=3x4y3; ③(x3)3⋅x=x10; ④2a2b3⋅2a2b3=4a2b3.其中正确的有()A. 1个B. 2个C. 3个D. 4个12.如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A. 205B. 250C. 502D. 52013.下列运算正确的是()A. (−2ab)⋅(−3ab)3=−54a4b4B. 5x2⋅(3x3)2=15x12×10n)=102nC. (−0.1b)⋅(−10b2)3=−b7D. (3×10n)(1314.已知多项式x2+kx+36是一个完全平方式,则k=()A. 12B. 6C. 12或−12D. 6或−615.与(a−b)3[(b−a)3]2相等的是()A. (a−b)8B. −(b−a)8C. (a−b)9D. (b−a)9二、填空题(本大题共5小题,共25.0分)16.若单项式3x2y与−2x3y3的积为mx5y n,则m+n=.17.定义a※b=a(b+1),例如2※3=2×(3+1)=2×4=8.则(x−1)※x的结果为.18.计算:(1)8m÷4m=;(2)27m÷9m÷3=.19.计算:2019×1981=.20.已知31=3,32=9,33=27,34=81,35=243,36=729⋯⋯,设A=(3+1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)×2+1,则A的个位数字是.三、计算题(本大题共2小题,共18.0分)计算:(1)(−2)8⋅(−2)5;(2)(a−b)2⋅(a−b)⋅(a−b)5;(3)x m⋅x n−2⋅(−x2n−1)21. 先化简,再求值:(2x +3y)2−(2x +y)(2x −y),其中x =13,y =−12.四、解答题(本大题共5小题,共62.0分)22. 某中学为了响应国家“发展体育运动,增强人民体质”的号召,决定建一个长方体游泳池,已知游泳池长为(4a 2+9b 2)m ,宽为(2a +3b)m ,深为(2a −3b)m ,请你计算一下这个游泳池的容积是多少⋅23. 形如|acb d |的式子叫做二阶行列式,它的运算法则用公式表示为|acb d |=ad −bc ,比如:|2513|=2×3−1×5=1.请你按照上述法则,计算|−2ab a 2b−3ab 2(−ab)|的结果.24.如图,甲长方形的两边长分别为m+1,m+7;乙长方形的两边长分别为m+2,m+4.(其中m为正整数)(1)图中的甲长方形的面积S1,乙长方形的面积S2,比较:S1S2;(填“<”“=”或“>”)(2)现有一正方形,其周长与图中的甲长方形的周长相等,试探究:该正方形的面积S与图中的甲长方形的面积S1的差(即S−S1)是一个常数,求出这个常数.25.小明想把一张长为60cm、宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为x cm,求图中阴影部分的面积;(2)当x=5时,求这个盒子的体积.26.小红家有一块L型的菜地,如图所示,要把L型的菜地按图那样分成面积相等的梯形,种上不同的蔬菜,这两个梯形的上底都是a m,下底都是b m,高都是(b−a)m,请你帮小红家算一算这块菜地的面积共有多少,并求出当a=10,b=30时,L型菜地的总面积.答案1.D2.C3.C4.D5.D6.C7.B8.D9.A10.C11.B12.D13.D14.C15.C16.−217.x2−118.2m3m−119.399963920.121.解:(1)原式=−28×25=−213;(2)原式=(a−b)2+1+5=(a−b)8;(3)原式=−x m+n−2+2n−1=−x m+3n−3.22.解:(2x+3y)2−(2x+y)(2x−y)=(4x2+12xy+9y2)−(4x2−y2)=4x2+12xy+9y2−4x2+y2=12xy+10y2,当x =13,y =−12时,原式=12×13×(−12)+10×(−12)2=12.23.解:这个游泳池的容积是(16a 4−81b 4)m 3.24.解:|−2ab a 2b −3ab 2(−ab )|=−2ab ⋅(−ab )−a 2b ·(−3ab 2)=2a 2b 2+3a 3b 3.25.解:(1)>(2)图中的甲长方形的周长为2(m +7+m +1)=4m +16.所以该正方形的边长为m +4.所以S −S 1=(m +4)2−(m 2+8m +7)=9.所以这个常数为9.26.解:(1)阴影部分的面积为(4x 2−200x +2400)cm 2.(2)这个盒子的体积为7500cm 3.27.解:这块菜地的面积共有(b 2−a 2)m 2,当a =10,b =30时,L 型菜地的总面积为800m 2.。
北师大版七年级下《第一章整式的乘除》单元练习(含答案解析)
北师大版七年级下册数学第一章整式的乘除单元练习一、单选题1.化简(a3)2的结果是A. a6B. a5C. a9D. 2a32.下列运算正确的是()A. a3+a2=2a5B. 2a(1﹣a)=2a﹣2a2C. (﹣ab2)3=a3b6D. (a+b)2=a2+b23.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占为7×10-7平方毫米,这个数用小数表示为()A. 0.000007B. 0.000070C. 0.0000700D. 0.00000074.下列运算正确的是()A. x2+x3=x6B. (x3)2=x6C. 2x+3y=5xyD. x6÷x3=x25.计算b2•b3正确的结果是()A. 2b6B. 2b5C. b6D. b56.如果x2﹣6x+k是完全平方式,则k的值为()A. ±9B. ±36C. 36D. 97.下列运算中正确的是()A. a3·a4=a12B. (-a2)3=-a6C. (ab)2=ab2D. a8÷a4=a28.若a+b=﹣3,ab=1,则a2+b2=()A. -11B. 11C. -7D. 79. 3﹣1等于()A. 3B. ﹣C. ﹣3D.10.要使(x2+ax+1)(﹣6x3)的展开式中不含x4项,则a应等于()A. 6B. -1C.D. 011.下列计算中,错误的是()A. 3a﹣2a=aB. ﹣2a(3a﹣1)=﹣6a2﹣1C. ﹣8a2÷2a=﹣4aD. (a+3b)2=a2+6ab+9b212.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A. 0.25×10﹣5B. 0.25×10﹣6C. 2.5×10﹣5D. 2.5×10﹣613.不论x、y取任何实数,x2﹣4x+9y2+6y+5总是()A. 非负数B. 正数C. 负数D. 非正数14.已知a+ =3,则a2+ 的值是()A. 9B. 7C. 5D. 315.人体中红细胞的直径约为0.0000077m,将数0.0000077m用科学记数法表示为( )A. 7.7B. 0.77C. 77D. 7.7二、填空题16.(-a5)4•(-a2)3=________.17.计算:﹣2x(x﹣2)=________18.若a﹣b=﹣3,ab=2,则a2+b2的值为________19.图a是一个长为2m,宽为2n的长方形,沿图a中虚线用剪刀把它均分成四块小长方形,然后按图b 的形状拼成一个正方形.(1)请用两种不同的方法求图b中阴影部分的面积:方法1:________ (只列式,不化简)方法2:________ (只列式,不化简)(2)观察图b,写出代数式(m+n)2,(m﹣n)2,mn之间的等量关系:________ ;(3)根据(2)题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a﹣b)2=________ .20.已知(x+1)(x﹣2)=x2+mx+n,则m+n=________三、解答题21.()如果,求的值.22.已知10x=5,10y=6,求:(1)102x+y;(2)103x﹣2y.四、综合题23.已知a+b=1,ab=-6,求下列各式的值.(1)a2+b2;(2)a2-ab+b2.24.计算:(1)(2)(2a﹣b﹣3)(2a+b﹣3)答案解析部分一、单选题1.【答案】A【解析】【分析】(a3)2=a2×3=a6.故选:A .问题解析:根据幂的乘方的性质可解.即(a m)n=a mn.2.【答案】B【解析】【解答】解:A、原式不能合并,不符合题意;B、原式=2a﹣2a2,符合题意;C、原式=﹣a3b6,不符合题意;D、原式=a2+2ab+b2,不符合题意,故选B【分析】各项计算得到结果,即可作出判断.3.【答案】D【解析】【分析】根据科学记数法的表示方法,指数是负几,小数点向左移动几位,可得答案.【解答】7×10-7=0.0000007,故选:D.【点评】本题考查了科学计数法,指数是负几,小数点向左移动几位.4.【答案】B【解析】【解答】解:A、x2与x3不是同类项,不能合并,错误;B、(x3)2=x6,正确;C、2x与3y不是同类项,不能合并,错误;D、x6÷x3=x3,错误;故选B【分析】根据同类项、幂的乘方和同底数幂的除法计算判断即可.5.【答案】D【解析】【解答】b2•b3=b2+3=b5.【分析】根据同底数幂的乘法法则计算.6.【答案】D【解析】【解答】解:∵x2﹣6x+k是完全平方式,∴k=9,故选D.【分析】利用完全平方公式的结构特征判断即可.7.【答案】B【解析】【解答】解:A a3·a4=a7,故A不符合题意;B(-a2)3=-a6故B符合题意;C(ab)2=a2b2 故C不符合题意;Da8÷a4=a4故D不符合题意,故应选B。
北师大版七年级数学下第1章整式的乘除单元测试卷及答案
D. (- a 3 ) = a2. - ⎪ ⨯- 2 ⎪ 2 第 1 章 整式的乘除 单元测试卷一、选择题(共 10 小题,每小题 3 分,共 30 分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来!1.下列运算正确的是()A. a 4 + a 5 = a 9B. a 3 ⋅ a 3 ⋅ a 3 = 3a 3C. 2a 4 ⨯ 3a 5 = 6a 94 7⎛ 5 ⎫ 2012 ⎛ 3 ⎫ 2012 ⎝ 13 ⎭ ⎝ 5 ⎭= ( )A. - 1B. 1C. 0D. 1997 3.设 (5a + 3b )2 = (5a - 3b )2 + A ,则 A=( )A. 30 abB. 60 abC. 15 a bD. 12 a b4.已知 x + y = -5, xy = 3, 则 x 2 + y 2 = ( )A. 25.B - 25C 19D 、 - 195.已知 x a = 3, x b = 5, 则 x 3a -2b = () A 、27 25 9 3 B 、 C 、 D 、52 10 56. .如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式: a b a①(2a +b )(m +n );②2a (m +n )+b (m +n ); m ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , n你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含 x 的一次项,则 m 的值为() A 、 –3B 、3C 、0D 、11 8.已知.(a+b)2=9,ab= -1 ,则 a²+b2 的值等于( )A 、84B 、78C 、12D 、69.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 8 10.已知 P = 7 8 m - 1, Q = m 2 - m (m 为任意实数),则 P 、Q 的大小关系为 15 15()A 、 P > QB 、 P = QC 、 P < QD 、不能确定2x ⎪(2)(2)()⋅(-2x y)+-2x y)÷(x)332()(((a(二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题必须是将最简洁最正确的答案填在空格处!11.设4x2+mx+121是一个完全平方式,则m=_______。
北师大版七年级数学下册第1章《整式的乘除》单元测试题及答案-推荐.doc
北师大版七年级数学下册第 1 章《整式的乘除》单元测试试卷及答案(3)一、选择题(共10 小题)1.下列运算正确的是()A.4a2﹣(2a)2=2a2 B.(﹣a2)?a3=a6 C.(﹣2x2)3=﹣8x6 D.(﹣x)2÷x=﹣x2.在地理学上,核算星球之问的间隔通常用“光年”作单位, 1 光年即光在一年内经过的旅程.已知光的速度是 3×105km/s,一年约等于 3×107s,则 1 光年约等于()A.9×1012km B.6×1035km C.6×1012km D.9×1035km2 23.对于x 的任意一个值,(2x﹣5)=4x +kx+25 永远成立,则k 等于()A.20 B.10 C.﹣20 D.﹣lO2 2﹣1 成立,则a 的值为()4.若a 的值使得x +4x+a= (x+2)A.5 B.4 C.3 D.25.下列四个算式:(1);(2)16a6b4c÷8a3b2=2a2b2c;(3)9x8y2÷3x3y=3x5y;(4)(12m3+8m2﹣4m)÷(﹣2m)=﹣6m2+4m+2.其间正确的个数有()A.0 个B.1 个C.2 个D.3 个6.如果(x﹣2)(x+3)=x2+px+q,那么p、q 的值为()A.p=5,q=6 B.p=﹣1,q=6 C.p=1,q=﹣6 D.p=5,q=﹣67 6 3 2)÷ab的结果是()7.核算20a b c÷(﹣4a bA.﹣5a3b3c B.﹣5a5b5 C.5a5b5 D.﹣5a5b28.已知x+y=2 ,则等于()A.2 B.4 C.D.﹣29.计算(﹣0.125)2013?(﹣8)2012 的结果是()A.8 B.﹣8 C.1 D.﹣0.12510.如图,沿着正方形的对称轴半数,重合的两个小正方形的整式的乘积可得一新整式,则这样的整式共有()A.2 个B.4 个C.6 个D.8 个二、填空题(共10 小题)m)5=x10y15,则3m(n+1)的值为_________ .n11.若(x y?xy12.用科学记数法表明﹣ 0.00012= _________ .3n﹣2)2x2n+4÷x n=x2n﹣5,则n= _________ .13.已知:(x14.(x+2y ﹣3)(x﹣2y﹣3)= _________ ﹣_________ .2 215.(2012?遵义)已知x+y= ﹣5,xy=6,则x +y = _________ .16.调查下列等式:9﹣1=8;16﹣4=12;25﹣9=16;36﹣16=20,⋯这些等式反映正整数间的某种规则,设n(n≥1)表明正整数,用关于 n 的等式表明这个规则为_________.17.已知6x=5,6y=2,则6x+y=_________.218.(29×31)×(30+1)=_________.2﹣3b2,如果它的一边长是a+b,则它的周长是_________.19.已知长方形的面积是3a20._________.三、回答题(共 8 小题,满分 60 分)21.(10 分)核算.22(1)(a﹣2b+3c)﹣(a+2b﹣3c);(2);(3)﹣2100×0.5100×(﹣1)2013÷(﹣1)﹣5;2(4)[(x+2y)(x﹣2y)+4(x﹣y)﹣6x]÷6x;(5)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)].22.(9分)求值.(1)(a+b)(a﹣b)+a(2b﹣a),其中a=1.5,b=2.(2)已知2(a+1)(a﹣1)﹣(a+b)(a﹣b)﹣5b2=3,求(a+2b)(a﹣2b)的值.23.(6分)解方程.(1)(x﹣1)2+21=(x+1)2﹣1;(2)(2x﹣1)(4x2+2x+1)=8x(x﹣2)(x+2).24.(5 分)两个两位数的十位数字相同,一个数的个位数字是 6,另一个数的个位数字是 4,它们的平方差是 220,求这两个两位数.2﹣b)=4,求代数式的值.25.(5 分)已知 a(a﹣1)﹣( a26.(5分)我们规定:a*b=10(1)试求12*3和2*5的值;ab,例如3*4=103×104=107.×10(2)想一想(a*b)*c与a*(b*c)相等吗?如果相等,请验证你的结论.27.(10 分)调查下列式子.2﹣12=(3+1)(3﹣1)=8;①322﹣3②5=(5+3)(5﹣3)=16;2﹣52=(7+5)(7﹣5)=24;③72﹣72=(9+7)(9﹣7)=32.④9(1)求212﹣192=_________.(2)猜测:恣意两个接连奇数的平方差必定是 _________ ,并给予证明.28.(10 分)( 1)图( 1)是一个长为2m,宽为2 他的矩形,把此矩形沿图中虚线用剪刀均分为四个小长方形,然后按图( 2)的形状拼成一个大正方形.请问:这两个图形的什么量不变?(2)把所得的大正方形面积比原矩形的面积多出的暗影部分的面积用含 m,n 的代数式表明为_________.(3)由前面的探究可得出的定论是:在周长必定的矩形中,当 _________时,面积最大.(4)若矩形的周长为24cm,则当边长为多少时,该图形的面积最大?最大面积是多少?参考答案与试题解析一、选择题(共10 小题)1.下列运算正确的是()A.4a2﹣(2a)2=2a2 B.(﹣a2)?a3=a6 C.(﹣2x2)3=﹣8x6 D.(﹣x)2÷x=﹣x考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.剖析:别离依据同底数幂的乘法与除法、幂的乘方、兼并同类项的规则逐个核算即可.回答:解: A、过错,应为 4a2﹣(2a)2=4a2﹣4a2=0;2 3 5)?aB、过错,应为(﹣ a =﹣a ;2)3=﹣8x6,正确;C、(﹣2x2 2D、过错,应为(﹣ x)÷x=x ÷x=x.故选C.点评:本题考察了兼并同类项,同底数幂的乘法和除法,幂的乘方,熟练把握运算性质是解题的要害.2.在地理学上,核算星球之问的间隔通常用“光年”作单位, 1 光年即光在一年内经过的旅程.已知5 7光的速度是3×10km/s,一年约等于3×10 s,则1 光年约等于()A.9×1012km B.6×1035km C.6×1012km D.9×1035km考点:同底数幂的乘法.剖析:依据间隔等于速度与时刻的积即可求解.回答:解: 1 光年约等于:3×105×3×107=9×1012(km).故选A.点评:本题考察了有理数的运算,了解幂的运算规则是要害.2 23.对于x 的任意一个值,(2x﹣5)=4x +kx+25 永远成立,则k 等于()A.20 B.10 C.﹣20 D.﹣lO考点:彻底平方公式.分析:利用完全平方公式对等式左边展开,再根据对应项系数相等解答即可.解答:解:(2x﹣5)2=4x2﹣20x+25 ,2 2∵对于x 的任意一个值,(2x﹣5)=4x +kx+25 永远成立,∴k=﹣20.故选 C.点评:本题首要考察彻底平方公式,熟记公式结构是解题的要害.彻底平方公式:(a±b)2 2 2=a ±2ab+b.4.若a 的值使得x2+4x+a= (x+2)2﹣1 成立,则 a 的值为()A.5 B.4 C.3 D.2考点:彻底平方公式.剖析:两个代数式持平,即对应项的系数相同,把右边的式子化简,得到的常数项便是 a的值.解答:解:∵(x+2)2﹣1=x2+4x+4 ﹣1=x2+4x+3,∴a 的值为 3.故选 C.点评:首要考察彻底平方公式的运用;把能算出的式子应先算出答案.5.下列四个算式:(1);(2)16a6b4c÷8a3b2=2a2b2c;(3)9x8y2÷3x3y=3x5y;(4)(12m3+8m2﹣4m)÷(﹣2m)=﹣6m2+4m+2.其间正确的个数有()A.0 个B.1 个C.2 个D.3 个考点:整式的除法.剖析:先依据整式的除法规则别离核算各个式子,再判别即可.解答:解:(1)4x2y4÷xy=16xy 3,错误;(2)16a6b4c÷8a3b2=2a3b2c,过错;8 2 3 5(3)9xy ÷3x y=3x y,正确;(4)(12m3+8m2﹣4m)÷(﹣2m)=﹣6m2﹣4m+2,错误.故选B.点评:本题考察了整式的除法运算,比较简单.用到的知识点:单项式除以单项式,把系数,同底数幂别离相除后,作为商的因式;关于只在被除式里含有的字母,则连同他的指数一同作为商的一个因式.多项式除以单项式,先把这个多项式的每一项别离除以单项式,再把所得的商相加.26.如果(x﹣2)(x+3)=x +px+q,那么p、q 的值为()A.p=5,q=6 B.p=﹣1,q=6 C.p=1,q=﹣6 D.p=5,q=﹣6考点:多项式乘多项式.专题:核算题.分析:先根据多项式乘以多项式的法则,将(x﹣2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q 的值.解答:解:∵(x﹣2)(x+3)=x2+x﹣6,又∵(x﹣2)(x+3)=x2+px+q,∴ x2+px+q=x 2+x ﹣6,∴p=1,q=﹣6.故选 C.点评:本题首要考察多项式乘以多项式的规则及两个多项式持平的条件.多项式与多项式相乘,先用一个多项式的每一项乘别的一个多项式的每一项,再把所得的积相加.两个多项式持平时,它们同类项的系数对应持平.7 6 2)÷ab的结果是()37.核算 20a b c÷(﹣4a bA.﹣5a3b3c B.﹣5a5b5 C.5a5b5 D.﹣5a5b2考点:整式的混合运算.剖析:按单项式的除法规则进行核算.7 6 3 2回答:解: 20a )÷ab,b c÷(﹣4a b7﹣3﹣1b6﹣2﹣1c,=﹣(20÷4)a=﹣5a3b3c.故选A.点评:本题考察了单项式的除法,熟练把握运算规则是解题的要害,同一级运算要依照从左到右的次序顺次进行运算.8.已知x+y=2 ,则等于()A.2 B.4 C.D.﹣2考点:彻底平方公式.剖析:依据彻底平方公式收拾,然后全体代入进行核算即可得解.解答:解:∵x+y=2 ,∴x2+xy+ y2= (x2+2xy+y 2)= (x+y )2= ×22=2.故选A.点评:本题主要考查完全平方公式,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.20132012 的结果是()9.计算(﹣0.125)?(﹣8)A.8 B.﹣8 C.1 D.﹣0.125考点:幂的乘方与积的乘方;同底数幂的乘法.分析:(﹣0.125)2013?(﹣8)2012=(﹣0.125)×(﹣0.125)2012?(﹣8)2012,逆用同底数的幂的乘法即可求解.回答:解:原式 =(﹣0.125)×【(﹣0.125)×(﹣ 8)】2012=﹣0.125×12012=﹣0.125.故选D.点评:本题考察了同底数的幂的乘法规则,正确对已知的式子进行变形是要害.10.如图,沿着正方形的对称轴半数,重合的两个小正方形的整式的乘积可得一新整式,则这样的整式共有()A.2 个B.4 个C.6 个D.8 个考点:整式的混合运算.剖析:从图中看出,有四个小正方形,即有四个整式,把半数后重合的两个小正方形内的整式相乘即可.回答:解:正方形有四条对称轴,有六组对应整式的积:2 2 2(x﹣1),x (x+1),x(x﹣1),(x+1)(x﹣1),x?xx(x+1),x,故选C.点评:本题考察了正方形的轴对称性及整式的乘法,把握正方形有四条对称轴是解题的关键.二、填空题(共10 小题)nm)5=x10y15,则3m(n+1)的值为12 .11.若(x y?xy考点:幂的乘方与积的乘方.分析:利用同底数的幂的乘法法则以及幂的乘方法则得:(x n y?xy m)5=(x n+1?y m+1)5=x5n+5?y 5m+5=x10y15,即可求得 m,n 的值,则代数式的值能够求得.解答:解:(x n y?xy m)5=(x n+1?y m+1)5=x 5n+5?y 5m+5=x10y15,则,解得:,则3m(n+1)=6×2=12.故答案是:12.点评:本题考察了幂的运算,正确了解幂的乘方以及同底数的幂的乘法规则是要害.﹣4 . 12.用科学记数法表明﹣ 0.00012= ﹣1.2×10考点:科学记数法—表明较小的数.专题:惯例题型.剖析:科学记数法的表明方式为a×10n 的方式,其间1≤|a|< 10,n为整数.确认 n 的值是易|剖析:科学记数法的表明方式为a×10n 的方式,其间 1≤|a|< 10,n为整数.确认 n 的值是易|剖析:科学记数法的表明方式为a×10n 的方式,其间1≤|a|< 10,n为整数.确认 n 的值是易错点,因为﹣0.000 12 第一个不是 0 的数字 1 前面有 4 个 0,所以能够确认 n=﹣4.﹣4.回答:解:﹣0.00 012=﹣1.2×10﹣4故答案为:﹣1.2×10 .点评:此题考察科学记数法表明较小的数办法,确认 n 的值是解题的要害.3n﹣2)2x2n+4÷x n=x2n﹣5,则n=﹣1 .13.已知:(x考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.剖析:依据同底数幂的乘法与除法,幂的乘方与积的乘方的运算性质把要求的式子进行整理,得出7n=2n﹣5,求出n 的值即可.解答:解:∵(x3n 2 2n+4 n 2n﹣5﹣2)x ÷x =x ,6n﹣4 2n+4 n8n n 7n2n﹣5,x x ÷x =x ÷x =x =x∴7n=2n﹣5,∴n=﹣1.故答案为:﹣1.点评:此题考察了同底数幂的除法、同底数幂的乘法、幂的乘方与积的乘方,熟练把握运算性质和规则是解题的要害.2﹣(2y)2 .14.(x+2y﹣3)(x﹣2y﹣3)= (x﹣3)考点:平方差公式.剖析:依据平方差公式核算即可.解答:解:(x+2y﹣3)(x﹣2y﹣3)=(x﹣3)故答案为:(x﹣3)2,(2y)2.2﹣(2y)2.点评:本题考查了平方差公式,属于基础题,解答本题的关键是掌握平方差公式:(a+b)(a﹣b)=a2﹣b2.15.(2012?遵义)已知x+y=﹣5,xy=6,则x2+y2= 13 .考点:彻底平方公式.分析:把x+y=5 两边平方,根据完全平方公式和已知条件即可求出x2+y2 的值.解答:解:∵x+y=﹣5,2∴(x+y)=25,∴x2+2xy+y 2=25,∵xy=6,∴x2+y2=25﹣2xy=25﹣12=13.故答案为:13.点评:本题考察了彻底平方公式,彻底平方公式有以下几个特征:①左面是两个数的和的平方;②右边是一个三项式,其间首末两项别离是两项的平方,都为正,中心一项是两项积的 2 倍;其符号与左面的运算符号相同.16.调查下列等式:9﹣1=8;16﹣4=12;25﹣9=16;36﹣16=20,⋯这些等式反映正整数间的某种规律,设(n n≥1)表示正整数,用关于n 的等式表示这个规律为(n+2)2﹣n2=4n+4 .考点:规则型:数字的改变类.专题:压轴题;规则型.剖析:调查发现,左面是两个平方数的差,右边是数的 4 倍的方式,然后依据序号写出即可.解答:解:9﹣1=32﹣12=8=4+4 ;2﹣22=12=4×2+4;16﹣4=42﹣32=16=4×3+4;25﹣9=52 2﹣436﹣16=6 =20=4×4+4,⋯依此类推,(n+2)2﹣n2=4n+4.故答案为:(n+2)2﹣n2=4n+4.点评:本题是对数字改变规则的考察,理清序号与底数之间的联系是解题的要害.17.已知6x=5,6y=2,则6x+y= 10 .考点:同底数幂的乘法.分析:首先逆用同底数幂的乘法性质:a m+n=a m a n,则6x+y=6x6y,再把已知条件代入即可.解答:解:6x+y=6x6y=5×2=10.点评:本题运用同底数幂的乘法的性质:同底数幂的乘法,底数不变,指数相加.2 4﹣1 .18.(29×31)×(30 +1)= 30考点:平方差公式.分析:首先将30×29 写出[(30+1)(30﹣1)],然后两次运用平方差公式计算即可.2 2 2 4解答:解:原式=[(30+1)(30﹣1)]×(30﹣1)×(30﹣1+1)=(30 +1)=30点评:本题考察了平方差公式,了解平方差公式是处理本题的要害.2﹣3b2,如果它的一边长是a+b,则它的周长是(8a﹣4b).19.已知长方形的面积是3a考点:整式的除法.剖析:依据长方形的面积和已知边长,使用多项式的除法先求出另一边,再依据周长公式列式求解.解答:解:(3a2﹣3b2)÷(a+b)=3(a+b)(a﹣b)÷(a+b)=3a﹣3b.∴可得周长为:2[(a+b)+(3a﹣3b)]=(8a﹣4b).故应填:(8a﹣4b).点评:本题考察的是整式的除法和加减法的使用,首要应依据所给条件运用整式除法进行核算,然后进行整式的加减核算.留意兼并同类项的规则的使用,要将其与整式乘法规则差异开来.20..考点:整式的除法.分析: 2 2 3 2先依据乘除互为逆运算,可知所求式子为3x),再先依据积的乘方的性y?(x y质核算乘方,然后使用单项式乘单项式的规则核算即可.解答:解:由题意,可知所求式子为:3x2y?(x2y3)2=3x 2 4 6 y? x y67.= x y故答案为x6y7.点评:本题考察了积的乘方的性质,单项式乘单项式的规则,比较简单.依据乘除互为逆运算的关系得出所求式子为3x 223y?(x y)2,是解题的关键.三、回答题(共 8 小题,满分 60 分)21.(10 分)核算.(1)(a﹣2b+3c)2﹣(a+2b﹣3c)2;(2);(3)﹣2100×0.5100×(﹣1)2013÷(﹣1)﹣5;2(4)[(x+2y)(x﹣2y)+4(x﹣y)﹣6x]÷6x;(5)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)].考点:整式的混合运算.分析:(1)先运用平方差公式得到(a﹣2b+3c+a+2b﹣3c)(a﹣2b+3c﹣a﹣2b+3c),再分别兼并同类项之后,运用单项式乘以多项式的规则核算即可;(2)先去小括号,再去中括号,兼并同类项之后,运用单项式乘以单项式的规则计算即可;(3)先逆用积的乘方将﹣2100×0.5100 变形为﹣(2×0.5)100,再核算乘方,然后核算乘除即可;(4)先运用平方差公式与彻底平方公式去掉小括号,再兼并同类项之后,运用多项式除以单项式的规则核算即可;(5)依照去括号规则先去小括号,再去中括号,然后兼并同类项即可.解答:解:(1)(a﹣2b+3c)2﹣(a+2b﹣3c)2=(a﹣2b+3c+a+2b﹣3c)(a﹣2b+3c﹣a﹣2b+3c)=2a?(﹣4b+6c)=12ac﹣8ab;22(2)=[3ab﹣ab﹣2ab+ab](﹣3a2b3)=ab(﹣3a2b3)=﹣3a3b4;(3)﹣2100×0.5100×(﹣1)2013÷(﹣1)(﹣1)÷(﹣1)=﹣1;﹣5100=﹣(2×0.5)×(﹣1)÷(﹣1)=﹣1×2222(4)([x+2y)(x﹣2y)+4(x﹣y)﹣6x]÷6x=[(x﹣4y)+4(x﹣2xy+y ﹣4y2+4x2﹣8xy+4y2﹣6x]÷6x=[5x2﹣8xy﹣6x]÷6x=x﹣y﹣1;2)﹣6x]÷6x=[x2(5)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)]=5a2﹣[a2+5a2﹣2a﹣2a2+6a]=5a2﹣[4a2+4a]=a2﹣4a.点评:本题考察了整式的混合运算,紧记运算次序与运算规则是解题的要害,留意使用运算律可使核算简洁.22.(9分)求值.(1)(a+b)(a﹣b)+a(2b﹣a),其中a=1.5,b=2.2(2)已知2(a+1)(a﹣1)﹣(a+b)(a﹣b)﹣5b=3,求(a+2b)(a﹣2b)的值.考点:整式的混合运算—化简求值.分析:(1)先去括号,再合并同类项,然后把a=1.5,b=2代入进行计算即可.(2)先去括号,再合并同类项,得到a2﹣4b2=5,然后把(a+2b)(a﹣2b)进行整理,即可得出答案.解答:解:(1)(a+b)(a﹣b)+a(2b﹣a)=a2﹣b2+2ab﹣a2=2ab﹣b2,把a=1.5,b=2 代入上式得:原式=2×1.5×2﹣22=6﹣4=2.(2)2(a+1)(a﹣1)﹣(a+b)(a﹣b)﹣5b2=3,2﹣1)﹣( a2﹣b2)﹣ 5b2=3,2(a收拾得: a2﹣4b2=5,2 2∵(a+2b)(a﹣2b)=a ﹣4b,∴(a+2b)(a﹣2b)=5.点评:此题考察了整式的化简求值,整式的运算实际上便是去括号、兼并同类项,这是各地中考的常考点,留意第 2 个题要以 a2﹣4b2 整全体的方式呈现.23.(6 分)解方程.2 2(1)(x﹣1)﹣1;+21=(x+1)(2)(2x﹣1)(4x2+2x+1 )=8x(x﹣2)(x+2).考点:整式的混合运算;解一元一次方程.分析:(1)先移项,得(x﹣1)2﹣(x+1)2=﹣1﹣21,再将方程左边运用平方差公式,化简收拾,得﹣ 4x=﹣22,然后系数化为 1 即可;(2)将方程左面运用立方差公式(或许多项式乘以多项式的规则),右边先运用平方差公式,再运用单项式乘多项式的规则,得 8x3﹣1=8x3﹣32x,再将方程收拾为﹣1=﹣32x,然后系数化为1 即可.解答:解:(1)(x﹣1)2+21= (x+1)2﹣1,(x﹣1)2﹣(x+1)2=﹣1﹣21,﹣4x=﹣22,解得x=5.5;(2)(2x﹣1)(4x2+2x+1 )=8x(x﹣2)(x+2),3﹣1=8x3﹣32x,8x﹣1=﹣32x,解得x= .点评:本题首要考察了整式的混合运算与一元一次方程的解法,紧记公式与规则是解题的要害.24.(5 分)两个两位数的十位数字相同,一个数的个位数字是6,另一个数的个位数字是4,它们的平方差是220,求这两个两位数.考点:平方差公式.分析:设这两个两位数的十位数字是x,则这个两位数依次表示为10x+6,10x+4 ,根据题意得到(10x+6 )2﹣(10x+4 )2=220,求得x 后即可求得这个两位数.解答:解:设这两个两位数的十位数字是x,则这个两位数依次表示为10x+6,10x+4,2﹣(10x+4)2=220∴(10x+6)解得:x=5∴ 这个两位数别离是 56 和 54.点评:本题考察了平方差的公式的使用,解题的要害是依据题意列出方程并使用平方差公式解题.2﹣b)=4,求代数式的值.25.(5 分)已知 a(a﹣1)﹣( a考点:整式的混合运算—化简求值.剖析:先把 a(a﹣1)﹣( a2﹣b)=4 进行收拾,得出 b﹣a=4,再把要求的式子进行通分,然后兼并同类项,最终把 b﹣a 的值代入即可.2回答:解:∵a(a﹣1)﹣( a ﹣b)=4,2﹣a﹣a2+b=4,∴ a∴b﹣a=4,∴= = = =8.点评:此题考察了整式的混合运算,依据整式的混合运算规则求出 b﹣a 的值是解题的关键,是一道根底题.26.(5 分)我们规定:a*b=10 (1)试求12*3 和2*5 的值;a b,例如3*4=10×103 4 7×10 =10 .(2)想一想(a*b)*c 与a*(b*c)相等吗?如果相等,请验证你的结论.考点:同底数幂的乘法.专题:新界说.分析:(1)根据“*”代表的运算法则进行运算即可;(2)分别计算出(a*b)*c 与a*(b*c),然后即可作出判断.12 3 15 2 5 7解答:解:(1)12*3=10 ,2*5=10×10 =10 ×10 =10 ;(2)持平.ab)*c=1010 a+b×10c=1010a+b+c,a*(b*c )=a×(10b×10c)=10a+10b+c.∵(a*b)*c=(10 ×10∴(a*b)*c ≠a*(b*c).点评:本题考查了同底数幂的乘法法则,题目比较新颖,解答本题的关键是掌握“* ”所代表的运算规则.27.(10 分)调查下列式子.2﹣12=(3+1)(3﹣1)=8;① 32﹣32=(5+3)(5﹣3)=16;② 52﹣52=(7+5)(7﹣5)=24;③72﹣72=(9+7)(9﹣7)=32.④9(1)求212﹣192= 80 .(2)猜测:恣意两个接连奇数的平方差必定是这两个数和的 2 倍,并给予证明.考点:平方差公式.分析:(1)将212﹣192 写成(21+19)(21﹣19)利用平方差公式计算即可;(2)依据标题供给的规则进行证明后即可得到定论.解答:解:(1)212﹣192=(21+19)(21﹣19)=40×2=80;(2)这两个数和的 2 倍证明:设n 为正整数,(2n+1)2﹣(2n﹣1)2=(2n+1+2n﹣1)(2n+1﹣2n+1)=[(2n+1)+(2n﹣1)] ×2∴ 恣意两个接连奇数的平方差必定是这两个数和的 2 倍.故答案为:(1)80;(2)这两个数和的 2 倍.点评:本题考察了平方差公式,了解平方差公式是处理本题的要害.28.(10 分)(1)图( 1)是一个长为 2m,宽为 2 他的矩形,把此矩形沿图中虚线用剪刀均分为四个小长方形,然后按图( 2)的形状拼成一个大正方形.请问:这两个图形的什么量不变?(2)把所得的大正方形面积比原矩形的面积多出的阴影部分的面积用含m,n 的代数式表示为(m﹣n)2 或m2﹣2mn+n2 .(3)由前面的探究可得出的定论是:在周长必定的矩形中,当长和宽持平时,面积最大.(4)若矩形的周长为24cm,则当边长为多少时,该图形的面积最大?最大面积是多少?考点:整式的混合运算.剖析:(1)依据图形中各边长得出两个图形的周长即可;(2)依据两图形得出暗影部分面积即可;(3)依据两图形面积可得出在周长必定的矩形中,当长和宽持平时,面积最大;(4)由(3)得出边长即可,最大面积即可.解答:解:(1)∵图(1)的周长为:2m+2n+2m+2n=4m+4n;图(2)的周长为:4(m+n)=4m+4n;∴两图形周长不变;(2)大正方形面积比原矩形的面积多出的暗影部分的面积为:(m﹣n)2 或 m2﹣22mn+n;(3)长和宽持平;2(4)由(3)得出:当边长为:=6(cm)时,最大面积为:36cm.点评:此题首要考察了整式的混合运算以及矩形的性质以及图形面积求法,依据已知图形得出周长与面积联系是解题要害.。
北师大版七年级数学下册第1章【整式的乘除】单元测试卷(一)含答案与解析
北师大版七年级数学下册第1章单元测试卷(一)整式的乘除学校:__________姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果22(3)16x m x --+是一个整式的平方,那么m 的值是( )A .-1B .7C .-1或4D .-1或72.已知1a b -=,则222a b b --的值为( ) A .4B .3C .1D .03.若22x axy y ++是完全平方式,则a 的值是( ) A .4 B .2C .2或2-D .4或4-4.已知15a a +=,则代数式221a a+的值为( ) A .25B .23C .27D .225.下列运算正确的是( ) A .248()a a =B .325a a a +=C .236a a a ⋅=D .32a a a -=6.下面是某同学在一次测验中的计算摘录,其中错误的是( )A .()325326x x x -=-B .()32422a b a b a ÷-=- C .()235a a =D .()()32a a a -÷-=7.下列各式计算正确的是( ) A .224a a a +=B .236a a a ⋅=C .()22439a a -= D .22(1)1a a +=+8.如图是一所楼房的平面图,下列式子中不能表示它的面积的是( )A .x 2+3x +6B .(x +3)(x +2)﹣2xC .x (x +3)+6D .x (x +2)+x 29.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( ) A .6163m n -B .6323m n -C .383m n -D .6169m n -10.已知5a b +=,2ab =-,则a 2+b 2的值为( ) A .21 B .23C .25D .2911.计算()()202020213232-⨯的结果是( )A .32-B .23-C .23D .3212.计算()3222()m m m -÷⋅的结果是( )A .2m -B .22mC .28m -D .8m -二、填空题(本大题共6小题,每小题3分,共18分) 13.已知,a b 满足1,2a b ab -==,则a b +=____________14.如图,两个阴影图形都是正方形,用两种方式表示这两个正方形的面积和,可以得到的等式为______.15.已知a +b =5,且ab =3,则a 3+b 3=_____.16.如图:一块直径为+a b 的圆形钢板,从中挖去直径分别为a 与b 的两个半圆,则剩下的钢板面积为______.17.如图,两个正方形的边长分别为a ,b , 如果9a b ab +==,则阴影部分的面积为__.18.若(2021)(2018)4x x --=,求22(2021)(2018)x x -+-=____.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.计算(1)()()232323a b ab a b⋅-+-;(2)()()()()22323412x x x x x +---+-; (3)()()22a b c a b c +--+ .20.已知有理数m 、n 满足(m +n)2=9,(m -n)2=1,求m 2+n 2-mn 的值.21.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).(1)观察图2请写出()2a b +、()2a b -、ab 之间的等量关系是 ; (2)根据(1)中的结论,若5x y +=,94xy =,则x y -= ; (3)拓展应用:若()()22201920207m m -+-=,求()()20192020m m --的值. 22.已知:53a =,58b =,572c =.(1)求)(25a的值.(2)求5a b c -+的值.(3)直接写出字母a 、b 、c 之间的数量关系.23.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)观察图②,请用两种不同的方式表示阴影部分的面积,写出三个代数式()2m n +、()2m n -、mn 之间的等量关系是______________;(2)有许多等式可以用图形的面积来表示.如图③,它表示了_________;(3)请你用图③提供的若干个长方形和正方形硬纸片图形,用拼长方形的方法,把下列二次三项式进行因式分解:2243m mn n ++.要求:在图④的框中画出图形并在下方写出分解的因式.24.正方形ABCD 和正方形CEFG 的边长分别为b 和a 将它们如图所示放置,求图中阴影部分的面积.参考答案与解析二、选择题(本大题共12小题,每小题3分,共36分。
北师大版七年级数学下册第一章整式的乘除单元测试题含答案
北师大版七年级数学下册第一章整式的乘除单元测试题一.选择题(共10小题,每小题3分,共30分)1.计算:x3•x2等于()A.2 B.x5C.2x5D.2x62.下列运算止确的是()A.x2•x3=a6B.(x3)2=x6C.(﹣3x)3=27x3D.x4+x5=x93.下列计算结果为a6的是()A.a8﹣a2 B.a12÷a2 C.a3•a2 D.(a2)34.若(x+2m)(x﹣8)中不含有x的一次项,则m的值为()A.4 B.﹣4 C.0 D.4或者﹣45.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”,则下面哪个数是“神秘数”()A.56 B.66 C.76 D.866.下列各式,能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.()(﹣)C.(2a﹣3b)(﹣2a+3b)D.(﹣a﹣2b)(﹣a+2b)7.若x2+(m﹣3)x+16是完全平方式,则m的值是()A.﹣5 B.11 C.﹣5或11 D.﹣11或58.已知a+b=2,ab=﹣2,则a2+b2=()A.0 B.﹣4 C.4 D.89.下列运算中,正确的是()A.a2+a2=2a4B.(a﹣b)2=a2﹣b2C.(﹣x6)•(﹣x)2=x8D.(﹣2a2b)3÷4a5=﹣2ab310.在长方形ABCD内,将两张边长分别为a和b(a≥b)的正方形纸片图1、图2两种放置(图1,图2中两张正方形纸片均有部分重叠),长方形未被这两张正形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为S1图2中阴影部分的面积和为S2,则关S1,S2的大小关系表述正确的是()A.S1<S2B.S1>S2C.S1=S2D.无法确定二.填空题(共8小题,每小题3分,共24分)11.若53•5m•52m+1=525,则(6﹣m)2019的值为.12.已知2x=3,6x=12,则3x=.13.已知x=3m+1,y=2+9m,则用x的代数式表示y,结果为.14.已知x m=3,x n=2,则x m﹣n=.15.已知a+b=3,ab=4,则(a﹣2)(b﹣2)=.16.计算(1﹣)(1﹣)(1﹣)…(1﹣)=.17.已知:x2+y2=5,xy=﹣3,则(x﹣y)2=.18.4个数a、b、c、d排列,我们称之为二阶行列式,规定它的运算法则为=ad﹣bc,若=17,则x=.三.解答题(共7小题,共66分)19.计算:(1)(2x﹣3)2﹣6x(x﹣2);(2)(a+2b)(a﹣2b)+(6a3b﹣15ab3)÷3ab,其中a=2,b=﹣1.20.先化简,再求值:[(x+y)(x﹣y)﹣(x﹣y)2+2y(x﹣y)]÷4y,其中x=1,y=﹣1.21.计算:(1)(﹣+﹣)×(﹣24)(2)已知a m=5,a n=25(其中m,n都是正整数),求a m+n?22.求值(1)已知2x+5y+3=0,求4x•32y的值;(2)已知2×8x×16=223,求x的值.23.数学课上老师出了一题用简便方法计算2962的值,喜欢数学的小亮手做出了这道题,他的解题过程如下2962=(300﹣4)2第一步=3002﹣2×300×(﹣4)+42第二步=90000+2400+16第三步=92416第四步老师表扬小亮积极发言的同时,也指出了解题中的错误.(1)你认为小亮的解题过程中,从第步开始出错.(2)请你写出正确的解题过程.24.[问题1]在学完平方差公式后,小滨出示了一串呈“数字”链的计算题:(2+1)(22+1)(24+1)(28+1)小梅根据算式的特点,结合平方差公式,发现:只要在算式最前面添上一个“引线”一一数字1,就可用平方差公式,像点鞭炮一样依次“点燃”整个“数字”链.(1)请根据小梅的思路,求出这个算式的值.(2)计算:+(3+1)(32+1)(34+1)(38+1)(316+1).25.阅读学习:数学中有很多恒等式可以用图形的面积来得到.如图1,可以求出阴影部分的面积是a2﹣b2;如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的长是a+b,宽是a﹣b,比较图1,图2阴影部分的面积,可以得到恒等式(a+b)(a ﹣b)=a2﹣b2.(1)观察图3,请你写出(a+b)2,(a﹣b)2,ab之间的一个恒等式(a﹣b)2=;(2)根据(1)的结论若(m+n)2=9,(m﹣n)2=1,求出下列各式的值:①mn;②m2+n2;(3)观察图4,请写出图4所表示的代数恒等式:.参考答案与试题解析一.选择题1.解:x3•x2=x5故选:B.2.解:∵x2•x3≠a6,∴选项A不符合题意;∵(x3)2=x6,∴选项B符合题意;∵(﹣3x)3=﹣27x3,∴选项C不符合题意;∵x4+x5≠x9,∴选项D不符合题意.故选:B.3.解:A、a8﹣a2不能再化简,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、a3•a2=a5,此选项不符合题意;D(a2)3=a6,此选项符合题意;故选:D.4.解:原式=2x2+(2m﹣8)x﹣16m,由结果不含x的一次项,得到2m﹣8=0,解得:m=4,故选:A.5.解:∵76=202﹣182,∴76是“神秘数”,故选:C.6.解:A、该代数式中既不含有相同项,也不含有相反项,不能用平方差公式计算,故本选项错误;B、该代数式中只含有相同项和1,不含有相反项,不能用平方差公式计算,故本选项错误;C、该代数式中只含有相同项2a和﹣3b,不含有相反项,不能用平方差公式计算,故本选项错误;D、该代数式中既含有相同项﹣a,也含有相反项2b,能用平方差公式计算,故本选项正确;故选:D.7.解:∵x2+(m﹣3)x+16是完全平方式,∴m﹣3=±8,解得:m=11或﹣5,故选:C.8.解:∵a+b=2,ab=﹣2,∴原式=(a+b)2﹣2ab=4+4=8,故选:D.9.解:A、原式=2a2,不符合题意;B、原式=a2﹣2ab+b2,不符合题意;C、原式=﹣x8,不符合题意;D、原式=﹣8a6b3÷4a5=﹣2ab3,符合题意,故选:D.10.解:S1=(AB﹣a)⋅a+(CD﹣b)(AD﹣a)=(AB﹣a)⋅a+(AB﹣b)(AD﹣a),S2=(AB﹣a)(AD﹣b)+(AD﹣a)(AB﹣b),∴S2﹣S1=(AB﹣a)(AD﹣b)﹣(AB﹣a)a=(AB﹣a)(AD﹣b﹣a)<0,即S1>S2,故选:B.二.填空题11.解:∵53•5m•52m+1=525,∴3+m+2m+1=25,解得:m=7,故(6﹣m)2019的值为:(﹣1)2019=﹣1.故答案为:﹣1.12.解:因为6x=12,所以(2×3)x=12,即2x×3x=12,因为2x=3,所以3x=12÷3=4.故答案为:4.13.解:∵x=2m+1,y=2+9m=2+32m,∴y=2+(x﹣1)2=x2﹣2x+3.故答案为:y=x2﹣2x+3.14.解:∵x m=3,x n=2,∴x m﹣n=x m÷x n=.故答案为:.15.解:∵a+b=3,ab=4,∴(a﹣2)(b﹣2)==ab﹣2b﹣2a+4=ab﹣2(a+b)+4=4﹣2×3+4=2,故答案为:2.16.解:原式=(1+)(1﹣)(1+)(1﹣)…(1+)(1﹣)=××…××××…×=×=,故答案为:17.解:∵x2+y2=5,xy=﹣3∴原式=x2+y2﹣2xy=5+6=11,故答案为:1118.解:根据题意得(x﹣2)2﹣(x+1)(x+3)=17,整理得,﹣8x+1=17,解得x=﹣2.故答案为﹣2.三.解答题19.解:(1)原式=4x2﹣12x+9﹣6x2+12x=﹣2x2+9;(2)原式=a2﹣4b2+2a2﹣5b2=3a2﹣9b2,∵a=2,b=﹣1,∴原式=12﹣9=3.20.解:原式=(x2﹣y2﹣x2+2xy﹣y2+2xy﹣2y2)÷4y=(﹣4y2+4xy)÷4y=﹣y+x,当x=1,y=﹣1时,原式=1+1=2.21.解:(1)原式=﹣×(﹣24)+×(﹣24)﹣×(﹣24)=12﹣2+3=13;(2)当a m=5,a n=25时,a m+n=a m•a n=5×25=125.22.解:(1)∵2x+5y+3=0,∴2x+5y=﹣3,∴4x•32y=22x•25y=22x+5y=2﹣3=;(2)∵2×8x×16=223,∴2×23x×24=223,∴1+3x+4=23,解得:x=6.23.解:(1)从第二步开始出错;故答案为:二;(2)正确的解题过程是:2962=(300﹣4)2=3002﹣2×300×4+42=90000﹣2400+16=87616.24.解:(1)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)=(22﹣1)(22+1)(24+1)(28+1)=(24﹣1)(24+1)(28+1)=(28﹣1)(28+1)=216﹣1;(2)原式=+(3﹣1)(3+1)(32+1)(34+1)(38+1)(316+1)=+(32﹣1)(32+1)(34+1)(38+1)(316+1)…=+(332﹣1)=×332.25.解:(1)由图3得:(a﹣b)2=(a+b)2﹣4ab,故答案为:(a+b)2﹣4ab;(2)解:①根据(1)的结论,可得(m﹣n)2=(m+n)2﹣4mn,∵(m+n)2=9,(m﹣n)2=1,即1=9﹣4mn,解得mn=2;②由(m+n)2=m2+2mn+n2,可得,9=m2+2×2+n2,所以m2+n2=9﹣4=5;(3)由图4得:(2a+b)(a+b)=2a2+3ab+b2.故答案为:(2a+b)(a+b)=2a2+3ab+b2.(注:等式2a2+3ab+b2=(2a+b)(a+b)也可得分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七下第一章 整式的乘除单元测试卷
一、选择题(共10小题,每小题3分,共30分) 1.下列运算正确的是( )
A. 9
5
4
a a a =+ B. 3
3
3
3
3a a a a =⋅⋅ C. 9
5
4
632a a a =⨯ D. ()
74
3
a a =-
=⎪
⎭⎫ ⎝
⎛
-⨯⎪⎭
⎫ ⎝⎛-2012
2012
532135.2( )
A. 1-
B. 1
C. 0
D. 1997 3.设()()A b a b a +-=+2
2
3535,则A=( )
A. 30ab
B. 60ab
C. 15ab
D. 12ab 4.已知,3,5=-=+xy y x 则=+2
2
y x ( )
A. 25. B 25- C 19 D 、19-
5.已知,5,3==b
a x x 则=-b
a x
23( ) A 、
2527 B 、10
9
C 、53
D 、52 6. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式:
①(2a +b )(m +n ); ②2a (m +n )+b (m +n );③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有
A 、①②
B 、③④
C 、①②③
D 、①②③④ ( )
7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3
B 、3
C 、0
D 、1
8.已知.(a+b)2=9,ab= -112 ,则a ²+b 2
的值等于( )
A 、84
B 、78
C 、12
D 、6 9.计算(a -b )(a+b )(a 2
+b 2
)(a 4
-b 4
)的结果是( ) A .a 8
+2a 4b 4
+b 8
B .a 8
-2a 4b 4
+b 8
C .a 8
+b 8
D .a 8
-b 8
10.已知m m Q m P 15
8
,11572-=-=
(m 为任意实数)
,则P 、Q 的大小关系为 ( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定 二、填空题(共6小题,每小题4分,共24分)
11.设12142
++mx x 是一个完全平方式,则m =_______。
n
m a b a
D
12.已知51
=+
x x ,那么221x
x +=_______。
13.方程()()()()41812523=-+--+x x x x 的解是_______。
14.已知2=+n m ,2-=mn ,则=--)1)(1(n m _______。
15.已知2a
=5,2b
=10,2c
=50,那么a 、b 、c 之间满足的等量关系是___________. 16.若622=-n m ,且3=-n m ,则=+n m . 三、解答题(共8题,共66分) 17计算:(本题9分) (1)()()0
2
2012
14.3211π--⎪⎭
⎫ ⎝⎛-+-- (2)()
()()()
23
32
32222x y x xy y x ÷-+-⋅
(3)(
)()2
2
2223366m m n m n m -÷--
18、(本题9分)(1)先化简,再求值:()()()()2
2
1112++++-+--a b a b a b a ,其中2
1
=
a ,2-=
b 。
(2)已知31=-x ,求代数式4)1(4)1(2++-+x x 的值.
(2)先化简,再求值: 6)6()3)(3(2+---+a a a a ,其中12-=a .
19、(本题8分)如图所示,长方形ABCD 是“阳光小区”内一块空地,已知AB=2a ,BC=3b ,且E 为AB 边的中点,CF=1
3 BC ,现打算在阴影部分种植一片草坪,求这片草坪的面积。
20、(本题8分)若(x 2
+mx-8) (x 2
-3x+n)的展开式中不含x 2
和x 3
项,求m 和n
的值
21、(本题8分)若a =2005,b =2006,c =2007,求ac bc ab c b a ---++2
2
2
的值。
22、(本题8分).说明代数式[]
y y y x y x y x +-÷-+--)2())(()(2的值,与y 的值无关。
23、(本题8分)如图,某市有一块长为(3a+b )米,宽为(2a+b )米的长方形
地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面 积是多少平方米?并求出当a=3,b=2时的绿化面积.
24、(本题8分)某城市为了鼓励居民节约用水,对自来水用户按如下标准收费: 若每月每户用水不超过a 吨,每吨m 元;若超过a 吨,则超过的部分以每吨2m 元计算.现有一居民本月用水x 吨,则应交水费多少元?
参考答案
一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案
C
B
B
C
A
D
A
C
D
C
二、填空题
11. 44± 12. 23 13. 14
11
-=x 14. -3 15. a+b=c 16. 2 三、解答题
17计算:(本题9分)
4141)1(=-+=解原式
D
3522642)2(4)2(y x x xy y x -=÷-⋅=解原式 122)3(2++-=n n 解原式
13
841,2,2
1
244)1()1(44)1.(182
22
2222=++=-==+-=++++-+-=原式时当解原式b a b ab a a b a b ab a
(2)由31=
-x 得13+=x
化简原式=444122+--++x x x =122+-x x
=1)13(2)13(2
++-+
=12321323+--++
=3
(3)原式=a a 62+, 当12-=a 时,原式=324-.
ab b a ab ab S 222
1
621619=⨯-⨯-=阴影
解
⎩⎨
⎧==∴⎩⎨⎧=--=-∴-++--+-+=-+-+-++-=17
3
08303,8)24()83()3(824833203
2
234223234n m m n m x x n x mn x m n x m x n x x mnx mx mx nx x x 项和不含解原式
[]
()34112
1
2007,2006,2005,)()()(2
1
2122=++=
===-+-+-=原式时当解原式c b a c a c b b a
无关
代数式的值与解原式y x y y x y y y x y xy x ∴=+-=+-÷+-+-=)2()2(222222
ma
mx ma mx am a x m am a x mx a x -=-+=-+≤222)(2,;
,24时如果元应交水费时解如果φ
63
,2,335)()3)(2(.2322===+=+-++=原式时当解绿化b a ab
a b a b a b a S。