苏教版初中数学八年级下册教案课程全册)
初中数学八年级下册苏科版9.4矩形、菱形、正方形教学课件说课稿

为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.例题讲解:针对矩形、菱形、正方形的性质和判定方法,精选典型例题进行讲解,让学生掌握解题思路。
2.课堂练习:设计具有代表性的练习题,让学生独立完成,及时巩固所学知识。
3.小组竞赛:组织小组间进行几何图形拼图竞赛,激发学生的竞争意识,提高他们的动手操作能力。
3.技术工具:智慧黑板、几何画板等,方便学生实时观察和操作,提高课堂互动性。
这些媒体资源在教学中的作用是:丰富教学形式,提高学生的学习兴趣;增强课堂互动,方便学生实时反馈;直观展示几何图形,降低学习难度。
(三)互动方式
我计划设计以下师生互动和生生互动环节,以促进学生的参与和合作:
1.师生互动:提问、引导、讲解,关注学生的反馈,及时调整教学策略。
1.创设情境:通过引入生活中的实际例子,让学生感受到矩形、菱形、正方形在实际中的应用,提高他们的学习兴趣。
2.合作探究:组织学生进行小组讨论,鼓励他们主动发现问题、解决问题,培养合作交流的习惯。
3.竞赛激励:设置几何图形拼图竞赛,激发学生的竞争意识,提高他们对特殊四边形性质的理解和运用能力。
4.赏识教育:对学生的每一次进步给予充分的肯定和鼓励,增强他们的自信心,提高学习积极性。
1.生活实例引入:展示生活中常见的矩形、菱形、正方形物体,如窗户、红绿灯、魔方等,让学生认识到特殊四边形在生活中的广泛应用。
2.问题驱动:提出问题:“你们知道这些图形有什么特殊之处吗?”引发学生思考,激发他们的好奇心。
3.游戏互动:设计一个简单的几何图形拼图游戏,让学生在游戏中体验矩形、菱形、正方形的性质,自然过渡到新课的学习。
(二)教学反思
在教学过程中,我预见到以下问题或挑战:
苏教版八年级数学下册教学计划

苏教版八年级数学下册教学计划第一章有理数第一节有理数的概念和分类第一课有理数的概念- 掌握有理数的定义和性质- 熟练掌握有理数的基本运算及其性质- 能够将一个实数判定为有理数或无理数- 熟悉有理数在数轴上的表示和比较大小第二课有理数的分类- 复整数的定义和性质- 了解正、负有理数的概念和性质- 理解绝对值的概念及其性质- 掌握非零有理数的倒数的概念和性质- 熟悉有理数在数轴上的位置关系和比较大小第二节有理数的加减法第一课加法- 掌握有理数加法的概念和性质- 熟练掌握有理数加法法则及其性质- 能够应用有理数加法解决实际问题第二课减法- 了解有理数减法的概念和性质- 熟悉有理数减法的法则及其性质- 能够应用有理数减法解决实际问题第三课加减混合运算- 熟练掌握有理数加减混合运算的法则及其性质- 能够应用有理数加减混合运算解决实际问题第三节有理数的乘除法第一课乘法- 掌握有理数乘法的概念和性质- 熟练掌握有理数乘法的法则及其性质- 能够应用有理数乘法解决实际问题第二课除法- 了解有理数除法的概念和性质- 熟悉有理数除法的法则及其性质- 掌握有理数除法的计算方法- 能够应用有理数除法解决实际问题第二章方程与不等式第一节一元二次方程第一课一元二次方程的定义和解法- 了解一元二次方程的定义- 掌握一元二次方程求根公式- 熟练掌握解一元二次方程的方法和技巧- 能够应用一元二次方程解决实际问题第二课一元二次方程的应用- 能够应用一元二次方程解决实际问题- 熟悉关于一元二次方程的常见问题第二节一元二次不等式第一课一元二次不等式的定义和解法- 了解一元二次不等式的定义- 掌握一元二次不等式的性质和解法- 能够应用一元二次不等式解决实际问题第二课一元二次不等式的应用- 熟悉一元二次不等式在实际问题中的应用第三章三角形第一节同角三角比第一课同角三角比的概念- 掌握同角三角比的概念和性质- 熟悉常见三角函数的定义和性质- 能够应用三角函数解决实际问题第二课三角函数的计算- 掌握三角函数对于特殊角的取值- 熟练掌握三角函数的计算方法- 能够应用三角函数计算三角形的各边、角值第二节直角三角形及其应用第一课直角三角形的概念和性质- 了解直角三角形的概念和性质- 掌握勾股定理和毕达哥拉斯定理的含义和应用第二课直角三角形的应用- 熟悉直角三角形在实际问题中的应用第四章几何变换第一节平移第一课平移的概念和性质- 了解平移的相关概念和性质- 掌握平移的定义和基本性质第二课平移的应用- 能够应用平移解决实际问题第二节旋转第一课旋转的概念和性质- 了解旋转的相关概念和性质- 掌握旋转的定义和基本性质第二课旋转的应用- 能够应用旋转解决实际问题第三节对称第一课对称的概念和性质- 了解对称的相关概念和性质- 掌握对称的定义和基本性质第二课对称的应用- 能够应用对称解决实际问题。
_苏科版八年级数学下册精品教学案

课题8.1分式自主空间学习目标1、了解分式的概念,会判断一个代数式是否是分式。
2、能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义。
3、能分析出一个简单分式有、无意义的条件。
4、会根据已知条件求分式的值。
学习重点分式的概念,掌握分式有意义的条件学习难点分式有、无意义的条件教学流程预习导航一、创设情境:京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一。
如果货运列车的速度为akm/h,快速列车的速度为货运列车2倍,那么:(1)货运列车从北京到上海需要多长时间?(2)快速列车从北京到上海需要多长时间?(3)已知从北京到上海快速列车比货运列车少用多少时间?观察刚才你们所列的式子,它们有什么特点?这些式子与分数有什么相同和不同之处?合作探究一、概念探究:1、列出下列式子:(1)一块长方形玻璃板的面积为2㎡,如果宽为am,那么长是(2)小丽用n元人民币买了m袋瓜子,那么每袋瓜子的价格是元。
(3)正n边形的每个内角为度。
(4)两块面积分别为a公顷、b公顷的棉田,产棉花分别为m㎏、n㎏。
这两块棉田平均每公顷产棉花 ______㎏。
2、两个数相除可以把它们的商表示成分数的形式。
如果用字母、a b分别表示分数的分子和分母,那么ba 可以表示成什么形式呢?3、思考:上面所列各式有什么共同特点?(通过对以上几个实际问题的研讨,学会用a b的形式表示实际问题中数量之间的关系,感受把分数推广到分式的优越性和必要性)分式的概念: 4、小结分式的概念中应注意的问题.① 分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;② 分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③ 如同分数一样,在任何情况下,分式的分母的值都不可以为0,否则分式无意义。
分式分母不为零是隐含在此分式中而无须注明的条件。
二、例题分析: 例1 : 试解释分式1-b a所表示的实际意义 例2:求分式23+-a a 的值 ①a=3 ②a=—52例3:当取什么值时,分式 223x x --(1)没有意义?(2)有意义?(3)值为零。
苏教八年级数学下册教案

苏教版八年级数学下册全册教案目录第七章数据的收集与整理第八章认识概率第九章中心对称图形---平行四边第十章分式第十一章反比例函数第十二章二次根式我们用实验验证了大家的猜想.旋转前、后的图形全等,对应点到旋转中心的距离相等,每一对对应点与旋按逆时针方向旋转120(四)、课堂小结:引导学生从以下几个方面进行小结:这节课你学到了什么?(1)、旋转的定义。
一.课前预习与导学:1.判断题(对的打“∨”,错的打“×”):(1)如果一个图形绕某个点旋转,能与另一个图形重合,•那么这两个图形组合在一起就是一个中心对称图形;()(2)中心对称图形一定是轴对称图形.()2.(1)成中心对称的两个图形,对称点的连线都经过________,•并且被对称中心___________.(2)正方形既是_______图形,又是_________图形,它有______条对称轴,对称中心是_______.3.下列图形中,中心对称图形有().(A)1个式(B)2个(C)3个(D)4个二、课堂学习与研讨(一)创设情景1.欣赏图片:PPT中的三幅图片问题:这些图形有什么共同的特征?2.共同回顾轴对称图形,某图形沿某条轴对折能重合,那么有没有什么图形绕着某点旋转也能重合呢?有没有什么图形绕着某点旋转180能够重合呢?(二)新知探究⒈引出概念:中心对称图形:平面内,如果把一个图形绕着某一点旋转180度后能与自身重合,那么这个图形叫做中心对称图形。
这个点就是它的对称中心。
注:(1)中心对称图形有一个对称中心,将这个图形绕对称中心旋转180°,旋转后的图形能与原来的图形重合;(2)中心对称图形是对一个图形来说的,是一个图形所具有的性质;(3)中心对称与中心对称图形既有区别又有联系:如果将成中心对称的两个图形看成一个图形,那么这个图形的整体就是中心对称图形;反过来,如果将一个中心对称图形沿过对称中心的任一条直线分成两个图形,那么这两个图形成中心对称.练一练 下面哪个图形是中心对称图形?你能列举生活中的中心对称图形的例子吗?⒉ 探究中心对称图形的的性质:在轴对称中,如等腰梯形ABCD 中,OP 为对称轴,则点A 与点D 是一对对应点,那么A 、D 两点连线与对称轴的关系为:被对称轴垂直且平分左图是一幅中心对称图形,请你找出点A 绕点O 旋180O 后的对应点B,点C 的对应点D 呢?你是怎么? 现在你能很快地找到点E 的对应点F 吗?从上面的操作过程,你能发现中心对称图形上一对对应点与对称中心的关系吗?即:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
苏教初中数学八年级下册教案课程全册

苏教版小学数学八年级下册教案〔全册〕第七章教学目标与要求:1〕了解不等式的意义,掌握不等式的根本性质。
2〕会解一元一次不等式〔组〕,能正确用轴表示解集。
3〕能够根据具体问题中的数量关系,用一元一次不等式〔组〕,解决简单的问题。
知识梳理:1〕不等式及根本性质;2〕一元一次不等式〔组〕及解法与应用;3〕一元一次不等式与一元一次方程与一次函数。
1不等式:用不等号表示不等关系的式子叫做不等式2不等式的解:能使不等式成立的未知数的值叫做不等式的解。
不等式的解集:一个含有未知数的不等式的解的全体叫做这个不等式的解集。
3不等式的性质:○1不等式的两边都加上〔或减去〕同一个整式,不等号的方向不变。
○2不等式的两边都乘〔或除以〕一个正数,不等号的方向不变。
不等式的两边都乘〔或除以〕一个负数,不等号的方向改变。
解一元一次不等式的步骤与解一元一次方程类似。
但是,在不等式两边都乘〔或除以〕同一个不等于0的数时,必须根据这个数是正数,还是负数,正确地运用不等式的性质2,特别要注意在不等式两边都乘〔或除以〕同一个负数时,要改变不等号的方向。
5用一元一次不等式解决问题步骤:〔1〕审:认真审题,分清量、未知量的及其关系,找出题中不等关系,要抓住题设中的关键字“眼〞,如“大于〞、“小于〞、“不小于〞、“不大于〞等的含义。
2〕设:设出适当的未知数。
3〕列:根据题中的不等关系,列出不等式。
4〕解:解出所列不等式的解集。
5〕答:写出答案,并检验答案是否符合题意。
一元一次不等式组:由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组。
不等式组中所有不等式的解集的公共局部叫做这个不等式组的解集,求不等式组解集的过程叫解不等式组。
一元一次不等式组解决实际问题的步骤:与一元一次不等式解决实际问题类似,不同之处在与列出不等式组,并解出不等式组。
3.一元一次不等式与一元一次方程、一次函数当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量 的值;当一次函数中的一个变量范围时,可以用一元一次不等式〔组〕确定 另一个变量取值的范围。
10.1分式-苏科版八年级数学下册教案

10.1 分式-苏科版八年级数学下册教案
一、教学目标
1.能够复述分式的定义及其特点;
2.能够熟练使用分式加减法公式求解相关问题;
3.能够归纳、总结分式的基本运算规律。
二、教学重点
1.分式的概念及其特点;
2.分式的加减法公式。
三、教学难点
分式的乘法和除法。
四、教学过程
4.1 导入与引入(5分钟)
教师通过提问、讲故事等方式,让学生了解到分子、分母的含义,并通过实例引发学生对分式的认识。
4.2 介绍分式的定义及特点(10分钟)
教师介绍分式的定义及其特点,并通过数学公式、图表等方式,让学生深入理解。
4.3 分式的基本运算(40分钟)
4.3.1 分式的加减法(20分钟)
教师介绍分式的加减法公式,并通过示例让学生熟练掌握分式的加减法运算,最后让学生自己举出几个实例进行加减练习。
4.3.2 分式的乘法和除法(20分钟)
教师介绍分式的乘法和除法规律,并通过实例让学生掌握分式的乘法和除法运算。
4.4 讲解分式的简化(10分钟)
教师通过实例讲解分式的简化规律,并让学生自己练习简化分式。
4.5 小结(5分钟)
教师对本课时内容进行小结,并布置课后作业。
五、课后作业
1.完成课堂练习;
2.预习下一节内容:分式的应用。
六、教学反思
本节课的教学重点是基本运算,难点是乘法和除法。
让学生理解分式的概念及其特点,并规范运算,把知识点串起来,便于学生理解。
课后需要多进行练习,多理解思考。
苏科版数学八年级下册教学设计10.1 分式

苏科版数学八年级下册教学设计10.1 分式一. 教材分析《苏科版数学八年级下册》第十章第一节“分式”是初中学段数学的重要内容,也是代数学习的关键部分。
本节内容主要介绍分式的概念、分式的基本性质以及分式的运算。
通过本节的学习,学生能理解分式的实际意义,掌握分式的基本性质和运算方法,为后续的数学学习打下基础。
二. 学情分析八年级的学生已经学习了有理数、方程等基础知识,具备一定的逻辑思维和运算能力。
但学生在学习分式时,可能会对分式的抽象概念和运算规则产生困惑。
因此,在教学过程中,需要关注学生的学习困惑,引导学生理解分式的实际意义,并通过例题和练习帮助学生掌握分式的运算方法。
三. 教学目标1.理解分式的概念,掌握分式的基本性质。
2.学会分式的运算方法,能够熟练进行分式的化简、运算。
3.培养学生的逻辑思维和运算能力,提高学生解决实际问题的能力。
四. 教学重难点1.重点:分式的概念、分式的基本性质和运算方法。
2.难点:分式的运算规则和应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过问题探究分式的概念和性质。
2.使用案例教学法,通过具体的例题和练习,让学生掌握分式的运算方法。
3.利用小组合作学习,让学生在讨论和交流中提高对分式的理解和应用能力。
六. 教学准备1.准备PPT,展示分式的概念、性质和运算方法。
2.准备相关例题和练习题,用于巩固学生的学习效果。
3.准备小组讨论的学习材料,引导学生进行合作学习。
七. 教学过程1.导入(5分钟)通过提出实际问题,引发学生对分式的思考,如“小明买了2本书,小华买了3本书,小明比小华少买了几本书?”引导学生理解分式的实际意义。
2.呈现(10分钟)教师通过PPT呈现分式的概念和基本性质,让学生初步了解分式。
如分式的定义、分式的基本性质等。
3.操练(15分钟)学生独立完成PPT上的例题,教师进行讲解和指导。
如分式的化简、分式的运算等。
4.巩固(10分钟)学生分组讨论,合作完成教师准备的练习题,教师巡回指导,解答学生的疑问。
苏科版数学八年级下册教学设计9.3 平行四边形(3)

苏科版数学八年级下册教学设计9.3 平行四边形(3)一. 教材分析苏科版数学八年级下册第9.3节“平行四边形(3)”的内容,是在学生已经掌握了平行四边形的性质、平行四边形的判定、平行四边形的性质定理等知识的基础上进行的一节实践性较强的课程。
本节课主要让学生通过观察、操作、思考、交流等活动,探索并掌握平行四边形的对角相等的性质,培养学生的空间想象能力和逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经具备了以下基础:1.掌握了平行四边形的定义、性质、判定等基本知识;2.具备一定的观察、操作、思考、交流的能力;3.了解平行四边形的性质定理。
但学生在解决实际问题时的应用能力和空间想象能力还有待提高。
三. 教学目标1.让学生掌握平行四边形的对角相等的性质;2.培养学生的空间想象能力和逻辑思维能力;3.提高学生解决实际问题的能力。
四. 教学重难点1.平行四边形的对角相等的性质的理解和应用;2.平行四边形性质定理在解决实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生自主探究;2.运用操作验证法,让学生通过实际操作体验平行四边形的性质;3.利用交流讨论法,培养学生合作解决问题的能力。
六. 教学准备1.准备平行四边形的模型或图片;2.准备剪刀、彩纸等操作材料;3.准备与本节课相关的问题及解答。
七. 教学过程1. 导入(5分钟)教师通过展示一些平行四边形的图片,让学生观察并思考:平行四边形有哪些性质?你能发现哪些规律?从而引出本节课的主题——平行四边形的对角相等的性质。
2. 呈现(10分钟)教师通过PPT或黑板,呈现平行四边形的性质定理,让学生阅读并理解定理的内容。
同时,教师可以举例说明性质定理的应用。
3. 操练(10分钟)教师分发操作材料,让学生分组进行实际操作,验证平行四边形的对角相等的性质。
学生在操作过程中,可以互相交流、讨论,共同解决问题。
4. 巩固(10分钟)教师提出一些与本节课相关的问题,让学生独立思考并解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版小学数学八年级下册教案(全册)第七章教学目标与要求:(1)了解不等式的意义,掌握不等式的基本性质。
(2)会解一元一次不等式(组),能正确用轴表示解集。
(3)能够根据具体问题中的数量关系,用一元一次不等式(组),解决简单的问题。
知识梳理:(1)不等式及基本性质;(2)一元一次不等式(组)及解法与应用;(3)一元一次不等式与一元一次方程与一次函数。
1不等式:用不等号表示不等关系的式子叫做不等式2不等式的解:能使不等式成立的未知数的值叫做不等式的解。
不等式的解集:一个含有未知数的不等式的解的全体叫做这个不等式的解集。
3不等式的性质:○1不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
○2不等式的两边都乘(或除以)一个正数,不等号的方向不变。
不等式的两边都乘(或除以)一个负数,不等号的方向改变。
4解一元一次不等式的步骤与解一元一次方程类似。
但是,在不等式两边都乘(或除以)同一个不等于0的数时,必须根据这个数是正数,还是负数,正确地运用不等式的性质2,特别要注意在不等式两边都乘(或除以)同一个负数时,要改变不等号的方向。
5用一元一次不等式解决问题步骤:(1)审:认真审题,分清已知量、未知量的及其关系,找出题中不等关系,要抓住题设中的关键字“眼”,如“大于”、“小于”、“不小于”、“不大于”等的含义。
(2)设:设出适当的未知数。
(3)列:根据题中的不等关系,列出不等式。
(4)解:解出所列不等式的解集。
(5)答:写出答案,并检验答案是否符合题意。
6一元一次不等式组:由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组。
不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集,求不等式组解集的过程叫解不等式组。
一元一次不等式组解决实际问题的步骤:与一元一次不等式解决实际问题类似,不同之处在与列出不等式组,并解出不等式组。
7一元一次不等式与一元一次方程、一次函数当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值;当已知一次函数中的一个变量范围时,可以用一元一次不等式(组)确定另一个变量取值的范围。
基础知识练习:1、用适当的符号表示下列关系:(1)X的2/3与5的差小于1;(2)X 与6的和不大于9 (3)8与Y 的2倍的和是负数2. 已知a <b,用“<”或“>”号填空:①a-3 b-3 ②6a 6b ③-a -b ④a-b 03. 当0<<a x 时,2x 与ax 的大小关系是4. 如果121<<x ,则()()112--x x _______05. 63->x 的解集是___________,x 41-≤-8的解集是___________。
6. 三个连续自然数的和小于15,这样的自然数组共有( )A 、6组B 、5组C 、4组D 、3组7. 当x 取下列数值时,能使不等式01<+x ,02>+x 都成立的是( )A 、-2.5B 、-1.5C 、0D 、1.58.利用数轴求下列不等式的解集:典型例题分析:例1. 已知a <b,用<、>或=填空: 1+a 1+b a-2 b-2 3-a 3-b 4a 4b 2-a 2-b 例2.解下列不等式(组),并将结果在数轴上表示出来: (1). 634123+≤-+x x (2). ⎪⎪⎩⎪⎪⎨⎧-<--+≤--).3(3)3(232,521123x x x x x 例3.已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围。
例4.已知关于x 、y 的方程组⎩⎨⎧=-=+m y x y x 212. (1)求这个方程组的解; (2)当m 取何值时,这个方程组的解中,x 大于1且y 不小于-1.例5.已知3x+y=2,当y 取何值时,-1<x ≤2 ?例6. 宁启铁路泰州火车站有某公司待运的甲种货物1530吨,乙种货物1150吨,现计划用50节A 、B 两种型号的车厢将这批货物运至北京.已知每节A 型货厢的运费是0.5万元,每节B 型货厢的运费是0.8万元;甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排A 、B 两种货厢的节数,共有几种方案?请你设计出来,并说明哪种方案的运费最少,最少运费是多少?例7.作出函数y=2x-5的图象,观察图象回答下列问题:(1)x 取哪些值时,2x-5>0?(2)x 取哪些值时,2x-5<0?(3)x 取哪些值时,2x-5>3?课后练习巩固:1.下列不等式中,是一元一次不等式的是A .2x -1>0B .-1<2C .3x-2y <-1D .y 2+3>52.不等式54≤-x 的解集是 A .x ≤54- B .x ≥54- C .x ≤45- D .x ≥45-3.当a 时,不等式(a —1)x >1的解集是x <11-a 。
4. 不等式x-8>3x-5的最大整数解是 。
5. .若不等式组841x x x m +<-⎧⎨>⎩ 的解集是x >3,则m 的取值范围是 。
6. 若y 1=-x+3,y 2=3x-4,当x 时y 1<y 2。
7. 如果m <n <0,那么下列结论错误的是( )A.m -9<n -9B.-m >—nC.n 1>m 1D.n m >1 8. 把不等式组1010x x +≥⎧⎨-⎩<的解集表示在数轴上,正确的是( )9. 解不等式(组),并把不等式组的解集在数轴上表示出来:(1)32x -+<23x -+; (2)22x +≥213x -.(3)451442x x x x -≥+⎧⎨+<-⎩; (4)5<1-4x<17。
10. 若()2320x x y m -+--=中y 为非负数,求m 的范围.11. 将一堆苹果分给几个孩子,如果每人分3个,那么多8个;如果前面每人分5个,那么最后一人得到的苹果不足3个。
问:有几个孩子?有多少个苹果?12.中国第三届京剧艺术节在南京举行,某场京剧演出的票价由2元到100元多种,某团体须购买票价为6元和10元的票共140张,其中票价为10元的票数不少于票价为6元的票数的2倍。
问这两种票各购买多少张所需的钱最少?最少需要多少钱?13. 某地举办乒乓球比赛的费用y (元)包括两部分:一部分是租用比赛场地等固定不变的费用b (元),另一部分费用与参加比赛的人数x (人)成正比。
当x=20时,y=1600;当x=30时,y=2000.(1)求y 与x 之间的函数关系式;(2)如果承办此次比赛的组委会共筹集到经费6250元,那么这次比赛最多可邀请多少名运动员参赛?第八章 分式教学目标与要求:(1)了解分式的意义及分式的基本性质;(2)会利用分式的基本性质进行约分和通分;(3)会进行简单的分式加、减、乘、除运算;(4)会解可化为一元一次方程的分式方程;(5)能够根据具体问题中的数量关系,用可化为一元一次方程的分式方程解决实际问题。
知识梳理:(1)分式的意义及分式的基本性质,用分式的基本性质进行约分和通分;(2)加、减、乘、除运算;(3)可化为一元一次方程的分式方程的解法及应用。
1分式定义:一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么代数式B A 叫做分式,其中A 是分式的分子,B 是分式的分母。
2分式的基本性质: 分式的分子和分母都乘(或除以)同一个不等于0的整式,分式的值不变。
用式子表示就是B A =M B M A ⋅⋅,B A =M B M A ÷÷(其中M 是不等于0的整式) 根据分式的基本性质,把一个分式的分子和分母分别除以它们的公因式,叫做分式的约分。
根据分式的基本性质,把几个异分母的分式化成同分母的分式,叫做分式的通分。
与异分母的分数通分类似,异分母的分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母。
3同分母的分式相加减:分母不变,把分子相加减异分母的分式相加减:先通分,再加减。
4分式乘分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
5分式方程:分母中含有未知数的方程叫做分式方程。
求分式方程的解,只要在方程的两边同乘各分式的最简公分母,有时就可以将分式方程转化为一元一次方程来解。
如果由变形后的方程求得的根不合适原方程,那么这种根叫做原方程的增根。
因为解分式方程时可能产生增根,所以解分式方程时必须检验。
有时,根据实际问题列出的分式方程虽然有解,但所求得的的解不符合实际意义,所以这个实际问题仍然无解。
基础知识练习: 1、下列各式:π8,11,5,21,7,322x x y x b a a -++中,分式有( ) A 、1个 B 、2个 C 、3个 D 、4个 2、若分式112+-x x 的值为0,则x 的取值为( ) A 、1=x B 、1-=x C 、1±=x D 、无法确定 3、如果把分式y x x +2中的x 和y 都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、缩小3倍 C 、缩小6倍 D 、不变 4、如果把分式y x xy +中的x 和y 都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、缩小3倍 C 、缩小6倍 D 、不变 5、 若关于x 的方程42123=-+-+x x 有增根,则增根为 . 6、 当x 时,分式31-+x x 有意义,当x 时,分式32-x x 无意义。
7、xyz x y xy 61,4,13-的最简公分母是 。
8、一件工作,甲单独做a 小时完成,乙单独做b 小时完成,则甲、乙合作 小时完成。
9、 若分式方程21=++a x x 的一个解是1=x ,则=a 。
10、 分式方程253+=x x 的根是 典型例题分析: 例1:计算:(1).y x a xy 26512÷ (2).x y x y 2211-+- (3).212293m m --- (4).22424422x x x x x x x ⎛⎫---÷ ⎪-++-⎝⎭ 例2:解下列方程: (1).512552x x x +=-- (2). 23749392+--=-+x x x x 例3:先化简,再求值: a -2a 2-4 +1a +2 ,其中a =3. 例4:列分式方程解应用题:某工人原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原计划提前了五小时,问原计划每小时加工多少个零件?课后练习巩固: 1. 下列式子(1)y x y x y x -=--122;(2)c a b a a c a b --=--;(3)1-=--b a a b ;(4)y x y x y x y x +-=--+-中正确的是---------------------------------------------------------------( )A 1个B 2 个C 3 个D 4 个 2. 能使分式242--x x 的值为零的所有x 的值是--------------------------------------------( )A 2=xB x= -2C 2=x 或x= -2D 4=x3.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( ) A 、9448448=-++x x B 、9448448=-++x x C 9448=+x D 9496496=-++x x 4、若分式232-x 的值为负数,则x 的取值范围是__________。