【最新】复变函数学习心得体会范本-范文word版 (2页)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新】复变函数学习心得体会范本-范文word版
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
复变函数学习心得体会范本
数学学科发展到现在,已成为了分支众多的学科之一,复变函数则是其中一个非常重要的分支,是19世纪,Cauchy, Riemann, Weierstrass 等数学家分
别从不同角度建立了复变函数的系统理论,使复变函数真正成为分析数学的一
个重要分支。
复变函数是复数域上的微积分,是基于解决数学内部矛盾的间接需要而产
生的,是由于在生产实际和科学研究中发现了应用原型而发展起来的!
复变函数现在是大学理工科专业和数学院系数学类专业的一门重要的基础课,但是复变函数的学习要有高等数学的基础,如果没有这方面的知识,学习复变函数无疑会非常困难,因为这门课程在初学者看来非常抽象,理论性太强。作
为复变函数的教学工作者,如何使得这门课程的课堂变得生动有趣,而且使学生
在学习过程中容易理解,是我们不得不思考的问题。
由于复变函数的导数与可导性、微分与可微性是利用类比的方法从一元实
变函数相应概念推广到复数域后得到的,它们在形式上与一元实变函数的导数、可导性与微分一致,因此在教学中应当勤于和善于比较,既要重视共性,更要
注意不同点,切实关注在推广到复数域后出现了什么新情况和新问题,探讨出
现新问题的原因何在。
在这篇报告中,王锦森先生非常生动地介绍了复变函数课程的改革思路和分别讨论了复变函数教学中的难点和重点,并且这些难点和重点的教学方法。
难点和重点介绍方面:讨论了“在复变函数可导性(从而判断函数解析性)
的充要条件中,为什么要求函数的实部和虚部必须满足Cauchy-Riemann方程?”内在含义,复变函数的导数的几何意义是否跟实变函数导数的几何意义相同?,一元实函数的微分中值定理能不能推广到复变函数中来?,复变初等函数与相应的实变初等函数之间的关系与差别,复变函数的积分与一元实变函数的第二型
曲线积分的不同之处,即,它们积分和式的结构不同,积分的表达形式不同,
物理意义不同等等,还讨论了学习Cauchy-Goursat 基本定理应当注意的几个
问题,复变函数积分中有没有与一元实变函数微积分中的微积分基本定理和Newton-Leibniz公式相对应的结论等等。
这些难点和重点教学法方面介绍了类比教学法,化“复”为“实”,用
“已知”解决“未知”的思想等教学法。