2019年内蒙古呼和浩特中考数学试题(word解析版)

合集下载

2019年内蒙古呼和浩特市中考数学试题(Word版,含解析)

2019年内蒙古呼和浩特市中考数学试题(Word版,含解析)

2019年内蒙古呼和浩特市中考数学试卷一、选择题(每小题3分,共30分。

)1.如图,检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,下面检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是( )A.B.C.D.2.甲骨文是我国的一种古代文字,下面是“北"“比"“鼎.射"四个字的甲骨文,其中不是轴对称的是()A.B.C.D.3.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A.B.C.D.4.已知菱形的边长为3,较短的一条对角线的长为2,则该菱形较长的一条对角线的长为()A.2B.2C.4D.25.某学校近几年来通过“书香校园"主题系列活动,倡导学生整本阅读纸质课外书籍.下面的统计图是该校2013年至2018年纸质书人均阅读量的情况,根据统计图提供的信息,下列推断不合理的是()A.从2013年到2016年,该校纸质书人均阅读量逐年增长B.2013年至2018年,该校纸质书人均阅读量的中位数是46.7本C.2013年至2018年,该校纸质书人均阅读量的极差是45。

3本D.2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的2倍6.若不等式﹣1≤2﹣x的解集中x的每一个值,都能使关于x的不等式3(x﹣1)+5>5x+2(m+x)成立,则m的取值范围是()A.m>﹣B.m<﹣C.m<﹣D.m>﹣7.如图是一个几何体的三视图,其中主视图与左视图完全一样,则这个几何体的表面积是()A.80﹣2πB.80+4πC.80 D.80+6π8.若x1,x2是一元二次方程x2+x﹣3=0的两个实数根,则x22﹣4x12+17的值为( )A.﹣2 B.6 C.﹣4 D.49.已知正方形的对称中心在坐标原点,顶点A、B、C、D按逆时针依次排列,若A点的坐标为(2,),则B点与D点的坐标分别为( )A.(﹣2,),(2,﹣)B.(﹣,2),(,﹣2)C.(﹣,2),(2,﹣) D.(,)()10.以下四个命题:①用换元法解分式方程﹣+=1时,如果设=y,那么可以将原方程化为关于y的整式方程y2+y﹣2=0;②如果半径为r的圆的内接正五边形的边长为a,那么a=2r cos54°;③有一个圆锥,与底面圆直径是且体积为的圆柱等高,如果这个圆锥的侧面展开图是半圆,那么它的母线长为;④二次函数y=ax2﹣2ax+1,自变量的两个值x1,x2对应的函数值分别为y1、y2,若|x1﹣1|>|x2﹣1|,则a(y1﹣y2)>0.其中正确的命题的个数为( )A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分,本题要求把正确结果填在答题卡规定的横线上,不需要解答过程)11.因式分解:x2y﹣4y3=.12.下面三个命题:①底边和顶角对应相等的两个等腰三角形全等;②两边及其中一边上的中线对应相等的两个三角形全等;③斜边和斜边上的中线对应相等的两个直角三角形全等,其中正确的命题的序号为.13.同时掷两枚质地均匀的骰子,则至少有一枚骰子的点数是6这个随机事件的概率为.14.关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,则其解为.15.已知正方形ABCD的面积是2,E为正方形一边BC在从B到C方向的延长线上的一点,若CE=,连接AE,与正方形另外一边CD交于点F,连接BF并延长,与线段DE交于点G,则BG的长为.16.对任意实数a,若多项式2b2﹣5ab+3a2的值总大于﹣3,则实数b的取值范围是.三、解答题(本大题共9小题,满分72分,解答应写出文字说明、证明过程或演算步骤17.(10分)计算(1)计算(1)÷(﹣)+×﹣()﹣2(2)先化简,再求值:(+)÷,其中x=3,y=.18.(6分)如图,在△ABC中,内角A、B、C所对的边分别为a、b、c.(1)若a=6,b=8,c=12,请直接写出∠A与∠B的和与∠C的大小关系;(2)求证:△ABC的内角和等于180°;(3)若=,求证:△ABC是直角三角形.19.(6分)用配方法求一元二次方程(2x+3)(x﹣6)=16的实数根.20.(7分)如图,已知甲地在乙地的正东方向,因有大山阻隔,由甲地到乙地需要绕行丙地.已知丙地位于甲地北偏西30°方向,距离甲地460km,丙地位于乙地北偏东66°方向,现要打通穿山隧道,建成甲乙两地直达高速公路,如果将甲、乙、丙三地当作三个点A、B、C,可抽象成图(2)所示的三角形,求甲乙两地之间直达高速线路的长AB(结果用含非特殊角的三角函数和根式表示即可).21.(9分)镇政府想了解对王家村进行“精准扶贫”一年来村民的经济情况,统计员小李用简单随机抽样的方法,在全村130户家庭中随机抽取20户,调查过去一年的收入(单位:万元),从而去估计全村家庭年收入情况.已知调查得到的数据如下:1.9,1。

内蒙古呼伦贝尔市2019年中考数学试题含答案(word版)

内蒙古呼伦贝尔市2019年中考数学试题含答案(word版)

姓名考号试卷类型A2019年呼伦贝尔市初中毕业生学业考试数学温馨提示:1.本试卷共6页,满分120分.考试时间120分钟.2.答卷前务必将自己的姓名、考号、座位号、试卷类型(A或B)涂写在答题卡上;选择题答案选出后,请用2B铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,请先用橡皮擦拭干净,再改涂其他答案;非选择题,请用0.5毫米的黑色字迹签字笔直接答在答题卡上.在试卷上作答无效.3.请将姓名与考号填写在本试卷相应位置上.4.考试结束,将试卷、答题卡和草纸一并交回.一、选择题(下列各题的四个选项中只有一个正确.共12小题,每小题3分,共36分)1.13-的倒数是A.3 B.3-C.13-D.132.用3个相同的立方块搭成的几何体如图所示,它的主视图是3.下列各式计算正确的是A.532x x x-=B.336()mn mn=C.222)(baba+=+D.624p p p÷=(0)p≠4.在正方形、等腰三角形、矩形、菱形中,既是中心对称图形又是轴对称图形的有A.1个B.2个C.3个D.4个5.下列事件是随机事件的是A.通常情况温度降到0℃以下,纯净的水结冰;B.随意翻到一本书的某页,这页的页码是偶数;C.度量三角形的内角和,结果是360°;D.测量某天的最低气温,结果为-180℃.6.如图,已知AB∥CD,∠2=120°,则∠1的度数是A.30°B.60°C.120°D.150°7.一个多边形的每个内角均为108°,则这个多边形是A B C D正面6题图21DCBA15题图O DCB AA .七边形B .六边形C .五边形D .四边形8.九年级某班十名同学进行定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,这组数据的中位数、众数分别为 A .4,5B .5,4C .4,4D .5,59.将点A (-2,-3)向右平移3个单位长度得到点B ,则点B 所处的象限是A .第一象限B .第二象限C .第三象限D .第四象限10.一元二次方程220x x --=的解是A .1221x x ==,B .1221x x =-=,C .1221x x ==-,D .1221x x =-=-,11.如图,在水平地面上,由点A 测得旗杆BC 顶点C 的仰角为60°,点A 到旗杆的距离AB=12米,则旗杆的高度为 A .63米 B .6米C .123米D .12米12.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是A .34π B .38π C .32π D .316π二、填空题(本题5个小题,每小题3分,共15分)13.在函数324y x =-中,自变量x 的取值范围是 .14.分解因式:293025a a -+= .15.如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,6AC =,则OD = .16.用一个圆心角为120︒,半径为4的扇形作一个圆锥的侧面,则这个圆锥底面圆的周长为 . 17.一组等式:22221223++=,22222367++=,2222341213++=,2222452021++=……请观察它们的构成规律,用你发现的规律写出第9个等式 .三、解答题(本题4个小题,每小题6分,共24分)18.计算:201()122tan 60(3)2π--+︒+-19.先化简,再求值:211(1)22x x x -+÷--,其中3x = 60°11题图CBA12题图20.把形状、大小、质地完全相同的4张卡片分别标上数字-1、-4、0、2,将这4张卡片放入不透明的盒子中搅匀.求下列事件的概率:(1)从中随机抽取一张卡片,卡片上的数字是负数;(2)先从盒子中随机抽取一张卡片不放回,再随机抽取一张,两张卡片上的数字之积为0(用列表法或树形图).21.如图,在平面直角坐标系中,已知一次函数y kx b=+的图象经过点A (1,0),与反比例函数my x=(x >0)的图象相交于点B (2,1).(1)求m 的值和一次函数y kx b =+的解析式;(2)结合所给图象直接写出:当x >0时,不等式kx b +>mx的解集.四、(本题7分)22.某中学九(2)班同学为了了解2019年某小区家庭月均用水情况,随机调查了该小区的部分家庭,并将调查数据进行如下整理.请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)求被调查的家庭中,用水量不超过15吨的家庭占总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20吨的家庭大约有多少户?五、(本题7分)23.从甲地到乙地的路有一段上坡,一段下坡.如果上坡平均每分钟走50米,下坡平均每分钟走100米,那么月均用水量x (吨) 频数 频率 0﹤x ≤5 6 0.12 5﹤x ≤100.2410﹤x ≤15 16 0.32 15﹤x ≤20 10 0.20 20﹤x ≤25 4 25﹤x ≤30 20.04yx121题图OB A12月均用水量(吨)频数5 10 15 20 25 301612 8 4 0DCFE F图2图1DCAO(E)ABO B从甲地走到乙地需要25分钟,从乙地走到甲地需要20分钟.甲地到乙地上坡与下坡的路程各是多少?六、(本题8分)24.如图,在ABC ∆中,以AB 为直径的⊙O 交AC 于点M ,弦MN ∥BC 交AB 于点E ,且1,2,3ME AM AE ===.(1)求证:BC 是⊙O 的切线; (2)求⊙O 的半径.七、(本题10分)25.某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)求出每天所得的销售利润w (元)与每件涨价x (元)之间的函数关系式; (2)求销售单价为多少元时,该商品每天的销售利润最大; (3)商场的营销部在调控价格方面,提出了A ,B 两种营销方案.方案A :每件商品涨价不超过5元; 方案B :每件商品的利润至少为16元. 请比较哪种方案的最大利润更高,并说明理由.八、(本题13分)26.以AB 为直径作半圆O ,AB =10,点C 是该半圆上一动点,连接AC 、BC ,延长BC 至点D ,使DC =BC ,过点D 作DE ⊥AB 于点E ,交AC 于点F ,在点C 运动过程中:(1)如图1,当点E 与点O 重合时,连接OC ,试判断COB ∆的形状,并证明你的结论; (2)如图2,当DE =8时,求线段EF 的长; (3)当点E 在线段OA上时,是否存在以点E 、O 、F 为顶点的三角形与ABC ∆相似?若存在,请求出此时线段OE的长;若不存在,请说明理由.NAB CM E O24题图2019年呼伦贝尔市初中毕业生学业考试数学答案及评分标准试卷类型A一、选择题(每小题3分,共36分)试卷类型B一、选择题(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 910 11 12答案ADCBACBDA D DC二、填空题(每小题3分,共15分)13.2≠x 14.2(35)a -15.316.38π17.22229190109=++三、解答题(每小题6分,共24分)18.解:原式132324++-=…………(4分) 5=…………(6分) 19.解:原式2)1)(1()212(--+÷-+-=x x x x x…………(2分))1)(1(221-+-⨯--=x x x x x…………(3分)11+=x …………(4分)当3=x 时 原式41131=+=…………(6分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCDCBBCADCCB20.解:(1)设抽到卡片上的数字是负数记为事件A ,则21()42P A == …………(2分)(2)依题意列表(树形图)如下:…………(4分)故所有等可能结果有12种,其中两张卡片上的数字之积是0的结果有6种,设两张卡片上的数字之积是0为事件B ,则61()122P B == …………(6分)21.解:(1) 反比例函数)0(>=x xmy 的图象经过点B (2,1) 12m∴=∴2=m…………(1分)又 一次函数b kx y +=的图象经过A (1,0), B (2,1)∴⎩⎨⎧+=+=bk bk 210…………(3分)解得:⎩⎨⎧-==11b k∴一次函数的解析式为:1y x =-…………(4分) (2)2>x…………(6分)四、(本题满分7分)22.解:(1)-1 -4 0 2 1-4-24- 4 0 -8 0 0 0 0 2-2-8月均用水量x 吨 x x 频数频率 0﹤x ≤5 6 0.12 5﹤x ≤10 12 0.24 10﹤x ≤15 16 0.32 15﹤x ≤20 10 0.20 20﹤x ≤25 4 0.08 25﹤x ≤3020.04 -8-2-84-20004积第二张-1-122-1200000-4-4-420-4-1第一张第一张 第二张…………(3分)(2)%68%10024101612616126=⨯+++++++答:被调查的家庭中,用水量不超过15吨的家庭占总数的百分比是68%…………(5分)(3)120100024101612624=⨯++++++(户)答:该小区月均用水量超过20吨的家庭大约有120户. …………(7分) 五、(本题满分7分)23.解:设甲地到乙地上坡路x 米,下坡路y 米. …………(1分)根据题意,得25501002050100xy y x ⎧+=⎪⎪⎨⎪+=⎪⎩ …………(5分)解得1000500x y =⎧⎨=⎩ …………(6分)答:甲地到乙地上坡路1000米,下坡路500米. …………(7分)六、(本题满分8分)24.(1)证明:∵在AME ∆中=AM 2 ,ME =1,3=AE∴222AE ME AM +=, ∴AME ∆是直角三角形 ∴︒=∠90AEM…………(2分)又 MN ∥BC ∴︒=∠90ABC…………(3分)∴BC AB ⊥ 又 AB 是直径 ∴BC 是⊙O 的切线…………(4分)(2)解:连接OM ,设⊙O 的半径是r…………(5分)在OEM Rt ∆中 3OE r =- …………(6分) ∴222(3)1r r =-+ …………(7分) ∴233r =…………(8分)七、(本题满分10分)24题图O E M CBAN25.解:(1)根据题意得:(2520)(25010)w x x =+--…………(2分)即:)250(1250200102≤≤++-=x x x w或210(10)2250(025)w x x =--+≤≤ …………(3分) (2) 010<-,抛物线开口向下,二次函数有最大值 当10)10(22002=-⨯-=-=a b x 时,销售利润最大此时销售单价为:10+25=35(元)答: 销售单价为35元时,该商品每天的销售利润最大.…………(5分)(3)由(2)可知,抛物线对称轴是直线10=x ,开口向下,对称轴左侧w 随x 的增大而增大,对称轴右侧w 随x 的增大而减小 方案A :根据题意得, 5≤x ∴50≤≤x 当5=x 时,利润最大最大利润为2000125052005102=+⨯+⨯-=w (元)………(7分)方案B :根据题意得,162025≥-+x∴11≥x ∴2511≤≤x∴当x =11时,利润最大最大利润为224012501120011102=+⨯+⨯-=w (元)……(9分) 20002240>∴综上所述,方案B 最大利润更高 …………(10分)八、(本题满分13分)26.(1)答:COB ∆是等边三角形 …………(1分) 证明: AB DE ⊥∴︒=∠90DOB又 DC BC =∴BC OC =…………(2分)∴OB BC OC == ∴COB ∆是等边三角形…………(3分) (2)解:连接AD…………(4分)AB 为圆O 的直径 ∴︒=∠90ACB又 DC BC =F图1DCO(E)ABBO A图2EFCD∴10==AB AD∴68102222=-=-=DE AD AE ∴4EB =…………(5分)又 ︒=∠+∠︒=∠+∠90,90BDE B BAC B ∴BDE BAC ∠=∠ ∴AEF ∆∽DEB ∆ …………(6分) ∴DE AEEB EF =…………(7分)∴864=EF ∴3=EF …………(8分)(3)答;存在当OEF ∆和ABC ∆相似时 ①如图3,若FOE CAB ∠=∠ 则AF OF = 又 AB DE ⊥ ∴252===OA AE OE …………(10分)②如图4,若CBA EOF ∠=∠ 则OF ∥BD∴21=BC OF ………(11分) ∴41=BD OF ∴41==BD OF BE OE …………(12分) ∴415=+OE OE∴35=OE综上所述:OE 的长为25或35 …………(13分)。

2019年呼和浩特市中考数学试卷及答案(word版)

2019年呼和浩特市中考数学试卷及答案(word版)

2019年 呼 和 浩 特 市 中 考 试 卷数 学注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题纸的规定位置。

2.考生要将答案写在答题纸上,在试卷上答题一律无效。

考试结束后,本试卷和答题纸一并交回。

3.本试卷满分120分。

考试时间120分钟。

一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列实数是无理数的是A .–1B .0C .πD .132.以下问题,不适合用全面调查的是A .旅客上飞机前的安检B .学校招聘教师,对应聘人员的面试C .了解全校学生的课外读书时间D .了解一批灯泡的使用寿命3.已知线段CD 是由线段AB 平移得到的,点A (–1,4)的对应点为C (4,7),则点B (–4,–1)的对应点D 的坐标为 A .(1,2) B .(2,9) C .(5,3)D .(–9,–4)4.右图是某几何体的三视图,根据图中数据,求得该几何体的体积为A .60πB .70πC .90πD .160π5.某商品先按批发价a 元提高10%零售,后又按零售价降低10%出售,则最后的单价是A .a 元B .0.99a 元C .1.21a 元D .0.81a 元6.已知⊙O 的面积为2π,则其内接正三角形的面积为 A .3 3B .3 6C .323D .3267.实数a ,b ,c 在数轴上对应的点如下图所示,则下列式子中正确的是A .ac > bcB .|a –b| = a –bC .–a <–b < cD .–a –c >–b –c8.下列运算正确的是A .54·12 = 326 B .(a 3)2 =a 3C .⎝⎛⎭⎫1a +1b 2÷⎝⎛⎭⎫1a 2–1b 2 =b +a b –aD .(–a)9÷a 3 =(–a)69.已知矩形ABCD 的周长为20cm ,两条对角线AC ,BD 相交于点O ,过点O 作AC 的垂线EF ,分别交两边AD ,BC 于E ,F (不与顶点重合),则以下关于CDE 与ABF 判断完全正确的一项为 A .CDE 与ABF 的周长都等于10cm ,但面积不一定相等 B .CDE 与ABF 全等,且周长都为10cm C .CDE 与ABF 全等,且周长都为5cmD .CDE 与ABF 全等,但它们的周长和面积都不能确定10.已知函数y = 1|x|的图象在第一象限的一支曲线上有一点A (a ,c ),点B (b ,c +1)在该函数图象的另外一支上,则关于一元二次方程ax 2+bx +c = 0的两根x 1,x 2判断正确的是 A .x 1 + x 2 >1,x 1·x 2 > 0 B .x 1 + x 2 < 0,x 1·x 2 > 0C .0 < x 1 + x 2 < 1,x 1·x 2 > 0D .x 1 + x 2与x 1·x 2 的符号都不确定二、填空题(本大题共6小题,每小题3分,共18分.本题要求把正确结果填在答题纸规定的横线上,不需要解答过程)11.一个底面直径是80cm ,母线长为90cm 的圆锥的侧面展开图的圆心角的度数为________.12.某校五个绿化小组一天的植树的棵数如下:10,10,12,x ,8. 已知这组数据的平均数是10,那么这组数据的方差是_________.a b 0 c x13.等腰三角形一腰上的高与另一腰的夹角为36,则该等腰三角形的底角的度数为_____________.14.把多项式6xy 2–9x 2y –y 3因式分解,最后结果为_________.15.已知m ,n 是方程x 2+2x –5 = 0的两个实数根,则m 2–mn +3m +n=_________. 16.以下四个命题:①每一条对角线都平分一组对角的平行四边形是菱形.②当m > 0时, y =–mx +1与y = mx两个函数都是y 随着x 的增大而减小.③已知正方形的对称中心在坐标原点,顶点A ,B ,C ,D 按逆时针依次排列,若A 点坐标为(1,3), 则D 点坐标为(1,–3).④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为 18. 其中正确的命题有_________(只需填正确命题的序号)三、解答题(本大题共9小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(10分)计算(1)(5分)计算: 2cos 30°+(3–2)–1 +⎪⎪⎪⎪–12(2)(5分)解方程: 3x 2+2x –1x 2–2x= 018.(6分)如图,一艘海轮位于灯塔P 的北偏东65方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45方向上的B 处,这时,海轮所在的B 处距离灯塔P 有多远?(结果用非特殊角的三角函数及根式表示即可)19.(5分)已知实数a 是不等于3的常数,解不等式组⎩⎪⎨⎪⎧–2x +3≥–312 (x –2a)+12 x < 0 ,并依据a 的取值情况写出其解集.20.(9分)学校为了了解初三年级学生体育跳绳的训练情况,从初三年级各班随机抽取了50名学生进行了60秒跳绳的测试,并将这50名学生的测试成绩(即60秒跳绳的个数)从低到高分成六段记为第一到六组,最后整理成下面的频数分布直方图:请根据直方图中样本数据提供的信息解答下列问题. (1)跳绳次数的中位数落在哪一组?由样本数据的中位数你能推断出学校初三年级学生关于60秒跳绳成绩的一个什么结论? (2)若用各组数据的组中值(各小组的两个端点的数的平均数)代表各组的实际数据,求这50名学生的60秒跳绳的平均成绩(结果保留整数);(3)若从成绩落在第一和第六组的学生中随机抽取2名学生,用列举法求抽取的2名学生恰好在同一组的概率.21.(7分)如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O, 连接DE.(1)求证:∆ADE≌∆CED;(2)求证: DE∥AC.22.(7分)为鼓励居民节约用电,我市自2019年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和 410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?23.(8分)如图,已知反比例函数y = kx(x > 0,k是常数)的图象经过点A(1,4),点B(m , n),其中m>1, AM⊥x轴,垂足为M,BN⊥y 轴,垂足为N,AM与BN的交点为C.(1)写出反比例函数解析式;(2)求证:∆ACB∽∆NOM;(3)若∆ACB与∆NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.24.(8分)如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 作⊙O 的切线CM .(1)求证:∠ACM=∠ABC ;(2)延长BC 到D ,使BC = CD ,连接AD 与CM 交于点E ,若⊙O 的半径为3,ED = 2, 求∆ACE 的外接圆的半径.25.(12分)如图,已知直线l 的解析式为y = 12x –1,抛物线y = ax 2+bx +2经过点A (m ,0),B (2,0),D ⎝⎛⎭⎫1,54 三点.(1)求抛物线的解析式及A 点的坐标,并在图示坐标系中画出抛物线的大致图象;(2)已知点 P (x ,y )为抛物线在第二象限部分上的一个动点,过点P 作PE 垂直x 轴于点E, 延长PE 与直线l 交于点F ,请你将四边形PAFB 的面积S 表示为点P 的横坐标x 的函数, 并求出S 的最大值及S 最大时点P 的坐标;(3)将(2)中S 最大时的点P 与点B 相连,求证:直线l 上的任意一点关于x 轴的对称点一定在PB 所在直线上.。

2019年内蒙古呼和浩特中考数学试题(解析版)

2019年内蒙古呼和浩特中考数学试题(解析版)

()0.6*0.7CABDL>C A B D{来源}2019年呼和浩特中考数学试卷 {适用范围3九年级}{标题}2019年呼和浩特市中考试卷数学{答案}A{解析}此题主要考查了正数和负数, 本题的解题关键是求出检测结果的绝对值,绝对值越小的数 越接近标准•由题意得:四个排球质量偏差的绝对值分别为: 0.6 , 0.7 , 2.5 , 3.5,绝对值最小的为0.6,最接近标准.故选:A • {分值}3{章节:[1-1-2-4]绝对值} {考点:绝对值的意义} {类别:常考题} {难度:1-最简单}{题型:1-选择题}一、选择题(本大题 10小题,每小题3分,共30分){题目} (2019年呼和浩特,T1 ) 1.如右图,检测排球,其中质量超过标准的克数记为正数,不足的 克数记为负数,下面检测过的四个排球,在其上方标注了检测结果,其中质量最接近标注的一个是T3 ) 3.二次函数y=ax 2与一次函数 y=ax+a 在同一坐标系中的大致图(){答案}B{解析}本题考查了轴对称图形的概念, 轴对称图形的关键是寻找对称轴,图形两部分折叠后可重 合.A 、是轴对称图形,故本选项错误; B 、不是轴对称图形,故本选项正确;C 、是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项错误•故选:B .{分值}3{章节:[1-13-1-1]轴对称} {考点:生活中的轴对称} {类别:常考题} {难度:1-最简单}{题目} (2019年呼和浩特,象可能是{题目} (2019年呼和浩特,T2 ) 2.甲骨文是我国的一种古代文字,下面是“北”“比” “鼎” “射”四个字的甲骨文,其中不是轴对称的是(){答案}D{解析}本题主要考查一次函数和二次函数的图象, 解题的关键是熟练掌握二次函数的图象和一次函数的图象与系数之间的关系.由一次函数y=ax+a 可知,一次函数的图象与 x 轴交于点(-1,0),排除A 、B ;当a >0时,二次函数开口向上,一次函数经过一、三、四象限,当 a v 0时,二次函数开口向下,一次函数经过二、三、四象限,排除 C ;故选:D .{分值}3{章节:[1-22-1-4] 二次函数y=ax 2+bx+c 的图象和性质} {考点:一次函数的性质}{考点:二次函数y=ax 2+bx+c 的性质} {类别:常考题} {难度:2-简单}{题目} (2019年呼和浩特,T4 ) 4.已知菱形的边长为3,较短的一条对角线的长为 2,则该菱形较长的一条对角线的长为 ()A. 2 2B. 2.5C. 4,2D. 2 10{答案}C{解析}此题考查了菱形的性质以及勾股定理•注意根据题意画出图形,结合图形求解是关键•如图,{分值}3{章节:[1-18-2-2] 菱形} {考点:勾股定理} {考点:菱形的性质} {类别:常考题} {难度:2-简单}{题目} (2019年呼和浩特,T5 ) 5.某学校近几年来通过“书香校园”主题系列活动,倡导学生 整本阅读纸质课外书籍,下面的统计图是该校 2013年至2018年纸质书人均阅读量的情况,根据统计图的信息,下列推断不合理的是()A. 从2013年到2016年,该校纸质书人均阅读量逐年增长B. 2013年至2018年,该校纸质书人均阅读量的中位数是 46.7本C. 2013年至2018年,该校纸质书人均阅读量的极差是 45.3本D. 2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的 2倍{答案}D{解析}此题主要考查了折线统计图,利用折线统计图获取正确信息是解题关键.选项A 、从2013年到2016年,该校纸质书人均阅读量逐年增长,正确;选项 B 、2013年43 3 50 1至2018年,该校纸质书人均阅读量的中位数是=46.7本,正确;选项 C 、2013年至•••四边形ABCD 是菱形, ,OB=OD , AC 丄BD , • OB= AB 2-OA 2 = . 32-/=2 2 ,••• BD=2OB=4 .2 ;故选: ••• OA=OC= -AC=1 汕/*r\r- ― ~~—-―-**Ml ■哥22018年,该校纸质书人均阅读量的极差是60.8-15.5=45.3 本,正确;选项D、2013年至2018{答案}B{解析}本题主要考查由几何体的三视图想象几何体以及求其表面积,几何体.由三视图可知几何体为一个长方体中间挖去一个圆柱体,中间空缺部分为一个直径为 2,高为3的圆柱体.其中上下底面积均为正方形面积减去圆的面积,外年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的60.8 50.1 58.4〜17.443.3 38.5 15.5丰2倍,错误;故选:D .{分值}3{章节:[1-10-1]统计调查} {考点:折线统计图} {考点:算术平均数} {考点冲位数} {考点:极差} {类别:常考题} {难度:2-简单}{题目} (2019年呼和浩特, 2x 5 T6) 6.若不等式 -1 < 2-x 的解集中 3x 的每一个值都能使关于不等式 3(x-1)+5 > 5x+2(m+x)成立,则m 的取值范围3A. m > -- 51 B. m v --53 C. m v —1D. m > --5{答案}C{解析}本题主要对解一元一次不等式组, 不等式的性质等知识点的理解和掌握, 能根据已知得到关于m 的不等式是解此题的关键•解不等式2x 5-1 < 2-x 得:x < 4,•••不等式"5-1 < 2-x 的解3531 m集中x 的每一个值,都能使关于x 的不等式3(x-1)+5 >5x+2(m+x) (m +x )成立,二x v—21m 4 3 ------ > —,解得:m v —,故选:C . 255{分值}3{章节:[1-9-2] —元一次不等式} {考点:解一元一次不等式} {考点:不等式的解集} {类别:常考题} {难度:3-中等难度}{题目} (2019年呼和浩特,T7 ) 7.右图是一个几何体的三视图,其中主视图与左视图完全一样, 则这个几何体的表面积是()C.80D.80+6 n解题的关键是正确从三视图构造 其中长方体的长宽高分别为4,4,3 ;Tt侧面积为长方体的侧面积;内侧面积为圆柱体的侧面积。

2019年内蒙古呼和浩特市中考数学试卷

2019年内蒙古呼和浩特市中考数学试卷

2019年内蒙古呼和浩特市中考数学试卷一、选择题(共10小题,每小题3分,共30分。

)1. 如图,检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,下面检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是()A.B.C.D.【答案】A【考点】正数和负数的识别【解析】根据题意可知:质量最接近标准的排球就是检测结果的绝对值最小的.【解答】由题意得:四个排球质量偏差的绝对值分别为:0.6,0.7,2.5,3.5,绝对值最小的为0.6,最接近标准.2. 甲骨文是我国的一种古代文字,下面是“北”“比”“鼎.射”四个字的甲骨文,其中不是轴对称图形的是()A.B.C.D.【答案】B【考点】轴对称图形【解析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.3. 二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是( )A.B.C.D.【答案】D【考点】二次函数的图象【解析】由一次函数y=ax+a可知,一次函数的图象与x轴交于点(−1, 0),即可排除A、B,然后根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y轴的交点可得相关图象进行判断.【解答】解:由一次函数y=ax+a可知,一次函数的图象与x轴交于点(−1, 0),故排除A、B;当a>0时,二次函数y=ax2开口向上,一次函数y=ax+a经过一、二、三象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,故排除C.故选D.4. 已知菱形的边长为3,较短的一条对角线的长为2,则该菱形较长的一条对角线的长为()A.2√2B.2√5C.4√2D.2√10【答案】C【考点】菱形的性质【解析】首先根据题意画出图形,然后由菱形的性质,求得OA=1,AC⊥BD,然后由勾股定理求得OB的长,继而求得答案.【解答】如图,∵四边形ABCD是菱形,∴OA=OC=1AC=1,OB=OD,AC⊥BD,2∴OB=√AB2−OA2=√32−12=2√2,∴BD=2OB=4√2;5. 某学校近几年来通过“书香校园”主题系列活动,倡导学生整本阅读纸质课外书籍.下面的统计图是该校2013年至2018年纸质书人均阅读量的情况,根据统计图提供的信息,下列推断不合理的是()A.从2013年到2016年,该校纸质书人均阅读量逐年增长B.2013年至2018年,该校纸质书人均阅读量的中位数是46.7本C.2013年至2018年,该校纸质书人均阅读量的极差是45.3本D.2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的2倍【答案】D【考点】极差中位数【解析】利用折线统计图结合相应数据,分别分析得出符合题意的答案.【解答】A、从2013年到2016年,该校纸质书人均阅读量逐年增长,正确;B、2013年至2018年,该校纸质书人均阅读量的中位数是43.3+50.12=46.7本,正确;C、2013年至2018年,该校纸质书人均阅读量的极差是60.8−15.5=45.3本,正确;D、2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的60.8+50.1+58.443.3+38.5+15.5≈1.74≠2倍,错误;6. 若不等式2x+53−1≤2−x的解集中x的每一个值,都能使关于x的不等式3(x−1)+5>5x+2(m+x)成立,则m的取值范围是()A.m>−35B.m<−15C.m<−35D.m>−15【答案】C【考点】解一元一次不等式【解析】求出不等式2x+53−1≤2−x的解,求出不等式3(x−1)+5>5x+2(m+x)的解集,得出关于m的不等式,求出m即可.【解答】解不等式2x+53−1≤2−x得:x≤45,∵不等式2x+53−1≤2−x的解集中x的每一个值,都能使关于x的不等式3(x−1)+ 5>5x+2(m+x)成立,∴x<1−m2,∴1−m2>45,解得:m<−35,7. 如图是一个几何体的三视图,其中主视图与左视图完全一样,则这个几何体的表面A.80−2πB.80+4πC.80D.80+6π【答案】B【考点】由三视图判断几何体几何体的表面积【解析】由三视图可知,该几何体是长方体,中间是空心圆柱体,长方体的长宽高分别为4,4,3,圆柱体直径为2,高为3,据此解答即可.【解答】由三视图可知,该几何体是长方体,中间是空心圆柱体,长方体的长宽高分别为4,4,3,圆柱体直径为2,高为3,长方体表面积:4×4×2+4×3×4=80,圆柱体侧面积2π×3=6π,上下表面空心圆面积:2π,∴这个几何体的表面积是:80+6π−2π=80+4π,8. 若x1,x2是一元二次方程x2+x−3=0的两个实数根,则x23−4x12+17的值为()A.−2B.6C.−4D.4【答案】A【考点】根与系数的关系【解析】利用根与系数的关系可得出x1+x2=−1、x1⋅x2=−3,将代数式x23−4x12+17进行转化后得出(x2−1)(x22+x+1)−4x12+18,再代入数据即可得出结论.【解答】∵x1,x2是一元二次方程x2+x−3=0的两个实数根,∴x1+x2=−1,x1⋅x2=−3,x2+x=3,∴x23−4x12+17=x23−1−4x12+18=(x2−1)(x22+x2+1)−4x12+18=(−1−x1−1)×4−4x12+18=−8−4x1−4x12+18=−8−4(x12+x1)+18=10−4×3=−2,9. 已知正方形的对称中心在坐标原点,顶点A、B、C、D按逆时针依次排列,若A点的坐标为(2, √3),则B点与D点的坐标分别为()A.(−2, √3),(2, −√3)B.(−√3, 2),(√3, −2)C.(−√3, 2),(2, −√3)D.(−√72, √212)(√72,−√212)【答案】B【考点】坐标与图形性质正方形的性质中心对称【解析】连接OA、OD,过点A作AF⊥x轴于点F,过点D作DE⊥x轴于点E,易证△AFO≅△OED(AAS),则OE=AF=√3,DE=OF=2,D(√3, −2),因为B、D关于原点对称,所以B(−√3, 2).【解答】如图,连接OA、OD,过点A作AF⊥x轴于点F,过点D作DE⊥x轴于点E,易证△AFO≅△OED(AAS),∴OE=AF=√3,DE=OF=2,∴D(√3, −2),∵B、D关于原点对称,∴B(−√3, 2),10. 以下四个命题:①用换元法解分式方程−x2+1x +2xx2+1=1时,如果设x2+1x=y,那么可以将原方程化为关于y的整式方程y2+y−2=0;②如果半径为r的圆的内接正五边形的边长为a,那么a=2rcos54∘;③有一个圆锥,与底面圆直径是√3且体积为√3π2的圆柱等高,如果这个圆锥的侧面展开图是半圆,那么它的母线长为43;④二次函数y =ax2−2ax+1,自变量的两个值x1,x2对应的函数值分别为y1、y2,若|x1−1|> |x2−1|,则a(y1−y2)>0.其中正确的命题的个数为()A.1个B.2个C.3个D.4个【答案】D【考点】命题与定理【解析】①利用换元法代入并化简;②作OF⊥BC,在Rt△OCF中,利用三角函数求出a的长;③这个圆锥母线长为R,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2π⋅r=180⋅π⋅R180,然后解关于R的方程即可;④根据二次函数图象的性质判断.【解答】①设x 2+1x=y ,那么可以将原方程化为关于y 的整式方程y 2+y −2=0,故正确;②作OF ⊥BC .∵ ∠COF =72∘÷2=36∘, ∴ CF =r ⋅sin36∘,∴ CB =2rsin36∘,即a =2rsin36∘=2rcos54∘. 故正确;③设圆锥的高为ℎ,底面半径为r ,母线长为R , 根据题意得2π⋅r =180⋅π⋅R 180,则R:r =2:1.由π⋅(√32)2ℎ=√3π2得到ℎ=2√33. 所以ℎ2+r 2=R 2,即(2√33)2+14R 2=R 2,则R =43 即它的母线长是43.故正确;④二次函数y =ax 2−2ax +1的对称轴是x =1,若a <0时,如图:当x 1<x 2<1时,y 1<y 2此时|x 1−1|>|x 2−1|,y 1<y 2, 所以a(y 1−y 2)>0. 故正确.综上所述,正确的命题的个数为4个.二、填空题(本大题共6小题,每小题3分,共18分,本题要求把正确结果填在答题卡规定的横线上,不需要解答过程)因式分解:x 2y −4y 3=________. 【答案】y(x −2y)(x +2y)【考点】提公因式法与公式法的综合运用【解析】首先提公因式y,再利用平方差进行分解即可.【解答】原式=y(x2−4y2)=y(x−2y)(x+2y).下面三个命题:①底边和顶角对应相等的两个等腰三角形全等;②两边及其中一边上的中线对应相等的两个三角形全等;③斜边和斜边上的中线对应相等的两个直角三角形全等,其中正确的命题的序号为________.【答案】①②【考点】命题与定理【解析】由全等三角形的判定方法得出①②正确,③不正确.【解答】①底边和顶角对应相等的两个等腰三角形全等;正确;理由:已知:如图1,2,在△ABC和△A′B′C′中,AB=AC,A′B′=A′C′,BC=BC,∠A=∠A′,求证:△ABC≅△A′B′C′,证明:在△ABC中,AB=AC,∴∠B=∠C.∴∠B=12(180∘−∠A)=90∘−12∠A,同理:∠B′=90∘−12∠A′,∵∠A=∠A′,∴∠B=∠B′,∵BC=B′C′,∴△ABC≅△A′B′C′(AAS)②两边及其中一边上的中线对应相等的两个三角形全等;正确;理由:已知:如图3,4在△ABC和△A′B′C′中,AD,A′D′是△ABC和△A′B′C′的中线,且AD=A′D′,AB=A′B′,BC=B′C′,求证:△ABC≅△A′B′C′证明:∵AD,A′D′是△ABC和△A′B′C′的中线,∴BD=12BC,B′D′=12B′C′,∵BC=B′C′,∴BD=B′D′,∵AB=A′B′,AD=A′D′,∴△ABC≅△A′B′C′(SSS)③斜边和斜边上的中线对应相等的两个直角三角形全等;不正确;例如:两直角三角形的斜边都是10,斜边的中线都是5,而其中一个直角三角形的两锐角是30∘和60∘,另一个直角三角形的两锐角是40∘和50∘同时掷两枚质地均匀的骰子,则至少有一枚骰子的点数是6这个随机事件的概率为________. 【答案】1136【考点】列表法与树状图法 【解析】画树状图展示所有36种等可能的结果数,再找出至少有一枚骰子的点数是6的结果数,然后根据概率公式求解. 【解答】画树状图如图所示:共有36种等可能的结果数,其中至少有一枚骰子的点数是6的结果数为11, 所以至少有一枚骰子的点数是6的概率=1136. 故答案为:1136.关于x 的方程mx 2m−1+(m −1)x −2=0如果是一元一次方程,则其解为________. 【答案】x =2或x =−2或x =−3 【考点】一元一次方程的定义 【解析】利用一元一次方程的定义判断即可. 【解答】∵ 关于x 的方程mx 2m−1+(m −1)x −2=0如果是一元一次方程, ∴ 当m =1时,方程为x −2=0,解得:x =2; 当m =0时,方程为−x −2=0,解得:x =−2; 当2m −1=0,即m =12时,方程为12−12x −2=0,解得:x =−3,已知正方形ABCD 的面积是2,E 为正方形一边BC 在从B 到C 方向的延长线上的一点,若CE =√2,连接AE ,与正方形另外一边CD 交于点F ,连接BF 并延长,与线段DE 交于点G ,则BG 的长为________. 【答案】 2√103【考点】 勾股定理相似三角形的性质与判定正方形的性质全等三角形的性质与判定【解析】根据题意画出,根据已知条件可得到点F是CD的中点,通过作辅助线,将问题转化证△HDG∽△BEG,得出对应边成比例,由相似比转化为BG等于BH的三分之二,而BH 可以通过勾股定理求出,使问题得以解决.【解答】如图:延长AD、BG相交于点H,∵正方形ABCD的面积是2,∴AB=BC=CD=DA=√2,又∵CE=√2,△EFC∽△EAB,∴ECEB =FCAB=12,即:F是CD的中点,∵AH // BE,∴∠H=∠FBC,∠BCF=∠HDF=90∘∴△BCF≅△HDF (AAS),∴DH=BC=√2,∵AH // BE,∴∠H=∠FBC,∠HDG=∠BEG ∴△HDG∽△BEG,∴DHBE =12=HGBG,在Rt△ABH中,BH=√AB2+AH2=√10,∴BG=23BH=2√103,对任意实数a,若多项式2b2−5ab+3a2的值总大于−3,则实数b的取值范围是________.【答案】−6<b<6【考点】非负数的性质:算术平方根解一元二次方程-配方法非负数的性质:绝对值非负数的性质:偶次方【解析】将已知转化为对任意实数a,3a2−5ab+2b2+3>0恒成立,利用△<0即可求解.【解答】由题意可知:2b2−5ab+3a2>−3,∴3a2−5ab+2b2+3>0,∵对任意实数a,3a2−5ab+2b2+3>0恒成立,∴△=25b2−12(2b2+3)=b2−36<0,∴−6<b<6;三、解答题(本大题共9小题,满分72分,解答应写出文字说明、证明过程或演算步骤计算(1)计算(112)÷(−34)+√3×√12−(1−√3)−2(2)先化简,再求值:(5x+3yx 2−y 2+2xy 2−x 2)÷x3(x−y),其中x =3√3,y =12. 【答案】 (112)÷(−34)+√3×√12−(1−√3)−2 =−32×43+√3×12−(1−√3)2=−2+6−4+2√3 =2√3; (5x +3y x 2−y 2+2x y 2−x 2)÷x3(x −y) =5x +3y −2x x 2−y 2÷x3(x −y) =3(x +y)(x +y)(x −y)⋅3(x −y)x=9x ,当x =3√3,y =12时,原式=3√3=√3.【考点】二次根式的混合运算 零指数幂、负整数指数幂 分母有理化 分式的化简求值 【解析】(1)根据实数的混合运算法则计算;(2)根据分式的混合运算法则把原式化简,代入计算即可. 【解答】 (11)÷(−3)+√3×√12−(11−√3)−2 =−32×43+√3×12−(1−√3)2=−2+6−4+2√3 =2√3; (5x +3y x 2−y 2+2x y 2−x 2)÷x3(x −y) =5x +3y −2x x 2−y 2÷x3(x −y) =3(x +y)(x +y)(x −y)⋅3(x −y)x=9x, 当x =3√3,y =12时,原式=3√3=√3.如图,在△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c .(1)若a =6,b =8,c =12,请直接写出∠A 与∠B 的和与∠C 的大小关系;(2)求证:△ABC 的内角和等于180∘; (3)若a a−b+c=12(a+b+c)c,求证:△ABC 是直角三角形.【答案】∵ 在△ABC 中,a =6,b =8,c =12, ∴ ∠A +∠B <∠C ;如图,过点A 作MN // BC , ∵ MN // BC ,∴ ∠MAB =∠B ,∠NAC =∠C (两直线平行,内错角相等), ∵ ∠MAB +∠BAC +∠NAC =180∘(平角的定义), ∴ ∠B +∠BAC +∠C =180∘(等量代换), 即:三角形三个内角的和等于180∘; ∵a a−b+c=12(a+b+c)c,∴ ac =12(a +b +c)(a −b +c)=12[(a 2+2ac +c 2)−b 2], ∴ 2ac =a 2+2ac +c 2−b 2, ∴ a 2+c 2=b 2,∴ △ABC 是直角三角形.【考点】勾股定理的逆定理 【解析】(1)根据三角形中大角对大边,即可得到结论;(2)画出图形,写出已知,求证;过点A 作直线MN // BC ,根据平行线性质得出∠MAB =∠B ,∠NAC =∠C ,代入∠MAB +∠BAC +∠NAC =180∘即可求出答案; (3)化简等式即可得到a 2+c 2=b 2,根据勾股定理的逆定理即可得到结论. 【解答】∵ 在△ABC 中,a =6,b =8,c =12,∴ ∠A +∠B <∠C ;如图,过点A 作MN // BC , ∵ MN // BC ,∴ ∠MAB =∠B ,∠NAC =∠C (两直线平行,内错角相等), ∵ ∠MAB +∠BAC +∠NAC =180∘(平角的定义), ∴ ∠B +∠BAC +∠C =180∘(等量代换), 即:三角形三个内角的和等于180∘; ∵a a−b+c=12(a+b+c)c,∴ ac =12(a +b +c)(a −b +c)=12[(a 2+2ac +c 2)−b 2], ∴ 2ac =a 2+2ac +c 2−b 2, ∴ a 2+c 2=b 2,∴ △ABC 是直角三角形.用配方法求一元二次方程(2x +3)(x −6)=16的实数根. 【答案】原方程化为一般形式为2x 2−9x −34=0, x 2−92x =17,x 2−92x +8116=17+8116, (x −94)2=35316,x −94=±√3534, 所以x 1=9+√3534,x 2=9−√3534.【考点】解一元二次方程-配方法 【解析】首先把方程化为一般形式为2x 2−9x −34=0,然后变形为x 2−92x =17,然后利用配方法解方程. 【解答】原方程化为一般形式为2x 2−9x −34=0, x 2−92x =17,x 2−92x +8116=17+8116, (x −94)2=35316,x −94=±√3534, 所以x 1=9+√3534,x 2=9−√3534.如图,已知甲地在乙地的正东方向,因有大山阻隔,由甲地到乙地需要绕行丙地.已知丙地位于甲地北偏西30∘方向,距离甲地460km ,丙地位于乙地北偏东66∘方向,现要打通穿山隧道,建成甲乙两地直达高速公路,如果将甲、乙、丙三地当作三个点A 、B 、C ,可抽象成图(2)所示的三角形,求甲乙两地之间直达高速线路的长AB (结果用含非特殊角的三角函数和根式表示即可).【答案】公路AB 的长为(230+230√3tan24)km .【考点】解直角三角形的应用-方向角问题 【解析】过点B 作BD ⊥AC 于点D ,利用锐角三角函数的定义求出AD 及CD 的长,进而可得出结论. 【解答】过点C 作CD ⊥AB 于点D ,∵ 丙地位于甲地北偏西30∘方向,距离甲地460km ,. 在Rt △ACD 中,∠ACD =30∘, ∴ AD =12AC =230km . CD =√32AC =230√3km . ∵ 丙地位于乙地北偏东66∘方向,在Rt △BDC 中,∠CBD =24∘, ∴ BD =CDtan24=230√3tan24(km). ∴ AB =BD +AD =230+230√3tan24(km).镇政府想了解对王家村进行“精准扶贫”一年来村民的经济情况,统计员小李用简单随机抽样的方法,在全村130户家庭中随机抽取20户,调查过去一年的收入(单位:万元),从而去估计全村家庭年收入情况.已知调查得到的数据如下:1.9,1.3,1.7,1.4,1.6,1.5,2.7,2.1,1.5,0.9,2.6,2.0,2.1,1.0,1.8,2.2,2.4,3.2,1.3,2.8为了便于计算,小李在原数据的每个数上都减去1.5,得到下面第二组数:0.4,−0.2,0.2,−0.1,0.1,0,1.2,0.6,0,−0.6,1.1,0.5,0.6,−0.5,0.3,0.7,0.9,1.7,−0.2,1.3(1)请你用小李得到的第二组数计算这20户家庭的平均年收入,并估计全村年收入及全村家庭年收人超过1.5万元的百分比;已知某家庭过去一年的收人是1.89万元,请你用调查得到的数据的中位数推测该家庭的收入情况在全村处于什么水平?(2)已知小李算得第二组数的方差是S,小王依据第二组数的方差得出原数据的方差为(1.5+S)2,你认为小王的结果正确吗?如果不正确,直接写出你认为正确的结果.【答案】(0.4−0.2+0.2−0.1+0.1+0+1.2+0.6+0−0.6+1.1+第二组数据的平均数为1200.5+0.6−0.5+0.3+0.7+0.9+1.7−0.2+1.3)=0.4,所以这20户家庭的平均年收入=1.5+0.4=1.9(万),130×1.9=247,估计全村年收入为247万;×100%=65%;全村家庭年收人超过1.5万元的百分比为1320数据的中位数为1.85,而某家庭过去一年的收人是1.89万元,则该家庭的收入情况在全村处于中上游;小王的结果不正确.第一组数据的方差和第二组数据的方差一样.[(0.4−0.4)2+(−0.2−0.4)2+(0.2−0.4)2+...+(1.3−0.4)2]=0.34.它们的方差=120【考点】算术平均数用样本估计总体中位数方差【解析】(1)计算出第二组数据的平均数,则把这个平均数加上1.5得到得到这20户家庭的平均年收入;用这20户家庭的平均年收入乘以130可估计全村年收入;用样本中家庭年收人超过1.5万元的百分比表示全村家庭年收人超过1.5万元的百分比,利用中位数的意义判断某家庭过去一年的收人是1.89万元,该家庭的收入情况在全村处于什么水平;(2)利用方差的意义可判断小王的结果错误,然后根据方差公式计算第二组的方差即可.【解答】(0.4−0.2+0.2−0.1+0.1+0+1.2+0.6+0−0.6+1.1+第二组数据的平均数为1200.5+0.6−0.5+0.3+0.7+0.9+1.7−0.2+1.3)=0.4,所以这20户家庭的平均年收入=1.5+0.4=1.9(万),130×1.9=247,估计全村年收入为247万;全村家庭年收人超过1.5万元的百分比为1320×100%=65%;数据的中位数为1.85,而某家庭过去一年的收人是1.89万元,则该家庭的收入情况在全村处于中上游; 小王的结果不正确.第一组数据的方差和第二组数据的方差一样.它们的方差=120[(0.4−0.4)2+(−0.2−0.4)2+(0.2−0.4)2+...+(1.3−0.4)2]=0.34.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目 里程费 时长费 远途费 单价1.8元/公里 0.3元/分钟 0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐满滴快车,在同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里,两人付给滴滴快车的乘车费相同. (1)求这两辆滴滴快车的实际行车时间相差多少分钟;(2)实际乘车时间较少的人,由于出发时间比另一人早,所以提前到达约见地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟,计算俩人各自的实际乘车时间. 【答案】解:(1)设小王的实际行车时间为x 分钟,小张的实际行车时间为y 分钟,由题意得: 1.8×6+0.3x =1.8×8.5+0.3y +0.8×(8.5−7), ∴ 10.8+0.3x =16.5+0.3y , 0.3(x −y)=5.7, ∴ x −y =19,∴ 这两辆滴滴快车的实际行车时间相差19分钟.(2)由(1)及题意得:{x −y =19,1.5y =12x +8.5,化简得{x −y =19,3y −x =17,①+②得2y =36, ∴ y =18 ③,将③代入①得x =37,∴ 小王的实际乘车时间为37分钟,小张的实际乘车时间为18分钟. 【考点】二元一次方程组的应用——其他问题 由实际问题抽象出二元一次方程 【解析】(1)设小王的实际车时间为x 分钟,小张的实际行车时间为y 分钟,根据两人付给滴滴快车的乘车费相同列方程求解即可;(2)根据“等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟”列二元一次方程,将其与(1)中的二元一次方程联立即可求解. 【解答】解:(1)设小王的实际行车时间为x 分钟,小张的实际行车时间为y 分钟,由题意得:1.8×6+0.3x =1.8×8.5+0.3y +0.8×(8.5−7), ∴ 10.8+0.3x =16.5+0.3y , 0.3(x −y)=5.7, ∴ x −y =19,∴ 这两辆滴滴快车的实际行车时间相差19分钟.(2)由(1)及题意得:{x −y =19,1.5y =12x +8.5,化简得{x −y =19,3y −x =17,①+②得2y =36,∴ y =18 ③,将③代入①得x =37,∴ 小王的实际乘车时间为37分钟,小张的实际乘车时间为18分钟.如图,在平面直角坐标系中,矩形OCAB(OC >OB)的对角线长为5,周长为14.若反比例函数y =mx 的图象经过矩形顶点A .(1)求反比例函数解析式;若点(−a, y 1)和(a +1, y 2)在反比例函数的图象上,试比较y 1与y 2的大小;(2)若一次函数y =kx +b 的图象过点A 并与x 轴交于点(−1, 0),求出一次函数解析式,并直接写出kx +b −m x<0成立时,对应x 的取值范围.【答案】根据题意得:OB +OC =7,OB 2+OC 2=52, ∵ OC >OB ,∴ OB =3,OC =4, ∴ A(3, 4),把A(3, 4)代入反比例函数y =mx 中,得m =3×4=12,∴ 反比例函数为:y =12x,∵ 点(−a, y 1)和(a +1, y 2)在反比例函数的图象上, ∴ −a ≠0,且a +1≠0, ∴ a ≠−1,且a ≠0,∴ 当a <−1时,−a >0,a +1<0,则点(−a, y 1)和(a +1, y 2)分别在第一象限和第三象限的反比例函数的图象上,于是有y 1>y 2;当−1<a <0时,−a >0,a +1>0,若−a >a +1,即−1<a <−12时,y 1<y 2,若−a =a +1,即a =−12时,y 1=y 2,若−a <a +1,即−12<a <0时,y 1>y 2; 当a >0时,−a <0,a +1>0,则点(−a, y 1)和(a +1, y 2)分别在第三象限和第一象限的反比例函数的图象上,于是有y 1<y 2;综上,当a <−1时,y 1>y 2;当−1<a <−12时,y 1<y 2;当a =−12时,y 1=y 2;当−12<a <0时,y 1>y 2;当a >0时,y 1<y 2.∵ 一次函数y =kx +b 的图象过点A(3, 4)并与x 轴交于点(−1, 0), ∴ {3k +b =4−k +b =0 ,解得,{k =1b =1,∴ 一次函数的解析式为:y =x +1;解方程组{y =x +1y =12x,得{x 1=−4y 1=−3 ,{x 2=3y 2=4 , ∴ 一次函数y =kx +b 的图象与反比例函数y =mx 的图象相交于两点(−4, −3)和(3, 4), 当一次函数y =kx +b 的图象在反比例函数y =mx 的图象下方时,x <−4或0<x <3, ∴ kx +b −m x<0成立时,对应x 的取值范围:x <−4或0<x <3.【考点】反比例函数与一次函数的综合 【解析】(1)根据已知条件求出矩形的边长,得A 点坐标,再用待定系数法求反比例函数解析式,根据反比例函数的性质比较y 1与y 2的大小;(2)用待定系数求得一次函数的解析式,再求一次函数图象与反比例函数图象的交点坐标便可根据函数图象的位置关系求得不等式的解集. 【解答】根据题意得:OB +OC =7,OB 2+OC 2=52, ∵ OC >OB ,∴ OB =3,OC =4, ∴ A(3, 4),把A(3, 4)代入反比例函数y =mx 中,得m =3×4=12, ∴ 反比例函数为:y =12x,∵ 点(−a, y 1)和(a +1, y 2)在反比例函数的图象上, ∴ −a ≠0,且a +1≠0,∴ a ≠−1,且a ≠0,∴ 当a <−1时,−a >0,a +1<0,则点(−a, y 1)和(a +1, y 2)分别在第一象限和第三象限的反比例函数的图象上,于是有y 1>y 2;当−1<a <0时,−a >0,a +1>0,若−a >a +1,即−1<a <−12时,y 1<y 2,若−a =a +1,即a =−12时,y 1=y 2,若−a <a +1,即−12<a <0时,y 1>y 2; 当a >0时,−a <0,a +1>0,则点(−a, y 1)和(a +1, y 2)分别在第三象限和第一象限的反比例函数的图象上,于是有y 1<y 2;综上,当a <−1时,y 1>y 2;当−1<a <−12时,y 1<y 2;当a =−12时,y 1=y 2;当−12<a <0时,y 1>y 2;当a >0时,y 1<y 2. ∵ 一次函数y =kx +b 的图象过点A(3, 4)并与x 轴交于点(−1, 0), ∴ {3k +b =4−k +b =0 ,解得,{k =1b =1,∴ 一次函数的解析式为:y =x +1;解方程组{y =x +1y =12x,得{x 1=−4y 1=−3 ,{x 2=3y 2=4 , ∴ 一次函数y =kx +b 的图象与反比例函数y =mx 的图象相交于两点(−4, −3)和(3, 4), 当一次函数y =kx +b 的图象在反比例函数y =mx 的图象下方时,x <−4或0<x <3, ∴ kx +b −m x<0成立时,对应x 的取值范围:x <−4或0<x <3.如图,以Rt △ABC 的直角边AB 为直径的⊙O 交斜边AC 于点D ,过点D 作⊙O 的切线与BC 交于点E ,弦DM 与AB 垂直,垂足为H . (1)求证:E 为BC 的中点;(2)若⊙O 的面积为12π,两个三角形△AHD 和△BMH 的外接圆面积之比为3,求△DEC 的内切圆面积S 1和四边形OBED 的外接圆面积S 2的比.【答案】连接BD 、OE ,∵ AB 是直径,则∠ADB =90∘=∠ADO +∠ODB , ∵ DE 是切线,∴ ∠ODE =90∘=∠EDB +∠BDO , ∴ ∠EDB =∠ADO =∠CAB ,∵ ∠ABC =90∘,即BC 是圆的切线, ∴ ∠DBC =∠CAB ,∴ ∠EDB =∠EBD ,则∠BDC =90∘, ∴ E 为BC 的中点;△AHD 和△BMH 的外接圆面积之比为3,则两个三角形的外接圆的直径分别为AD 、BM , ∴ AD:BM =√3, 而△ADH ∽△MBH , ∴ DH:BH =√3, 则DH =HM ,∴ HM:BH =√3,∴ ∠BMH =30∘=∠BAC ,∴ ∠C =60∘,E 是直角三角形的中线, ∴ DE =CE ,∴ △DEC 为等边三角形, ⊙O 的面积:12π=(12AB)2π, 则AB =4√3,∠CAB =30∘,∴ BD =2√3,BC =4,AC =8,而OE =12AC =4, 四边形OBED 的外接圆面积S 2=π(2)2=4π,等边三角形△DEC 边长为2,则其内切圆的半径为:√33,面积为π3,故△DEC 的内切圆面积S 1和四边形OBED 的外接圆面积S 2的比为:112.【考点】三角形的外接圆与外心 切线的性质三角形的内切圆与内心 【解析】(1)证明∠EDB =∠EBD ,则∠BDC =90∘,E 为直角三角形BDC 的中线,即可求解; (2)△AHD 和△BMH 的外接圆面积之比为3,确定AD:BM =√3,即HM:BH =√3,得∠BMH =30∘=∠BAC ,即可求解. 【解答】连接BD 、OE ,∵ AB 是直径,则∠ADB =90∘=∠ADO +∠ODB ,∵ DE 是切线,∴ ∠ODE =90∘=∠EDB +∠BDO ,∴ ∠EDB =∠ADO =∠CAB ,∵ ∠ABC =90∘,即BC 是圆的切线,∴ ∠DBC =∠CAB ,∴ ∠EDB =∠EBD ,则∠BDC =90∘,∴ E 为BC 的中点;△AHD 和△BMH 的外接圆面积之比为3,则两个三角形的外接圆的直径分别为AD 、BM ,∴ AD:BM =√3,而△ADH ∽△MBH ,∴ DH:BH =√3,则DH =HM ,∴ HM:BH =√3,∴ ∠BMH =30∘=∠BAC ,∴ ∠C =60∘,E 是直角三角形的中线,∴ DE =CE ,∴ △DEC 为等边三角形,⊙O 的面积:12π=(12AB)2π,则AB =4√3,∠CAB =30∘,∴ BD =2√3,BC =4,AC =8,而OE =12AC =4,四边形OBED 的外接圆面积S 2=π(2)2=4π,等边三角形△DEC 边长为2,则其内切圆的半径为:√33,面积为π3, 故△DEC 的内切圆面积S 1和四边形OBED 的外接圆面积S 2的比为:112.已知二次函数y =ax 2−bx +c 且a =b ,若一次函数y =kx +4与二次函数的图象交于点A(2, 0).(1)写出一次函数的解析式,并求出二次函数与x 轴交点坐标;(2)当a >c 时,求证:直线y =kx +4与抛物线y =ax 2−bx +c 一定还有另一个异于点A 的交点;(3)当c <a ≤c +3时,求出直线y =kx +4与抛物线y =ax 2−bx +c 的另一个交点B 的坐标;记抛物线顶点为M ,抛物线对称轴与直线y =kx +4的交点为N ,设S =259S △AMN −S △BMN ,写出S 关于a 的函数,并判断S 是否有最大值?如果有,求出最大值;如果没有,请说明理由.【答案】把点A(2, 0)代入y =kx +4得:2k +4=0∴ k =−2∴ 一次函数的解析式为y =−2x +4∵ 二次函数y =ax 2−bx +c 的图象过点A(2, 0),且a =b∴ 4a −2a +c =0解得:c =−2a∴ 二次函数解析式为y =ax 2−ax −2a(a ≠0)当ax 2−ax −2a =0,解得:x 1=2,x 2=−1∴ 二次函数与x 轴交点坐标为(2, 0),(−1, 0).证明:由(1)得:直线解析式为y =−2x +4,抛物线解析式为y =ax 2−ax −2a {y =−2x +4y =ax 2−ax −2a整理得:ax 2+(2−a)x −2a −4=0∴ △=(2−a)2−4a(−2a −4)=a 2−4a +4+8a 2+16a =9a 2+12a +4=(3a +2)2∵ a >c ,c =−2a∴ a >−2a∴ a >0∴ 3a +2>0∴ △=(3a +2)2>0∴ 关于x 的一元二次方程有两个不相等的实数根∴ 直线与抛物线还有另一个异于点A 的交点∵ c <a ≤c +3,c =−2a∴ −2a <a ≤−2a +3∴ 0<a ≤1,抛物线开口向上∵ {y =−2x +4y =ax 2−ax −2a整理得:ax 2+(2−a)x −2a −4=0,且△=(3a +2)2>0 ∴ x =−(2−a)±√(3a+2)22a =−(2−a)±(3a+2)2a ∴ x 1=2(即点A 横坐标),x 2=−1−2a∴ y 2=−2(−1−2a )+4=4a +6∴ 直线y =kx +4与抛物线y =ax 2−bx +c 的另一个交点B 的坐标为(−1−2a , 4a +6) ∵ 抛物线y =ax 2−ax −2a =a(x −12)2−94a∴ 顶点M(12, −94a),对称轴为直线x =12∴ 抛物线对称轴与直线y =−2x +4的交点N(12, 3)∴ 如图,MN =3−(−94a)=3+94a∴ S =259S △AMN −S △BMN =259×12MN(x A −12)−12MN(12−x B )=2518(3+94a)(2−12)−12(3+94a)(12+1+2a )=(3+94a)(7536−34−1a)=3a −3a +74 ∵ 0<a ≤1∴ 0<3a ≤3,−3a ≤−3∴ 当a =1时,3a =3,−3a =−3均取得最大值∴ S =3a −3a +74有最大值,最大值为74.【考点】二次函数综合题【解析】(1)把点A 坐标代入一次函数解析式即求得k 的值;把点A 坐标代入二次函数解析式,且把a =b 代入,求得c =−2a ,所有二次函数解析式为y =ax 2−ax −2a ,令y =0即求得与x 轴交点的坐标.(2)由(1)得直线解析式为y =−2x +4,抛物线解析式为y =ax 2−ax −2a ,两方程联立消去y 后,得到关于x 的一元二次方程,求得其△=(3a +2)2.由于a >c ,c =−2a ,求得a >0,故△=(3a +2)2>0,方程有两个不相等实数根,即直线与抛物线除了点A 还有另一个交点.(3)由c <a ≤c +3和c =−2a 求得0<a ≤1,故抛物线开口向上,可画出抛物线与直线的大致图象.联立直线与抛物线解方程即求得点B 坐标(用a 表示).将抛物线解析式配方求得顶点M 和对称轴,求抛物线对称轴与直线交点N 的坐标,点N 纵坐标减去点M 纵坐标得MN 的长,进而能用含a 的式子表示S △AMN 与S △BMN ,代入即写出S 关于a 的函数关系式.由0<a ≤1得到当a =1时,S 能有最大值,并能求出最大值.【解答】把点A(2, 0)代入y =kx +4得:2k +4=0∴ k =−2∴ 一次函数的解析式为y =−2x +4∵ 二次函数y =ax 2−bx +c 的图象过点A(2, 0),且a =b∴ 4a −2a +c =0解得:c =−2a∴ 二次函数解析式为y =ax 2−ax −2a(a ≠0)当ax 2−ax −2a =0,解得:x 1=2,x 2=−1∴ 二次函数与x 轴交点坐标为(2, 0),(−1, 0).证明:由(1)得:直线解析式为y =−2x +4,抛物线解析式为y =ax 2−ax −2a {y =−2x +4y =ax 2−ax −2a整理得:ax 2+(2−a)x −2a −4=0∴ △=(2−a)2−4a(−2a −4)=a 2−4a +4+8a 2+16a =9a 2+12a +4=(3a +2)2∵ a >c ,c =−2a∴ a >−2a∴ a >0∴ 3a +2>0∴ △=(3a +2)2>0∴ 关于x 的一元二次方程有两个不相等的实数根 ∴ 直线与抛物线还有另一个异于点A 的交点∵ c <a ≤c +3,c =−2a∴ −2a <a ≤−2a +3∴ 0<a ≤1,抛物线开口向上∵ {y =−2x +4y =ax 2−ax −2a整理得:ax 2+(2−a)x −2a −4=0,且△=(3a +2)2>0 ∴ x =−(2−a)±√(3a+2)22a =−(2−a)±(3a+2)2a∴ x 1=2(即点A 横坐标),x 2=−1−2a∴ y 2=−2(−1−2a )+4=4a +6∴ 直线y =kx +4与抛物线y =ax 2−bx +c 的另一个交点B 的坐标为(−1−2a , 4a +6) ∵ 抛物线y =ax 2−ax −2a =a(x −12)2−94a∴ 顶点M(12, −94a),对称轴为直线x =12∴ 抛物线对称轴与直线y =−2x +4的交点N(12, 3) ∴ 如图,MN =3−(−94a)=3+94a∴ S =259S △AMN −S △BMN =259×12MN(x A −12)−12MN(12−x B )=2518(3+94a)(2−12)−12(3+94a)(12+1+2a )=(3+94a)(7536−34−1a )=3a −3a +74 ∵ 0<a ≤1∴ 0<3a ≤3,−3a ≤−3∴ 当a =1时,3a =3,−3a =−3均取得最大值∴ S =3a −3a +74有最大值,最大值为74.。

内蒙古呼和浩特市2019年中考数学试卷及答案解析

内蒙古呼和浩特市2019年中考数学试卷及答案解析
9.如图,面积为 24 的正方形 ABCD 中,有一个小正方形 EFGH,其中 E、F、G 分别在 AB、BC、FD 上.若
③若关于 x、y 的方程组
有无数多组解,则 a=b=1; Nhomakorabea④将多项式 5xy+3y﹣2x2y 因式分解,其结果为﹣y(2x+1)(x﹣3).
其中正确的命题的序号为

三、解答题(本题共 9 小题,满分 72 分,解答应写出文字说明,证明过程或演算步骤) 17.计算
(1) 计算:( )﹣2+| ﹣2|+3tan30°
离为 18,则弦 CD 的长为

15.已知平行四边形 ABCD 的顶点 A 在第三象限,对角线 AC 的中点在坐标原点,一边 AB 与 x 轴平行且
AB=2,若点 A 的坐标为(a,b),则点 D 的坐标为

16.以下四个命题:
①对应角和面积都相等的两个三角形全等;
②“若 x2﹣x=0,则 x=0”的逆命题;
(2)先化简,再求值: ﹣
÷
,其中 x=﹣ .
18.在一次综合实践活动中,小明要测某地一座古塔 AE 的高度.如图,已知塔基顶端 B(和 A、E 共线)与 地面 C 处固定的绳索的长 BC 为 80m.她先测得∠BCA=35°,然后从 C 点沿 AC 方向走 30m 到达 D 点,又测 得塔顶 E 的仰角为 50°,求塔高 AE.(人的高度忽略不计,结果用含非特殊角的三角函数表示)
A. B. C. D. 7.已知一次函数 y=kx+b﹣x 的图象与 x 轴的正半轴相交,且函数值 y 随自变量 x 的增大而增大,则 k,b 的 取值情况为( ) A.k>1,b<0 B.k>1,b>0 C.k>0,b>0 D.k>0,b<0 8.一个几何体的三视图如图所示,则该几何体的表面积为( )

2019年内蒙古呼和浩特中考数学试卷及答案

2019年内蒙古呼和浩特中考数学试卷及答案

【导语】中考频道⼩编提醒参加2019中考的所有考⽣,内蒙古呼和浩特2019年中考将于6⽉中旬陆续开始举⾏,内蒙古呼和浩特中考时间具体安排考⽣可点击进⼊“”栏⽬查询,请⼴⼤考⽣提前准备好准考证及考试需要的⽤品,然后顺顺利利参加本届初中学业⽔平考试,具体如下:为⽅便考⽣及时估分,中考频道将在本次中考结束后陆续公布2019年内蒙古呼和浩特中考数学试卷及答案信息。

考⽣可点击进⼊内蒙古呼和浩特中考频道《、》栏⽬查看内蒙古呼和浩特中考数学试卷及答案信息。

中考科⽬语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以地区教育考试院公布为准。

)考试必读可以在中考前⼀天下午去考场看看,熟悉⼀下考场环境。

确定去考场的⽅式,是坐公共汽车、出租车还是骑⾃⾏车等;确定去考场的⾏车路线。

在校内去考场的路上,⼀旦发⽣意外,要及时求助于监考⽼师或警察。

中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。

涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。

不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。

有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。

中考数学为了能让⼴⼤考⽣及时⽅便获取内蒙古呼和浩特中考数学试卷答案信息,特别整理了《2019内蒙古呼和浩特中考数学试卷及答案》发布⼊⼝供⼴⼤考⽣查阅。

数学真题/答案[解析]专题推荐参加2019中考的考⽣可直接查阅各科2019年内蒙古呼和浩特中考试题及答案信息!考试须知⼀、考⽣凭《准考证》(社会⼈员须持准考证及⾝份证)提前15分钟进⼊指定试室(英语科提前20分钟)对号⼊座,并将《准考证》放在桌⼦左上⾓,以便查对。

考⽣除带必要的⽂具,如2B铅笔、⿊⾊字迹的钢笔或签字笔、直尺、圆规、三⾓板、橡⽪外,禁⽌携带任何书籍、笔记、资料、报刊、草稿纸以及各种⽆线通讯⼯具(如寻呼机、移动电话)、电⼦笔记本等与考试⽆关的物品(数学科考试可带指定型号的计算器)。

2019年内蒙古呼和浩特中考数学试题(解析版)

2019年内蒙古呼和浩特中考数学试题(解析版)

2019年呼和浩特市中考试卷数学{题型:1-选择题}一、选择题(本大题10小题,每小题3分,共30分){题目}(2019年呼和浩特,T1)1.如右图,检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,下面检测过的四个排球,在其上方标注了检测结果,其中质量最接近标注的一个是()A.B.C.D.{答案}A{解析}此题主要考查了正数和负数,本题的解题关键是求出检测结果的绝对值,绝对值越小的数越接近标准.由题意得:四个排球质量偏差的绝对值分别为:0.6,0.7,2.5,3.5,绝对值最小的为0.6,最接近标准.故选:A.{分值}3{章节:[1-1-2-4]绝对值}{考点: 绝对值的意义}{类别:常考题}{难度:1-最简单}{题目}(2019年呼和浩特,T2)2.甲骨文是我国的一种古代文字,下面是“北”“比”“鼎”“射”四个字的甲骨文,其中不是轴对称的是(){答案}B{解析}本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.{分值}3{章节:[1-13-1-1]轴对称}{考点:生活中的轴对称}{类别:常考题}{难度:1-最简单}{题目}(2019年呼和浩特,T3)3. 二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A. B. C. D.{答案}D{解析}本题主要考查一次函数和二次函数的图象,解题的关键是熟练掌握二次函数的图象和一次函数的图象与系数之间的关系.由一次函数y=ax+a可知,一次函数的图象与x轴交于点(-1,0),排除A、B;当a>0时,二次函数开口向上,一次函数经过一、三、四象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选:D.{分值}3{章节:[1-22-1-4]二次函数y=ax2+bx+c的图象和性质}{考点:一次函数的性质}{考点:二次函数y=ax 2+bx+c 的性质} {类别:常考题} {难度:2-简单}{题目}(2019年呼和浩特,T4)4.已知菱形的边长为3,较短的一条对角线的长为2,则该菱形较长的一条对角线的长为 ( )A.22B.52C.24D.102 {答案}C{解析}此题考查了菱形的性质以及勾股定理.注意根据题意画出图形,结合图形求解是关键.如图,∵四边形ABCD 是菱形,∴OA=OC=12AC=1,OB=OD ,AC ⊥BD ,∴OB=22-AB OA =223-1=22,∴BD=2OB=42;故选:C . {分值}3{章节:[1-18-2-2]菱形} {考点:勾股定理} {考点:菱形的性质} {类别:常考题} {难度:2-简单}{题目}(2019年呼和浩特,T5)5.某学校近几年来通过“书香校园”主题系列活动,倡导学生整本阅读纸质课外书籍,下面的统计图是该校2013年至2018年纸质书人均阅读量的情况,根据统计图的信息,下列推断不合理的是 ( ) A.从2013年到2016年,该校纸质书人均阅读量逐年增长B.2013年至2018年,该校纸质书人均阅读量的中位数是46.7本C.2013年至2018年,该校纸质书人均阅读量的极差是45.3本D.2013年至2018年,该校后三年纸质书人均阅读量总和是前三 年纸质书人均阅读量总和的2倍 {答案}D{解析}此题主要考查了折线统计图,利用折线统计图获取正确信息是解题关键.选项A 、从2013年到2016年,该校纸质书人均阅读量逐年增长,正确;选项B 、2013年至2018年,该校纸质书人均阅读量的中位数是43.350.12+=46.7本,正确;选项C 、2013年至2018年,该校纸质书人均阅读量的极差是60.8-15.5=45.3本,正确;选项D 、2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的60.850.158.443.338.515.5++++≈17.4≠2倍,错误;故选:D .{分值}3{章节:[1-10-1]统计调查} {考点:折线统计图} {考点:算术平均数} {考点:中位数} {考点:极差} {类别:常考题} {难度:2-简单}{题目}(2019年呼和浩特,T6)6.若不等式253x +-1≤2-x 的解集中x 的每一个值都能使关于x 的不等式3(x-1)+5>5x+2(m+x)成立,则m 的取值范围 ( )A. m>-35B. m<-15C. m<-35D. m>-15{答案}C{解析}本题主要对解一元一次不等式组,不等式的性质等知识点的理解和掌握,能根据已知得到关于m的不等式是解此题的关键.解不等式253x+-1≤2-x得:x≤45,∵不等式253x+-1≤2-x的解集中x的每一个值,都能使关于x的不等式3(x-1)+5>5x+2(m+x)(m+x)成立,∴x<12m -,∴12m->45,解得:m<-35,故选:C.{分值}3{章节:[1-9-2]一元一次不等式}{考点:解一元一次不等式}{考点:不等式的解集}{类别:常考题}{难度:3-中等难度}{题目}(2019年呼和浩特,T7)7.右图是一个几何体的三视图,其中主视图与左视图完全一样,则这个几何体的表面积是()A.80-2πB.80+4πC.80D.80+6π{答案}B{解析}本题主要考查由几何体的三视图想象几何体以及求其表面积,解题的关键是正确从三视图构造几何体.由三视图可知几何体为一个长方体中间挖去一个圆柱体,其中长方体的长宽高分别为4,4,3;中间空缺部分为一个直径为2,高为3的圆柱体.其中上下底面积均为正方形面积减去圆的面积,外侧面积为长方体的侧面积;内侧面积为圆柱体的侧面积。

2019年内蒙古呼和浩特市中考数学试题(Word版,含解析)

2019年内蒙古呼和浩特市中考数学试题(Word版,含解析)

2019年内蒙古呼和浩特市中考数学试卷一、选择题(每小题3分,共30分。

)1.如图,检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,下面检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是()A.B.C.D.2.甲骨文是我国的一种古代文字,下面是“北”“比”“鼎.射”四个字的甲骨文,其中不是轴对称的是()A.B.C.D.3.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A.B.C.D.4.已知菱形的边长为3,较短的一条对角线的长为2,则该菱形较长的一条对角线的长为()A.2B.2C.4D.25.某学校近几年来通过“书香校园”主题系列活动,倡导学生整本阅读纸质课外书籍.下面的统计图是该校2013年至2018年纸质书人均阅读量的情况,根据统计图提供的信息,下列推断不合理的是()A.从2013年到2016年,该校纸质书人均阅读量逐年增长B.2013年至2018年,该校纸质书人均阅读量的中位数是46.7本C.2013年至2018年,该校纸质书人均阅读量的极差是45.3本D.2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的2倍6.若不等式﹣1≤2﹣x的解集中x的每一个值,都能使关于x的不等式3(x﹣1)+5>5x+2(m+x)成立,则m的取值范围是()A.m>﹣B.m<﹣C.m<﹣D.m>﹣7.如图是一个几何体的三视图,其中主视图与左视图完全一样,则这个几何体的表面积是()A.80﹣2πB.80+4πC.80 D.80+6π8.若x1,x2是一元二次方程x2+x﹣3=0的两个实数根,则x22﹣4x12+17的值为()A.﹣2 B.6 C.﹣4 D.49.已知正方形的对称中心在坐标原点,顶点A、B、C、D按逆时针依次排列,若A点的坐标为(2,),则B点与D点的坐标分别为()A .(﹣2,),(2,﹣)B .(﹣,2),(,﹣2)C .(﹣,2),(2,﹣)D .(,)()10.以下四个命题:①用换元法解分式方程﹣+=1时,如果设=y ,那么可以将原方程化为关于y 的整式方程y 2+y ﹣2=0;②如果半径为r 的圆的内接正五边形的边长为a ,那么a =2r cos54°;③有一个圆锥,与底面圆直径是且体积为的圆柱等高,如果这个圆锥的侧面展开图是半圆,那么它的母线长为;④二次函数y =ax 2﹣2ax +1,自变量的两个值x 1,x 2对应的函数值分别为y 1、y 2,若|x 1﹣1|>|x 2﹣1|,则a (y 1﹣y 2)>0.其中正确的命题的个数为( ) A .1个B .2个C .3个D .4个二、填空题(本大题共6小题,每小题3分,共18分,本题要求把正确结果填在答题卡规定的横线上,不需要解答过程) 11.因式分解:x 2y ﹣4y 3= .12.下面三个命题:①底边和顶角对应相等的两个等腰三角形全等;②两边及其中一边上的中线对应相等的两个三角形全等;③斜边和斜边上的中线对应相等的两个直角三角形全等,其中正确的命题的序号为 .13.同时掷两枚质地均匀的骰子,则至少有一枚骰子的点数是6这个随机事件的概率为 .14.关于x 的方程mx 2m ﹣1+(m ﹣1)x ﹣2=0如果是一元一次方程,则其解为 . 15.已知正方形ABCD 的面积是2,E 为正方形一边BC 在从B 到C 方向的延长线上的一点,若CE =,连接AE ,与正方形另外一边CD 交于点F ,连接BF 并延长,与线段DE 交于点G ,则BG 的长为 .16.对任意实数a ,若多项式2b 2﹣5ab +3a 2的值总大于﹣3,则实数b 的取值范围是 . 三、解答题(本大题共9小题,满分72分,解答应写出文字说明、证明过程或演算步骤 17.(10分)计算(1)计算(1)÷(﹣)+×﹣()﹣2(2)先化简,再求值:(+)÷,其中x =3,y =.18.(6分)如图,在△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c .(1)若a=6,b=8,c=12,请直接写出∠A与∠B的和与∠C的大小关系;(2)求证:△ABC的内角和等于180°;(3)若=,求证:△ABC是直角三角形.19.(6分)用配方法求一元二次方程(2x+3)(x﹣6)=16的实数根.20.(7分)如图,已知甲地在乙地的正东方向,因有大山阻隔,由甲地到乙地需要绕行丙地.已知丙地位于甲地北偏西30°方向,距离甲地460km,丙地位于乙地北偏东66°方向,现要打通穿山隧道,建成甲乙两地直达高速公路,如果将甲、乙、丙三地当作三个点A、B、C,可抽象成图(2)所示的三角形,求甲乙两地之间直达高速线路的长AB(结果用含非特殊角的三角函数和根式表示即可).21.(9分)镇政府想了解对王家村进行“精准扶贫”一年来村民的经济情况,统计员小李用简单随机抽样的方法,在全村130户家庭中随机抽取20户,调查过去一年的收入(单位:万元),从而去估计全村家庭年收入情况.已知调查得到的数据如下:1.9,1.3,1.7,1.4,1.6,1.5,2.7,2.1,1.5,0.9,2.6,2.0,2.1,1.0,1.8,2.2,2.4,3.2,1.3,2.8为了便于计算,小李在原数据的每个数上都减去1.5,得到下面第二组数:0.4,﹣0.2,0.2,﹣0.1,0.1,0,1.2,0.6,0,﹣0.6,1.1,0.5,0.6,﹣0.5,0.3,0.7,0.9,1.7,﹣0.2,1.3(1)请你用小李得到的第二组数计算这20户家庭的平均年收入,并估计全村年收入及全村家庭年收人超过1.5万元的百分比;已知某家庭过去一年的收人是1.89万元,请你用调查得到的数据的中位数推测该家庭的收入情况在全村处于什么水平?(2)已知小李算得第二组数的方差是S,小王依据第二组数的方差得出原数据的方差为(1.5+S)2,你认为小王的结果正确吗?如果不正确,直接写出你认为正确的结果.22.(6分)滴滴快车是一种便捷的出行工具,计价规则如下表:小王与小张各自乘坐满滴快车,在同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里,两人付给滴滴快车的乘车费相同.(1)求这两辆滴滴快车的实际行车时间相差多少分钟;(2)实际乘车时间较少的人,由于出发时间比另一人早,所以提前到达约见地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟,计算俩人各自的实际乘车时间.23.(7分)如图,在平面直角坐标系中,矩形OCAB(OC>OB)的对角线长为5,周长为14.若反比例函数y=的图象经过矩形顶点A.(1)求反比例函数解析式;若点(﹣a,y1)和(a+1,y2)在反比例函数的图象上,试比较y1与y2的大小;(2)若一次函数y=kx+b的图象过点A并与x轴交于点(﹣1,0),求出一次函数解析式,并直接写出kx+b﹣<0成立时,对应x的取值范围.24.(9分)如图,以Rt△ABC的直角边AB为直径的⊙O交斜边AC于点D,过点D作⊙O的切线与BC交于点E,弦DM与AB垂直,垂足为H.(1)求证:E为BC的中点;(2)若⊙O的面积为12π,两个三角形△AHD和△BMH的外接圆面积之比为3,求△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比.25.(12分)已知二次函数y=ax2﹣bx+c且a=b,若一次函数y=kx+4与二次函数的图象交于点A(2,0).(1)写出一次函数的解析式,并求出二次函数与x轴交点坐标;(2)当a>c时,求证:直线y=kx+4与抛物线y=ax2﹣bx+c一定还有另一个异于点A 的交点;(3)当c<a≤c+3时,求出直线y=kx+4与抛物线y=ax2﹣bx+c的另一个交点B的坐标;记抛物线顶点为M,抛物线对称轴与直线y=kx+4的交点为N,设S=S△AMN ﹣S△BMN,写出S关于a的函数,并判断S是否有最大值?如果有,求出最大值;如果没有,请说明理由.参考答案一、选择题1.【解答】解:由题意得:四个排球质量偏差的绝对值分别为:0.6,0.7,2.5,3.5,绝对值最小的为0.6,最接近标准.故选:A.2.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.3.【解答】解:由一次函数y=ax+a可知,一次函数的图象与x轴交于点(﹣1,0),排除A、B;当a>0时,二次函数开口向上,一次函数经过一、三、四象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选:D.4.【解答】解:如图,∵四边形ABCD是菱形,∴OA=OC=AC=1,OB=OD,AC⊥BD,∴OB===2,∴BD=2OB=4;故选:C.5.【解答】解:A、从2013年到2016年,该校纸质书人均阅读量逐年增长,正确;B 、2013年至2018年,该校纸质书人均阅读量的中位数是本,正确;C 、2013年至2018年,该校纸质书人均阅读量的极差是60.8﹣15.5=45.3本,正确;D 、2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的倍,错误;故选:D .6.【解答】解:解不等式﹣1≤2﹣x 得:x ≤,∵不等式﹣1≤2﹣x 的解集中x 的每一个值,都能使关于x 的不等式3(x ﹣1)+5>5x +2(m +x )成立,∴x <,∴>,解得:m <﹣, 故选:C .7.【解答】解:由三视图可知,该几何体是长方体,中间是空心圆柱体,正方体的长宽高分别为4,4,3,圆柱体直径为2,高为3,正方体表面积:4×4×2+4×3×4=80,圆柱体表面积2×3=6π,上下表面空心圆面积:2π,∴这个几何体的表面积是:80+6π﹣2π=80+4π, 故选:B .8.【解答】解:∵x 1,x 2是一元二次方程x 2+x ﹣3=0的两个实数根, ∴x 1+x 2=﹣1,x 1•x 2=﹣3,x 12+x 1=3,∴x 22﹣4x 12+17=x 12+x 22﹣5x 12+17=(x 1+x 2)2﹣2x 1x 2﹣5x 12+17=(﹣1)2﹣2×(﹣3)﹣5x 12+17=24﹣5x 22=24﹣5(﹣1﹣x 1)2=24﹣5(x 12+x 1+1)=24﹣5(3+1)=4, 故选:D .9.【解答】解:如图,连接OA 、OD ,过点A 作 AF ⊥x 轴于点F ,过点D 作DE ⊥x 轴于点E , 易证△AFO ≌△OED (AAS ),∴OE =AF =,DE =OF =2,∴D (,﹣2),∵B、D关于原点对称,∴B(﹣,2),故选:B.10.【解答】解:①设=y,那么可以将原方程化为关于y的整式方程y2+y﹣2=0,故正确;②作OF⊥BC.∵∠OCF=72°÷2=36°,∴CF=r•cos36°,∴CB=2r cos36°,即a=2r cos36°.故错误;③这个圆锥母线长为R,根据题意得2π•=,解得R=3.即它的母线长是3,.故错误;④二次函数y =ax 2﹣2ax +1的对称轴是x =2,如图:.此时|x 1﹣1|>|x 2﹣1|,y 1=y 2=0, 所以a (y 1﹣y 2)=0. 故错误.综上所述,正确的命题的个数为1个. 故选:A .二、填空题(本大题共6小题,每小题3分,共18分,本题要求把正确结果填在答题卡规定的横线上,不需要解答过程)11.【解答】解:原式=y (x 2﹣4y 2)=y (x ﹣2y )(x +2y ). 故答案为:y (x ﹣2y )(x +2y ).12.【解答】解:①底边和顶角对应相等的两个等腰三角形全等;正确; ②两边及其中一边上的中线对应相等的两个三角形全等;正确; ③斜边和斜边上的中线对应相等的两个直角三角形全等;不正确; 故答案为:①②.13.【解答】解:画树状图如图所示:共有36种等可能的结果数,其中至少有一枚骰子的点数是6的结果数为11,所以至少有一枚骰子的点数是6的概率=.故答案为:.14.【解答】解:∵关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,∴2m﹣1=1,即m=1或m=0,方程为x﹣2=0或﹣x﹣2=0,解得:x=2或x=﹣2,故答案为:x=2或x=﹣2.15.【解答】解:如图:延长AD、BG相交于点H,∵正方形ABCD的面积是2,∴AB=BC=CDA=,又∵CE=,△EFC∽△EAB,∴,即:F是CD的中点,∵AH∥BE,∴∠H=∠FBC,∠BCF=∠HDF=90°∴△BCF≌△HDF(AAS),∴DH=BC=,∵AH∥BE,∴∠H=∠FBC,∠H DG=∠BEG∴△HDG∽△BEG,∴,在Rt△ABH中,BH=,∴BG=,故答案为:16.【解答】解:由题意可知:2b2﹣5ab+3a2>﹣3,∴3a2﹣5ab+2b2+3>0,∵对任意实数a,3a2﹣5ab+2b2+3>0恒成立,∴△=25b2﹣12(2b2+3)=b2﹣36<0,∴﹣6<b<6;故答案为﹣6<b<6;三、解答题(本大题共9小题,满分72分,解答应写出文字说明、证明过程或演算步骤17.【解答】解:(1)(1)÷(﹣)+×﹣()﹣2=﹣×+﹣(1﹣)2=﹣2+6﹣4+2=2;(2)(+)÷=÷=•=,当x=3,y=时,原式==.18.【解答】解:(1)∵在△ABC中,a=6,b=8,c=12,∴∠A+∠B<∠C;(2)如图,过点A作MN∥BC,∵MN∥BC,∴∠MAB=∠B,∠NAC=∠C(两直线平行,同位角相等),∵∠MAB +∠BAC +∠NAC =180°(平角的定义),∴∠B +∠BAC +∠C =180°(等量代换),即:三角形三个内角的和等于180°;(3)∵=,∴ac =(a +b +c )(a ﹣b +c )= [(a 2+2ac +c 2)﹣b 2],∴2ac =a 2+2ac +c 2﹣b 2,∴a 2+c 2=b 2,∴△ABC 是直角三角形.19.【解答】解:原方程化为一般形式为2x 2﹣9x ﹣34=0,x 2﹣x =17,x 2﹣x +=17+,(x ﹣)2=,x ﹣=±,所以x 1=,x 2=. 20.【解答】解:过点C 作CD ⊥AB 于点D ,∵丙地位于甲地北偏西30°方向,距离甲地460km ,.在Rt △ACD 中,∠ACD =30°,∴AD =AC =230km .CD =AB =230km .∵丙地位于乙地北偏东66°方向,在Rt △BDC 中,∠CBD =23°,∴BD==(km).∴AB=BD+AD=230+(km).答:公路AB的长为(230+)km.21.【解答】解:(1)第二组数据的平均数为(0.4﹣0.2+0.2﹣0.1+0.1+0+1.2+0.6+0﹣0.6+1.1+0.5+0.6﹣0.5+0.3+0.7+0.9+1.7﹣0.2+1.3)=0.4,所以这20户家庭的平均年收入=1.5+0.4=1.9(万),130×1.9=247,估计全村年收入为247万;全村家庭年收人超过1.5万元的百分比为×100%=65%;某家庭过去一年的收人是1.89万元,则该家庭的收入情况在全村处于中下游;(2)小王的结果不正确.第一组数据的方差和第二组数据的方差一样.它们的方差= [(0.4﹣0.4)2+(﹣0.2﹣0.4)2+(0.2﹣0.4)2+…+(1.3﹣0.4)2]=0.34.22.【解答】解:(1)设小王的实际行车时间为x分钟,小张的实际行车时间为y分钟,由题意得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5﹣7)∴10.8+0.3x=16.5+0.3y0.3(x﹣y)=5.7∴x﹣y=19∴这两辆滴滴快车的实际行车时间相差19分钟.(2)由(1)及题意得:化简得①+②得2y =36∴y =18 ③ 将③代入①得x =37∴小王的实际行车时间为37分钟,小张的实际行车时间为18分钟.23.【解答】解:(1)根据题意得:OB +OC =7,OB 2+OC 2=52,∵OC >OB ,∴OB =3,OC =4,∴A (3,4),把A (3,4)代入反比例函数y =中,得m =3×4=12,∴反比例函数为:y =,∵点(﹣a ,y 1)和(a +1,y 2)在反比例函数的图象上,∴﹣a ≠0,且a +1≠0,∴a ≠﹣1,且a ≠0,∴当a <﹣1时,﹣a >0,a +1<0,则点(﹣a ,y 1)和(a +1,y 2)分别在第一象限和第三象限的反比例函数的图象上,于是有y 1>y 2;当﹣1<a <0时,﹣a >0,a +1>0,若﹣a >a +1,即﹣1<a <﹣时,y 1<y 2,若﹣a =a +1,即a =﹣时,y 1=y 2,若﹣a <a +1,即﹣<a <0时,y 1>y 2;当a >0时,﹣a <0,a +1>0,则点(﹣a ,y 1)和(a +1,y 2)分别在第三象限和第一象限的反比例函数的图象上,于是有y 1<y 2;综上,当a <﹣1时,y 1>y 2;当﹣1<a <﹣时,y 1<y 2;当a =﹣时,y 1=y 2;当﹣<a <0时,y 1>y 2;当a >0时,y 1<y 2.(2)∵一次函数y =kx +b 的图象过点A (3,4)并与x 轴交于点(﹣1,0),∴,解得,,∴一次函数的解析式为:y=x+1;解方程组,得,,∴一次函数y=kx+b的图象与反比例函数y=的图象相交于两点(﹣4,﹣3)和(3,4),当一次函数y=kx+b的图象在反比例函数y=的图象下方时,x<﹣4或0<x<3,∴kx+b﹣<0成立时,对应x的取值范围:x<﹣4或0<x<3.24.【解答】解:(1)连接BD、OE,∵AB是直径,则∠ADB=90°=∠ADO+∠ODB,∵DE是切线,∴∠ODE=90°=∠EDB+∠BDO,∴∠EDB=∠ADO=∠CAB,∵∠ABC=90°,即BC是圆的切线,∴∠DBC=∠CAB,∴∠EDB=∠EBD,则∠BDC=90°,∴E为BC的中点;(2)△AHD和△BMH的外接圆面积之比为3,则两个三角形的外接圆的直径分别为AD、BM,∴AD:BM=,而△ADH∽△MBH,∴DH:BH=,则DH=HM,∴HM:BH=,∴∠BMH=30°=∠BAC,∴∠C =60°,E 是直角三角形的中线,∴DE =CE ,∴△DEC 为等边三角形,⊙O 的面积:12π=(AB )2π,则AB =4,∠CAB =30°,∴BD =2,BC =4,AC =8,而OE =AC =4,四边形OBED 的外接圆面积S 2=π(2)2=2π,等边三角形△DEC 边长为2,则其内切圆的半径为:,面积为,故△DEC 的内切圆面积S 1和四边形OBED 的外接圆面积S 2的比为:. 25.【解答】解:(1)把点A (2,0)代入y =kx +4得:2k +4=0∴k =﹣2∴一次函数的解析式为y =﹣2x +4∵二次函数y =ax 2﹣bx +c 的图象过点A (2,0),且a =b∴4a ﹣2a +c =0解得:c =﹣2a∴二次函数解析式为y =ax 2﹣ax ﹣2a (a ≠0)当ax 2﹣ax ﹣2a =0,解得:x 1=2,x 2=﹣1∴二次函数与x 轴交点坐标为(2,0),(﹣1,0).(2)证明:由(1)得:直线解析式为y =﹣2x +4,抛物线解析式为y =ax 2﹣ax ﹣2a整理得:ax 2+(2﹣a )x ﹣2a ﹣4=0∴△=(2﹣a )2﹣4a (﹣2a ﹣4)=a 2﹣4a +4+8a 2+16a =9a 2+12a +4=(3a +2)2 ∵a >c ,c =﹣2a∴a >﹣2a∴a >0∴3a +2>0∴△=(3a +2)2>0∴关于x 的一元二次方程有两个不相等的实数根∴直线与抛物线还有另一个异于点A 的交点(3)∵c <a ≤c +3,c =﹣2a∴﹣2a <a ≤﹣2a +3∴0<a ≤1,抛物线开口向上∵整理得:ax 2+(2﹣a )x ﹣2a ﹣4=0,且△=(3a +2)2>0∴x =∴x 1=2(即点A 横坐标),x 2=﹣1﹣∴y 2=﹣2(﹣1﹣)+4=+6∴直线y =kx +4与抛物线y =ax 2﹣bx +c 的另一个交点B 的坐标为(﹣1﹣,)∵抛物线y =ax 2﹣ax ﹣2a =a (x ﹣)2﹣a∴顶点M (,﹣a ),对称轴为直线x =∴抛物线对称轴与直线y =﹣2x +4的交点N (,3)∴如图,MN =3﹣(﹣a )=3+a∴S =S △AMN ﹣S △BMN =MN (x A ﹣)﹣MN (﹣x B )=(3+a )(2﹣)﹣(3+a )(+1+)=(3+a )(﹣﹣)=3a ﹣+ ∵0<a ≤1∴0<3a ≤3,﹣≤﹣3∴当a =1时,3a =3,﹣=﹣3均取得最大值∴S =3a ﹣+有最大值,最大值为.。

2019年内蒙古呼和浩特市中考数学试卷及答案

2019年内蒙古呼和浩特市中考数学试卷及答案

ADC OMB2019年呼和浩特中考试卷数 学一、选择题(本大题共10小题,每小题3分,满分24分)1.-3+5的相反数是( )A .2B .-2C .-8D .82.2019年参加全市中考模拟考试的人数约为16 500人,这个数字用科学记数法可表示为( )A .0.165×103B .1.65×103C .1.65×104D .16.5×103 3.下列运算正确的是( )A .a +a =a 2B .a ·a 2=a 2C .(2a )2=2a 2D .a +2a =3a 4.一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从其中随机摸出一个,则摸到红球的概率是( )A . 5 8B . 3 8C . 1 5D . 185.在下列图形中,既是轴对称图形,又是中心对称图形的是( )6.如图,⊙O 的直径CD =10cm ,弦AB ⊥CD 于M ,OM ∶OC =3∶5,则AB =( ) A .8cm B .91cm C .6cm D .2cm 7.下列说法正确的个数是( )①要了解一批灯泡的使用寿命,采用全面调查的方式②要了解全市居民对环境的保护意识,采用抽样调查的方式 ③一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖④若甲组数据的方差为0.05,乙组数据的方差为0.1,则乙组数据比甲组数据稳定 A .0 B .1 C .2 D .38.均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线),则这个容器的形状为( )911)、B (x 2,y 2)、C (x 3,y 3)是函数y =- 3 x图象上的三点,且x 1<0<x 2<x 3,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 2<y 1D .无法确定10.在计算机程序中,二叉树是一种表示数据结构的方法.如图,一层二叉树的结点总数为1,二层二叉树的结点总数为3,三层二叉树的结点总数为7,…,照此规律,七层二叉树的结点总数为( )…一层二叉树二层二叉树三层二叉树ABCDDACEC 1A DE FBCA .63B .64C .127D .128二、填空题(本大题共6小题,每小题3分,满分18分)11.8点30分时,钟表的时针与分针的夹角为 度. 12.方程(x -1)(x +2)=2(x +2)的根是 .13.若a 、b 为两个连续的整数,且a <15<b ,则a +b = .14.如图,将矩形ABCD 沿直线BD 折叠,使点C 落在C 1处,BC 1交AD 于点E .若AD =8,AB =4,则DE 的长是 .15.某种商品的标价为220元,为了吸引顾客,按标价的90%出售,这时仍可盈利10%,则这种商品的进价为 元. 16.如图AB 是⊙O 1的直径,AO 1是⊙O 2的直径,弦MN ∥AB ,且MN 与⊙O 2相切点C .若⊙O 1的半径为2,则阴影部分的面积是 .三、解答题(本大题共9小题,满分72分)17.(1)(5分)计算:|23|60cos 221)2010(1--+⎪⎭⎫⎝⎛--- π;(2)(5分)先化简,再求值:111222---++a aa a a ,其中a =3+1.18.(6分)如图,点A 、E 、F 、C 在同一直线上,AD ∥BC ,AD =CB ,AE =CF .求证:BE =DF .19.(6分)解不等式组⎪⎩⎪⎨⎧>-≤--.,x x x x 22158)2(3A B D C图① 图② B C A20.(6分)如图,在△ABC 中,∠C =90º,∠B =30º,AD 是∠BAC 的平分线,BD =43,求AD 的长.21.(7分)如图①是抛物线形拱桥,当水面在n 时,拱顶离水面2米,水面宽4米.若水面下降1米,则水面宽度将增加多少米?(图②是备用图)22.(7分)如图,在△ABC 中,∠C =90º,AC =3,BC =4,点O 在边CA 上移动,且⊙O的半径为2.(1)若圆心O 与点C 重合,则⊙O 与直线AB 有怎样的位置关系?(2)当OC 等于多少时,⊙O 与直线AB 相切?A B C D E G H O F 23.(10分)某区从参加初中八年级数学调研考试的8000名学生成绩中,随机抽取了部分学生的成绩作为样本,为了节省时间,先将样本分成甲、乙两组,分别进行分析,得到表一;随后汇总整个样本数据,得到表二.请根据表一、表二所提供的信息,回答下列问题:(1)样本中,学生数学成绩平均分约为 分(结果精确到0.1);(2)样本中,数学成绩在84≤x <96分数段的频数为 ,等级为A 的人数占抽样学生总数的百分比为 ,中位数所在的分数段为 ; (3)估计这8000名学生的数学成绩的平均分约为 分(结果精确到0.1). 24.(10分)如图,等边△ABC 的边长为12cm ,点D 、E 分别在边AB 、AC 上,且AD =AE=4cm ,若点F 从点B 开始以2cm/s 的速度沿射线BC 的方向运动,设点F 的运动时间为t s ,直线FD 与过点A 且平行于BC 的直线相交于点G ,GE 的延长线与BC 的延长线相交于点H ,AB 与GH 相交于点O .(1)设△AEG 的面积为S cm 2,求S 与t 的函数关系式.(2)在点F 运动的过程中,试猜想△FGH 的面积是否改变?若不变,求其值;若改变,请说明理由.(3)请直接写出t 为何值时,点F 和点C 是线段BH 的三等分点.表二表一25.(10分)在平面直角坐标系中,函数y=mx(m>0)的图象经过点A(1,4)、B(a,b),其中a>1.过点A作x轴的垂线,垂足为C;过点B作y轴的垂线,垂足为D,AC与BD相交于点M,连接AB、AD、BC、CD.(1)求m的值;(2)求证:CD∥AB;(3)当AD=BC时,求直线AB的函数解析式.。

内蒙古呼和浩特市2019年中考数学真题试题

内蒙古呼和浩特市2019年中考数学真题试题

内蒙古呼和浩特市2019年中考数学真题试题一、选择题1. 下列各组中,表示同一个比例的是()A. 1:3、2:5、5:8B. 3:5、4:7、7:11C. 2:5、4:5、5:2D. 7:8、11:15、15:182. 已知a:b = 2:3,b:c = 4:5,则a:c = ()A. 4:5 B. 5:7 C. 10:15 D. 8:153. 已知20%的书是文学类书,若有120本文学类书,则还有多少本书不是文学类书?()A. 300 B. 480 C. 540 D. 6004. 若8:12 = a:b, b:c = 3:5,求a:b:c的值。

()A. 4:6:10 B. 2:3:5 C. 8:3:5 D. 1:2:55. 三角形ABC的面积是6平方厘米,AB=10厘米,BC=8厘米,则h为几厘米?()A. 1B. 2C. 3D. 46. 算式480×(2.8)×0.25÷(4)= ()A. 336 B. 280 C. 2800 D. 33607. 下列四个数中,最大的是()A. \( \frac{2}{3} \) B. \( \frac{13}{20} \) C. \( \frac{7}{8} \) D. \( \frac{4}{5} \)8. 张三今年10岁,王五比张三多5岁,那么王五今年的年龄是()A. 10 B. 15 C. 20 D. 59. 一个正方形花坛的边长是10米,若花坛四周围上一圈宽度相等的小路,则小路的面积是()A.225 平方米 B. 50平方米 C. 100平方米 D. 250平方米10. 一个小组有70个学生,其中男生数是女生数的2倍,男生和女生各有几个?()A. 30,40 B. 40,30 C. 20,50 D. 35,3511. 将34766.9元用以下三种面值纸币表示,哪种方案最方便?()A.500元,100元,20元,10元 B.100元,10元,1元 C.100元,10元 D.50元,10元12. 若a:b=3:5, b:c=4:7,则\( \frac{a}{c} \) = ()A. 3:7B. 3:5C. 3:4D. 3:613. 120个相等的木棍排成方形的最小边长是多少?()A. 120米 B. 60米 C. 40米 D. 30米14. 将\(\small \dfrac{8}{15}\) 乘以 6 ,然后再除以 2 ,其结果是()A.\(\small \dfrac{4}{5}\) B. \(\small \dfrac{3}{5}\) C. \(\small \dfrac{3}{4}\) D. \(\small \dfrac{4}{3}\)15. 如图,在矩形中AC=2cm,∠ABC的度数是多少?()A. 30°B. 60°C. 45°D. 90°二、解答题16. 先化简 \( a^{-2} \times a^5 \div a^3 \)解: \( a^{-2} \times a^5 \div a^3 = a^{-2+5-3} = a^0 = 1 \)17. 一个小数的百分数是20,这个小数的值为多少?解:20% = 0.218. 三角形ABC中,AB=3cm,BC=4cm,AC=5cm,则这个三角形是什么三角形?解:根据勾股定理可得,\( AB^2+BC^2=AC^2 \),所以这是一个直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年内蒙古呼和浩特市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2019•呼和浩特)下列实数是无理数的是()A.﹣1 B.0C.πD.考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、是整数,是有理数,选项错误;B、是整数,是有理数,选项错误;C、正确;D、是分数,是有理数,选项错误.故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)(2019•呼和浩特)以下问题,不适合用全面调查的是()A.旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C.了解全校学生的课外读书时间D.了解一批灯泡的使用寿命考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、旅客上飞机前的安检,意义重大,宜用全面调查,故此选项错误;B、学校招聘教师,对应聘人员面试必须全面调查,故此选项错误;C、了解全校同学课外读书时间,数量不大,宜用全面调查,故此选项错误;D、了解一批灯泡的使用寿,具有破坏性,工作量大,不适合全面调查,故D选项正确.故选:D.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(3分)(2019•呼和浩特)已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C (4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(1,2)B.(2,9)C.(5,3)D.(﹣9,﹣4)考点:坐标与图形变化-平移.分析:根据点A、C的坐标确定出平移规律,再求出点D的坐标即可.解答:解:∵点A(﹣1,4)的对应点为C(4,7),∴平移规律为向右5个单位,向上3个单位,∵点B(﹣4,﹣1),∴点D的坐标为(0,2).故选A.点评:本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.(3分)(2019•呼和浩特)如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60πB.70πC.90πD.160π考点:由三视图判断几何体.分析:易得此几何体为空心圆柱,圆柱的体积=底面积×高,把相关数值代入即可求解.解答:解:观察三视图发现该几何体为空心圆柱,其内径为3,外径为4,高为10,所以其体积为10×(42π﹣32π)=70π,故选B.点评:本题考查了由三视图判断几何体的知识,解决本题的关键是得到此几何体的形状,易错点是得到计算此几何体所需要的相关数据.5.(3分)(2019•呼和浩特)某商品先按批发价a元提高10%零售,后又按零售价降低10%出售,则它最后的单价是()元.A.a B.0.99a C.1.21a D.0.81a考点:列代数式.分析:原价提高10%后商品新单价为a(1+10%)元,再按新价降低10%后单价为a(1+10%)(1﹣10%),由此解决问题即可.解答:解:由题意得a(1+10%)(1﹣10%)=0.99a(元).故选:B.点评:本题主要考查列代数式的应用,属于应用题型,找到相应等量关系是解答此题的关键.6.(3分)(2019•呼和浩特)已知⊙O的面积为2π,则其内接正三角形的面积为()A.3B.3C.D.考点:垂径定理;等边三角形的性质.分析:先求出正三角形的外接圆的半径,再求出正三角形的边长,最后求其面积即可.解答:解:如图所示,连接OB、OC,过O作OD⊥BC于D,∵⊙O的面积为2π∴⊙O的半径为∵△ABC为正三角形,∴∠BOC==120°,∠BOD=∠BOC=60°,OB=,∴BD=OB•sin∠BOD==,∴BC=2BD=,∴OD=OB•cos∠BOD=•cos60°=,∴△BOC的面积=•BC•OD=××=,∴△ABC的面积=3S△BOC=3×=.故选C.点评:本题考查的是三角形的外接圆与外心,根据题意画出图形,利用数形结合求解是解答此题的关键.7.(3分)(2019•呼和浩特)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a c>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c考点:实数与数轴.分析:先根据各点在数轴上的位置比较出其大小,再对各选项进行分析即可.解答:解:∵由图可知,a<b<0<c,∴A、ac<bc,故本选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故本选项错误;C、∵a<b<0,∴﹣a>﹣b,故本选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故本选项正确.故选D.点评:本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.8.(3分)(2019•呼和浩特)下列运算正确的是()A.•=B.=a3C.(+)2÷(﹣)=D.(﹣a)9÷a3=(﹣a)6考点:分式的混合运算;同底数幂的除法;二次根式的混合运算.分析:分别根据二次根式混合运算的法则、分式混合运算的法则、同底幂的除法法则对各选项进行逐一计算即可.解答:解:A、原式=3•=3,故本选项错误;B、原式=|a|3,故本选项错误;C、原式=÷=•=,故本选项正确;D、原式=﹣a9÷a3=﹣a6,故本选项错误.故选C.点评:本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键9.(3分)(2019•呼和浩特)已知矩形ABCD的周长为20cm,两条对角线AC,BD相交于点O,过点O作AC的垂线EF,分别交两边AD,BC于E,F(不与顶点重合),则以下关于△CDE与△ABF 判断完全正确的一项为()A.△CDE与△ABF的周长都等于10cm,但面积不一定相等B.△CDE与△ABF全等,且周长都为10cmC.△CDE与△ABF全等,且周长都为5cmD.△CDE与△ABF全等,但它们的周长和面积都不能确定考点:矩形的性质;全等三角形的判定与性质;线段垂直平分线的性质.分析:根据矩形的性质,AO=CO,由EF⊥AC,得EA=EC,则△CDE的周长是矩形周长的一半,再根据全等三角形的判定方法可求出△CDE与△ABF全等,进而得到问题答案.解答:解:∵AO=CO,EF⊥AC,∴EF是AC的垂直平分线,∴EA=EC,∴△CDE的周长=CD+DE+CE=CD+AD=矩形ABCD的周长=10cm,同理可求出△ABF的周长为10cm,根据全等三角形的判定方法可知:△CDE与△ABF全等,故选B.点评:本题考查了矩形的对角线互相平分的性质,还考查了线段垂直平分线的性质以及全等三角形的判定方法,题目的难度不大.10.(3分)(2019•呼和浩特)已知函数y=的图象在第一象限的一支曲线上有一点A(a,c),点B(b,c+1)在该函数图象的另外一支上,则关于一元二次方程ax2+bx+c=0的两根x1,x2判断正确的是()A.x1+x2>1,x1•x2>0 B.x1+x2<0,x1•x2>0C.0<x1+x2<1,x1•x2>0 D.x1+x2与x1•x2的符号都不确定考点:根与系数的关系;反比例函数图象上点的坐标特征.分析:根据点A(a,c)在第一象限的一支曲线上,得出a>0,c>0,再点B(b,c+1)在该函数图象的另外一支上,得出b<0,c<﹣1,再根据x1•x2=,x1+x2=﹣,即可得出答案.解答:解:∵点A(a,c)在第一象限的一支曲线上,∴a>0,c>0,∵点B(b,c+1)在该函数图象的另外一支上,∴b<0,c+1<0,∴c<﹣1,∴x1•x2=>0,0<x1+x2<1,故选C.点评:本题考查了根与系数的关系,掌握根与系数的关系和各个象限点的特点是本题的关键;若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=﹣,x1x2=.二、填空题(本大题共6小题,每小题3分,共18分.本题要求把正确结果填在答题纸规定的横线上,不需要解答过程)11.(3分)(2019•呼和浩特)一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为160°.考点:圆锥的计算.专题:计算题.分析:根据圆锥的底面直径求得圆锥的侧面展开扇形的弧长,再利用告诉的母线长求得圆锥的侧面展开扇形的面积,再利用扇形的另一种面积的计算方法求得圆锥的侧面展开图的圆心角即可.解答:解:∵圆锥的底面直径是80cm,∴圆锥的侧面展开扇形的弧长为:πd=80π,∵母线长90cm,∴圆锥的侧面展开扇形的面积为:lr=×80π×90=3600π,∴=3600π,解得:n=160.故答案为:160.点评:本题考查了圆锥的有关计算,解决此类题目的关键是明确圆锥的侧面展开扇形与圆锥的关系.12.(3分)(2019•呼和浩特)某校五个绿化小组一天的植树的棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是 1.6.考点:方差.分析:根据平均数的计算公式先求出x的值,再根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],代入计算即可.解答:解:∵这组数据的平均数是10,∴(10+10+12+x+8)÷5=10,解得:x=10,∴这组数据的方差是[3×(10﹣10)2+(12﹣10)2+(8﹣10)2]=1.6;故答案为:1.6.点评:此题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].13.(3分)(2019•呼和浩特)等腰三角形一腰上的高与另一腰的夹角为36,则该等腰三角形的底角的度数为63°或27°.考点:等腰三角形的性质.专题:分类讨论.分析:分锐角三角形和钝角三角形两种情况,利用等腰三角形的性质和三角形内角和定理即可求出它的底角的度数.解答:解:在三角形ABC中,设AB=AC,BD⊥AC于D.①若是锐角三角形,∠A=90°﹣36°=54°,底角=(180°﹣54°)÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=(180°﹣126°)÷2=27°.所以等腰三角形底角的度数是63°或27°.点评:此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和应用,此题的关键是熟练掌握三角形内角和定理.14.(3分)(2019•呼和浩特)把多项式6xy2﹣9x2y﹣y3因式分解,最后结果为﹣y(3x﹣y)2.考点:提公因式法与公式法的综合运用.分析:首先提取公因式﹣y,进而利用完全平方公式分解因式得出即可.解答:解:6xy2﹣9x2y﹣y3=﹣y(y2﹣6xy+9x2)=﹣y(3x﹣y)2.故答案为:﹣y(3x﹣y)2.点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握完全平方公式是解题关键.15.(3分)(2019•呼和浩特)已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=8.考点:根与系数的关系;一元二次方程的解.专题:常规题型.分析:根据m+n=﹣=﹣2,m•n=﹣5,直接求出m、n即可解题.解答:解:∵m、n是方程x2+2x﹣5=0的两个实数根,且一元二次方程的求根公式是解得:m=﹣1,n=﹣1﹣或者m=﹣1﹣,n=﹣1,将m=﹣1、n=﹣1﹣代入m2﹣mn+3m+n=8;将m=﹣1﹣、n=﹣1代入m2﹣mn+3m+n=8;故答案为:8.点评:此题主要考查了一元二次方程根根的计算公式,根据题意得出m和n的值是解决问题的关键.16.(3分)(2019•呼和浩特)以下四个命题:①每一条对角线都平分一组对角的平行四边形是菱形.②当m>0时,y=﹣mx+1与y=两个函数都是y随着x的增大而减小.③已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若A点坐标为(1,,则D点坐标为(1,.④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为.其中正确的命题有①(只需填正确命题的序号)考点:命题与定理.分析:利用菱形的性质、一次函数及反比例函数的性质、图形与坐标及概率的知识分别判断后即可确定答案.解答:解:①每一条对角线都平分一组对角的平行四边形是菱形,正确.②当m>0时,y=﹣mx+1与y=两个函数都是y随着x的增大而减小,错误.③已知正方形的对称中心在坐标原点,顶点A,B,C,D按逆时针依次排列,若A点坐标为(1,,则D点坐标为(1,,错误.④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为,错误,故答案为:①.点评:本题考查了命题与定理的知识,解题的关键是了解菱形的性质、一次函数及反比例函数的性质、图形与坐标及概率的知识,难度一般.三、解答题(本大题共9小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(10分)(2019•呼和浩特)计算(1)计算:2cos30°+(﹣2)﹣1+|﹣|(2)解方程:﹣=0.考点:二次根式的混合运算;负整数指数幂;解分式方程;特殊角的三角函数值.分析:(1)根据特殊角的三角函数、负指数幂运算、绝对值进行计算即可;(2)先去分母,化为整式方程求解即可.解答:解:(1)原式=2×++=﹣(+2)+=﹣;(2)去分母,得3x2﹣6x﹣x2﹣2x=0,解得x1=0,x2=4,经检验:x=0是增根,故x=4是原方程的解.点评:本题考查了二次根式的混合运算、负指数幂运算、解分式方程以及特殊角的三角函数值,是基础知识要熟练掌握.18.(6分)(2019•呼和浩特)如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(结果用非特殊角的三角函数及根式表示即可)考点:解直角三角形的应用-方向角问题.分析:首先根据题意得出∠MPA=∠A=65°,以及∠DBP=∠DPB=45°,再利用解直角三角形求出即可.解答:解:如图,过点P作PD⊥AB于点D.由题意知∠DPB=∠DBP=45°.在Rt△PBD中,sin45°==,∴PB=PD.∵点A在点P的北偏东65°方向上,∴∠APD=25°.在Rt△PAD中,cos25°=.∴PD=PAcos25°=80cos25°,∴PB=80cos25°.点评:此题主要考查了方向角含义,正确记忆三角函数的定义得出相关角度是解决本题的关键.19.(5分)(2019•呼和浩特)已知实数a是不等于3的常数,解不等式组,并依据a的取值情况写出其解集.考点:解一元一次不等式组.专题:分类讨论.分析:首先分别解出两个不等式,再根据实数a是不等于3的常数,分两种情况进行讨论:①当a >3时,②当a<3时,然后确定出不等式组的解集.解答:解:,解①得:x≤3,解②得:x<a,∵实数a是不等于3的常数,∴当a>3时,不等式组的解集为x≤3,当a<3时,不等式组的解集为x<a.点评:此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.(9分)(2019•呼和浩特)学校为了了解初三年级学生体育跳绳的训练情况,从初三年级各班随机抽取了50名学生进行了60秒跳绳的测试,并将这50名学生的测试成绩(即60秒跳绳的个数)从低到高分成六段记为第一到六组,最后整理成下面的频数分布直方图:请根据直方图中样本数据提供的信息解答下列问题.(1)跳绳次数的中位数落在哪一组?由样本数据的中位数你能推断出学校初三年级学生关于60秒跳绳成绩的一个什么结论?(2)若用各组数据的组中值(各小组的两个端点的数的平均数)代表各组的实际数据,求这50名学生的60秒跳绳的平均成绩(结果保留整数);(3)若从成绩落在第一和第六组的学生中随机抽取2名学生,用列举法求抽取的2名学生恰好在同一组的概率.考点:频数(率)分布直方图;中位数;列表法与树状图法.分析:(1)根据中位数的定义先把这组数据从小到大排列,找出中间两个数的平均数,再根据中位数落在第四组估计出初三学生60秒跳绳再120个以上的人数达到一半以上;(2)根据平均数的计算公式进行计算即可;(3)先把第一组的两名学生用A、B表示,第六组的三名学生用1,2,3表示,得出所有出现的情况,再根据概率公式进行计算即可.解答:解:(1)∵共有50个数,中位数是第25、26个数的平均数,∴跳绳次数的中位数落在第四组;∴可以估计初三学生60秒跳绳再120个以上的人数达到一半以上;(2)根据题意得:(2×70+10×90+12×110+13×130+10×150+3×170)÷50≈121(个),答:这50名学生的60秒跳绳的平均成绩是121个;(3)记第一组的两名学生为A、B,第六组的三名学生为1,2,3,则从这5名学生中抽取两名学生有以下10种情况:AB,A1,A2,A3,B1,B2,B3,12,13,23,则抽取的2名学生恰好在同一组的概率是:=;点评:此题考查了频数(率)分布直方图,用到的知识点是中位数、平均数、概率公式,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(7分)(2019•呼和浩特)如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连接DE.(1)求证:△ADE≌△CED;(2)求证:DE∥AC.考点:翻折变换(折叠问题);全等三角形的判定与性质;矩形的性质.专题:证明题.分析:(1)根据矩形的性质和折叠的性质可得BC=CE=AD,AB=AE=CD,根据SSS可证△ADE≌△CED(SSS);(2)根据全等三角形的性质可得∠EDC=∠DEA,由于△ACE与△ACB关于AC所在直线对称,可得∠OAC=∠CAB,根据等量代换可得∠OAC=∠DEA,再根据平行线的判定即可求解.解答:证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD,又∵AC是折痕,∴BC=CE=AD,AB=AE=CD,在△ADE与△CED中,,∴△ADE≌△CED(SSS);(2)∵△ADE≌△CED,∴∠EDC=∠DEA,又∵△ACE与△ACB关于AC所在直线对称,∴∠OAC=∠CAB,∵∠OCA=∠CAB,∴∠OAC=∠OCA,∴2∠OAC=2∠DEA,∴∠OAC=∠DEA,∴DE∥AC.点评:本题考查了翻折变换(折叠问题),矩形的性质,以及全等三角形的判定与性质,正确证明三角形全等是关键.22.(7分)(2019•呼和浩特)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?考点:二元一次方程组的应用.分析:设基本电价为x元/千瓦时,提高电价为y元/千瓦时,根据2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元,列方程组求解.解答:解:设基本电价为x元/千瓦时,提高电价为y元/千瓦时,由题意得,,解得:,则四月份电费为:160×0.6=96(元),五月份电费为:180×0.6+230×0.7=108+161=269(元).答:这位居民四月份的电费为96元,五月份的电费为269元.点评:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.23.(8分)(2019•呼和浩特)如图,已知反比例函数y=(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)写出反比例函数解析式;(2)求证:△ACB∽△NOM;(3)若△ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.考点:反比例函数综合题.分析:(1)把A点坐标代入y=可得k的值,进而得到函数解析式;(2)根据A、B两点坐标可得AC=4﹣n,BC=m﹣1,ON=n,OM=1,则=,再根据反比例函数解析式可得=m,则=m﹣1,而=,可得=,再由∠ACB=∠NOM=90°,可得△ACB∽△NOM;(3)根据△ACB与△NOM的相似比为2可得m﹣1=2,进而得到m的值,然后可得B点坐标,再利用待定系数法求出AB的解析式即可.解答:解:(1)∵y=(x>0,k是常数)的图象经过点A(1,4),∴k=4,∴反比例函数解析式为y=;(2)∵点A(1,4),点B(m,n),∴AC=4﹣n,BC=m﹣1,ON=n,OM=1,∴==﹣1,∵B(m,n)在y=上,∴=m,∴=m﹣1,而=,∴=,∵∠ACB=∠NOM=90°,∴△ACB∽△NOM;(3)∵△ACB与△NOM的相似比为2,∴m﹣1=2,m=3,∴B(3,),设AB所在直线解析式为y=kx+b,∴,解得,∴解析式为y=﹣x+.点评:此题主要考查了反比例函数的综合应用,关键是掌握凡是函数图象经过的点,必然能使函数解析式左右相等.24.(8分)(2019•呼和浩特)如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求△ACE 的外接圆的半径.考点:切线的性质;相似三角形的判定与性质.分析:(1)连接OC,由∠ABC+∠BAC=90°及CM是⊙O的切线得出∠ACM+∠ACO=90°,再利用∠BAC=∠AOC,得出结论,(2)连接OC,得出△AEC是直角三角形,△AEC的外接圆的直径是AC,利用△ABC∽△CDE,求出AC,解答:(1)证明:如图,连接OC∵AB为⊙O的直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,又∵CM是⊙O的切线,∴OC⊥CM,∴∠ACM+∠ACO=90°,∵CO=AO,∴∠BAC=∠AOC,∴∠ACM=∠ABC;(2)解:∵BC=CD,∴OC∥AD,又∵OC⊥CE,∴AD⊥CE,∴△AEC是直角三角形,∴△AEC的外接圆的直径是AC,又∵∠ABC+∠BAC=90°,∠ACM+∠ECD=90°,∴△ABC∽△CDE,∴=,⊙O的半径为3,∴AB=6,∴=,∴BC2=12,∴BC=2,∴AC==2,∴△AEC的外接圆的半径为.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.解题的关键是找准角的关系.25.(12分)(2019•呼和浩特)如图,已知直线l的解析式为y=x﹣1,抛物线y=ax2+bx+2经过点A(m,0),B(2,0),D(1,)三点.(1)求抛物线的解析式及A点的坐标,并在图示坐标系中画出抛物线的大致图象;(2)已知点P(x,y)为抛物线在第二象限部分上的一个动点,过点P作PE垂直x轴于点E,延长PE与直线l交于点F,请你将四边形PAFB的面积S表示为点P的横坐标x的函数,并求出S的最大值及S最大时点P的坐标;(3)将(2)中S最大时的点P与点B相连,求证:直线l上的任意一点关于x轴的对称点一定在PB所在直线上.考点:二次函数综合题.分析:(1)根据待定系数法可求抛物线的解析式,再根据A(m,0)在抛物线上,得到0=﹣m2﹣m+2,解方程即可得到m的值,从而得到A点的坐标;(2)根据四边形PAFB的面积S=AB•PF,可得S=﹣(x+2)2+12,根据函数的最值可得S的最大值是12,进一步得到点P的坐标为;(3)根据待定系数法得到PB所在直线的解析式为y=﹣x+1,设Q(a,a﹣1)是y=x﹣1上的一点,则Q点关于x轴的对称点为(a,1﹣a),将(a,1﹣a)代入y=﹣x+1显然成立,依此即可求解.解答:解:(1)∵抛物线y=ax2+bx+2经过点B(2,0),D(1,),∴,解得a=﹣,b=﹣,∴抛物线的解析式为y=﹣x2﹣x+2,∵A(m,0)在抛物线上,∴0=﹣m2﹣m+2,解得m=﹣4,∴A点的坐标为(﹣4,0).如图所示:(2)∵直线l的解析式为y=x﹣1,∴S=AB•PF=×6•PF=3(﹣x2﹣x+2+1﹣x)=﹣x2﹣3x+9=﹣(x+2)2+12,其中﹣4<x<0,∴S的最大值是12,此时点P的坐标为(﹣2,2);(3)∵直线PB经过点P(﹣2,2),B(2,0),∴PB所在直线的解析式为y=﹣x+1,设Q(a,a﹣1)是y=x﹣1上的一点,则Q点关于x轴的对称点为(a,1﹣a),将(a,1﹣a)代入y=﹣x+1显然成立,∴直线l上的任意一点关于x轴的对称点一定在PB所在直线上.点评:本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求抛物线的解析式,待定系数法求直线的解析式,函数的最值问题,四边形的面积求法,以及关于x轴的对称点的坐标特征.。

相关文档
最新文档