厦门一中2018-2019年初三下第二次质量检测(数学试题)

合集下载

厦门名校2019年下期九年级数学期初考试卷(含答案)

厦门名校2019年下期九年级数学期初考试卷(含答案)

2018-2019学年福建省厦门一中九年级(下)期初数学试卷一、选择题(本大题有10小题,每小题3分,共30分,每小题有且只有一个选项正确)1.(3分)3的相反数是()A.﹣3B.﹣C.D.32.(3分)下列事件是必然事件的是()A.2018年5月15日宁德市的天气是晴天B.从一副扑克中任意抽出一张是黑桃C.在一个三角形中,任意两边之和大于第三边D.打开电视,正在播广告3.(3分)用科学记数法表示136000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×1064.(3分)下列计算,结果等于x5的是()A.x2+x3B.x2•x3C.x10÷x2D.(x2)35.(3分)如图,在框中解分式方程的4个步骤中,根据等式基本性质的是()A.①②B.②④C.①③D.③④6.(3分)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,157.(3分)在平面直角坐标系中,A,B,C,D,M,N的位置如图所示,若点M的坐标为(﹣2,0),N的坐标为(2,0),则在第二象限内的点是()A.A点B.B点C.C点D.D点8.(3分)在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问人数是多少?若设人数为x,则下列关于x的方程符合题意的是()A.8x﹣3=7x+4B.8(x﹣3)=7(x+4)C.8x+4=7x﹣3D.x+49.(3分)如图,在矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且C、D两点在函数y=的图象上,若在矩形ABCD内随机取一点,则此点取自阴影部分的概率是()A.B.C.D.10.(3分)如图,已知等腰△ABC,AB=BC,D是AC上一点,线段BE与BA关于直线BD对称,射线CE交射线BD于点F,连接AE,AF.则下列关系正确的是()A.∠AFE+∠ABE=180°B.C.∠AEC+∠ABC=180°D.∠AEB=∠ACB二、填空题(本大题有6小题,每小题3分共18分)11.(3分)(1)3﹣1=,(2)π0=,(3)=.12.(3分)正八边形的每一个内角的度数为度.13.(3分)“若实数a,b,c满足a<b<c,则a+b<c”,能够说明该命题是假命题的一组a,b,c的值依次为.14.(3分)已知一次函数y=kx+2k+3(k≠0),不论k为何值,该函数的图象都经过点A,则点A的坐标为.15.(3分)小丽计算数据方差时,使用公式S2=[(5﹣)2+(8﹣)2+(13﹣)2)2+(15﹣)2],则公式中=.16.(3分)如图,点A,D在反比例函数y=(m<0)的图象上,点B,C在反比例函数y=(n>0)的图象上.若AB∥CD∥x轴,AC∥y轴,且AB=4,AC=3,CD=2,则n=.三、解答题(本大题有10小题,共52分)17.(6分)解不等式组18.(8分)先化简,再求值:,其中a=.19.(6分)为进一步弘扬中华优秀传统文化,某校决定开展以下四项活动:A经典古诗文朗诵;B书画作品鉴赏:C民族乐器表演;D围棋赛.学校要求学生全员参与,且每人限报一项.九年级(1)班班长根据本班报名结果,绘制出了如下两个尚不完整的统计图,请结合图中信息解答下列问题:(1)九年级(1)班的学生人数是.(2)在扇形统计图中,B项目所对应的扇形的圆心角度数是.(3)将条形统计图补充完整;20.(6分)根据给出的△ABC及线段A′B′,∠A′(∠A′=∠A),以线段A′B′为一边在给出的图形上用尺规作出△A′B′C′,使得△A′B′C′∽△ABC不写作法,保留作图痕迹.21.(10分)如图,AB是⊙O的直径,AC是弦,D是BC的中点,过点D作EF垂直于直线AC,垂足为F,交AB的延长线于点E.(1)求证:EF是⊙O的切线;(2)若tan A=,AF=6,求⊙O的半径.22.(7分)已知抛物线y=ax2+bx+c(a、b、c是常数,a≠0)的对称轴为直线x=﹣2.(1)b=;(用含a的代数式表示)(2)当a=﹣1时,若关于x的方程ax2+bx+c=0在﹣3<x<1的范围内有解,求c的取值范围;23.(9分)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.2018-2019学年福建省厦门一中九年级(下)期初数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题3分,共30分,每小题有且只有一个选项正确)1.【解答】解:3的相反数是﹣3故选:A.2.【解答】解:A、2018年5月15日宁德市的天气是晴天是随机事件;B、从一副扑克中任意抽出一张是黑桃是随机事件;C、在一个三角形中,任意两边之和大于第三边是必然事件;D、打开电视,正在播广告是随机事件;故选:C.3.【解答】解:用科学记数法表示136 000,其结果是1.36×105,故选:B.4.【解答】解:A、x2和x3不是同类项,不能合并,故此选项错误;B、x2•x3=x5,故此选项正确;C、x10÷x2=x8,故此选项错误;D、(x2)3=x6,故此选项错误;故选:B.5.【解答】解:①根据等式的性质2,等式的两边都乘同一个不为零的整式x﹣2,结果不变,③根据等式的性质1,等式的两边都加同一个整式3﹣x,结果不变.故选:C.6.【解答】解:把这组数据从小到大排列:10、13、15、15、20,最中间的数是15,则这组数据的中位数是15;15出现了2次,出现的次数最多,则众数是15.故选:D.7.【解答】解:MN所在的直线是x轴,MN的垂直平分线是y轴,A在x轴的上方,y轴的左边,A点在第二象限内,故选:A.8.【解答】解:设人数为x,则可列方程为:8x﹣3=7x+4故选:A.9.【解答】解:由题意可得B(1,0),把x=1代入y=x+1可得y=2,即C(1,2),把x=0代入y=x+1可得y=1,即图中阴影三角形的第3个定点为(0,1),令﹣x+1=2可解得x=﹣2,即D(﹣2,2),∴矩形的面积S=3×2=6,阴影三角形的面积S′=×3×1=,∴所求概率P==故选:C.10.【解答】解:由轴对称的性质可得,四边形ABEF中,AB=EB,AF=EF,∴∠BAF=∠BEF,∵等腰△BCE中,∠BEC<90°,∴∠BEF>90°,∴∠BAF>90°,∴四边形ABEF中,∠AFE+∠ABE<180°,故A错误;∵△ABE中,∠AEB=,△BCE中,∠BEC=,∴∠AEF=180°﹣∠AEB﹣∠BEC=180°﹣﹣=(∠ABE+∠CBE)=∠ABC,故B正确;∵AB=CB=EB,∴∠AEB=∠EAB,∠BEC=∠BCE,∴∠AEC=∠EAB+∠ECB>∠CAB+∠ACB,∴∠AEC+∠ABC>∠CAB+∠ACB+∠ABC=180°,故C错误;∵∠AEB=∠EAB,∠BAC=∠BCA,∠BAE>BAC,∴∠AEB>ACB,故D错误;故选:B.二、填空题(本大题有6小题,每小题3分共18分)11.【解答】解:(1)3﹣1=,(2)π0=1,(3)=,故答案为:,1,.12.【解答】解:∵正八边形的每个外角为:360°÷8=45°,∴每个内角为180°﹣45°=135°.13.【解答】解:当a=1,b=2,c=3时,满足a<b<c,不满足a+b<c,所以说明该命题是假命题的一组a,b,c的值依次为1,2,3.故答案为1,2,3.14.【解答】解:∵一次函数y=kx+2k+3(k≠0),不论k为何值,该函数的图象都经过点A,∴当k=0时,y=3,把y=3,k=1代入y=kx+2k+3中,可得:x=﹣2,所以点A的坐标为(﹣2,3),故答案为:(﹣2,3),15.【解答】解:∵S2=[(5﹣)2+(8﹣)2+(13﹣)2)2+(15﹣)2],∴=11,故答案为:11.16.【解答】解:设B(x,),则A(x﹣4,),C(x﹣4,),D(x﹣2,),依题意有,解得:,故答案为:.三、解答题(本大题有10小题,共52分)17.【解答】解:解不等式x﹣1>0,得:x>1,解不等式﹣3x+6≥0,得:x≤2,则不等式组的解集为1<x≤2.18.【解答】解:===a2,当a=时,原式==.19.【解答】解:(1)九年级(1)班的学生人数是15÷30%=50(人),故答案为:50;(2)扇形统计图中,B项目所对应的扇形的圆心角度数是360°×=144°,故答案为:144°;(3)D活动项目的人数为50﹣(15+20+10)=5(人),补全图形如下:20.【解答】解:如图所示,△A'B′C′即为所求;21.【解答】解:(1)方法一:如图1,连接OD.∵EF⊥AF,∴∠F=90°.∵D是的中点,∴.∴∠1=∠2=∠BOC,∵∠A=∠BOC,∴∠A=∠1,∴OD∥AF.∴∠EDO=∠F=90°.∴OD⊥EF,∴EF是⊙O的切线;方法二:如图2,连接OD,BC.∵D是的中点,∴.∴∠1=∠2,∵OB=OC,∴OD⊥BC,∵AB是⊙O的直径,∴∠ACB=90°.∵AF⊥EF,∴∠F=∠ACB=90°.∴BC∥EF.∴OD⊥EF,∴EF是⊙O的切线;(2)设⊙O半径为r,则OA=OD=OB=r.方法一:在Rt△AFE中,tan A=,AF=6,∴EF=AF•tan A=8.∴,∴OE=10﹣r.∵cos A=,∴cos∠1=cos A=,∴r=,即⊙O的半径为,方法二:在Rt△AFE中,tan A=,AF=6,∴EF=AF•tan A=8.∴,∴EO=10﹣r.∵∠A=∠1,∠E=∠E,∴△EOD∽△EAF,∴,∴.∴r=,即⊙O的半径为,22.【解答】解:(1)由题意得:抛物线的x==﹣2 解得b=4a,故答案为:4a;(2)当a=﹣1时,b=﹣4;∴抛物线y=﹣x2﹣4x+c;∵关于x的方程ax2+bx+c=0在﹣3<x<1的范围内有解,即关于x的方程x2+4x﹣c=0在﹣3<x<1的范围内有解∴△=b2﹣4ac≥0 即:(﹣4)2﹣4×(﹣1)•c=16+4c≥0,解得c≥﹣4∴抛物线y=x2+4x=(x+2)2﹣4与直线y=c在﹣3<x<1的范围内有交点当x=﹣2时y=﹣4;当x=1时,y=5故可得:﹣4<c<523.【解答】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠P AD=∠PDC+∠PDA=90°,∴∠P AD=∠PDA,∴PD=P A,∴P A=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,∵S△ADC=AD•DC=AC•DQ,∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP=4或5或;(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠P AD=90°,∴∠P AD=∠FCD,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法2、如图,∵四边形ABCD和DPEF是矩形,∴∠ADC=∠PDF=90°,∴∠ADP=∠CDF,∵∠DGF+∠CDF=90°,∴∠EGC+∠CDF=90°,∵∠CEF+∠CGE=90°,∴∠CDF=∠FEC,∴点E,C,F,D四点共圆,∵四边形DPEF是矩形,∴点P也在此圆上,∵PE=DF,∴,∴∠ACB=∠DCF,∵AD∥BC,∴∠ACB=∠DAP,∴∠DAP=∠DCF,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法3、如图3,过点P作PM⊥BC于M交AD于N,∴∠PND=90°,∵PN∥CD,∴,∴,∴AN=,∴ND=8﹣=(10﹣)同理:PM=(10﹣)∵∠PND=90°,∴∠DPN+∠PDN=90°,∵四边形PEFD是矩形,∴∠DPE=90°,∴∠DPN+∠EPM=90°,∴∠PDN=∠EPM,∵∠PND=∠EMP=90°,∴△PND∽△EMP,∴=,∵PD=EF,DF=PE.∴,∵,∴,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴=,∵AP=,∴CF=.。

2019年5月福建省厦门市中考二检数学试卷及答案

2019年5月福建省厦门市中考二检数学试卷及答案

A 作 AC x 轴于点 C ,过该双曲线另一点 B 作 BD x 轴于点 D ,作 BE AC 于点 E ,
连接 AB .若 OD 3OC ,则 tan ABE

16.如图 4,在矩形 ABCD 中, AB BC ,以点 B 为圆心, AB 的长为半
径的圆分别交 CD 边于点 M ,交 BC 边的延长线于点 E .若 DM CE
式.(自变量 m 的取值范围只需直接写出)
24.(本题满分 12 分)
某村启动“脱贫攻坚”项目,根据当地的地理条件,要在一座高为 1000m 的山上种植
一种经济作物.农业技术人员在种植前进行了主要相关因素的调查统计,结果如下:
①这座山的山脚下温度约为 22℃,山高 h(单位:m)每增加 100m,温度 T (单位:℃)
A. a 1
B. a 3
C. a b c
D. a 1 (b c) 2
9.已知菱形 ABCD 与线段 AE ,且 AE 与 AB 重合.现将线段 AE 绕点 A 逆时针旋转180 ,
在旋转过程中,若不考虑点 E 与点 B 重合的情形,点 E 还有三次落在菱形 ABCD 的边上,
19.(本题满分 8 分)
化简并求值:
(
2a2 a

2
4
1)

a2 2a a2
,其中 a

2.
20.(本题满分 8 分) 在正方形 ABCD 中, E 是 CD 边上的点,过点 E 作 EF BD 于 F . (1)尺规作图:在图 6 中求作点 E ,使得 EF EC ; (保留作图痕迹,不写作法) (2)在(1)的条件下,连接 FC ,求 BCF 的度数.
A. sin A

②2019年厦门一中二模试卷

②2019年厦门一中二模试卷

福建省厦门第一中学2018—2019学年度第二学期第二次模拟考试命题教师 陈山泉 审核教师 庄月蓉 2019.5一、选择题(本题共10小题,每小题4分,共40分) 1.下列各数中,属于正有理数的是( )A .πB .0C .﹣1D .22.若分式11-x 有意义,则x 的取值范围是( ) A . x ≥1 B .x >1 C .x=1 D .x ≠1 3.某几何体的三视图如图所示,则这个几何体是( )A .圆柱B .正方体C .球D .圆锥4.如图,直线a ,b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( ) A .∠1=∠3 B .∠2+∠4=180° C .∠3=∠4 D .∠1=∠45.已知a ,b 满足方程组,则a+b 的值为( )A .﹣4B .4C .﹣2D .26.如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC ,交AC 于点D , 且AB =4,BD =5,那么点D 到BC 的距离是( ) A . 3 B . 4 C .5D . 67.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少 B .新农村建设后,养殖收入增加了一倍 C .新农村建设后,其他收入增加了一倍以上D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半第6题图第4题图第3题图第7题图8.若直线l 1经过点(0,4),l 2经过点(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为( )A .(﹣2,0)B .(2,0)C .(﹣6,0)D .(6,0) 9.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统, 图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0, 将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号, 其序号为a ×23+b ×22+c ×21+d ×20,如图2第一行数字从左到右依次为0,1,0,1, 序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生. 表示6班学生的识别图案是( )A .B .C .D .10.如图,正方形ABCD 的边长为2,点E 在BC 上,四边形EFGB 也是正方形, 以B 为圆心,BA 长为半径画,连结AF ,CF ,则图中阴影部分面积为( )A .πB .2π﹣2C .πD .2π二、填空题(本题共6小题,每小题4分,共24分) 11.9的算术平方根是 .12.因式分解:m (x ﹣y )+n (x ﹣y )= .13.点P (a ,a ﹣3)在第四象限,则a 的取值范围是 .14.为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大? .(填:甲或乙) 15.如右上图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为 °.第9题图第10题图第15题图16.已知点M 为双曲线y =(x>0)上的一点,过点M 作x 轴、y 轴的垂线,分别交直线y =﹣x+m (m>0)于点D 、C 两点(点D 在点M 下方),若直线y =﹣x+m (m>0)与y 轴交于点A ,与x 轴相交于点B ,则AD •BC 的值为 . 三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤) 17.(8分)计算3-2+()23-﹣|﹣3|+ tan60°.18.(8分)已知:如图,AB ∥DE ,点C ,点F 在AD 上,AF =DC ,AB =DE .求证:△ABC ≌△DEF .19.(8分)解方程:﹣=1 .20.(8分)(1)尺规作图:如图,A 、B 是平面上两个定点,在平面上找一点C , 使△ABC 构成等腰直角三角形,且C 为直角顶点.(画出一个点C 即可) (2)在(1)的条件下,若A (0,3),B (4,0),则点C 的坐标是 .(直接出一个点C 的坐标即可).第20题图 第18题图21.(8分)如图,△ABC 内接于⊙O ,∠B =60°,CD 是⊙O 的直径, 点P 是CD 延长线上一点,且AP =AC . (1)求证:PA 是⊙O 的切线; (2)若PD =,求⊙O 的直径.22.(10分)如图,点A 、B 的坐标分别是为(﹣3,1),(﹣1,﹣2),若将线段AB 平移至A 1B 1的位置,A 1(a ,4),B 1(3,b ). (1)则a= ,b= ; (2)求四边形ABB 1A 1的面积;(3)将线段AB 按照原来的方向平移,若点A 的平移后对应点是点A 2,点B 的平移后对应点是点B 2,则在线段AB 平移过程中,是否存在一个四边形ABB 2A 2是矩形,并说明理由.第21题图第22题图23.(10分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n 是自然数)的函数解析式;(2)①这100个日需求量所组成的一组数据的中位数和众数分别是 , ; ②以100天记录的各需求量的频率作为计算平均一天需求量对应的权重.若花店计划一天购进16枝或17枝玫瑰花,从盈利的角度分析,你认为应购进16枝还是17枝?请说明理由.24.(12分)如图,在□ABCD 中,点E 在线段AC 上. (1)若∠3=70°,∠1=∠2,求∠2度数;(2)若AB=AE ,BE=DE=6EC ,点E 到直线CD 的距离是35,求BC 的长度.第24题图25.(14分)对于自变量为x 的函数,当x=x 0时,其函数值也为x 0,则称点(x 0,x 0)为此函数的不动点.若函数y=ax 2+bx+c (a>0)图象上有两个不动点A (x 1,y 1)、B (x 2,y 2),(x 1<x 2).(1)若a=1,b=2,c=0,求函数y=ax 2+bx+c 的不动点坐标;(2)求证:x 1≥ab ac 442-;(3)若函数y=ax 2+bx+c (a>0),a=21,0242<--c b b , 当0<x<x 1时,①求证:y> x ; ②求证:y<x 1.。

2019年5月福建省厦门市初三数学中考二检数学试题

2019年5月福建省厦门市初三数学中考二检数学试题

dC
.若 d A
1 2
dB
dC
,则下列结论正确的是(

A.当 a ≤ x ≤ b 时, y 随着 x 的增大而增大
B.当 a ≤ x ≤ c 时, y 随着 x 的增大而增大
C.当 b ≤ x ≤ c 时, y 随着 x 的增大而减小
D.当 a ≤ x ≤ c 时, y 随着 x 的增大而减小
二、填空题(本大题有 6 小题,每小题 4 分,共 24 分)
A 作 AC x 轴于点 C ,过该双曲线另一点 B 作 BD x 轴于点 D ,作 BE AC 于点 E ,
连接 AB .若 OD 3OC ,则 tan ABE

16.如图 4,在矩形 ABCD 中, AB BC ,以点 B 为圆心, AB 的长为半
径的圆分别交 CD 边于点 M ,交 BC 边的延长线于点 E .若 DM CE
A. sin A
B. sin B
C. tan A
D. tan B
3.在平面直角坐标系中,若点 A 在第一象限,则点 A 关于原点的中心
对称点在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
D.3
4.若 n 是有理数,则 n 的值可以是( )
A. 1
B. 2.5
C. 8
5.如图 2, AD , CE 是 △ABC 的高,过点 A 作 AF ∥ BC ,则下
21.(本题满分 8 分) 某路段上有 A ,B 两处相距近 200m 且未设红绿灯的斑马线.为使交通高峰期该路段车 辆与行人的通行更有序,交通部门打算在汽车平均停留时间较长的一处斑马线上放置移 动红绿灯.图 7,图 8 分别是交通高峰期来往车辆在 A , B 斑马线前停留时间的抽样统 计图.

福建省厦门一中2018届九年级第二次模拟考试数学试题Word版含答案答案

福建省厦门一中2018届九年级第二次模拟考试数学试题Word版含答案答案

PM | y | ,即 PM 2 y2 ………………………2 分
点 P 在 AM 的中垂线上 AP PM
x2 (4 y)2 y2
y 1 x2 2 ………………………3 分 8
点 P 的轨迹是一条抛物线………………………4 分
24、(1)证明:连接 OC PB 是圆的切线 B 90 ………………………1 分 PO / / AC
A C AOB COD
AOB ~ COD ………………………4 分
OA OB 2 4
OC OD
3 OD
OD 6 ………………………8 分
20、解:依题意得
B D
A O
C

x 3 xy 8
5x 3y 0 x 15

(2)连接 OC, BC
OP 3 AC 2
设 AC 2k ,则 OP 3k OC r ,则 AB 2r AB 是直径 ACB 90 ………………………1 分
由(1)得 OCP 90, 2 3
ABC ~ OCP ………………………2 分
3
OC OP AC AB
x
x
10 y 10

1 2
化简得
x

y

10
解得

y

25
………………………6

检验当 x 15, y 25 时, x y 0, x y 10 0 ………………………7 分
x 15, y 25 是原方程的解,经检验,符合题意。
答: x 15, y 25 ………………………8 分
r 3k 2k 2r

最新-厦门市九年级下数学质检试题及答案

最新-厦门市九年级下数学质检试题及答案

2018年厦门市初中总复习教学质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.计算-1+2,结果正确的是A . 1B . -1C . -2D . -3 2.抛物线y =ax 2+2x +c 的对称轴是A . x =-1aB . x =-2aC . x =1aD . x =2a3.如图1,已知四边形ABCD ,延长BC 到点E ,则∠DCE 的同位角是A . ∠AB . ∠BC . ∠DCBD .∠D4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查方案中最合适的是A .到学校图书馆调查学生借阅量B .对全校学生暑假课外阅读量进行调查C .对初三年学生的课外阅读量进行调查D .在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查 5.若967×85=p ,则967×84的值可表示为A . p -1B . p -85C . p -967D .8584p 6. 如图2,在Rt△ACB 中,∠C =90°,∠A =37°,AC =4,则BC 的长约为(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) A . 2.4 B . 3.0 C . 3.2 D . 5.07. 在同一条直线上依次有A ,B ,C ,D 四个点,若CD -BC =AB ,则下列结论正确的是 A . B 是线段AC 的中点 B . B 是线段AD 的中点 C . C 是线段BD 的中点 D . C 是线段AD 的中点8. 把一些书分给几名同学,若 ;若每人分11本则不够. 依题意,设有x 名同学, 可列不等式9x +7<11x ,则横线上的信息可以是 A .每人分7本,则可多分9个人 图1E DC B A图2 ABCB. 每人分7本,则剩余9本C .每人分9本,则剩余7本D. 其中一个人分7本,则其他同学每人可分9本9. 已知a ,b ,c 都是实数,则关于三个不等式:a >b ,a >b +c ,c <0的逻辑关系的表述,下列正确的是A . 因为a >b +c ,所以a >b ,c <0B . 因为a >b +c ,c <0,所以a >bC . 因为a >b ,a >b +c ,所以c <0D . 因为a >b ,c <0,所以a >b +c 10. 据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过下列步骤可测量山的高度PQ (如图3):(1)测量者在水平线上的A 处竖立一根竹竿,沿射线QA 方向走到M 处,测得山顶P 、竹竿顶点B 及M 在一条直线上;(2)将该竹竿竖立在射线QA 上的C 处,沿原方向继续走到N 处,测得山顶P ,竹竿顶点D 及N 在一条直线上;(3)设竹竿与AM ,CN 的长分别为l ,a 1,a 2,可得公式: PQ =d ·la 2-a 1+l .则上述公式中,d 表示的是A .QA 的长B . AC 的长 C .MN 的长D .QC 的长 二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式: m 2-2m = .12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的 概率是 .13.如图4,已知AB 是⊙O 的直径,C ,D 是圆上两点,∠CDB =45°,AC =1,则AB 的长为 .14. A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等.设B 型机器人每小时 搬运x kg 化工原料,根据题意,可列方程__________________________. 15.已知a +1=20002+20012,计算:2a +1= .16.在△ABC 中,AB =AC .将△ABC 沿∠B 的平分线折叠,使点A 落在BC 边上的点D 处, 设折痕交AC 边于点E ,继续沿直线DE 折叠,若折叠后,BE 与线段DC 相交,且交点不 与点C 重合,则∠BAC 的度数应满足的条件是 .三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程:2(x -1)+1=x .18.(本题满分8分)如图5,直线EF 分别与AB ,CD 交于点A ,C ,若AB ∥CD , E AB图4B图3CB平分∠ACD,∠EAB=72°,求∠ABC的度数.19.(本题满分8分)如图6,平面直角坐标系中,直线l经过第一、二、四象限,点A(0,m)在l上.(1)在图中标出点A;(2)若m=2,且l过点(-3,4),求直线l的表达式.20.(本题满分8分)如图7,在□ABCD中,E是BC延长线上的一点,且DE=AB,连接AE,BD,证明AE=BD.21.(本题满分8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅. 2017年该市的有关数据如下表所示.(1)求p的值;(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m的值.22.(本题满分10分)如图8,在矩形ABCD中,对角线AC,BD交于点O,(1)AB=2,AO=5,求BC的长;(2)∠DBC=30°,CE=CD,∠DCE<90°,若OE=22BD,求∠DCE的度数.l图6图7E AB CD图8OAB CDE23.(本题满分11分)已知点A ,B 在反比例函数y =6x (x >0)的图象上,且横坐标分别为m ,n ,过点A ,B 分别向y 轴、x 轴作垂线段,两条垂线段交于点C ,过点A ,B 分别作AD ⊥x 轴于D ,作BE ⊥y 轴于E.(1)若m =6,n =1,求点C 的坐标;(2)若m (n -2)=3,当点C 在直线DE 上时,求n 的值.24.(本题满分11分)已知AB =8,直线l 与AB 平行,且距离为4,P 是l 上的动点,过点P 作PC ⊥AB 交线段AB 于点C ,点C 不与A ,B 重合,过A ,C ,P 三点的圆与直线PB 交于点D . (1)如图9,当D 为PB 的中点时,求AP 的长;(2)如图10,圆的一条直径垂直AB 于点E ,且与AD 交于点M .当ME 的长度最大时,判断直线PB 是否与该圆相切?并说明理由.25.(本题满分14分)已知二次函数y =ax 2+bx +t -1,t <0, (1)当t =-2时,① 若函数图象经过点(1,-4),(-1,0),求a ,b 的值;② 若2a -b =1,对于任意不为零的实数a ,是否存在一条直线y =kx +p (k ≠0),始终与函数图象交于不同的两点?若存在,求出该直线的表达式;若不存在,请说明理由.(2)若点A (-1,t ),B (m ,t -n )(m >0,n >0)是函数图象上的两点,且S △AOB =12n -2 t ,当-1≤x ≤m 时,点A 是该函数图象的最高点,求a 的取值范围.图9 A l C B DP 图10 l A M E C B D P2018年厦门市九科教学质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)11. m (m -2). 12. 12. 13. 2. 14. 900x +30=600x .15. 4001. 16.100°<∠BAC <180°. 三、解答题(本大题有9小题,共86分)17.(本题满分8分)解:2x -2+1=x .…………………………4分 2x -x =2-1.…………………………6分 x =1.…………………………8分18.(本题满分8分)解法一:如图1∵ AB ∥CD ,∴ ∠ACD =∠EAB =72°.…………………………3分 ∵ CB 平分∠ACD , ∴ ∠BCD =12∠ACD =36°. …………………………5分∵ AB ∥CD ,∴ ∠ABC =∠BCD =36°. …………………………8分 解法二:如图1∵ AB ∥CD ,∴ ∠ABC =∠BCD . …………………………3分 ∵ CB 平分∠ACD ,∴ ∠ACB =∠BCD . …………………………5分 ∴ ∠ABC =∠ACB .∵ ∠ABC +∠ACB =∠EAB , 图1FE ABC D∴ ∠ABC =12∠EAB =36°. …………………………8分19.(本题满分8分) (1)(本小题满分3分)如图2;…………………………3分(2)(本小题满分5分)解:设直线l 的表达式为y =kx +b (k ≠0),…………………………4分 由m =2得点A (0,2), 把(0,2),(-3,4)分别代入表达式,得⎩⎨⎧b =2,-3k +b =4.可得⎩⎪⎨⎪⎧b =2,k =-23 .…………………………7分所以直线l 的表达式为y =-23x +2. …………………………8分20.(本题满分8分)证明:如图3∵ 四边形ABCD 是平行四边形,∴ AB ∥DC ,AB =DC .………………………… 2分 ∵ DE =AB , ∴ DE =DC .∴ ∠DCE =∠DEC .…………………………4分 ∵ AB ∥DC ,∴ ∠ABC =∠DCE . …………………………5分∴ ∠ABC =∠DEC . …………………………6分 又∵ AB =DE ,BE =EB ,∴ △ABE ≌△DEB . …………………………7分 ∴ AE =BD . …………………………8分21.(本题满分8分)(1)(本小题满分3分)解:p =1-(22%+13%+5%+26%)…………………………2分 l图2.A图3EA B C D=34%. …………………………3分 (2)(本小题满分5分) 解:由题意得22%×1.5%+13%×m %+5%×2%+34%×0.5%+26%×1%22%+13%+5%+34%+26%=1.25%. …………………7分解得m =3. …………………………8分22.(本题满分10分)(1)(本小题满分4分)解:如图4∵四边形ABCD 是矩形,∴ ∠ABC =90°,AC =2AO =25.………………………2分 ∵ 在Rt △ACB 中,∴ BC =AC 2-AB 2 ………………………3分=4.………………………4分 (2)(本小题满分6分)解:如图4∵ 四边形ABCD 是矩形,∴ ∠DCB =90°,BD =2OD ,AC =2OC ,AC =BD . ∴ OD =OC =12BD .∵ ∠DBC =30°,∴ 在Rt △BCD 中,∠BDC =90°-30°=60°, CD =12BD .∵ CE =CD ,∴ CE =12BD .………………………6分∵ OE =22BD , ∴ 在△OCE 中,OE 2=12BD 2.图4OABCDE又∵ OC 2+CE 2=14BD 2+14BD 2=12BD 2,∴ OC 2+CE 2=OE 2.∴ ∠OCE =90∵ OD =OC ,∴ ∠OCD =∠∴ ∠DCE =∠23.(本题满分11分)(1)(本小题满分解:因为当m =6又因为n =1, 所以C (1,1)(2)(本小题满分解:如图5所以A (m ,6m ),B 所以D (m ,0),E 设直线DE 把D (m ,0),E (.………………………7分因为点C 在直线所以把C (n ,6m )代入把m =2n 代入m (n -2)=3,得2n (n -2)=3.,………………………9分 解得n =2±102.………………………10分因为n >0,所以n =2+102.………………………11分24.(本题满分11分)(1)(本小题满分5分)解法一:如图6,∵ PC ⊥AB , ∴ ∠ACP =90°.∴ AP 是直径.…………………2分∴ ∠ADP =90°. …………………3分 Al C BDPB C A D E图5即AD ⊥PB .又∵ D 为PB 的中点,∴ AP =AB =8.…………………5分解法二:如图7,设圆心为O ,PC 与AD 交于点N ,连接OC ,OD .∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD .…………………1分∵ ∠ANC =∠PND ,又∵ 在△ANC 和△PND 中,∠NCA =180°-∠CAN -∠ANC , ∠NDP =180°-∠CPN -∠PND ,∴ ∠NCA =∠NDP . …………………2分 ∵ PC ⊥AB ,∴ ∠NCA =90°.∴ ∠NDP =90°. …………………3分 即AD ⊥PB .又∵ D 为PB 的中点,∴ AP =AB =8.…………………5分(2)(本小题满分6分)解法一:当ME 的长度最大时,直线PB 与该圆相切. 理由如下:如图8,设圆心为O ,连接OC ,OD . ∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD .又∵ PC ⊥AB ,OE ⊥AB , ∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP . …………………7分O ·图7Al C BDPN图8l AM EC BD PO ·∴ ME BC =AE PC.∵ OE ⊥AB , 又∵ OA =OC , ∴ AE =EC .设AE =x ,则BC =8-2x .由ME BC =AE PC ,可得ME =-12(x -2)2+2.…………………8分 ∵ x >0,8-2x >0, ∴ 0<x <4. 又∵ -12<0,∴ 当x =2时,ME 的长度最大为2.…………………9分 连接AP ,∵ ∠PCA =90°, ∴ AP 为直径.∵ AO =OP ,AE =EC , ∴ OE 为△ACP 的中位线. ∴ OE =12PC .∵ l ∥AB ,PC ⊥AB , ∴ PC =4. ∴ OE =2.∴ 当ME =2时,点M 与圆心O 重合.…………………10分 即AD 为直径.也即点D 与点P 重合.也即此时圆与直线PB 有唯一交点.所以此时直线PB 与该圆相切.…………………11分解法二:当ME 的长度最大时,直线PB 与该圆相切. 理由如下:如图8,设圆心为O ,连接OC ,OD . ∵ OE ⊥AB , 又∵ OA =OC , ∴ AE =EC .设AE =x ,则CB =8-2x . l AMEC BD PO ·∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD . ∴ ∠CAD =∠CPD .又∵ PC ⊥AB ,OE ⊥AB ,∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP . …………………7分∴ ME BC =AE PC. 可得ME =-12(x -2)2+2.…………………8分 ∵ x >0,8-2x >0,∴ 0<x <4.又∵ -12<0, ∴ 当x =2时,ME 的长度最大为2.…………………9分连接AP ,∵ AE =x =2,∴ AC =BC =PC =4.∵ PC ⊥AB ,∴ ∠PCA =90°,∴ 在Rt △ACP 中,∠P AC =∠APC =45°.同理可得∠CPB =45°.∴ ∠APB =90°.即AP ⊥PB . …………………10分又∵ ∠PCA =90°,∴ AP 为直径.∴ 直线PB 与该圆相切.…………………11分25.(本题满分14分)(1)(本小题满分7分)①(本小题满分3分)解:当t =-2时,二次函数为y =ax 2+bx -3.把(1,-4),(-1,0)分别代入y =ax 2+bx -3,得⎩⎨⎧a +b -3=-4,a -b -3=0.…………………………1分 解得⎩⎨⎧a =1,b =-2.所以a =1,b =-2.…………………………3分②(本小题满分4分)解法一:因为2a -b =1,所以二次函数为y =ax 2+(2a -1)x -3.所以,当x =-2时,y =-1;当x =0时,y =-3.所以二次函数图象一定经过(-2,-1),(0,-3).…………………………6分设经过这两点的直线的表达式为y =kx +p (k ≠0),把(-2,-1),(0,-3)分别代入,可求得该直线表达式为y =-x -3.…………7分 即直线y =-x -3始终与二次函数图象交于(-2,-1),(0,-3)两点.解法二:当直线与二次函数图象相交时,有kx +p =ax 2+(2a -1)x -3.整理可得ax 2+(2a -k -1)x -3-p =0.可得△=(2a -k -1)2+4a (3+p ).…………4分若直线与二次函数图象始终有两个不同的交点,则△>0.化简可得4a 2-4a (k -p -2)+(1+k )2>0.因为无论a 取任意不为零的实数,总有4a 2>0,(1+k )2≥0所以当k -p -2=0时,总有△>0.………………………6分可取p =1,k =3.对于任意不为零的实数a ,存在直线y =3x +1始终与函数图象交于不同的两点.…………7分(2)(本小题满分7分)解:把A (-1,t )代入y =ax 2+bx +t -1,可得b =a -1.………………………8分 因为A (-1,t ),B (m ,t -n )(m >0,n >0),又因为S △AOB =12n -2t ,所以12[(-t )+(n -t )](m +1)-12×1×(-t )-12×(n -t )m =12n -2t . 解得m =3.………………………10分所以A (-1,t ),B (3,t -n ).因为n >0,所以t >t -n .当a >0时,【二次函数图象的顶点为最低点,当-1≤x ≤3时,若点A 为该函数图象最高点,则y A ≥y B 】,分别把A (-1,t ),B (3,t -n )代入y =ax 2+bx +t -1,得t =a -b +t -1,t -n =9a +3b +t -1.因为t >t -n ,所以a -b +t -1>9a +3b +t -1.可得2a +b <0.即2a +(a -1)<0.解得a <13. 所以0<a <13. 当a <0时,由t >t -n ,可知:【若A ,B 在对称轴的异侧,当-1≤x ≤3时,图象的最高点是抛物线的顶点而不是点A ;若A ,B 在对称轴的左侧,因为当x ≤-b 2a时,y 随x 的增大而增大,所以当-1≤x ≤3时,点A 为该函数图象最低点;若A ,B 在对称轴的右侧,因为当x ≥-b 2a时,y 随x 的增大而减小,所以当-1≤x ≤3时,若点A 为该函数图象最高点,则】-b 2a≤-1. 即-a -12a≤-1. 解得a ≥-1.所以-1≤a <0.………………………13分综上,0<a <13或-1≤a <0.………………………14分。

2018厦门质检数学

2018厦门质检数学

2018年厦门市初中总复习教学质量检测数学试题一、选择题(共40分)1.计算21+-,结果正确的是A .1B .1-C .2-D .3- 2.抛物线y=ax 2+2x +c 的对称轴是A .a x 1-= B .a x 2-= C .a x 1= D .ax 2= 3.如图1,已知四边形ABCD ,延长BC 到点E ,则∠DCE 的同位角是 A .∠A B .∠B C .∠BCD D .∠D4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查方案中最合适的是A .到学校图书馆调查学生借阅量B .对全校学生暑假课外阅读量进行调查C .对初三年学生的课外阅读量进行调查D .在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查 5.若967×85=P ,则967×84的值可表示为 A .1-p B .85-p C .967-p D .p 84856.如图2在△ACB 中,∠C=90°,∠A=37°,AC=4,则BC 的长约为 (sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A .2.4B .3.0C .3.2D .5.07.在同一条直线上依次有A 、B 、C 、D 四个点,若AB BC CD =-,则下列结论正确的是 A .B 是线段AC 的中 B .B 是线段AD 的中点 C .C 是线段BD 的中点 D .C 是线段AD 的中点8.把一些书分给几名同学,若________;若每人分11本,则不够.依题意,设有x 名同学可列不等式 9x +7<11 x ,则横线的信息可以是A .每人分7本,则可多分9个人B .每人分7本,则剩余9本C .每人分9本,则剩余7本D .其中一个人分7本,则其他同学每人可分9本9.已知a ,b ,c 都是实数,则关于三个不等式:a >b ,a >b +c ,c <0的逻辑关系的表述.下列正确的是 A .因为a >b +c ,所以a >b ,c >0 B .因为a >b +c ,c <0,所以a >b C .因为a >b ,a >b +c ,所以c<0 D .因为a >b ,c<0 ,所以a >b +c10.我国古代数学家刘徽发展了“重差术”,用于测量不可到达的物体的高度,比如,通过下列步骤可测量山的高度PQ(如图3):(1)测量者在水平线上的A 处竖立一根竹竿,沿射线QA 方向走到M 处,测得山顶P 、竹竿顶端B 及M 在一条直线上;(2)将该竹竿竖立在射线QA 上的C 处,沿原方向继续走到N 处,测得山顶P 、竹竿顶端D 及N 在一条直线上; (3)设竹竿与AM 、CN 的长分别为l 、a 1、a 2,可得公式:PQ =d ·la 2-a 1+l . 则上述公式中,d 表示的是 A .QA 的长 B .AC 的长 C .MN 的长 D .QC 的长 二、填空题(共24分)11.分解因式:=-m m 22________.12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的概率是________. 13.如图4,已知AB 是⊙O 的直径,C ,D 是圆上两点,∠CDB=45°,C A B ED图1B图2 图3B14.A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg .A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等.设B 型机器人每小时搬运xkg 化工原料,依题意,可列方程________________. 15.已知22200120001+=+a ,计算:12+a =__________.16.在△ABC 中,AB=AC .将△ABC 沿∠B 的平分线折叠,使点A 落在BC 边上的点D 处,设折痕交AC边于点E ,继续沿直线DE 折叠,若折叠后,BE 与线段DC 相交,且交点不与点C 重合,则∠BAC 的度数应满足的条件是__________.三、解答题(共86分)17.(8分)解方程:x x =+-1)1(218.(8分)如图5,直线EF 分别与AB 、CD 交于点A 、C ,若AB ∥CD , CB 平分∠ACD ,∠EAB=72°,求∠ABC 的度数.19.(8分)如图6,在平面直角坐标系中,直线l 经过第一、二、四象限,点A (0,m )在l 上. (1)在图中标出点A ;(2)若m =2,且过点(-3,4),求直线l 的表达式.20.(8分)如图7,在□ABCD 中,E 是BC 延长线上的一点, 且DE=AB ,连接AE 、BD ,证明AE=BD .21.(8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、 城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平(1)(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m 的值. A BC 图5D EF A B C D E 图722.(10分)如图8,在矩形ABCD 中,对角线AC 、BD 交于点O . (1)若AB=2,AO=5,求BC 的长; (2)若∠DBC=30°,CE=CD ,∠DCE<90°,OE=22BD , 求∠DCE 的度数.23.(11分)已知点A ,B 在反比例函数 xy 6=(x >0)的图象上,且横坐标分别为m 、n ,过点A 向y 轴 作垂线段,过点B 向x 轴作垂线段,两条垂线段交于点C .过点A 、B 分别作AD ⊥x 轴于D ,BE ⊥y 轴于E .(1)若m =6,n =1,求点C 的坐标;(2)若3)2(=-n m ,当点C 在直线DE 上时,求n 的值.图824.(11分)已知AB=8,直线l 与AB 平行,且距离为4.P 是l 上的动点,过点P 作PC ⊥AB 交线段AB 于点C ,点C 不与A 、B 重合.过A 、C 、P 三点的圆与直线PB 交于点D . (1)如图9,当D 为PB 的中点时,求AP 的长;(2)如图10,圆的一条直径垂直AB 于点E ,且与AD 交于点M .当ME 的长度最大时,判断直线PB 是否与该圆相切?并说明理由.25.(14分)已知二次函数12-++=t bx ax y ,0<t .(1)当2-=t 时,①若二次函数图象经过点(1,-4),(-1,0),求a ,b 的值;②若12=-b a ,对于任意不为零的实数a ,是否存在一条直线y=kx +p (k ≠0),始终与二次函数图象交于不同的两点?若存在,求出该直线的表达式;若不存在,请说明理由; (2)若点A (-1,t ),B(m ,n t -)(m >0,n >0)是函数图象上的两点,且S △AOB =t n 221-, 当-1≤x ≤m 时,点A 是该函数图象的最高点,求a 的取值范围. 图9参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)11. m (m -2). 12. 12. 13. 2. 14. 900x +30=600x .15. 4001. 16.100°<∠BAC <180°. 三、解答题(本大题有9小题,共86分)17.(本题满分8分)解:2x -2+1=x .…………………………4分 2x -x =2-1.…………………………6分 x =1.…………………………8分18.(本题满分8分) 解法一:如图1∵ AB ∥CD ,∴ ∠ACD =∠EAB =72°.…………………………3分 ∵ CB 平分∠ACD ,∴ ∠BCD =12∠ACD =36°. …………………………5分 ∵ AB ∥CD ,∴ ∠ABC =∠BCD =36°. …………………………8分 解法二:如图1∵ AB ∥CD ,∴ ∠ABC =∠BCD . …………………………3分 ∵ CB 平分∠ACD ,∴ ∠ACB =∠BCD . …………………………5分 ∴ ∠ABC =∠ACB .∵ ∠ABC +∠ACB =∠EAB ,∴ ∠ABC =12∠EAB =36°. …………………………8分19.(本题满分8分)(1)(本小题满分3分)如图2;…………………………3分(2)(本小题满分5分)解:设直线l 的表达式为y =kx +b (k ≠0),…………………………4分 由m =2得点A (0,2), 把(0,2),(-3,4)分别代入表达式,得 ⎩⎨⎧b =2,-3k +b =4.图1F EA BC D l 图2.A可得⎩⎪⎨⎪⎧b =2,k =-23 .…………………………7分所以直线l 的表达式为y =-23x +2. …………………………8分20.(本题满分8分)证明:如图3∵ 四边形ABCD 是平行四边形,∴ AB ∥DC ,AB =DC .………………………… 2分 ∵ DE =AB , ∴ DE =DC .∴ ∠DCE =∠DEC .…………………………4分∵ AB ∥DC ,∴ ∠ABC =∠DCE . …………………………5分∴ ∠ABC =∠DEC . …………………………6分又∵ AB =DE ,BE =EB ,∴ △ABE ≌△DEB . …………………………7分 ∴ AE =BD . …………………………8分21.(本题满分8分)(1)(本小题满分3分)解:p =1-(22%+13%+5%+26%)…………………………2分=34%. …………………………3分 (2)(本小题满分5分) 解:由题意得22%×1.5%+13%×m %+5%×2%+34%×0.5%+26%×1%22%+13%+5%+34%+26%=1.25%. …………………7分解得m =3. …………………………8分22.(本题满分10分)(1)(本小题满分4分)解:如图4∵四边形ABCD 是矩形, ∴ ∠ABC =90°,AC =2AO =25.………………………2分 ∵ 在Rt △ACB 中,∴ BC =AC 2-AB 2 ………………………3分 =4.………………………4分(2)(本小题满分6分)解:如图4∵ 四边形ABCD 是矩形,∴ ∠DCB =90°,BD =2OD ,AC =2OC ,AC =BD .∴ OD =OC =12BD . ∵ ∠DBC =30°,∴ 在Rt △BCD 中,∠BDC =90°-30°=60°,图3E A B CD 图4 OA B CD ECD =12BD .∵ CE =CD ,∴ CE =12BD .………………………6分∵ OE =22BD ,∴ 在△OCE 中,OE 2=12BD 2.又∵ OC 2+CE 2=14BD 2+14BD 2=12BD 2, ∴ OC 2+CE 2=OE 2.∴ ∠OCE =90°.…………………8分 ∵ OD =OC ,∴ ∠OCD =∠ODC =60°.…………………9分∴ ∠DCE =∠OCE -∠OCD =30°.…………………10分23.(本题满分11分)(1)(本小题满分4分)解:因为当m =6时,y =66=1,…………………2分 又因为n =1,所以C (1,1).…………………4分 (2)(本小题满分7分) 解:如图5,因为点所以A(m ,6m ),B 所以D (m ,0),E 设直线DE 把D (m ,0),E (07分 因为点C 在直线DE 所以把C (n ,6m )代入把m =2n 代入m (解得n =2±102.………………………因为n >0,所以n =2+102.………………………11分24.(本题满分11分)(1)(本小题满分5分)解法一:如图6,∵ PC ⊥AB ,∴ ∠ACP =90°.∴ AP 是直径.…………………2分∴ ∠ADP =90°. …………………3分即AD ⊥PB .又∵ D 为PB 的中点,A l CB DP 图5解法二:如图7,设圆心为O ,PC 与AD 交于点N ,连接OC ,OD .∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD . ∴ ∠CAD =∠CPD .…………………1分 ∵ ∠ANC =∠PND ,又∵ 在△ANC 和△PND 中,∠NCA =180°-∠CAN -∠ANC , ∠NDP =180°-∠CPN -∠PND ,∴ ∠NCA =∠NDP . …………………2分 ∵ PC ⊥AB ,∴ ∠NCA =90°.∴ ∠NDP =90°. …………………3分 即AD ⊥PB .又∵ D 为PB 的中点,∴ AP =AB =8.…………………5分(2)(本小题满分6分)解法一:当ME 的长度最大时,直线PB 与该圆相切. 理由如下:如图8,设圆心为O ,连接OC ,OD .∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD .∴ ∠CAD =∠CPD .又∵ PC ⊥AB ,OE ⊥AB , ∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP . …………………7分∴ ME BC =AE PC . ∵ OE ⊥AB , 又∵ OA =OC , ∴ AE =EC .设AE =x ,则BC =8-2x . 由ME BC =AE PC ,可得ME =-12(x -2)2+2.…………………8分 ∵ x >0,8-2x >0, ∴ 0<x <4.又∵ -12<0,∴ 当x =2时,ME 的长度最大为2.…………………9分 连接AP ,∵ ∠PCA =90°, ∴ AP 为直径.O ·图7Al C BDPN图8l A M EC BD PO ·∴ OE 为△ACP 的中位线.∴ OE =12PC .∵ l ∥AB ,PC ⊥AB , ∴ PC =4. ∴ OE =2.∴ 当ME =2时,点M 与圆心O 重合.…………………10分 即AD 为直径.也即点D 与点P 重合.也即此时圆与直线PB 有唯一交点.所以此时直线PB 与该圆相切.…………………11分解法二:当ME 的长度最大时,直线PB 与该圆相切. 理由如下:如图8,设圆心为O ,连接OC ,OD . ∵ OE ⊥AB , 又∵ OA =OC , ∴ AE =EC .设AE =x ,则CB =8-2x .∵ ︵CD =︵CD ,∴ ∠CAD =12∠COD ,∠CPD =12∠COD . ∴ ∠CAD =∠CPD .又∵ PC ⊥AB ,OE ⊥AB , ∴ ∠PCB =∠MEA =90°.∴ △MEA ∽△BCP . …………………7分∴ ME BC =AE PC .可得ME =-12(x -2)2+2.…………………8分 ∵ x >0,8-2x >0, ∴ 0<x <4.又∵ -12<0,∴ 当x =2时,ME 的长度最大为2.…………………9分 连接AP ,∵ AE =x =2,∴ AC =BC =PC =4. ∵ PC ⊥AB ,∴ ∠PCA =90°,∴ 在Rt △ACP 中,∠PAC =∠APC =45°. 同理可得∠CPB =45°. ∴ ∠APB =90°.即AP ⊥PB . …………………10分 又∵ ∠PCA =90°, ∴ AP 为直径.图8l AMEC BD PO ·25.(本题满分14分) (1)(本小题满分7分) ①(本小题满分3分)解:当t =-2时,二次函数为y =ax 2+bx -3. 把(1,-4),(-1,0)分别代入y =ax 2+bx -3,得 ⎩⎨⎧a +b -3=-4,a -b -3=0.…………………………1分 解得⎩⎨⎧a =1,b =-2.所以a =1,b =-2.…………………………3分 ②(本小题满分4分)解法一:因为2a -b =1,所以二次函数为y =ax 2+(2a -1)x -3.所以,当x =-2时,y =-1;当x =0时,y =-3. 所以二次函数图象一定经过(-2,-1),(0,-3).…………………………6分 设经过这两点的直线的表达式为y =kx +p (k ≠0), 把(-2,-1),(0,-3)分别代入,可求得该直线表达式为y =-x -3.…………7分 即直线y =-x -3始终与二次函数图象交于(-2,-1),(0,-3)两点.解法二:当直线与二次函数图象相交时,有kx +p =ax 2+(2a -1)x -3. 整理可得ax 2+(2a -k -1)x -3-p =0. 可得△=(2a -k -1)2+4a (3+p ).…………4分若直线与二次函数图象始终有两个不同的交点,则△>0. 化简可得4a 2-4a (k -p -2)+(1+k )2>0. 因为无论a 取任意不为零的实数,总有4a 2>0,(1+k )2≥0 所以当k -p -2=0时,总有△>0.………………………6分 可取p =1,k =3.对于任意不为零的实数a ,存在直线y =3x +1始终与函数图象交于不同的两点.…………7分 (2)(本小题满分7分)解:把A (-1,t )代入y =ax 2+bx +t -1,可得b =a -1.………………………8分 因为A (-1,t ),B (m ,t -n )(m >0,n >0),又因为S △AOB =12n -2t ,所以12[(-t )+(n -t )](m +1)-12×1×(-t )-12×(n -t )m =12n -2t . 解得m =3.………………………10分 所以A (-1,t ),B (3,t -n ). 因为n >0,所以t >t -n . 当a >0时,【二次函数图象的顶点为最低点,当-1≤x ≤3时,若点A 为该函数图象最高点,则y A ≥y B 】,分别把A (-1,t ),B (3,t -n )代入y =ax 2+bx +t -1,得t =a -b +t -1,t -n =9a +3b +t -1. 因为t >t -n ,所以a -b +t -1>9a +3b +t -1. 可得2a +b <0. 即2a +(a -1)<0.解得a <13.1厦门质检数学试题第11页共4页(彭雪林制作)当a <0时,由t >t -n ,可知:【若A ,B 在对称轴的异侧,当-1≤x ≤3时,图象的最高点是抛物线的顶点而不是点A ;若A ,B 在对称轴的左侧,因为当x ≤-b 2a 时,y 随x 的增大而增大,所以当-1≤x ≤3时,点A 为该函数图象最低点;若A ,B 在对称轴的右侧,因为当x ≥-b 2a 时,y 随x 的增大而减小,所以当-1≤x ≤3时,若点A 为该函数图象最高点,则】-b 2a ≤-1.即-a -12a ≤-1.解得a ≥-1.所以-1≤a <0.………………………13分综上,0<a <13或-1≤a <0.………………………14分。

-2018厦门市九年级下数学质检试题及答案

-2018厦门市九年级下数学质检试题及答案

2018年厦门市初中总复习教学质量检测数学(试卷满分:150分考试时间:120分钟)准考证号姓名座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡.2.答案必须写在答题卡上,否则不能得分.3.可以直接使用2B铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.计算-1+2,结果正确的是A. 1B. -1C. -2 D . -32.抛物线y=ax2+2x+c的对称轴是A. x=-1aB. x=-2aC. x=1aD . x=2a图EDCBA3.如图1,已知四边形ABCD,延长BC到点E,则∠DCE的同位角是A. ∠AB.∠BC.∠DCB D .∠D4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查方案中最合适的是A.到学校图书馆调查学生借阅量B.对全校学生暑假课外阅读量进行调查C.对初三年学生的课外阅读量进行调查D.在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查5.若967×85=p,则967×84的值可表示为A. p-1B. p-85C. p-967D.85 84p6. 如图2,在Rt△ACB中,∠C=90°,∠A=37°,AC=4,则BC的长约为(sin37°≈,cos37°≈,tan37°≈)图2AB CA. 2.4B.C. D .7. 在同一条直线上依次有A,B,C,D四个点,若CD-BC=AB,则下列结论正确的是A. B是线段AC的中点B. B是线段AD的中点C. C是线段BD的中点D. C是线段AD的中点8. 把一些书分给几名同学,若;若每人分11本则不够. 依题意,设有x名同学,可列不等式9x+7<11x,则横线上的信息可以是A.每人分7本,则可多分9个人B. 每人分7本,则剩余9本C.每人分9本,则剩余7本D. 其中一个人分7本,则其他同学每人可分9本9. 已知a,b,c都是实数,则关于三个不等式:a>b,a>b+c,c<0的逻辑关系的表述,下列正确的是A. 因为a>b+c,所以a>b,c<0B. 因为a>b+c,c<0,所以a >bC. 因为a >b ,a >b +c ,所以c <0 D . 因为a >b ,c <0,所以a >b +c10. 据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过下列步骤可测量山的高度PQ (如图3): (1)测量者在水平线上的A 处竖立一根竹竿,沿射线QA 方向走到M 处,测得山顶P 、竹竿顶点B 及M(2)将该竹竿竖立在射线QA 上的C 走到N 处,测得山顶P ,竹竿顶点D 及N 在一条直线上; (3)设竹竿与AM ,CN 的长分别为l ,a 1,a 2,可得公式:PQ =d ·la 2-a 1+l .则上述公式中,d 表示的是的长 B. AC 的长 的长 的长二、填空题(本大题有6小题,每小题4分,共24分)图B图3湖泊水平线11.分解因式: m2-2m= .12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的概率是 .13.如图4,已知AB是⊙O的直径,C,D是圆上两点,∠CDB=45°,AC=1,则AB的长为 .14.A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等.设B型机器人每小时搬运x kg化工原料,根据题意,可列方程__________________________.15.已知a+1=20002+20012,计算:2a+1= .16.在△ABC中,AB=AC.将△ABC沿∠B的平分线折叠,使点A落在BC边上的点D处,设折痕交AC边于点E,继续沿直线DE折叠,若折叠后,BE与线段DC相交,且交点不与点C 重合,则∠BAC 的度数应满足的条件是 .三、解答题(本大题有9小题,共86分) 17.(本题满分8分)解方程:2(x -1)+1=x .18.(本题满分8分)如图5,直线EF 分别与AB ,CD 交于点A ,C ,若AB ∥CD ,CB 平分∠ACD ,∠EAB =72°,求∠ABC 的度数.19.(本题满分8分)如图6,平面直角坐标系中,直线l 经过第一、二、四象限,点A (0,m )在l 上. (1)在图中标出点A ;(2)若m =2,且l 过点(-3,4),求直线l 的表达式.l图6图5FEABCD20.(本题满分8分)如图7,在□ABCD 中,E 是BC 延长线上的一点,且DE =AB ,连接AE ,BD ,证明AE =BD .21.(本题满分8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅. 2017年该市的有关数据如下表所示.图7EA BC D(1)求p 的值;(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为%,求m 的值.22.(本题满分10分)如图8,在矩形ABCD 中,对角线AC ,BD 交于点O ,(1)AB =2,AO =5,求BC 的长;(2)∠DBC =30°,CE =CD ,∠DCE <90°,若OE =22BD ,图8OABCDE求∠DCE 的度数.23.(本题满分11分)已知点A ,B 在反比例函数y =6x(x >0)的图象上,且横坐标分别为m ,n ,过点A ,B 分别向y 轴、x 轴作垂线段,两条垂线段交于点C ,过点A ,B 分别作AD ⊥x 轴于D ,作BE ⊥y 轴于E. (1)若m =6,n =1,求点C 的坐标;(2)若m (n -2)=3,当点C 在直线DE 上时,求n 的值.24.(本题满分11分)已知AB =8,直线l 与AB 平行,且距离为4,P 是l 上的动点,过点P 作PC ⊥AB 交线段AB 于点C ,点C 不与A ,B 重合,过A ,C ,P 三点的圆与直线PB 交于点D .(1)如图9,当D 为PB 的中点时,求AP 的长;(2)如图10,圆的一条直径垂直AB 于点E ,且与AD 交于点M .当ME 的长度最大时,判断直线PB 是否与该圆相切并说明理由.25.(本题满分14分)已知二次函数y =ax 2+bx +t -1,t <0, (1)当t =-2时,① 若函数图象经过点(1,-4),(-1,0),求a ,b 的值; ② 若2a -b =1,对于任意不为零的实数a ,是否存在一条直线y=kx +p (k ≠0),始终与函数图象交于不同的两点若存在,求出该直线的表达式;若不存在,请说明理由.(2)若点A (-1,t ),B (m ,t -n )(m >0,n >0)是函数图象上的两点,且图9AlC BDP 图10lA M EC BD PS△AOB=12n-2 t,当-1≤x≤m时,点A是该函数图象的最高点,求a的取值范围.2018年厦门市九科教学质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11. m (m -2). 12. 12. 13. 2. 14.900x +30=600x.15. 4001. °<∠BAC <180°. 三、解答题(本大题有9小题,共86分) 17.(本题满分8分)解:2x -2+1=x .…………………………4分 2x -x =2-1.…………………………6分x =1.…………………………8分18.(本题满分8分)解法一:如图1∵ AB ∥CD ,∴ ∠ACD =∠EAB =72°.…………………………3分图1FEABC D∵ CB 平分∠ACD ,∴ ∠BCD =12∠ACD =36°. …………………………5分∵ AB ∥CD ,∴ ∠ABC =∠BCD =36°. …………………………8分 解法二:如图1∵ AB ∥CD ,∴ ∠ABC =∠BCD . …………………………3分 ∵ CB 平分∠ACD ,∴ ∠ACB =∠BCD . …………………………5分 ∴ ∠ABC =∠ACB .∵ ∠ABC +∠ACB =∠EAB ,∴ ∠ABC =12∠EAB =36°. …………………………8分19.(本题满分8分)(1)(本小题满分3分)如图2;…………………………3分l 图2.A(2)(本小题满分5分)解:设直线l 的表达式为y =kx +b (k ≠0),…………………………4分由m =2得点A (0,2),把(0,2),(-3,4)分别代入表达式,得⎩⎪⎨⎪⎧b =2,-3k +b =4.可得⎩⎪⎨⎪⎧b =2,k =-23 .…………………………7分所以直线l 的表达式为y =-23x +2. (8)分20.(本题满分8分)证明:如图3∵ 四边形ABCD 是平行四边形,∴ AB ∥DC ,AB =DC .………………………… 2分 ∵ DE =AB , ∴ DE =DC .∴ ∠DCE =∠DEC .…………………………4分 ∵ AB ∥DC ,∴ ∠ABC =∠DCE . …………………………5分∴ ∠ABC =∠DEC . …………………………6分 又∵ AB =DE ,BE =EB ,∴ △ABE ≌△DEB . …………………………7分 ∴ AE =BD . …………………………8分21.(本题满分8分)(1)(本小题满分3分)解:p =1-(22%+13%+5%+26%)…………………………2分图3EABC D=34%. …………………………3分(2)(本小题满分5分) 解:由题意得22%×%+13%×m %+5%×2%+34%×%+26%×1%22%+13%+5%+34%+26%=%. …………………7分解得m =3. …………………………8分22.(本题满分10分)(1)(本小题满分4分)解:如图4∵四边形ABCD 是矩形,∴ ∠ABC =90°,AC =2AO =25.………………………2分∵ 在Rt △ACB 中,图4OABCDE∴ BC =AC 2-AB 2 ………………………3分=4.………………………4分(2)(本小题满分6分)解:如图4∵ 四边形ABCD 是矩形,∴ ∠DCB =90°,BD =2OD ,AC =2OC ,AC =BD . ∴ OD =OC =12BD .∵ ∠DBC =30°,∴ 在Rt △BCD 中,∠BDC =90°-30°=60°, CD =12BD .∵ CE =CD ,∴ CE =12BD .………………………6分∵ OE =22BD ,∴在△OCE中,OE2=12BD2.又∵OC2+CE2=14BD2+14BD2=12BD2,∴OC2+CE2=OE2.∴∠OCE=90°.…………………8分∵OD=OC,∴∠OCD=∠ODC=60°.…………………9分∴∠DCE=∠OCE-∠OCD=30°.…………………10分23.(本题满分11(1)解:因为当m==又因为n=1所以C(1,1(2)(本小题满分7分)解:如图5,因为点A ,B 的横坐标分别为m ,n , 所以A (m ,6m ),B (n ,6n)(m >0,n >0),所以D (m ,0),E (0,6n ),C (n ,6m).………………………6分设直线DE 的表达式为y =kx +b ,(k ≠0),把D (m ,0),E (0,6n )分别代入表达式,可得y =-6mnx +6n.………………………7分因为点C 在直线DE 上,所以把C (n ,6m )代入y =-6mn x +6n,化简得m =2n .把m =2n 代入m (n -2)=3,得2n (n -2)=3.,………………………9分解得n =2±102.………………………10分因为n >0,所以n=2+102.………………………11分24.(本题满分11分)(1)(本小题满分5分)解法一:如图6,∵PC ⊥AB,∴∠ACP=90°.∴AP是直径.…………………2分∴∠ADP=90°.…………………3分即AD⊥PB.又∵D为PB的中点,∴AP=AB=8.…………………5分解法二:如图7,设圆心为O,PC与AD交于点N,连接OC,OD.∵︵CD=︵CD,图6AlC BDPO·图7AlC BDPN∴∠CAD=12∠COD,∠CPD=12∠COD.∴∠CAD=∠CPD.…………………1分∵∠ANC=∠PND,又∵在△ANC和△PND中,∠NCA=180°-∠CAN-∠ANC,∠NDP=180°-∠CPN-∠PND,∴∠NCA=∠NDP.…………………2分∵PC⊥AB,∴∠NCA=90°.∴∠NDP=90°.…………………3分即AD⊥PB.又∵D为PB的中点,∴AP=AB=8.…………………5分(2)(本小题满分6分)解法一:当ME的长度最大时,直线PB与该圆相切.理由如下:如图8,设圆心为O,连接OC,OD.∵︵CD=︵CD,∴∠CAD=12∠COD,∠CPD=12∠COD.∴∠CAD=∠CPD.又∵PC ⊥AB,OE⊥AB,∴∠PCB=∠MEA=90°.∴△MEA∽△BCP.…………………7分∴MEBC=AEPC.∵OE⊥AB,图8lAME C BDPO·又∵ OA =OC , ∴ AE =EC .设AE =x ,则BC =8-2x .由ME BC =AE PC ,可得ME =-12(x -2)2+2.…………………8分 ∵ x >0,8-2x >0, ∴ 0<x <4. 又∵ -12<0,∴ 当x =2时,ME 的长度最大为2.…………………9分 连接AP ,∵ ∠PCA =90°, ∴ AP 为直径. ∵ AO =OP ,AE =EC , ∴ OE 为△ACP 的中位线.∴ OE =12PC .∵ l ∥AB ,PC ⊥AB , ∴ PC =4. ∴ OE =2.∴ 当ME =2时,点M 与圆心O 重合.…………………10分 即AD 为直径.也即点D 与点P 重合.也即此时圆与直线PB 有唯一交点.所以此时直线PB 与该圆相切.…………………11分解法二:当ME 的长度最大时,直线PB 与该圆相切. 理由如下:如图8,设圆心为O ,连接OC ,OD .图lAMEC BD P O ·∵OE⊥AB,又∵OA=OC,∴AE=EC.设AE=x,则CB=8-2x.∵︵CD=︵CD,∴∠CAD=12∠COD,∠CPD=12∠COD.∴∠CAD=∠CPD.又∵PC ⊥AB,OE⊥AB,∴∠PCB=∠MEA=90°.∴△MEA∽△BCP.…………………7分∴MEBC=AEPC.可得ME=-12(x-2)2+2.…………………8分∵ x >0,8-2x >0, ∴ 0<x <4. 又∵ -12<0,∴ 当x =2时,ME 的长度最大为2.…………………9分 连接AP , ∵ AE =x =2, ∴ AC =BC =PC =4. ∵ PC ⊥AB , ∴ ∠PCA =90°,∴ 在Rt △ACP 中,∠PAC =∠APC =45°. 同理可得∠CPB =45°. ∴ ∠APB =90°.即AP ⊥PB . …………………10分 又∵ ∠PCA =90°,∴ AP 为直径.∴ 直线PB 与该圆相切.…………………11分 25.(本题满分14分) (1)(本小题满分7分) ①(本小题满分3分)解:当t =-2时,二次函数为y =ax 2+bx -3. 把(1,-4),(-1,0)分别代入y =ax 2+bx -3,得⎩⎪⎨⎪⎧a +b -3=-4,a -b -3=0.…………………………1分 解得⎩⎪⎨⎪⎧a =1,b =-2.所以a =1,b =-2.…………………………3分 ②(本小题满分4分)解法一:因为2a -b =1,所以二次函数为y =ax 2+(2a -1)x -3.所以,当x=-2时,y=-1;当x=0时,y=-3.所以二次函数图象一定经过(-2,-1),(0,-3).…………………………6分设经过这两点的直线的表达式为y=kx+p(k≠0),把(-2,-1),(0,-3)分别代入,可求得该直线表达式为y=-x-3.…………7分即直线y=-x-3始终与二次函数图象交于(-2,-1),(0,-3)两点.解法二:当直线与二次函数图象相交时,有kx+p=ax2+(2a-1)x-3.整理可得ax2+(2a-k-1)x-3-p=0.可得△=(2a-k-1)2+4a(3+p).…………4分若直线与二次函数图象始终有两个不同的交点,则△>0.化简可得4a2-4a(k-p-2)+(1+k)2>0.因为无论a取任意不为零的实数,总有4a2>0,(1+k)2≥0所以当k -p -2=0时,总有△>0.………………………6分 可取p =1,k =3.对于任意不为零的实数a ,存在直线y =3x +1始终与函数图象交于不同的两点.…………7分(2)(本小题满分7分)解:把A (-1,t )代入y =ax 2+bx +t -1,可得b =a -1.………………………8分因为A (-1,t ),B (m ,t -n )(m >0,n >0), 又因为S △AOB =12n -2t ,所以12[(-t )+(n -t )](m +1)-12×1×(-t )-12×(n -t )m =12n -2t .解得m =3.………………………10分 所以A (-1,t ),B (3,t -n ).因为n>0,所以t>t-n.当a>0时,【二次函数图象的顶点为最低点,当-1≤x≤3时,若点A为该函数图象最高点,则y A≥y B】,分别把A(-1,t),B(3,t -n)代入y=ax2+bx+t-1,得t=a-b+t-1,t-n=9a+3b+t-1.因为t>t-n,所以a-b+t-1>9a+3b+t-1.可得2a+b<0.即2a+(a-1)<0.解得a<1 3.所以0<a<1 3.当a<0时,由t>t-n,可知:【若A,B在对称轴的异侧,当-1≤x≤3时,图象的最高点是抛物线的顶点而不是点A ;若A ,B 在对称轴的左侧,因为当x ≤-b2a时,y 随x 的增大而增大,所以当-1≤x ≤3时,点A 为该函数图象最低点; 若A ,B 在对称轴的右侧,因为当x ≥-b 2a时,y 随x 的增大而减小,所以当-1≤x ≤3时,若点A 为该函数图象最高点,则】-b2a ≤-1. 即-a -12a≤-1. 解得a ≥-1.所以-1≤a <0.………………………13分综上,0<a <13或-1≤a <0.………………………14分。

易错汇总2018-2019年福建省厦门市中考模拟数学试卷(含答案)

易错汇总2018-2019年福建省厦门市中考模拟数学试卷(含答案)
x2- 4x+1=0 ∵ b2- 4ac=16-4=12 ∴ x= 4±12 =2± 3
2 ∴ x1= 2+ 3, x2= 2- 3 18. ( 1)⊙ O 的周长= 2 r= 2×3 = 6 = 6× 3.14 ≈ 18.8 ( 2)∵ ⌒AB =⌒AC
∴ AB= AC ∴∠ B=∠ C= 70° ∴∠ A=180°-∠ B-∠ C= 40° 19.
(2) 若△ MBC 是等腰直角三角形,求△ ABM 的面积;
(3) 点 E 是直线 l 上方的抛物线的动点,△ BDE 的面积的最大值为 25;设 P 是抛物线的对称轴上的一点,点 16
Q在
抛物线上,以点 A、B、 P、 Q 为顶点的四边形能否为矩形?若能,求出点
P 的坐标;若不能,请说明理由.
7
6. 若抛物线 y= 2(x- 2)2 + 5 向左平移 3 个单位长度, 再向下平移 2 个单位长度, 此时抛物线的对称轴是直线 (
)
A. x=2
B. x=- 1
C.x=5
D. x= 0
7. 已知点 A (-1,2), O 是坐标原点,将线段 OA 绕点 O 逆时针旋转 90°,点 A 旋转后的对应点是 A1,则点 A1 的坐
13. 13 5- 1
16. 2
9
20. 解:设宽为 x 步,则长为( x+ 12)步 x(x+ 12)= 864
x2+ 12x=864 (x+ 6)2= 900 x + 6= ±30 ∴ x1= 24 , x2=- 36(不合题意,舍去 ) 长为 x+ 12= 36 步 答:长 36 步,宽 24 步
B. 54°
C. 18°
D. D . 36°
图1
图2
5. 如图 2,在正方形 ABCD 中, E 为 DC 边上的点,连接 BE,将△ BCE 绕点 C 顺时针方向旋转 90°得到△ DCF ,

2018年福建厦门中考数学试卷及答案解析版

2018年福建厦门中考数学试卷及答案解析版

2018 年厦门市初中毕业及高中阶段各种学校招生考试
数学
(试卷满分: 150 分考试时间:120 分钟)
准考据号姓名座位号
注意事项:
1.全卷三大题, 26 小题,试卷共 4 页,还有答题卡.
2.答案一律写在答题卡上,不然不可以得分.
3.可直接用 2B 铅笔绘图.
一、选择题(本大题有7 小题,每题 3 分,共 21 分 . 每题都有四个选项,其
中有且只有一个选项正确)
1.( 2018 福建厦门,1, 3 分).以下计算正确的选项
是()
A .- 1+ 2=1.
B .-1- 1= 0.C.(- 1)2=- 1.D.- 12= 1.【答案】 A
( 2018 福建厦门, 2, 3 分).已知∠A=60°,则∠A的补角是
A . 160°.
B .120°.
C.60°. D .30°.
【答案】 B
(2018 福建厦门, 3, 3 分).图1是以下一个立体图形的三视图,则这个立体图
形是
A .圆锥.
B .球.
C.圆柱. D .正方体.
主左
视视
图图



图1
【答案】 C
( 2018 福建厦门, 4,3 分).掷一个质地平均的正方体骰子,当骰子停止后,朝。

2018-2019学年下期厦门一中初三毕业班期中考试卷

2018-2019学年下期厦门一中初三毕业班期中考试卷

2019年初三(下)厦门一中期中考试数学(试卷满分:150分考试时间:120分钟)一、选择题(本题共10小题,每小题4分,共40分)1.如果a与3互为相反数,那么a是( )A.—3 B.3 C.—13D.132.下列图形具有稳定性的是( )A.B.C.D.3.下列立体图形中,主视图是三角形的是( )A.B.C.D.4.下列运算正确的是( )A.(b2)3=b5B.x3÷x3=x C.5y3•3y2=15y5 D.a+a2=a35.在△ABC中,∠C=90°,AB=2,AC=1,则sin B的值是( )A.12B.22C.32D.26.如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上,若∠B=∠ADE,则下列结论正确的是( ) A.∠A和∠B互为补角B.∠B和∠ADE互为补角C.∠A和∠ADE互为余角D.∠AED和∠DEB互为余角7.如图,码头A在码头B的正西方向,甲,乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲,乙相撞,则乙的航向不能是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°8.“若两个单项式的次数相同,则它们是同类项”是假命题,下列选项可以作为反例的是 ( )A .2ab 和3abB .2a 2b 和3ab 2C .2ab 和2a 2b 2D .2a 3和-2a 3 9.用一根长为a (单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图3的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加 ( )A .4cmB .8cmC .(a +4)cmD .(a +8)cm10.如图,AB 是一垂直于水平面的建筑物,某同学从建筑物底端B 出发,先沿水平方向向右行走20米到达点C ,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD 到达点D ,然后再沿水平方向向右行走40米到达点E (A ,B ,C ,D ,E 均在同一平面内).在E 处测得建筑物顶端A 的仰角为24°,则建筑物AB 的高度约为 ( ) (参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)A .21.7米B .22.4米C .27.4米D .28.8米第10题 第16题 二、填空题(本题共6小题,每小题4分,共24分)11.若分式1x -1有意义,则x 的取值范围为 .12.分解因式:a 2-5a = .13.某商品原价为a 元,如果按原价的八折出售,那么售价是 元(用含字母a 的代数式表示). 14.已知a (a -7)<0,则a 的取值范围是 .15.等腰三角形ABC 中,∠A =80°,则∠B 的度数为 .16.如图,菱形ABCD 的边AD ⊥y 轴,垂足为点E ,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数y =kx (k ≠0,x >0)的图像同时经过顶点C ,D ,若点C 的横坐标为5,BE =3DE ,则k 的值为 . 三、解答题(本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分)计算:(1)4sin45°+( -2)0-18 (2)(a +3)(a -2)-a (a -1)18.(本小题满分8分)如图,已知AB ∥CF ,D 是AB 上的一点,DF 交AC 于点E ,若AB =BD +CF ,求证:△ADE ≌△CFE19.(本小题满分8分) 先化简,再求值:(a 2-2ab b +b )÷ a 2-b 2b ,其中a =1+2,b =1- 220.(本小题满分8分) 我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.21.(本小题满分8分)如图,在数轴上,点A ,B 分别表示数1、-2x +3(1)求x 的取值范围;(2)数轴上表示数﹣x +2的点应落在 . A .点A 的左边B .线段AB 上C .点B 的右边22.(本小题满分10分) 如图,在△ABC 中,∠ACB =90°,以点B 为圆心,BC 长为半径画弧,交边AB 与点D ,以A 为圆心,AD 长为半径画弧,交边AC 于点E ,连接CD . (1)若∠A =28°,求∠ACD 的度数;(2)设BC =a ,AC =b .①线段AD 的长是方程x 2+2ax ﹣b 2=0的一个根吗?为什么? ②若AD =EC ,求ab 的值.23.(本小题满分10分) 如图,平面直角坐标系中,已知点B 的坐标为(6,4).(1)请用直尺(不带刻度)和圆规作一条直线AC ,它与x 轴和y 轴的正半轴分别交于点A 和点C ,且△ABC 与△AOC 关于直线AC 对称.(左图不必写作法,但要保留作图痕迹) (2)请求出(1)中作出的直线AC 的函数表达式.24.(本小题满分12分) 如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sin B=513,求DG的长.25.(本小题满分14分) 若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M (t ,y 1),N (t +1,y 2),R (t +3,y 3)三点均在函数y =kx (k 为常数,k ≠0)的图象上,且这三点的纵坐标y 1,y 2,y 3构成“和谐三组数”,求实数t 的值;(3)若直线y =2bx +2c (bc ≠0)与x 轴交于点A (x 1,0),与抛物线y =ax 2+3bx +3c (a ≠0)交于B (x 2,y 2),C (x 3,y 3)两点.①求证:A ,B ,C 三点的横坐标x 1,x 2,x 3构成“和谐三组数”; ②若a >2b >3c ,x 2=1,求点P (c a ,ba )与原点O 的距离OP 的取值范围.。

2019年福建省厦门市九年级质量检测数学试题(解析版)

2019年福建省厦门市九年级质量检测数学试题(解析版)
C. 但a不是该方程的根D. 但a不是该方程的根
【答案】A
【解析】
【分析】
根据方程有两个相等的根,分析即可.
【详解】解:由题意得:方程(x-m)(x-a)=0(m≠0)的根是x1=m,x2=a,
又∵方程的根是x1=x2=m,
∴a=m且a是该方程的根,
故选A.
【点睛】本题考查一元二次方程解的定义,熟练掌握一元二次方程解的定义是解题关键.
2019年厦门市初中毕业班教学质量检测数学
一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)
1.计算(-1)3,结果正确的是()
A. B. C.1D.3
【答案】B
【解析】
【分析】
根据立方的性质计算即可.
【详解】解: ,
故选B.
【点睛】本题考查立方的计算,熟练掌握有理数的乘方运算是解题关键.
故选C.
【点睛】本题主要考查菱形的性质和正方形的性质,结合图形分析出临界值情况是解题关键.
10.已知二次函数y=-3x2+2x+1的图象经过点A(a,y1),B(b,y2),C(c,y3),其中a,b,c均大于0.记点A,B,C到该二次函数的对称轴的距离分别为dA,dB,dC.若dA< <dB<dC,则下列结论正确的是()
2.如图,在△ACB中,∠C=90°,则 等于()
A. B. C. D.
【答案】A
【解析】
【分析】
根据三角函数的定义求解即可.
【详解】解:∵∠C=90°,∴ ,
故选A.
【点睛】本题考查三角函数的定义,熟练掌握正弦是对边比斜边是解题关键.
3.在平面直角坐标系中,若点A在第一象限,则点A关于原点的中心对称点在()

厦门九年级的的数学质检试题及答案.docx

厦门九年级的的数学质检试题及答案.docx
解法一:如图1∵AB∥CD,
∴∠ACD=∠EAB=72°.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分
∵CB平分∠ACD,
1

∠BCD=2∠ACD=36°.
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分
图1

∥ ,
AB CD
∴∠ABC=∠BCD=36°.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分解法二:如图1∵AB∥CD,
∴∠ABC=∠BCD.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分
1
∴OD=OC=2BD.
∵∠DBC=30°,
∴在Rt△BCD中,∠BDC=90°-30°=60°,
1
CD=2BD.
∵CE=CD,
1
∴CE=2BD.⋯⋯⋯⋯⋯⋯⋯⋯⋯6分
2

OE=2
BD,

2
1
2
在△OCE中,OE=
BD.
2
2
2
1
2
1
2
1
2
又∵
OC+CE=4BD+4BD=2BD,
2
2
2
∴OC+CE=OE.
列正确的是
a>b,a>b+c,c<0的逻辑关系的表述,下
A.因为a>b+c,所以a>b,c<0B.因为a>b+c,c<0,所以a>b
C.因为a>b,a>b+c,所以c<0D .因为a>b,c<0,所以a>b+c
10.据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过
下列步骤可测量山的高度
y=-
6
6
.⋯⋯⋯⋯⋯⋯⋯⋯⋯
7分
n
x+
mn
n
因为点C在直线DE上,
6
6
6
所以把C(n, )代入y=-x+ ,化简得m=2n.

福建省厦门市2018年初中总复习教学质量检测试卷(含答案)

福建省厦门市2018年初中总复习教学质量检测试卷(含答案)

2018年厦门市初中总复习教学质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.计算-1+2,结果正确的是A . 1B . -1C . -2D . -3 2.抛物线y =ax 2+2x +c 的对称轴是A . x =-1aB . x =-2aC . x =1aD . x =2a3.如图1,已知四边形ABCD ,延长BC 到点E ,则∠DCE 的同位角是A . ∠AB . ∠BC . ∠DCBD .∠D4.某初中校学生会为了解2017年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查方案中最合适的是A .到学校图书馆调查学生借阅量B .对全校学生暑假课外阅读量进行调查C .对初三年学生的课外阅读量进行调查D .在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查 5.若967×85=p ,则967×84的值可表示为A . p -1B . p -85C . p -967D .8584p 6. 如图2,在Rt△ACB 中,∠C =90°,∠A =37°,AC =4,则BC 的长约为(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) A . 2.4 B . 3.0 C . 3.2 D . 5.07. 在同一条直线上依次有A ,B ,C ,D 四个点,若CD -BC =AB ,则下列结论正确的是 A . B 是线段AC 的中点 B . B 是线段AD 的中点 C . C 是线段BD 的中点 D . C 是线段AD 的中点8. 把一些书分给几名同学,若 ;若每人分11本则不够. 依题意,设有x 名同学, 可列不等式9x +7<11x ,则横线上的信息可以是图1E DC B A图2 ABCA .每人分7本,则可多分9个人 B. 每人分7本,则剩余9本C .每人分9本,则剩余7本D. 其中一个人分7本,则其他同学每人可分9本9. 已知a ,b ,c 都是实数,则关于三个不等式:a >b ,a >b +c ,c <0的逻辑关系的表述,下列正确的是A . 因为a >b +c ,所以a >b ,c <0B . 因为a >b +c ,c <0,所以a >bC . 因为a >b ,a >b +c ,所以c <0D . 因为a >b ,c <0,所以a >b +c 10. 据资料,我国古代数学家刘徽发展了测量不可到达的物体的高度的“重差术”,如:通过下列步骤可测量山的高度PQ (如图3):(1)测量者在水平线上的A 处竖立一根竹竿,沿射线QA 方向走到M 处,测得山顶P 、竹竿顶点B 及M 在一条直线上;(2)将该竹竿竖立在射线QA 上的C 处,沿原方向继续走到N 处,测得山顶P ,竹竿顶点D 及N 在一条直线上;(3)设竹竿与AM ,CN 的长分别为l ,a 1,a 2,可得公式: PQ =d ·la 2-a 1+l .则上述公式中,d 表示的是A .QA 的长B . AC 的长 C .MN 的长D .QC 的长 二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式: m 2-2m = .12.投掷一枚质地均匀的正六面体骰子,向上一面的点数为奇数的 概率是 .13.如图4,已知AB 是⊙O 的直径,C ,D 是圆上两点,∠CDB =45°,AC =1,则AB 的长为 .14. A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等.设B 型机器人每小时 搬运x kg 化工原料,根据题意,可列方程__________________________. 15.已知a +1=20002+20012,计算:2a +1= .16.在△ABC 中,AB =AC .将△ABC 沿∠B 的平分线折叠,使点A 落在BC 边上的点D 处, 设折痕交AC 边于点E ,继续沿直线DE 折叠,若折叠后,BE 与线段DC 相交,且交点不 与点C 重合,则∠BAC 的度数应满足的条件是 .三、解答题(本大题有9小题,共86分) 17.(本题满分8分)解方程:2(x -1)+1=x .18.(本题满分8分)E AB图4B图3如图5,直线EF分别与AB,CD交于点A,C,若AB∥CD,CB平分∠ACD,∠EAB=72°,求∠ABC的度数.19.(本题满分8分)如图6,平面直角坐标系中,直线l经过第一、二、四象限,点A(0,m)在l上.(1)在图中标出点A;(2)若m=2,且l过点(-3,4),求直线l的表达式.20.(本题满分8分)如图7,在□ABCD中,E是BC延长线上的一点,且DE=AB,连接AE,BD,证明AE=BD.21.(本题满分8分)某市的居民交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通等五项.该市统计局根据当年各项的权重及各项价格的涨幅计算当年居民交通消费价格的平均涨幅. 2017年该市的有关数据如下表所示.(1)求p的值;(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m的值.22.(本题满分10分)如图8,在矩形ABCD中,对角线AC,BD交于点O,(1)AB=2,AO=5,求BC的长;(2)∠DBC=30°,CE=CD,∠DCE<90°,若OE=22BD,求∠DCE的度数.l图6图7E AB CD图8OAB CDE23.(本题满分11分)已知点A ,B 在反比例函数y =6x (x >0)的图象上,且横坐标分别为m ,n ,过点A ,B 分别向y 轴、x 轴作垂线段,两条垂线段交于点C ,过点A ,B 分别作AD ⊥x 轴于D ,作BE ⊥y 轴于E.(1)若m =6,n =1,求点C 的坐标;(2)若m 错误!链接无效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建省厦门第一中学2018—2019学年度
第二学期第二次模拟考试
初三年数学试卷
命题教师 陈山泉 审核教师 庄月蓉 2019.5
一、选择题(本题共10小题,每小题4分,共40分)
1.下列各数中,属于正有理数的是( )
A .π
B .0
C .﹣1
D .2 2.若分式1
1-x 有意义,则x 的取值范围是( ) A . x ≥1 B .x >1 C .x =1
D .x ≠1 3.某几何体的三视图如图所示,则这个几何体是( )
A .圆柱
B .正方体
C .球
D .圆锥
4.如图,直线a ,b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( )
A .∠1=∠3
B .∠2+∠4=180°
C .∠3=∠4
D .∠1=∠4
5.已知a ,b 满足方程组
,则a +b 的值为( ) A .﹣4 B .4 C .﹣2 D .2
6.如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC ,交AC 于点D ,
且AB =4,BD =5,那么点D 到BC 的距离是( )
A . 3
B . 4
C .5
D . 6 7.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 则下面结论中不正确的是( )
A .新农村建设后,种植收入减少
B .新农村建设后,养殖收入增加了一倍
C .新农村建设后,
其他收入增加了一倍以上 D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
第6题图
第4题图
第3题图 第7题图
8.若直线l 1经过点(0,4),l 2经过点(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为( )
A .(﹣2,0)
B .(2,0)
C .(﹣6,0)
D .(6,0)
9.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,
图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,
将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,
其序号为a ×23+b ×22+c ×21+d ×20
,如图2第一行数字从左到右依次为0,1,0,1,
序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.
表示6班学生的识别图案是( ) A . B . C .D . 10.如图,正方形ABCD 的边长为2,点E 在BC 上,四边形EFGB 也是正方形,
以B 为圆心,BA 长为半径画
,连结AF ,CF ,则图中阴影部分面积为( ) A .π B .2π﹣2 C .π D .2π
二、填空题(本题共6小题,每小题4分,共24分)
11.9的算术平方根是 .
12.因式分解:m (x ﹣y )+n (x ﹣y )= .
13.点P (a ,a ﹣3)在第四象限,则a 的取值范围是 .
14.为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.
三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大? .(填:甲或乙)
15.如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为 °.
16.已知点M 为双曲线y =
(x >0)上的一点,过点M 作x 轴、y 轴的垂线, 第9题图
第10题图
分别交直线y =﹣x +m (m >0)于点D 、C 两点(点D 在点M 下方),
若直线y =﹣x +m (m >0)与y 轴交于点A ,与x 轴相交于点B ,则AD •BC 的值为 .
三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)
17.(8分)计算3-2+()23-﹣|﹣3|+ tan 60°.
18.(8分)已知:如图,AB ∥DE ,点C ,点F 在AD 上,AF =DC ,AB =DE .求证:△ABC ≌△DEF .
19.(8分)解方程:﹣=1 .
20.(8分)(1)尺规作图:如图,A 、B 是平面上两个定点,在平面上找一点C ,
使△ABC 构成等腰直角三角形,且C 为直角顶点.(画出一个点C 即可)
(2)在(1)的条件下,若A (0,2),B (4,0),则点C 的坐标是 .
21.(8分)如图,△ABC 内接于⊙O ,∠B =60°,CD 是⊙O 的直径,
点P 是CD 延长线上一点,且AP =AC .
(1)求证:PA 是⊙O 的切线;
(2)若PD =
,求⊙O 的直径.
22.(10分)如图,点A 、B 的坐标分别是为(﹣3,1),(﹣1,﹣2),
若将线段AB 平移至A 1B 1的位置,A 1(a ,4),B 1(3,b ).
(1)则a = ,b = ;
(2)求四边形ABB 1A 1的面积;
(3)将线段AB 按照原来的方向平移,若点A 的平移后对应点是点A 2,
点B 的平移后对应点是点B 2,则在线段AB 平移过程中,是否存在一个四边形ABB 2A 2是矩形,
并说明理由.
23.(10分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.
如果当天卖不完,剩下的玫瑰花作垃圾处理.
第20题图 第21题图
第18题图 第22题图
(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n 是自 然数)的函数解析式;
(2)花店记录了
①这100个日需求量所组成的一组数据的中位数和众数分别是 , ;
②以100天记录的各需求量的频率作为计算平均一天需求量对应的权重.
若花店计划一天购进16枝或17枝玫瑰花,从盈利的角度分析,你认为应购进16枝还是17枝?
请说明理由.
24.(12分)如图,在□ABCD 中,点E 在线段AC 上.
(1)若∠3=70°,∠1=∠2,求∠2的度数;
(2)若AB=AE ,BE=DE=6EC ,点E 到直线CD 的距离是
35,求BC 的长度.
25.(14分)对于自变量为x 的函数,当x =x 0时,其函数值也为x 0,则称点(x 0,x 0)为此函数的不动点. 若函数y =ax 2+bx +c (a>0)图象上有两个不动点A (x 1,y 1)、B (x 2,y 2),(x 1<x 2).
(1)若a=1,b =2,c =0,求函数y =ax 2+bx +c 的不动点坐标;
(2)求证:x 1≥a
b a
c 442
-; (3)若函数y =ax 2+bx +c (a>0),a=2
1,0242<--c b b , 当0<x <x 1时,①求证:y> x ; ②求证:y <x 1.
第24题图。

相关文档
最新文档