统计学原理常用公式汇总

合集下载

(完整版)统计学公式大全

(完整版)统计学公式大全

(完整版)统计学公式大全统计学公式大全本文档旨在提供统计学领域常用的公式大全,便于大家在研究和实践中进行参考和应用。

描述统计学公式中心趋势度量1. 平均数(Mean):$\bar{x} =\frac{{\sum_{i=1}^{n}x_i}}{n}$2. 中位数(Median):若数据个数为奇数,中位数为排序后的中间值;若数据个数为偶数,中位数为排序后的中间两个值的平均值。

3. 众数(Mode):出现频率最高的数值。

离散趋势度量1. 方差(Variance):$Var(x) = \frac{{\sum_{i=1}^{n}(x_i - \bar{x})^2}}{n}$2. 标准差(Standard Deviation):$SD(x) = \sqrt{Var(x)}$3. 极差(Range):$Range(x) = \max(x) - \min(x)$分布形状度量1. 偏度(Skewness):$\text{Skewness} =\frac{{\sum_{i=1}^{n}(x_i - \bar{x})^3}}{n \cdot SD(x)^3}$2. 峰度(Kurtosis):$\text{Kurtosis} =\frac{{\sum_{i=1}^{n}(x_i - \bar{x})^4}}{n \cdot SD(x)^4}$ 推断统计学公式参数估计1. 样本均值的抽样分布标准差(Standard Error of the Mean):$SE(\bar{x}) = \frac{{SD(x)}}{\sqrt{n}}$2. 双侧置信区间公式(Confidence Interval):$\bar{x} \pm Z\cdot SE(\bar{x})$3. 样本比例的抽样分布标准差(Standard Error of Proportion):$SE(p) = \sqrt{\frac{{p(1-p)}}{n}}$4. 双侧置信区间公式(Confidence Interval):$p \pm Z \cdotSE(p)$假设检验1. 样本均值和总体均值的差异(t检验):$t = \frac{{\bar{x} -\mu}}{{SE(\bar{x})}}$2. 双侧拒绝域临界值(t分布):$t_{\text{critical}} = \pmt_{\alpha/2, df}$3. 样本比例和总体比例的差异(z检验):$z = \frac{{\hat{p} - p}}{{SE(p)}}$4. 双侧拒绝域临界值(z分布):$z_{\text{critical}} = \pmz_{\alpha/2}$回归分析公式简单线性回归模型1. 回归方程(Simple Linear Regression):$y = \beta_0 +\beta_1x + \epsilon$2. 线性预测公式(Simple Linear Regression):$\hat{y} =\hat{\beta}_0 + \hat{\beta}_1x$3. 斯皮尔曼秩相关系数(Spearman's Rank Correlation Coefficient):$r_s = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$4. 相关系数的显著性检验(t检验):$t = \frac{r}{\sqrt{\frac{1 - r^2}{n-2}}}$结论本文档列举了统计学领域常用的公式,包括描述统计学中的中心趋势度量、离散趋势度量和分布形状度量,推断统计学中的参数估计和假设检验,以及回归分析中的简单线性回归模型等相关公式。

统计学常用公式

统计学常用公式

统计学常用公式统计学是一门研究数据收集、分析、解释和表达的科学。

在统计学中,有许多常用的公式被广泛应用于数据处理和推断分析。

本文将介绍一些统计学常用公式,并对其进行说明和用途解释。

一、描述统计学公式1. 平均值(Mean)平均值是一组数据的总和除以数据的个数,即:$\bar{X} = \frac{X_1 + X_2 + \cdots + X_n}{n}$其中,$\bar{X}$表示平均值,$X_i$表示第i个数据,n表示数据的个数。

2. 中位数(Median)中位数是将一组数据按照大小排列后,处于中间位置的数值。

当数据个数为奇数时,中位数即为排列后正中间的数;当数据个数为偶数时,中位数为排列后中间两个数的平均值。

3. 众数(Mode)众数是一组数据中出现频率最高的数值。

4. 标准差(Standard Deviation)标准差衡量数据的离散程度,其计算公式为:$SD = \sqrt{\frac{(X_1 -\bar{X})^2 + (X_2 -\bar{X})^2 + \cdots + (X_n -\bar{X})^2}{n-1}}$5. 方差(Variance)方差是标准差的平方,即:$Var = SD^2$6. 百分位数(Percentile)百分位数是指一组数据中某个特定百分比处的数值。

比如,第25百分位数是将一组数据从小到大排列后,处于前25%位置的数值。

二、概率与统计公式1. 随机变量期望(Expectation)随机变量期望是描述随机变量平均值的指标,也称为均值。

对于离散型随机变量X,其期望计算公式为:$E(X) = \sum_{i=1}^{n} X_i \cdot P(X_i)$对于连续型随机变量X,其期望计算公式为:$E(X) = \int_{-\infty}^{\infty} x \cdot f(x)dx$其中,$X_i$表示随机变量X的取值,$P(X_i)$表示对应取值的概率,$f(x)$表示X的概率密度函数。

统计学公式汇总

统计学公式汇总

统计学公式汇总统计学是研究数据收集、分析、解释和预测的一门学科。

在统计学中,有许多重要的公式被广泛应用于数据的处理和分析过程中。

本文将汇总一些常见的统计学公式,并简要介绍其应用场景和使用方法。

1. 均值(Mean)均值是统计学中最常用的概念之一,用于衡量一组数据的集中趋势。

对于一个样本集合,均值可以通过将所有观测值相加,然后除以样本容量来计算。

其数学公式如下:均值= ∑(观测值) / 样本容量2. 方差(Variance)方差是用于衡量一组数据的离散程度的指标。

方差越大,表示数据的离散程度越高;方差越小,表示数据的离散程度越低。

方差的计算公式如下:方差= ∑((观测值-均值)^2) / 样本容量3. 标准差(Standard Deviation)标准差是方差的平方根,用于衡量数据的离散程度,并且具有和原始数据相同的单位。

标准差的计算公式如下:标准差 = 方差的平方根4. 相关系数(Correlation Coefficient)相关系数用于衡量两组变量之间的线性关系强度和方向。

相关系数的取值范围在-1到1之间,其中-1表示完全的负相关,1表示完全的正相关,0表示无相关。

相关系数的计算公式如下:r = Cov(X,Y) / (σX * σY)5. 回归方程(Regression Equation)回归方程用于建立一个或多个自变量与因变量之间的线性关系。

回归方程的一般形式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1、X2、...、Xn表示自变量,β0、β1、β2、...、βn表示回归系数,ε表示模型的误差项。

6. 样本容量和置信水平(Sample Size and Confidence Level)在统计学中,样本容量和置信水平是决定实验或调查结果可靠性的重要因素。

样本容量是指从总体中抽取的样本大小,而置信水平是指对总体参数的估计值的信任程度。

统计学主要计算公式

统计学主要计算公式

统计学主要计算公式统计学是研究数据收集、整理、分析、解释和呈现的科学。

在统计学中,有许多重要的计算公式被广泛应用于统计分析和推断,以下是一些常见的计算公式:1.平均值:平均值是一组数据的总和除以数据的数量。

公式:平均值=总和/数据数量2.中位数:中位数是一组有序数据中的中间值,将数据从小到大排列,若数据的数量为奇数,则中位数为中间的数值;若数据的数量为偶数,则中位数为中间两个数值的平均值。

3.众数:众数是一组数据中出现最频繁的值。

4.方差:方差是一组数据与其平均值的差的平方的平均值。

公式: 方差= (∑(xi-平均值)^2) / 数据数量5.标准差:标准差是方差的平方根,用于衡量一组数据的离散程度。

公式:标准差=√方差6.相关系数:用于衡量两个变量之间线性相关程度的统计量。

公式: r = Cov(X,Y) / (SD(X) * SD(Y))其中,Cov(X,Y)表示X和Y的协方差,SD(X)和SD(Y)分别表示X和Y的标准差。

7.正态分布概率密度函数:正态分布是统计学中最重要的分布之一,其概率密度函数可以描述随机变量的分布。

公式:f(x)=(1/(σ*√(2π)))*e^(-(x-μ)^2/(2σ^2))其中,μ表示均值,σ表示标准差,e表示自然常数。

8.合并概率公式:用于计算多个事件同时发生的概率。

公式:P(A∩B)=P(A)*P(B,A)其中,P(A)表示A事件发生的概率,P(B,A)表示在A事件发生的条件下B事件发生的概率。

9.条件概率公式:用于计算在已知其中一事件发生的条件下另一事件发生的概率。

公式:P(A,B)=P(A∩B)/P(B)其中,P(A,B)表示在B事件发生的条件下A事件发生的概率。

10.抽样误差公式:用于计算样本估计值与总体参数之间的误差。

公式:误差=Z*(标准误差)其中,Z表示置信水平对应的标准正态分布的分位数,标准误差表示样本估计的标准差。

这些计算公式是统计学中非常重要的工具,用于帮助我们理解和解释数据的特征和关系。

统计学原理重要公式

统计学原理重要公式

一.加权算术平均数和加权调和平均数的计算加权算术平均数: ∑∑=fxf x 或 ∑∑=ffxx加权调和平均数: ∑∑∑∑==fxf x m m x频数也称次数。

在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目,即落在各类别(分组)中的数据个数。

再如在3.14159265358979324中,…9‟出现的频数是3,出现的频率是3/18=16.7% 一般我们称落在不同小组中的数据个数为该组的频数,频数与总数的比为频率。

频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。

而频率则每个小组的频数与数据总数的比值。

在变量分配数列中,频数(频率)表明对应组标志值的作用程度。

频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。

掷硬币实验:在10次掷硬币中,有4次正面朝上,我们说这10次试验中…正面朝上‟的频数是4例题:我们经常掷硬币,在掷了一百次后,硬币有40次正面朝上,那么,硬币反面朝上的频数为____.解答,掷了硬币100次,40次朝上,则有100-40=60(次)反面朝上,所以硬币反面朝上的频数为60.一.加权算术平均数和加权调和平均数的计算加权算术平均数: ∑∑=fxf x 或 ∑∑=ffxxx 代表算术平均数;∑是总和符合;f 为标志值出现的次数。

加权算术平均数是具有不同比重的数据(或平均数)的算术平均数。

比重也称为权重,数据的权重反映了该变量在总体中的相对重要性,每种变量的权重的确定与一定的理论经验或变量在总体中的比重有关。

依据各个数据的重要性系数(即权重)进行相乘后再相加求和,就是加权和。

加权和与所有权重之和的比等于加权算术平均数。

加权平均数 = 各组(变量值 × 次数)之和 / 各组次数之和 = ∑xf / ∑f加权调和平均数: ∑∑∑∑==fxf xm m x加权算术平均数以各组单位数f 为权数,加权调和平均数以各组标志总量m 为权数但计算内容和结果都是相同的。

统计学原理常用公式汇总

统计学原理常用公式汇总

统计学原理常用公式汇总第三章统计整理a)组距=上限-下限b)组中值=(上限+下限)÷2c)缺下限开口组组中值=上限-1/2邻组组距d)缺上限开口组组中值=下限+1/2邻组组距第四章综合指标i.相对指标1.结构相对指标=各组(或部分)总量/总体总量2.比例相对指标=总体中某一部分数值/总体中另一部分数值3.比较相对指标=甲单位某指标值/乙单位同类指标值4.强度相对指标=某种现象总量指标/另一个有联系而性质不同的现象总量指标5.计划完成程度相对指标=实际数/计划数=实际完成程度(%)/计划规定的完成程度(%)ii.平均指标1.简单算术平均数:2.加权算术平均数或iii.变异指标1.全距=最大标志值-最小标志值2.标准差: 简单σ= ;加权σ=3.标准差系数:第五章抽样推断1. 抽样平均误差:重复抽样: n x σμ= np p p )1(-=μ 不重复抽样: )1(2Nn n x -=σμ 2.抽样极限误差 x x t μ=∆3.重复抽样条件下: 平均数抽样时必要的样本数目222x t n ∆=σ 成数抽样时必要的样本数目22)1(p p p t n ∆-=不重复抽样条件下: 平均数抽样时必要的样本数目22222σσt N Nt n x +∆=第七章相关分析1.相关系数 [][]∑∑∑∑∑∑∑---=2222)()(y y n x x n y x xy n γ2.配合回归方程 y=a+bx∑∑∑∑∑--=22)(x x n yx xy n bx b y a -=3.估计标准误:22---=∑∑∑n xy b y a y s y第八章 指数分数一、综合指数的计算与分析(1)数量指标指数0001p q pq ∑∑此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。

(01p q ∑ -00p q ∑)此差额说明由于数量指标的变动对价值量指标影响的绝对额。

(2)质量指标指数∑∑0111p q pq此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。

统计学原理常用公式

统计学原理常用公式

统计学原理常用公式1.样本均值公式:样本均值是用来估计总体均值的一种方法,公式为:\bar{x} = \frac{{\sum_{i=1}^n x_i}}{n}\]其中,\(\bar{x}\) 是样本均值,\(x_i\) 是第 \(i\) 个观察值,\(n\) 是样本容量。

2.样本方差公式:样本方差是用来估计总体方差的一种方法,公式为:s^2 = \frac{{\sum_{i=1}^n (x_i - \bar{x})^2}}{n-1}\]其中,\(s^2\) 是样本方差,\(x_i\) 是第 \(i\) 个观察值,\(\bar{x}\) 是样本均值,\(n\) 是样本容量。

计算样本方差时使用的是无偏估计公式。

3.标准差公式:标准差是样本方差的平方根,公式为:s = \sqrt{s^2}\]其中,\(s\)是样本标准差。

4.离差平方和公式:离差平方和是指每个观察值与均值之差的平方的总和,公式为:\sum_{i=1}^n (x_i - \bar{x})^2\]5.切比雪夫不等式:切比雪夫不等式给出了随机变量与其均值之间的关系,公式为:P(,X-\mu,\geq k\sigma) \leq \frac{1}{k^2}\]其中,\(X\) 是随机变量,\(\mu\) 是均值,\(\sigma\) 是标准差,\(k\) 是大于零的常数。

6.二项分布的期望值和方差公式:二项分布用于描述在\(n\)次独立重复试验中成功的次数的概率分布。

其期望值和方差分别为:E(X) = np\]Var(X) = np(1-p)\]其中,\(X\)是二项分布随机变量,\(n\)是试验次数,\(p\)是单次试验成功的概率。

7.正态分布的概率密度函数和累积分布函数公式:正态分布描述了大部分自然现象中的连续性随机变量的分布。

f(x) = \frac{1}{{\sqrt{2\pi}\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\]F(x) = \frac{1}{2}\left[1 + \text{erf}\left(\frac{x -\mu}{\sqrt{2}\sigma}\right)\right]\]其中,\(x\) 是正态分布的随机变量,\(\mu\) 是均值,\(\sigma\) 是标准差,\(\text{erf}\) 是误差函数。

统计学公式汇总

统计学公式汇总

统计学公式汇总(1) αβδμσνπρυt u F X s 2χ(2) 均数(mean ):nX nX X X X n∑=+⋅⋅⋅++=21 式中X 表示样本均数,X 1,X 2,X n 为各观察值。

(3) 几何均数(geometric mean, G ):)lg (lg )lg lg lg (lg 121121nX n X X X X X X G n nn ∑--=+⋅⋅⋅++=⋅⋅⋅•=式中G 表示几何均数,X 1,X 2,X n 为各观察值。

(4) 中位数(median, M )n 为奇数时,)21(+=n XM n 为偶数时,2/][)12()2(++=n n XX M式中n 为观察值的总个数。

(5) 百分位数 )%(L xx f x n f iL P ∑-⋅+= 式中L为Px 所在组段的下限,f x 为其频数,i 为其组距,L f ∑为小于L各组段的累计频数。

(6) 四分位数(quartile, Q ) 第25百分位数P 25,表示全部观察值中有25%(四分之一)的观察值比它小,为下四分位数,记作Q L ;第75百分位数P 75,表示全部观察值中有25%(四分之一)的观察值比它大,为上四分位数,记作Q U 。

(7) 四分位数间距 等于上、下四分位数之差。

(8) 总体方差 NX 22)(μσ-∑=(9) 总体标准差 NX 2)(μσ-∑=(10) 样本标准差 1/)(1)(222-∑-∑=--∑=n nX X n X X s (11) 变异系数(coefficient of variation, CV ) %100⨯=XsCV (12) 样本均数的标准误 理论值nX σσ=估计值ns s X =式中σ为总体标准差,s为样本标准差,n 为样本含量。

(13) 样本率的标准误 理论值np )1(ππσ-=估计值np p s p )1(-=式中π为总体率,p 为样本率,n 为样本含量。

(14) 总体率的估计:正态分布法,(n p p u p n p p u p /)1(,/)1(-⋅+-⋅-αα) 式中p 为样本均数,s 为样本标准差,n 为样本含量。

统计学原理公式

统计学原理公式

统计学原理公式统计学是一门研究数据收集、分析、解释和呈现的学科,它在各个领域都有着广泛的应用。

在统计学中,公式是非常重要的工具,它们可以帮助我们理解数据的规律,进行数据分析和推断。

本文将介绍一些统计学原理中常用的公式,帮助读者更好地理解统计学的基本概念和原理。

1. 样本均值公式。

样本均值是统计学中最基本的概念之一,它表示了一组数据的平均水平。

样本均值的计算公式如下:\[ \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \]其中,\( \bar{x} \) 表示样本均值,\( n \) 表示样本容量,\( x_i \) 表示第 \( i \) 个观测值。

通过样本均值公式,我们可以快速计算出一组数据的平均值,从而对数据的集中趋势有一个直观的认识。

2. 样本方差公式。

样本方差是衡量一组数据离散程度的指标,它表示了数据点与样本均值之间的差异程度。

样本方差的计算公式如下:\[ s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})^2 \]其中,\( s^2 \) 表示样本方差,\( n \) 表示样本容量,\( x_i \) 表示第 \( i \) 个观测值,\( \bar{x} \) 表示样本均值。

样本方差公式可以帮助我们衡量数据的离散程度,从而对数据的分布情况有一个直观的了解。

3. 样本标准差公式。

样本标准差是样本方差的平方根,它也是衡量数据离散程度的重要指标。

样本标准差的计算公式如下:\[ s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})^2} \]其中,\( s \) 表示样本标准差,其他符号的含义与样本方差公式相同。

样本标准差公式可以帮助我们更直观地理解数据的离散程度,它是许多统计推断和假设检验的基础。

4. 正态分布概率密度函数。

正态分布是统计学中最重要的概率分布之一,它具有许多重要的性质和应用。

统计学计算公式大全

统计学计算公式大全

统计学计算公式大全统计学是数学中一个重要的分支,它利用分析数据,抽象出具有相似特征的概念,研究其变化规律、发展趋势,为决策提供重要的依据。

统计学涉及的范畴较广,涉及统计数据的收集、分析处理、描述抽象、模型建立、推理预测等数学计算技术,其中重要的组成部分就是计算公式,下面就是统计学计算公式大全。

一、抽样调查统计1、样本量的计算公式:n=N/ (1+N*e2/δ2)其中:n为样本量,N为总体量,e为期望的标准误差,δ为期望的置信度。

2、样本抽取a)取系统抽样公式:Pi=Di/n其中:Pi为抽取的概率,Di为分层抽样时的各层系统抽样量,n 为总体量。

b)层抽样公式:Di=ni/ni+N1+…+Nk其中:Di为分层抽样时的各层系统抽样量,ni为各层抽样量,N1+…+Nk为总体量。

3、数据分析a)差、方差、标准差极差X=Xmax-Xmin方差S2=G2S/(n-1)标准差S=根号[G2S/(n-1)]其中:Xmax,Xmin为所有样本数据的最大值和最小值,G1S和G2S分别为样本一阶矩和二阶矩,n为样本量。

b)值、中位数均值:X=G1S/n中位数:中位数=X((n+1)/2)其中:G1S为样本一阶矩,n为样本量。

c)分位数百分位数:Xp=(n+1)P/100其中:P为百分位数,n为样本量二、两个样本的比较1、大样本检验a) t检验t=X1-X2/S其中:X1,X2分别为样本1和样本2的均值,S为两个样本总体方差的平均值。

b) F检验F=S12/S22其中:S12,S22分别为样本1和样本2的方差。

2、小样本检验a) Z检验z=X1-X2/S其中:X1,X2分别为样本1和样本2的均值,S为样本1和样本2的总体标准差的平方根。

b)2检验χ2=∑[(Oi-Ei)2/Ei]其中:Oi,Ei分别为样本的实际频数和期望频数。

三、数据回归分析1、回归分析公式Y=a+bX其中:Y,X分别为回归变量,a,b分别为回归系数。

统计学原理重要公式

统计学原理重要公式

一.加权算术平均数与加权调与平均数得计算加权算术平均数:或加权调与平均数:频数也称次数。

在一组依大小顺序排列得测量值中,当按一定得组距将其分组时出现在各组内得测量值得数目,即落在各类别(分组)中得数据个数。

再如在3.149324中,‘9’出现得频数就是3,出现得频率就是3/18=16。

7%一般我们称落在不同小组中得数据个数为该组得频数,频数与总数得比为频率、频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体得个数、而频率则每个小组得频数与数据总数得比值。

在变量分配数列中,频数(频率)表明对应组标志值得作用程度。

频数(频率)数值越大表明该组标志值对于总体水平所起得作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起得作用越小。

掷硬币实验:在10次掷硬币中,有4次正面朝上,我们说这10次试验中‘正面朝上’得频数就是4例题:我们经常掷硬币,在掷了一百次后,硬币有40次正面朝上,那么,硬币反面朝上得频数为____、解答,掷了硬币100次,40次朝上,则有100-40=60(次)反面朝上,所以硬币反面朝上得频数为60。

一。

加权算术平均数与加权调与平均数得计算加权算术平均数:或代表算术平均数;∑就是总与符合;f为标志值出现得次数。

加权算术平均数就是具有不同比重得数据(或平均数)得算术平均数。

比重也称为权重,数据得权重反映了该变量在总体中得相对重要性,每种变量得权重得确定与一定得理论经验或变量在总体中得比重有关。

依据各个数据得重要性系数(即权重)进行相乘后再相加求与,就就是加权与、加权与与所有权重之与得比等于加权算术平均数。

加权平均数=各组(变量值 ×次数)之与 / 各组次数之与=∑xf /∑f加权调与平均数:加权算术平均数以各组单位数f为权数,加权调与平均数以各组标志总量m为权数但计算内容与结果都就是相同得。

二.标准差与标准差系数得计算方法标准差:σ=公式标准差也被称为标准偏差,或者实验标准差,公式如图、简单来说,标准差就是一组数据平均值分散程度得一种度量。

统计学原理重要公式

统计学原理重要公式

统计学原理重要公式1.样本均值公式:样本均值是样本数据的总和除以样本的大小。

它的公式是:$$ \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i $$其中,n是样本的大小,xi是第i个观测值。

2.总体均值公式:总体均值是从总体中取得的全部样本数据的总和除以总体的大小。

它的公式是:$$ \mu = \frac{1}{N} \sum_{i=1}^{N} x_i $$其中,N是总体的大小,xi是第i个观测值。

3.样本方差公式:样本方差是样本数据与样本均值差的平方和的平均值。

它的公式是:$$ s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 $$其中,n是样本的大小,xi是第i个观测值,$ \bar{x} $是样本均值。

4.总体方差公式:总体方差是总体数据与总体均值差的平方和的平均值。

它的公式是:$$ \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 $$其中,N是总体的大小,xi是第i个观测值,$ \mu $是总体均值。

5.样本标准差公式:样本标准差是样本方差的平方根。

它的公式是:$$ s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} $$其中,n是样本的大小,xi是第i个观测值,$ \bar{x} $是样本均值。

6.总体标准差公式:总体标准差是总体方差的平方根。

它的公式是:$$ \sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2} $$其中,N是总体的大小,xi是第i个观测值,$ \mu $是总体均值。

7.样本比例公式:样本比例是样本中具有一些特征的观测值的比例。

$$ p = \frac{x}{n} $$其中,n是样本的大小,x是具有特征的观测值的数量。

统计学原理公式

统计学原理公式

第二章数据描述1、组距=上限—下限2、简单平均数:x=Σx/n3、加权平均数:x=Σxf/Σf4、全距: R=x max-x min5、方差和标准差:方差是将各个变量值和其均值离差平方的平均数。

其计算公式:未分组的计算公式:σ2=Σ(x-x)2/n分组的计算公式:σ2=Σ(x-x)2f/Σf样本标准差则是方差的平方根:未分组的计算公式:s=[Σ(x-x)2/(n-1)]1/2分组的计算公式:s=[Σ(x-x)2f/(Σf-1)] 1/2σ=[Σ(x-x)/n] 1/26、离散系数:总体数据的离散系数:Vσ=σ/x样本数据的离散系数:V s=s/x10、标准分数:标准分数也称标准化值或Z分数,它是变量值与其平均数的离差除以标准差后的值,用以测定某一个数据在该组数据的相对位置。

其计算公式为:Z i=(x i-x)/s标准分数的最大的用途是可以把两组数组中的两个不同均值、不同标准差的数据进行对比,以判断它们在各组中的位置。

第三章参数估计1、统计量的标准误差:(样本误差)(1)在重复抽样时;样本标准误差:σx=σ/n或σx=s/n样本的比例误差可表示为:σp=[π(1-π)/n]1/2或σp=[p(1-p)/n] 1/2(2)不重复抽样时:σ2x=σ2/n×(N-n/N-1)σ2p=p(1-p)/n×(N-n/N-1)2、估计总体均值时样本量的确定,在重复抽样的条件下:n= Z2σ2/E23、估计总体比例时样本量的确定,在重复抽样的条件下:n=Z2×p(1-p)/E24、(1)在大样本情况下,样本均值的抽样分布服从正态分布,因此采用正态分布的检验统计量,当总体方差已知时,总体均值检验统计量为:Z=(x-μ)/( σ/n)(2)当总体方差未知时,可以用样本方差来代替,此时总体均值检验的统计量为:Z=(x-μ)/( s/n)5、小样本的检验:在小样本(n<30)情况下,检验时,首先假定总体均值服从正态分布。

统计学原理重要公式大全

统计学原理重要公式大全

一.加权算术平均数和加权调和平均数的计算加权算术平均数:∑∑=fxf x 或 ∑∑=f f x x加权调和平均数: ∑∑∑∑==f xf xm m x频数也称次数。

在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目,即落在各类别(分组)中的数据个数。

再如在3.14159265358979324中,…9‟出现的频数是3,出现的频率是3/18=16.7% 一般我们称落在不同小组中的数据个数为该组的频数,频数与总数的比为频率。

频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。

而频率则每个小组的频数与数据总数的比值。

在变量分配数列中,频数(频率)表明对应组标志值的作用程度。

频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。

掷硬币实验:在10次掷硬币中,有4次正面朝上,我们说这10次试验中…正面朝上‟的频数是4例题:我们经常掷硬币,在掷了一百次后,硬币有40次正面朝上,那么,硬币反面朝上的频数为____.解答,掷了硬币100次,40次朝上,则有100-40=60(次)反面朝上,所以硬币反面朝上的频数为60.一.加权算术平均数和加权调和平均数的计算加权算术平均数:∑∑=f xf x 或 ∑∑=f f x xx 代表算术平均数;∑是总和符合;f 为标志值出现的次数。

加权算术平均数是具有不同比重的数据(或平均数)的算术平均数。

比重也称为权重,数据的权重反映了该变量在总体中的相对重要性,每种变量的权重的确定与一定的理论经验或变量在总体中的比重有关。

依据各个数据的重要性系数(即权重)进行相乘后再相加求和,就是加权和。

加权和与所有权重之和的比等于加权算术平均数。

加权平均数 = 各组(变量值 × 次数)之和 / 各组次数之和 = ∑xf / ∑f加权调和平均数: ∑∑∑∑==fxf xmm x加权算术平均数以各组单位数f 为权数,加权调和平均数以各组标志总量m 为权数但计算内容和结果都是相同的。

《统计学原理》公式

《统计学原理》公式

《统计学原理》公式大全一、统计整理1.组距=上限 - 下限 2.组中值(1)闭口组2下限上限组中值+= (2)开口组组中值①2相邻组组距上限值缺下限的开口组的组中-= ②2相邻组组距下限值缺上限的开口组的组中+= 二、综合指标1.计划完成相对数 =计划任务数实际完成数2.计划执行进度 =计划期计划任务累计数数一时间的实际完成累计自计划执行之日起至某3.结构相对数 =总体总量总体中某部分数值4.总体中另一部分数值总体中某部分数值比例相对数=5.值另一总体的同类指标数某总体的某指标数值比较相对数=6.的总量指标数值另一性质不同但有联系某一总量指标数值强度相对数=7.基期指标数值报告期指标数值动态相对数=8.总体单位总量总体标志总量算术平均数=9.简单算术平均数 x —=nxn x x x n ∑=+++ 21 10.加权算术平均数 x —=∑∑=∑+++f xf f f x f x f x n n 2211 11.简单调和平均数 ∑=-xN x H 112.加权调和平均数 ∑∑=-mxmx H 113.极差(R )= 最大标志值 — 最小标志值14.简单平均差 D A ⋅=nx x∑-—15.加权平均差 D A ⋅=∑-fx x —16.简单标准差 nx x ∑-=)(—2σ17.加权标准差 ∑∑-=ffx x )(—2σ三、抽样推断1.重复抽样条件下的抽样平均数的抽样平均误差 nx σμ2=2.重复抽样条件下的抽样成数的抽样平均误差 nP P p )1(-=μ 3.不重复抽样条件下的抽样平均数的抽样平均误差 )1(2N nn x -=σμ4.抽样成数的抽样平均误差 )1()1(Nnn P P p --=μ 5.抽样平均数的抽样极限误差 =∆xμ-⋅x t 6.抽样成数的抽样极限误差=∆pμp t ⋅7.概率度 t =μxx ∆ t = μpp ∆8.总体均值的区间估计 x __±∆x9.总体比例的区间估计 p ±∆P四、统计指数1.个体价格指数 p pk p 01=2.个体产量指数 q q k q 01=3.个体成本指数 z z k z 01=4.数量指标综合指数 ∑∑=p q p q k q 00015.质量指标综合指数 ∑∑=p q p q k p 01116.加权算术平均数指数 ∑∑⋅=p q p q k k q q 0007.加权调和平均数指数 ∑⋅∑=p q k p q k pp 111118.可变构成指数 ∑∑∑∑⋅⋅==)()(00011101_________f x f f x x x k 可变9.固定构成指数 ∑∑∑∑⋅⋅=)()(110111___f f x f x k 固定10.结构影响指数 ∑∑∑∑⋅⋅=)()(00110___f x f f x k 结构11.指数体系相对数形式 k k k p q qp ⨯= 即∑∑⨯∑∑=∑∑p q p q p q p q p q p q 011100010011 绝对数形式:)()(011100010011∑∑-+∑∑-∑∑=-p q p q p q p q p q p q五、动态数列1.根据时期数列计算平均发展水平 n a na a a a n ∑=+++=21—2.根据间隔相等的连续时点数列计算平均发展水平n a na a a a n ∑=+++=21—3.根据间隔不等的连续时点数列计算平均发展水平∑∑=ffa a —4.根据间隔相等的间断时点数列计算平均发展水平1221222132113221—-++++=-++++++=--n n a a a a a a a a a a a a nn nn5.根据间隔不等的间断时点数列计算平均发展水平f f f f aa f a a f a a a n n n n 12111232121—222---+++++++++= 6.根据相对数动态数列或平均数动态数列计算平均发展水平ba c ———=7.增长量 = 报告期水平 一 基期水平 8.逐期增长量=报告期水平一前一期水平,用符号表示为:a a ,,a a ,a a ,a a n n 1231201----- 9.累计增长量 = 报告期水平一某一固定基期水平用符号表示为:a a ,,a a ,a a ,a a n 0030201---- 10.各期的逐期增长量之和等于最后一个时期的累计增长量,用公式表示为: a a a a a a a a a a n n n 01231201)()()()(-=-++-+-+--11.相邻两个时期的累计增长量之差等于相应时期的逐期增长量,用公式表示为: a a a a a a n n n n 1010)()(---=---12.年距增长量 = 本期发展水平 - 去年同期发展水平 13.1-==时间数列的项数累计增长量逐期增长量的个数逐期增长量之和平均增长量14.基期水平报告期水平发展速度=15.前一期水平报告期水平环比发展速度=用符号表示为:a a a a a a a a n n 1231201,,,,- 16.某一固定基期水平报告期水平定基发展速度=用符号表示为:a a a a a a a a no o 03201,,,,17.定基发展速度等于相应时期内的各环比发展速度的连乘积,用符号可表示为:a a a a a a a a n n 1231201-⨯⨯⨯⨯ =aa n 018.相邻两个定基发展速度之比等于相应时期的环比发展速度,用符号可表示为:a a a a a a n nn n 1010--=÷19.去年同期发展水平本期发展水平年距发展速度=20.11-=-=-==发展速度基期水平报告期水平基期水平基期水平报告期水平基期水平报告期增长量增长速度21.1-=-==环比发展速度前一期水平前一期水平报告期水平前一期水平逐期增长量环比增长速度 22.1-=-==定基发展速度某一固定基期水平某一固定基期水平报告期水平某一固定基期水平累计增长量定基增长速度23.()1-==年距发展速度月或季去年同期发展水平年距增长量年距增长速度24.平均发展速度的计算公式为:ninnx x x x x x ∏=⋅⋅⋅⋅= 321—由于环比发展速度的连乘积等于相应定基发展速度,因此平均发展速度的公式可写成:non a a x =—25.平均增长速度 = 平均发展速度 一1 26.100100100%1前一期水平前一期水平期增长量逐期增长量环比增长速度逐期增长量的绝对值增长=⨯=⨯=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计学原理常用公式汇总
第2章统计整理
a)组距=上限-下限
b)组中值=(上限+下限)÷2
c)缺下限开口组组中值=上限-1/2邻组组距
d)缺上限开口组组中值=下限+1/2邻组组距
e)组数k=1+3.322Lg n n为数据个数
第3章综合指标
i.相对指标
1.结构相对指标=各组(或部分)总量/总体总量
2.比例相对指标=总体中某一部分数值/总体中另一部分数值
3.比较相对指标=甲单位某指标值/乙单位同类指标值
4.强度相对指标=某种现象总量指标/另一个有联系而性质不
同的现象总量指标
5.计划完成程度相对指标=实际数/计划数
=实际完成程度(%)/计划规定的完成程度(%)
ii.平均指标
1.简单算术平均数:
2.加权算术平均数或
3调和平均数:
å
å
=
f
X
f
X h
1
1
式中:,
h
Xf Xf m
X X
m
f Xf
X X
m
m Xf f
X
====
==
ååå
ååå
iii.标志变动度
1.全距=最大标志值-最小标志值
2.标准差: 简单σ= ;加权σ=
3.标准差系数:
iiii 抽样推断
1. 抽样平均误差:
重复抽样: n
x σ
μ=
n
p p p )
1(-=
μ 不重复抽样: )1(2
N
n n
x -
=
σμ 2.抽样极限误差 x x t μ=∆
3.重复抽样条件下:
平均数抽样时必要的样本数目
2
22x t n ∆=
σ
成数抽样时必要的样本数目2
2)1(p
p p t n ∆-=
不重复抽样条件下:
平均数抽样时必要的样本数目
2222
2σσt N Nt n x +∆=
第4章 动态数列分析
一、平均发展水平的计算方法:
(1)由总量指标动态数列计算序时平均数 ①由时期数列计算
n
a a ∑=
②由时点数列计算
在间断时点数列的条件下计算:
若间断的间隔相等,则采用“首末折半法”计算。

公式为:
1
212
11
21-++++=-n a a a a a n n Λ 若间断的间隔不等,则应以间隔数为权数进行加权平均计算。

公式为:
∑--++++++=f
f a a f a a f a a a n n n 1
123212
1222Λ
(2)由相对指标或平均指标动态数列计算序时平均数 基本公式为:
b
a c =
式中:c 代表相对指标或平均指标动态数列的序时平均数;
a 代表分子数列的序时平均数;
b 代表分母数列的序时平均数;
逐期增长量之和 累积增长量
二、平均增长量=─────────=─────────
逐期增长量的个数 逐期增长量的个

计算平均发展速度的公式为:
n x x ∏=
(2)平均增长速度的计算
平均增长速度=平均发展速度-1(100%)
第5章 统计指数
一、综合指数的计算与分析 (1)数量指标指数
01p
q p q ∑∑
此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。

(01p q ∑ -00p q ∑)
此差额说明由于数量指标的变动对价值量指标影响的绝对额。

(2)质量指标指数
∑∑0
1
11p
q p q
此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。

(11p q ∑-01p q ∑)
此差额说明由于质量指标的变动对价值量指标影响的绝对额。

加权算术平均数指数=
∑∑0
0p
q p kq
加权调和平均数指数=
∑∑1
1
11
1p
q k p q
复杂现象总体总量指标变动的因素分析 相对数变动分析:
11p
q p q ∑∑=
01p
q p q ∑∑×
∑∑0
1
11p
q p
q
绝对值变动分析:
1
1
p q ∑-00
p q
∑= (01p q ∑ -00p q ∑)×(11p q ∑-01p q ∑)
第6章 抽样调查
1、全及指标:根据全及总体中的各单位标志值或标志特征
计算的、反映总体某种属性的综合指标。

变量总体: 属性总体:
11N
P Q
N
σ==-== N 1 具有某种属性的单位数 , N 0 不具有某种属性的单位数
1
0=+=Q P N N Q N
X X N
X
X ∑∑
-=
=2
)
(σ称为总体标准差
σ(二)全及指标和抽样指标
2、抽样指标:根据抽样总体中的各单位标志值或标志特征
计算的综合指标。

变量总体:
1
)(2--=
=

∑n x x S n x x 称为样本标准差
S 属性总体:
01
n q n p q =
+= n 1 具有某种属性的单位数 , n 0 不具有某种属性的单位数
pq
p p S n
n p =
-==)1(1
2、不同抽样方法的样本可能数目
2)考虑顺序的不重复抽样
)!
(!
)1()1(n N N n N N N A n N
-=
+--=Λ3)不考虑顺序的不重复抽样
)!
(!!
!)1()1(n N n N n n N N N C n N -=
+--=
Λn
n N
N
B =1)考虑顺序的重复抽样
n
n N n
N C
D 1
-+=4)不考虑顺序的重复抽样
n
n
x σ
σμ=
=
2
变量总体:公式说明了,抽样平均误差仅为全及总体标准差
的 。

n 1
为总体标准差
σ
(1)重复抽样:
n
P P P )1(-=
μ属性总体:P 为总体成数
第7章 相关分析
1.相关系数
[][
]
∑∑∑∑∑∑∑---=
2
2
2
2
)
()(y y n x x
n y
x xy n γ
(2)不重复抽样:
很大时)当N N
n
n N n
N n x ()1()1
(2
2-≈
--=
σσμ 当抽样比大大小于1时,不重复抽样的抽样平均误差与重复抽样的很接近。

)1()1(N
n
n P P P --=
μn
t
t x x 2
σμ==∆2
22x t n ∆=σ重复抽样:
不重复抽样: )1(2
N
n n t
t x x -==∆σμ2
22
2

σt N Nt n x +∆=五、简单随机抽样的必要样本容量的确定
(一)计算公式:
n
p p t
t p p )
1(-==∆μ2
2)1(p
p p t n ∆-=)
1()
1(22
2p p t N p p Nt n p -+∆-=
2.配合回归方程 y=a+bx
∑∑∑∑∑--=
2
2
)
(x x n y x xy n b
x b y a -=
3.估计标准误:
2
2
---=
∑∑∑n xy b y a y
s
y。

相关文档
最新文档