动力学和能量问题综合应用

合集下载

动力学和能量观点的综合应用(解析版)

动力学和能量观点的综合应用(解析版)

动力学和能量观点的综合应用目录题型一 多运动组合问题题型二 “传送带”模型综合问题类型1 水平传送带问题类型2 倾斜传送带题型三 “滑块-木板”模型综合问题多运动组合问题【解题指导】1.分析思路(1)受力与运动分析:根据物体的运动过程分析物体的受力情况,以及不同运动过程中力的变化情况;(2)做功分析:根据各种力做功的不同特点,分析各种力在不同运动过程中的做功情况;(3)功能关系分析:运用动能定理、机械能守恒定律或能量守恒定律进行分析,选择合适的规律求解.2.方法技巧(1)“合”--整体上把握全过程,构建大致的运动情景;(2)“分”--将全过程进行分解,分析每个子过程对应的基本规律;(3)“合”--找出各子过程之间的联系,以衔接点为突破口,寻求解题最优方案.1(2023·重庆沙坪坝·高三重庆八中阶段练习)如图甲所示,由弹丸发射器、固定在水平面上的37°斜面以及放置在水平地面上的光滑半圆形挡板墙(挡板墙上分布有多个力传感器)构成的游戏装置,半圆形挡板的半径0.2m,斜面高度h=0.6m,弹丸的质量为0.2kg。

游戏者调节发射器,弹丸到B点时速度沿斜面且大小为5m/s,接着他将半圆形挡板向左平移使C、D两端重合且DO与BC垂直。

挡板墙上各处的力传感器收集到的侧压力F与弹丸在墙上转过的圆心角θ之间的关系如图乙所示。

弹丸受到的摩擦力均视为滑动摩擦力,g取10m/s2。

下列说法正确的是()A.弹丸到C点的速度为7m/sB.弹丸与地面的动摩擦因数为0.6C.弹丸与地面的动摩擦因数为0.06D.弹丸与斜面的动摩擦因数为0.5【答案】B【详解】A.由图可知,在D点,挡板对弹丸的支持力为32.2N,由牛顿第二定律有32.2=m v2D R代入数据有v=32.2m/s由题知C、D两端重合,则C点的速度等于D点的速度,A错误;D.弹丸从B到C过程由动能定理得mgh-μ1mg cos37°×hsin37°=12mv2-12mv2代入数据有μ1=0.3D错误;BC.设弹丸与地面之间的动摩擦因数为μ2,设转过3rad后的速度为v,由动能定理得-μ2mg×3×R=12mv2-12mv2在转过3rad后挡板对弹丸的支持力为25N,由牛顿第二定律得25=m v2R联立解得μ1=0.6B正确、C错误。

高考物理复习:力学三大观点的综合应用

高考物理复习:力学三大观点的综合应用

高考物理复习:力学三大观点的综合应用考点一 动力学和能量观点的应用[知能必备]1.过程分析:将复杂的物理过程分解为几个简单的物理过程,挖掘出题中的隐含条件,找出联系不同阶段的“桥梁”.2.受力及功能分析:分析物体所经历的各个运动过程的受力情况以及做功情况的变化,选择适合的规律求解.3.规律应用:选用相应规律解决不同阶段的问题,列出规律性方程.[典例剖析](2020·全国卷Ⅱ)如图,一竖直圆管质量为M ,下端距水平地面的高度为H ,顶端塞有一质量为m 的小球.圆管由静止自由下落,与地面发生多次弹性碰撞,且每次碰撞时间均极短;在运动过程中,管始终保持竖直.已知M =4m ,球和管之间的滑动摩擦力大小为4mg ,g 为重力加速度的大小,不计空气阻力.(1)求管第一次与地面碰撞后的瞬间,管和球各自的加速度大小;(2)管第一次落地弹起后,在上升过程中球没有从管中滑出,求管上升的最大高度; (3)管第二次落地弹起的上升过程中,球仍没有从管中滑出,求圆管长度应满足的条件. 解析:(1)管第一次落地弹起的瞬间,小球仍然向下运动.设此时管的加速度大小为a 1,方向向下;球的加速度大小为a 2,方向向上;球与管之间的摩擦力大小为f ,由牛顿运动定律有Ma 1=Mg +f ① ma 2=f -mg ②联立①②式并代入题给数据,得a 1=2g ,a 2=3g ③(2)管第一次碰地前与球的速度大小相同.由运动学公式,碰地前瞬间它们的速度大小均为v 0=2gH ④方向均向下.管弹起的瞬间,管的速度反向,球的速度方向依然向下.设自弹起时经过时间t 1,管与小球的速度刚好相同.取向上为正方向,由运动学公式v 0-a 1t 1=-v 0+a 2t 1⑤ 联立③④⑤式得t 1=252H g⑥ 设此时管下端的高度为h 1,速度为v .由运动学公式可得 h 1=v 0t 1-12a 1t 21⑦v =v 0-a 1t 1⑧由③④⑥⑧式可判断此时v >0.此后,管与小球将以加速度g 减速上升h 2,到达最高点.由运动学公式有h 2=v 22g⑨设管第一次落地弹起后上升的最大高度为H 1, 则H 1=h 1+h 2⑩联立③④⑥⑦⑧⑨⑩式可得H 1=1325H ⑪(3)设第一次弹起过程中球相对管的位移为x 1.在管开始下落到上升H 1这一过程中,由动能定理有Mg (H -H 1)+mg (H -H 1+x 1)-4mgx 1=0⑫ 联立⑪⑫式并代入题给数据得x 1=45H ⑬同理可推得,管与球从再次下落到第二次弹起至最高点的过程中,球与管的相对位移x 2为x 2=45H 1⑭设圆管长度为L .管第二次落地弹起后的上升过程中,球不会滑出管外的条件是x 1+x 2≤L ⑮联立⑪⑬⑭⑮式,L 应满足的条件为L ≥152125H ⑯答案:(1)2g 3g (2)1325H (3)L ≥152125H[题组精练]1.(多选)如图所示,长直杆固定放置与水平面夹角θ=30°,杆上O 点以上部分粗糙,O 点以下部分(含O 点)光滑.轻弹簧穿过长杆,下端与挡板相连,弹簧原长时上端恰好在O 点,质量为m 的带孔小球穿过长杆,与弹簧上端连接.小球与杆粗糙部分的动摩擦因数μ=33,最大静摩擦力等于滑动摩擦力,现将小球拉到图示a 位置由静止释放,一段时间后观察到小球振动时弹簧上端的最低位置始终在b 点,O 点与a 、b 间距均为l .则下列说法正确的是( )A .小球在a 点弹簧弹性势能最大B .小球在a 点加速度大小是在b 点加速度大小的2倍C .整个运动过程小球克服摩擦力做功mglD .若增加小球质量,仍从a 位置静止释放,则小球最终运动的最低点仍在b 点 解析:BC 由于O 点与a 、b 间距均为l ,所以小球在a 、b 两点的弹性势能相等,则A 错误;小球从a 运动到b 过程,由动能定理可得mg sin θ2l -W f =0,解得W f =mgl ,所以C 正确;小球在a 点有mg sin 30°+kl -μmg cos 30°=ma 1,小球在b 点有kl -mg sin 30°=ma 2,由于小球最后是在O 与b 两点间做简谐振动,则在b 点与O 点的加速度大小相等,小球在O 点有mg sin 30°=ma 3,a 2=a 3,联立解得a 2=a 3=g 2,a 1=g ,所以小球在a 点加速度大小是在b 点加速度大小的2倍,则B 正确;若增加小球质量,仍从a 位置静止释放,设小球最终运动的最低点为c ,由于小球最后是在O 与最低点c 两点间做简谐振动,则在c 点与O 点的加速度大小相等,小球在c 点有kl ′-mg sin 30°=ma 2,解得l ′=mgk,所以增大小球的质量,弹簧在最低点的形变量也会增大,则最低点位置发生了改变,所以D 错误.2.如图所示,在光滑水平地面上放置质量M =2 kg 的长木板,木板上表面与固定的竖直弧形轨道相切.一质量m =1 kg 的小滑块自A 点沿弧面由静止滑下,A 点距离长木板上表面高度h =0.6 m .滑块在木板上滑行t =1 s 后,和木板一起以速度v =1 m /s 做匀速运动,取g =10 m /s 2.求:(1)滑块与木板间的摩擦力;(2)滑块沿弧面下滑过程中克服摩擦力做的功; (3)滑块相对木板滑行的距离. 解析:(1)对木板受力分析F f =Ma 1 由运动学公式,有v =a 1t 解得F f =2 N .(2)对滑块受力分析-F f =ma 2 设滑块滑上木板时的初速度为v 0 由公式v -v 0=a 2t 解得v 0=3 m /s滑块沿弧面下滑的过程,由动能定理得 mgh -W f =12m v 20W f =mgh -12m v 20=1.5 J .(3)t =1 s 内木板的位移x 1=12a 1t 2此过程中滑块的位移x 2=v 0t +12a 2t 2故滑块相对木板滑行距离L =x 2-x 1=1.5 m . 答案:(1)2 N (2)1.5 J (3)1.5 m3.(2020·江苏卷)如图所示,鼓形轮的半径为R ,可绕固定的光滑水平轴O 转动.在轮上沿相互垂直的直径方向固定四根直杆,杆上分别固定有质量为m 的小球,球与O 的距离均为2R .在轮上绕有长绳,绳上悬挂着质量为M 的重物.重物由静止下落,带动鼓形轮转动.重物落地后鼓形轮匀速转动,转动的角速度为ω.绳与轮之间无相对滑动,忽略鼓形轮、直杆和长绳的质量,不计空气阻力,重力加速度为g .求:(1)重物落地后,小球线速度的大小v ;(2)重物落地后一小球转到水平位置A ,此时该球受到杆的作用力的大小F ; (3)重物下落的高度h . 解析:(1)线速度v =ωr 得v =2ωR .(2)向心力F 向=2m ω2R设F 与水平方向的夹角为α,则 F cos α=F 向;F sin α=mg解得F = (2m ω2R )2+(mg )2. (3)落地时,重物的速度v ′=ωR 由机械能守恒得12M v ′2+4×12m v 2=Mgh解得h =M +16m2Mg(ωR )2.答案:(1)2ωR (2) (2m ω2R )2+(mg )2 (3)M +16m2Mg(ωR )2考点二 动量和能量观点的应用[知能必备]1.动量观点(1)对于不涉及物体运动过程中的加速度而涉及物体运动时间的问题,特别对于打击一类的问题,因时间短且冲力随时间变化,应用动量定理求解,即Ft =m v -m v 0.(2)对于碰撞、爆炸、反冲一类的问题,若只涉及初、末速度而不涉及力、时间,应用动量守恒定律求解.2.能量观点(1)对于不涉及物体运动过程中的加速度和时间问题,无论是恒力做功还是变力做功,一般都利用动能定理求解.(2)如果只有重力和弹簧弹力做功而又不涉及运动过程中的加速度和时间问题,则采用机械能守恒定律求解.(3)对于相互作用的两物体,若明确两物体相对滑动的距离,应考虑选用能量守恒定律建立方程.[典例剖析](2020·天津卷)长为l 的轻绳上端固定,下端系着质量为m 1的小球A ,处于静止状态.A 受到一个水平瞬时冲量后在竖直平面内做圆周运动,恰好能通过圆周轨迹的最高点.当A 回到最低点时,质量为m 2的小球B 与之迎面正碰,碰后A 、B 粘在一起,仍做圆周运动,并能通过圆周轨迹的最高点.不计空气阻力,重力加速度为g ,求:(1)A 受到的水平瞬时冲量I 的大小; (2)碰撞前瞬间B 的动能E k 至少多大?解析:(1)A 恰好能通过圆周轨迹的最高点,此时轻绳的拉力刚好为零,设A 在最高点时的速度大小为v ,由牛顿第二定律,有m 1g =m 1v 2l①A 从最低点到最高点的过程中机械能守恒,取轨迹最低点处重力势能为零,设A 在最低点的速度大小为v A ,有12m 1v 2A =12m 1v 2+2m 1gl ② 由动量定理,有I =m 1v A ③ 联立①②③式,得I =m 15gl ④(2)设两球粘在一起时的速度大小为v ′,A 、B 粘在一起后恰能通过圆周轨迹的最高点,需满足v ′=v A ⑤要达到上述条件,碰后两球速度方向必须与碰前B 的速度方向相同,以此方向为正方向,设B 碰前瞬间的速度大小为v B ,由动量守恒定律,有m 2v B -m 1v A =(m 1+m 2)v ′⑥ 又E k =12m 2v 2B⑦ 联立①②⑤⑥⑦式,得碰撞前瞬间B 的动能E k 至少为 E k =5gl (2m 1+m 2)22m 2⑧答案:(1)m 15gl (2)5gl (2m 1+m 2)22m 2动量和能量观点应用的四点注意(1)弄清有几个物体参与运动,并划分清楚物体的运动过程. (2)进行正确的受力分析,明确各过程的运动特点.(3)光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析.(4)如含摩擦生热问题,则考虑用能量守恒定律分析.[题组精练]1.(2021·上海浦东区二模)质量M =0.6 kg 的平板小车静止在光滑水平面上,如图所示,当t =0时,两个质量都为m =0.2 kg 的小物体A 和B ,分别从小车的左端和右端以水平速度v 1=5.0 m /s 和v 2=2.0 m /s 同时冲上小车,当它们相对于小车停止滑动时,没有相碰.已知A 、B 两物体与车面的动摩擦因数都是0.20,g 取10 m /s 2,求:(1)A 、B 两物体在车上都停止滑动时的速度. (2)车的长度至少是多少?解析:(1)设物体A 、B 相对于车停止滑动时,车速为v ,根据动量守恒定律: m (v 1-v 2)=(M +2m )v v =0.6 m /s 方向向右(2)设物体A 、B 在车上相对于车滑动的距离分别为L 1、L 2,车长为L ,由功能关系 μmg (L 1+L 2)=12m v 21+12m v 22-12(M +2m )v 2解得:L 1+L 2=6.8 m L ≥L 1+L 2=6.8 m 可知L 至少为6.8 m答案:(1)0.6 m /s 方向向右 (2)6.8 m2.(2021·铜陵一模)如图所示,半径R =1.0 m 的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向间的夹角θ=37°,另一端点C 为轨道的最低点.C 点右侧的光滑水平面上紧挨C 点静止放置一木板,木板质量M =1 kg ,上表面与C 点等高.质量为m =1 kg 的物块(可视为质点)从空中A 点以v 0=1.2 m /s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道.取g =10 m /s 2.求:(1)物块经过C 点时的速度v C ;(2)若木板足够长,物块在木板上相对滑动过程中产生的热量Q .解析:(1)设物块在B 点的速度为v B ,在C 点的速度为v C ,从A 到B 物块做平抛运动,有v B sin θ=v 0从B 到C ,根据动能定理有 mgR (1+sin θ)=12m v 2C -12m v 2B解得v C =6 m /s .(2)根据动量守恒定律得:(m +M )v =m v C 根据能量守恒定律有 12(m +M )v 2+Q =12m v 2C 联立解得Q =9 J . 答案:(1)6 m /s (2)9 J考点三 动力学、动量和能量观点的应用[知能必备]1.力学解题的三大观点分类规律 数学表达式 动力学 观点力的瞬 时作用牛顿第二定律 F 合=ma牛顿第 三定律F =-F ′ 能量 观点力的空间 积累作用动能定理 W 合=E k2-E k1 机械能守 恒定律 E k1+E p1=E k2+E p2 动量 观点力的时间积累作用动量定理 F 合t =m v ′-m v 动量守 恒定律m 1 v 1+m 2 v 2=m 1 v 1′+m 2 v 2′2.选用原则(1)单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.(2)多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题,应选用动量守恒定律,然后再根据能量关系分析解决.3.系统化思维方法(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动.(2)对多个研究对象进行整体思维,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).[典例剖析](2021·湖南卷)如图,竖直平面内一足够长的光滑倾斜轨道与一长为L的水平轨道通过一小段光滑圆弧平滑连接,水平轨道右下方有一段弧形轨道PQ.质量为m的小物块A与水平轨道间的动摩擦因数为μ.以水平轨道末端O点为坐标原点建立平面直角坐标系xOy,x轴的正方向水平向右,y轴的正方向竖直向下,弧形轨道P端坐标为(2μL,μL),Q端在y轴上.重力加速度为g.(1)若A从倾斜轨道上距x轴高度为2μL的位置由静止开始下滑,求A经过O点时的速度大小;(2)若A从倾斜轨道上不同位置由静止开始下滑,经过O点落在弧形轨道PQ上的动能均相同,求PQ的曲线方程;(3)将质量为λm(λ为常数且λ≥5)的小物块B置于O点,A沿倾斜轨道由静止开始下滑,与B发生弹性碰撞(碰撞时间极短),要使A和B均能落在弧形轨道上,且A落在B落点的右侧,求A下滑的初始位置距x轴高度的取值范围.解析:(1)若A从倾斜轨道上距x轴高度为2μL处由静止开始下滑,对A从静止释放到运动到O点的过程,由动能定理得mg×2μL-μmgL=12m v2,解得v0=2μgL.(2)在PQ曲线上任意取一点,设坐标为(x、y),设A从O点抛出的初速度为v,由平抛运动规律有x=v t,y =12gt 2, 联立解得y =12g x 2v2,设A 落在P 点时从O 点抛出的初速度为v P , 将P 点坐标代入上式,有μL =12g (2μL )2v 2P , 解得v P =2μgL ,小物块A 从倾斜轨道上不同位置由静止释放,落在曲线PQ 上的动能均相同,有12m v 2P+mg ·μL =12m v 2+mgy ,解得x 2+4y 2-8μLy =0(0≤x ≤2μL ).(3)设A 与B 碰前瞬间的速度为v 0′,A 、B 碰后瞬间的速度分别为v 1、v 2,对A 、B 组成的系统,根据动量守恒定律与机械能守恒定律有m v 0′=m v 1+λm v 2, 12m v 0′2=12m v 21+12λm v 22, 解得v 1=1-λ1+λv 0′,v 2=21+λv 0′,又因为mgh -μmgL =12m v 0′2,要使A 、B 均能落在PQ 上且A 落在B 落点的右侧,则有12m v 2P ≥12m v 21-2μmgL >12m v 22,联立解得3μL ⎝ ⎛⎭⎪⎫1+λ1-λ2+μL ≥h >2μL (1+λ)λ-3+μL . 答案:(1)2μgL (2)x 2+4y 2-8μLy =0(0≤x ≤2μL ) (3)3μL ⎝ ⎛⎭⎪⎫1+λ1-λ2+μL ≥h >2μL (1+λ)λ-3+μL [题组精练]1.一玩具厂家设计了一款玩具,模型如下.游戏时玩家把压缩的弹簧释放后使得质量m =0.2 kg 的小弹丸A 获得动能,弹丸A 再经过半径R 0=0.1 m 的光滑半圆轨道后水平进入光滑水平平台,与静止的相同的小弹丸B 发生碰撞,并在黏性物质作用下合为一体.然后从平台O 点水平抛出,落于水平地面上设定的得分区域.已知压缩弹簧的弹性势能范围为0≤E p ≤4 J ,距离抛出点正下方O ′点右方0.4 m 处的M 点为得分最大值处,小弹丸均看作质点.(1)要使得分最大,玩家释放弹簧时的弹性势能应为多少? (2)得分最大时,小弹丸A 经过圆弧最高点时对轨道的压力大小.(3)若半圆轨道半径R 可调(平台高度随之调节),弹簧的弹性势能范围为0≤E p ≤4 J ,玩家要使得落地点离O 点最远,则半径应调为多少?最远距离多大?解析:(1)根据机械能守恒定律得 E p =12m v 21+mg ·2R 0A 、B 发生碰撞的过程,取向右为正方向,由动量守恒定律有 m v 1=2m v 2 2R 0=12gt 20x =v 2t 0 解得E p =2 J(2)小弹丸A 经过圆弧最高点时,由牛顿第二定律得F N +mg =m v 21R解得F N =30 N 由牛顿第三定律知 F 压=F N =30 N(3)根据E p =12m v 21+mg ·2Rm v 1=2m v 2 2R =12gt 2x =v 2t 联立解得 x =⎝⎛⎭⎫E p mg -2R ·2R 其中E p 最大为4 J ,得R =0.5 m 时落点离O ′点最远,为 x m =1 m答案:(1)2 J (2)30 N (3)0.5 m 1 m2.(2021·潍坊二模)如图所示,一质量M =4 kg 的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住.小车上表面由光滑圆弧轨道BC 和水平粗糙轨道CD 组成,BC 与CD 相切于C ,BC 所对圆心角θ=37°,CD 长L =3 m .质量m =1 kg 的小物块从某一高度处的A 点以v 0=4 m /s 的速度水平抛出,恰好沿切线方向自B 点进入圆弧轨道,滑到D 点时刚好与小车达到共同速度v =1.2 m /s .取g =10 m /s 2,sin 37°=0.6,忽略空气阻力.(1)求A 、B 间的水平距离x ;(2)求小物块从C 滑到D 所用时间t 0;(3)若在小物块抛出时拔掉销钉,求小车向左运动到最大位移时滑块离小车左端的水平距离.解析:(1)由平抛运动的规律得tan θ=gt v 0x =v 0t解得x =1.2 m .(2)物块在小车上CD 段滑动过程中,由动量守恒定律得m v 1=(M +m )v由功能关系得fL =12m v 21-12(M +m )v 2 对物块,由动量定理得-ft 0=m v -m v 1得t 0=1 s .(3)有销钉时mgH +12m v 20=12m v 21 由几何关系得H -12gt 2=R (1-cos θ) B 、C 间水平距离x BC =R sin θμmgL =12m v 21-12(M +m )v 2(或f =μmg ) 若拔掉销钉,小车向左运动达最大位移时,速度为0,由系统水平方向动量守恒可知,此时物块速度为4 m /s由能量守恒定律得mgH =μmg (Δx -x BC )解得Δx =3.73 m .答案:(1)1.2 m (2)1 s (3)3.73 m3.(2020·全国卷Ⅲ)如图,相距L =11.5 m 的两平台位于同一水平面内,二者之间用传送带相接.传送带向右匀速运动,其速度的大小v 可以由驱动系统根据需要设定.质量m =10 kg 的载物箱(可视为质点),以初速度v 0=5.0 m /s 自左侧平台滑上传送带.载物箱与传送带间的动摩擦因数μ=0.10,重力加速度取g =10 m /s 2.(1)若v =4.0 m /s ,求载物箱通过传送带所需的时间;(2)求载物箱到达右侧平台时所能达到的最大速度和最小速度;(3)若v =6.0 m /s ,载物箱滑上传送带Δt =1312s 后,传送带速度突然变为零.求载物箱从左侧平台向右侧平台运动的过程中,传送带对它的冲量.解析:(1)传送带的速度为v =4.0 m /s 时,载物箱在传送带上先做匀减速运动,设其加速度大小为a ,由牛顿第二定律有μmg =ma ①设载物箱滑上传送带后匀减速运动的距离为s 1,由运动学公式有v 2-v 20=-2as 1②联立①②式,代入题给数据得s 1=4.5 m ③因此,载物箱在到达右侧平台前,速度先减小至v ,然后开始做匀速运动.设载物箱从滑上传送带到离开传送带所用的时间为t 1,做匀减速运动所用的时间为t 1′,由运动学公式有v =v 0-at 1′④t 1=t 1′+L -s 1v ⑤联立①③④⑤式并代入题给数据得t 1=2.75 s ⑥(2)当载物箱滑上传送带后一直做匀减速运动时,到达右侧平台时的速度最小,设为v 1;当载物箱滑上传送带后一直做匀加速运动时,到达右侧平台时的速度最大,设为v 2.由动能定理有-μmgL =12m v 21-12m v 20⑦ μmgL =12m v 22-12m v 20⑧ 由⑦⑧式并代入题给条件得v 1=2 m /s ,v 2=43 m /s ⑨(3)传送带的速度为v =6.0 m /s 时,由于v 0<v <v 2,载物箱先做匀加速运动,加速度大小仍为a .设载物箱做匀加速运动通过的距离为s 2,所用时间为t 2,由运动学公式有v =v 0+at 2⑩v 2-v 20=2as 2⑪联立①⑩⑪式并代入题给数据得t 2=1.0 s ⑫s 2=5.5 m ⑬因此载物箱加速运动1.0 s 、向右运动5.5 m 时,达到与传送带相同的速度.此后载物箱与传送带共同匀速运动(Δt -t 2)的时间后,传送带突然停止.设载物箱匀速运动通过的距离为s 3,有s 3=(Δt -t 2)v ⑭由①⑫⑬⑭式可知,12m v 2>μmg (L -s 2-s 3),即载物箱运动到右侧平台时速度大于零,设为v 3.由运动学公式有v 23-v 2=-2a (L -s 2-s 3)⑮v 3=v -at 3⑯设载物箱通过传送带的过程中,传送带对它摩擦力的冲量为I 1,由动量定理有I 1=m (v 3-v 0)⑰联立①⑫⑬⑭⑮⑰式并代入题给数据得I 1=0⑱传送带对它支持力(大小等于重力)的冲量为I 2=mg (Δt +t 3)⑲联立⑮⑯⑲式并代入题给数据得I 2=6253N ·s ⑳ 由于I 1=0,所以传送带对它的冲量为I =I 2=6253N ·s ,方向竖直向上. 答案:(1)2.75 s (2)43 m /s 2 m /s (3)6253N ·s ,方向竖直向上 限时规范训练(九) 力学三大观点的综合应用建议用时60分钟,实际用时________一、单项选择题1.如图所示,小球a 、b (均可视为质点)用等长细线悬挂于同一固定点O .让球a 静止下垂,将球b 向右拉起,使细线水平.从静止释放球b ,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为θ=60°.忽略空气阻力.则两球a 、b 的质量之比m a m b为( )A .22B .2-1C .1-22 D .2+1 解析:B b 球下摆过程中,由动能定理得m b gL =12m b v 20-0,碰撞过程动量守恒,设向左为正方向,由动量守恒定律可得m b v 0=(m a +m b )v ,两球向左摆动过程中,由机械能守恒定律得12(m a +m b )v 2=(m a +m b )gL (1-cos θ),解得m a m b=2-1,故ACD 错误,B 正确. 2.如图所示,质量为3m 的物块A 与质量为m 的物块B 用轻弹簧和不可伸长的细线连接,静止在光滑的水平面上,此时细线刚好伸直且无弹力.现使物块A 瞬间获得向右的速度v 0,在以后的运动过程中,细线没有绷断,以下判断正确的是( )A .细线再次伸直前,物块A 的速度先减小后增大B .细线再次伸直前,物块B 的加速度先减小后增大C .弹簧的最大弹性势能等于38m v 20D .物块A 、B 与弹簧组成的系统,损失的机械能最多为32m v 20解析:C 细线再次伸直时,也就是弹簧再次恢复原长时,细线恢复原长的过程中,A 始终受到向左的弹力,即一直做减速运动,B 始终受到向右的弹力,即一直做加速运动,弹簧的弹力先变大后变小,故B 的加速度先增大后减小,故A 、B 错误;弹簧弹性势能最大时,弹簧压缩到最短,此时A 、B 速度相等,根据动量守恒定律可得3m v 0=(3m +m )v ,解得v =34v 0,根据能量守恒定律可得,弹性势能E pmax =12×3m v 20-12·(3m +m )v 2=38m v 20,故C 正确;整个过程中,物块A 、B 与弹簧组成的系统只有弹簧的弹力做功,系统的机械能守恒,故D 错误.3.如图(a)所示,光滑绝缘水平面上有甲、乙两个带电小球,t =0时,甲静止,乙以6 m /s 的初速度向甲运动.它们仅在静电力的作用下沿同一直线运动(整个运动过程中两球没有接触),它们运动的v t 图像分别如图(b)中甲、乙两曲线所示.则由图线可知( )A .两带电小球的电性一定相反B .甲、乙两球的质量之比为2∶1C .t 2时刻,乙球的电势能最大D .在0~t 3时间内,甲的动能一直增大,乙的动能一直减小解析:B 由题图(b)可知,乙球减速的同时,甲球正向加速,说明两球相互排斥,带有同种电荷,故A 错误;两球作用过程动量守恒m 乙Δv 乙=m 甲Δv 甲,解得m 甲m 乙=21,故B 正确;t 1时刻,两球共速,距离最近,则乙球的电势能最大,故C 错误;在0~t 3时间内,甲的动能一直增大,乙的动能先减小,t 2时刻后逐渐增大,故D 错误.4.如图所示,物体A 、B 的质量分别为m 、2m ,物体B 置于水平面上,B 物体上部半圆形槽的半径为R ,将物体A 从圆槽的右侧最顶端由静止释放,重力加速度为g ,一切摩擦均不计.则( )A .A 、B 物体组成的系统动量守恒B .A 不能到达圆槽的左侧最高点C .A 运动到圆槽的最低点时A 的速率为23gR D .A 运动到圆槽的最低点时B 的速率为 gR 3解析:D A 、B 物体组成的系统只有水平方向动量守恒,故A 错误;运动过程不计一切摩擦,系统机械能守恒,故A 可以到达圆槽的左侧最高点,且A 在圆槽的左侧最高点时,A 、B 的速度都为零,故B 错误;对A 运动到圆槽的最低点的运动过程由水平方向动量守恒得m v A =2m v B ,对A 、B 整体由机械能守恒可得mgR =12m v 2A +12×2m v 2B ,所以A 运动到圆槽的最低点时B 的速率为v B = gR 3,v A = 4gR 3,故C 错误,D 正确. 5.(2021·山东济南市高三模拟)碰碰车是大人和小孩都喜欢的娱乐活动.游乐场上,大人和小孩各驾着一辆碰碰车迎面相撞,碰撞前后两人的位移-时间图像(x ­t 图像)如图所示.已知小孩的质量为20 kg ,大人的质量为60 kg ,碰碰车质量相同,碰撞时间极短.下列说法正确的是( )A .碰撞前后小孩的运动方向没有改变B .碰碰车的质量为50 kgC .碰撞过程中小孩和其驾驶的碰碰车受到的总冲量大小为80 N ·sD .碰撞过程中损失的机械能为600 J解析:D 规定小孩初始运动方向为正方向,由图可知,碰后两车一起向反方向运动,故碰撞前后小孩的运动方向发生了改变,故A 错误;由图可知,碰前瞬间小孩的速度为2 m /s ,大人的速度为-3 m /s ,碰后两人的共同速度为-1 m /s ,设碰碰车的质量为M ,由动量守恒定律有(20+M )×2 kg ·m /s -(60+M )×3 kg ·m /s =(2M +20+60)×(-1) kg ·m /s ,解得M =60 kg ,故B 错误;碰前小孩与其驾驶的碰碰车的总动量为p 1=160 kg ·m /s ,碰后总动量为p 1′=-80 kg ·m /s ,由动量定理可知碰撞过程中小孩和其驾驶的碰碰车受到的总冲量为I =Δp =-240 N ·s ,故其大小为240 N ·s ,故C 错误;由能量守恒定律可得碰撞过程中损失的机械能为ΔE =12×80×22 J +12×120×(-3)2 J -12×200×(-1)2 J =600 J ,故D 正确.6.如图甲所示,一块长度为L 、质量为m 的木块静止在光滑水平面上.一颗质量也为m 的子弹以水平速度v 0射入木块.当子弹刚射穿木块时,木块向前移动的距离为s ,如图乙所示.设子弹穿过木块的过程中受到的阻力恒定不变,子弹可视为质点.则子弹穿过木块的时间为( )A .1v 0(s +L ) B .1v 0(s +2L ) C .12v 0(s +L ) D .1v 0(L +2s ) 解析:D 设子弹穿过木块的速度为v 1,木块最终速度为v 2,子弹穿过木块过程,对子弹和木块组成的系统,外力之和为零,动量守恒,以v 0的方向为正方向,有m v 0=m v 1+m v 2,设子弹穿过木块的过程所受阻力为F f ,对子弹由动能定理-F f (s +L )=12m v 21-12m v 20,由动量定理-F f t =m v 1-m v 0,对木块由动能定理F f s =12m v 22,由动量定理F f t =m v 2,联立解得t =1v 0(L +2s ),故选D .7.质量为1 kg 的物体从足够高处由静止开始下落,其加速度a 随时间t 变化的关系图像如图所示,重力加速度g 取10 m /s 2,下列说法正确的是( )A .2 s 末物体所受阻力的大小为20 NB .在0~2 s 内,物体所受阻力随时间均匀减小C .在0~2 s 内,物体的动能增大了100 JD .在0~1 s 内,物体所受阻力的冲量大小为2.5 N ·s解析:D 2 s 末物体的加速度为零,则此时阻力等于重力,即所受阻力的大小为10 N ,选项A 错误;根据牛顿第二定律有mg -f =ma ,可得f =mg -ma ,在0~2 s 内,物体加速度随时间均匀减小,则所受阻力随时间均匀增大,选项B 错误;根据物体加速度a 随时间t 变化的关系图像与坐标轴所围图形的面积表示速度变化量可知,在0~2 s 内,物体的速度增加了Δv =12×2×10 m /s =10 m /s ,即t =2 s 时速度为v =10 m /s ,则在0~2 s 内,物体的动能增大了12m v 2=12×1×102 J =50 J ,选项C 错误;在0~1 s 内,物体速度的增量Δv 1=12×(5+10)×1 m /s =7.5 m /s ,根据动量定理有mgt -I f =m Δv 1,解得I f =2.5 N ·s ,选项D 正确.8.如图甲所示,光滑水平面上有一上表面粗糙的长木板,t =0时刻,质量m =1 kg 的滑块以速度v 0=7 m /s 滑上长木板左端,此后滑块与长木板运动的v ­t 图像如图乙所示.下列分析正确的是( )A .长木板的质量为0.5 kgB .长木板的长度为0.5 mC .0~2 s 内滑块与长木板间因摩擦产生的热量为16 JD .0~2 s 内长木板对滑块的冲量大小为4 kg ·m /s解析:C 滑块滑上长木板后,滑块受摩擦力作用做匀减速运动,长木板做匀加速运动,由图乙可知滑块的加速度大小为a 1=Δv Δt =2 m /s 2,长木板的加速度大小为a 2=Δv Δt=1 m /s 2,。

高中物理中力学三大观点的综合应用

高中物理中力学三大观点的综合应用

高中物理中力学三大观点的综合应用楼㊀倩(兰州市第七中学ꎬ甘肃兰州730000)摘㊀要:本文主要对力学三大观点进行介绍ꎬ对三大观点的优选原则进行分析ꎬ并结合典型例题ꎬ探讨如何利用力学三大观点解决综合性问题.关键词:高中物理ꎻ力学三大观点ꎻ解题应用中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)06-0083-03收稿日期:2023-11-25作者简介:楼倩(1986.2-)ꎬ女ꎬ甘肃省兰州人ꎬ本科ꎬ中学一级教师ꎬ从事初高中物理教学研究.㊀㊀高中物理中力学三大观点ꎬ即动力学观点㊁能量观点和动量观点.是高考中必考的考点ꎬ具有综合性强㊁难度大的特征ꎬ常常作为考试的压轴题出现.本文对该部分知识进行了分析ꎬ以便加强学生对三大观点的理解和应用.1力学三大观点概述高中物理中的力学三大观点ꎬ包括动力学观点㊁能量观点和动量观点[1].其中动力学观点是结合牛顿第二定律和匀变速直线运动的规律ꎬ求解物体做匀变速直线运动时速度㊁加速度㊁位移等物理量ꎬ涉及运动的细节ꎬ可以用来处理匀变速运动的相关问题ꎻ能量观点是结合动能定理㊁功能关系㊁机械守恒定律和能量守恒定律ꎬ解决功和能之间的关系ꎬ涉及做功和能量转换ꎬ既能解决匀变速运动的相关问题ꎬ也能处理非匀变速运动问题ꎻ动量观点是涉及动量定理和动量守恒定律ꎬ解决过程只涉及物体的初末速度㊁力㊁时间或者只与初末速度有关ꎬ和能量观点一样ꎬ动量观点适用范围既包括匀变速运动ꎬ也包括非匀变速运动问题.2三大观点的选用原则力学的三大观点ꎬ针对的是不同的物理情境ꎬ解决的是不同的问题.如若误用ꎬ就会降低解题效率ꎬ甚至求出错误答案或者求解过程陷入僵局.因此ꎬ需要对三大观点的选用原则有一定的了解.(1)当物理情境为碰撞㊁爆炸㊁反冲等问题ꎬ若只涉及初㊁末速度而不涉及力㊁时间ꎬ且研究对象为一个系统ꎬ优先选用动量守恒定律ꎬ并联立能量守恒定律进行求解ꎬ需注意所研究的问题是否满足守恒的条件.(2)当涉及运动的具体细节时ꎬ考虑动力学观点进行解题ꎬ能量和动量观点均只关注初末状态ꎬ不考虑运动细节.(3)当问题涉及相对位移时ꎬ可优先考虑能量守恒定律.此时系统克服摩擦力所做的功和系统机械能的减少量相等ꎬ即转变为系统的内能.这种解法可以避免对复杂的运动过程进行分析ꎬ简化解题步骤.(4)若在求解问题时ꎬ需要求出各个物理量在某时刻的大小ꎬ则可以优先运用牛顿第二定律.(5)若研究对象为单一物体ꎬ且涉及功和位移问题时ꎬ应优先考虑动能定理.3热点题型分析3.1应用三大动力学观点解决碰撞㊁爆炸模型例1㊀如图1所示ꎬ水平地面上放置有P㊁Q两个物块ꎬ两者相距L=0.48mꎬP物块的质量为1kgꎬ38Q物块的质量为4kgꎬP物块的左侧和一个固定的弹性挡板接触.已知P物块与水平地面间无摩擦ꎬ且其和弹性挡板碰撞时无能量损失ꎬQ物块与水平地面有摩擦且动摩擦因数为0.1ꎬ重力加速度取10m/s2.某一时刻ꎬP以4m/s的初速度朝着物块Q运动并和其发生弹性碰撞ꎬ回答以下问题:图1㊀例1题图(1)P物块与Q物块第一次碰撞后ꎬ两者瞬间速度大小各为多少?(2)P物块与Q物块第二次碰撞后ꎬ物块Q的瞬间速度大小为多少?解析㊀(1)第一次弹性碰撞后瞬间两物块的速度分别为v1和v2ꎬ有m1v0=m1v1+m2v2ꎬ12m1v02=12m1v21+12m2v22ꎬ求解得v1=-125m/sꎬv2=85m/s.因此ꎬP物块与Q物块第一次碰撞后ꎬ两者瞬间速度大小分别为125m/s㊁85m/s.(2)设碰后Q的加速度为aꎬ则有μmg=ma.假设第二次碰撞前Q没有停止运动ꎬ有x+2L=|v1|t1ꎬx=v2t1-12at21ꎬ解得t1=0.8s.假设第二次碰撞前Q已经停止运动ꎬ有v2=at2ꎬ解得t2=1.6s.所以第二次碰撞前Q没有停止运动.设第二次碰撞前的瞬间ꎬP的速度为vPꎬQ的速度为vQ.碰撞后瞬间ꎬP的速度为vPᶄꎬQ的速度为vQᶄꎬ则:vQ=v2-at1m1vP+m2vQ=m1vPᶄ+m2vQᶄ12m1vP2+12m2vQ2=12m1vPᶄ2+12m2vQᶄ2vP=-v1解得vQᶄ=3625m/s.例2㊀有一组机械组件ꎬ由螺杆A和螺母B组成ꎬ因为生锈难以分开ꎬ图2为装置剖面示意图.某同学将该组件垂直放置于水平面上ꎬ在螺杆A顶端的T形螺帽与螺母B之间的空隙处装入适量火药并点燃ꎬ利用火药将其 炸开 .已知螺杆A的质量为0.5kgꎬ螺母的质量为0.3kgꎬ火药爆炸时所转化的机械能E=6JꎬB与A的竖直直杆间滑动摩擦力大小恒为f=15Nꎬ忽略空气阻力ꎬ重力加速度g=10m/s2.图2㊀例2题图(1)求火药爆炸瞬间螺杆A和螺母B各自的速度大小ꎻ(2)忽略空隙及螺母B的厚度影响ꎬ要使A与B能顺利分开ꎬ求螺杆A的竖直直杆的最大长度L.解析㊀(1)设火药爆炸瞬间螺杆A的速度大小为v1ꎬ螺母B的速度大小分别为v2ꎬ以竖直向下为正方向ꎬ根据能量守恒定律和动量守恒定律ꎬ有0=m1v1+m2v2E=12m1v21+12m2v22求解得v1=-3m/sꎬv2=5m/sꎬ因此杆A的速度大小为3m/sꎬ方向竖直向上ꎻ螺母B的速度大小为5m/sꎬ方向坚直向下.(2)A相对B向上运动ꎬ所受摩擦力f向下ꎬ则对螺杆A由牛顿第二定律可得m1g+f=m1a1ꎬ解得a1=40m/s2ꎬ方向竖直向下.对螺母B由牛顿第二定律可得f-m2g=m2a2ꎬ解得a2=40m/s2ꎬ方向竖直向上.火药爆炸后ꎬA向上做匀减速直线运动ꎬ其减速至零的时间为t1=v1a1=340s.B向下做匀减速直线运动ꎬ其减速至零的时间为t1=v2a2=540s.所以B一直做匀减速运动ꎬA则先做匀减速将速度减至为0而后做匀加速运动ꎬ当两者速度相等时刚好分开ꎬ此时直杆的长度最大.取向下为正方向ꎬ可得v2-a2t3=-v1+a1t3ꎬ解得t3=0.1s.则直杆长度的最大值为L=(v1+v2)t32ꎬ解得L=0.4m.3.2应用三大动力学观点解决多过程问题例3㊀竖直面内一倾斜轨道与一足够长的水平轨道通过一小段光滑圆弧平滑连接ꎬ小物块B静止48于水平轨道的最左端ꎬ如图3(a)所示.t=0时刻ꎬ小物块A在倾斜轨道上从静止开始下滑ꎬ一段时间后与B发生弹性碰撞(碰撞时间极短)ꎻ当A返回到倾斜轨道上的P点(图中未标出)时ꎬ速度减为0ꎬ此时对其施加一外力ꎬ使其在倾斜轨道上保持静止.物块A运动的v-t图像如图3(b)所示ꎬ图中的v1和t1均为未知量.已知A的质量为mꎬ初始时A与B的高度差为Hꎬ重力加速度大小为gꎬ不计空气阻力.(a)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀(b)图3㊀示意图(1)物块B的质量为多少?(2)物体A在图3(b)所描述的运动过程中ꎬ克服摩擦力做了多少功?(3)已知A物块和B物块和轨道间的摩擦因数是相等的.当物块B停止运动后ꎬ将物块和轨道间的摩擦因数改变ꎬ然后从P点释放物块Aꎬ其运动一段时间后ꎬ刚好能和物块B正好碰上.求改变前后摩擦因数的比值.解析㊀(1)根据图3(b)ꎬ可以得出在t1时刻ꎬ两物块发生了碰撞ꎬ物块A的速度由碰撞前的v1变为碰撞后的v12.碰撞问题ꎬ运用动量守恒和能量守恒观点进行分析ꎬ设物块B的质量为mBꎬ其碰撞后的瞬间速度大小为vB.则有mv1=m(-v12)+mBvB12mv21=12m(-12v1)2+12mBv2B解得mB=3m.(2)求物体A在运动过程中克服摩擦力所做的功的大小ꎬ需要结合能量观点和动力学观点进行求解.设物体A和轨道之间的滑动摩擦力为fꎬP点距地面的高度为hꎬ碰撞前物体A走过的路程为s1ꎬ碰撞之后走过的路程为s2.碰撞之前ꎬ物体A的速度由0加速至v1ꎬ该过程重力做正功ꎬ摩擦力做负功ꎬ根据动能定理ꎬ有mgH-fs1=12mv21-0碰撞之后ꎬ物体A的速度由v12减速至0ꎬ该过程重力和摩擦力均做负功ꎬ根据动能定理ꎬ有-(fs2+mgh)=0-12m(-v12)2在整个过程中ꎬ物体克服摩擦力做功的大小为W=fs1+fs2由图3(b)的v-t图像可知s1=12v1t1s2=12ˑv12ˑ(1.4t1-t1)且s1和s2存在几何关系s2s1=hH联立可得W=215mgH.(3)设轨道和地面之间的夹角为θꎬ改变前的动摩擦因数为μ有W=μmgcosθH+hsinθ设物块B在水平轨道上能够滑行的距离为sᶄꎬ由动能定理有-μmᶄgsᶄ=0-12mᶄvᶄ2设改变后的动摩擦因数为μᶄꎬ依据动能定理有mgh-μᶄmgcosθ hsinθ-μᶄmgsᶄ=0联立可得μμᶄ=119.4结束语总之ꎬ当运用力学三大观点进行解题时ꎬ关键在于明确研究对象和其所经历的物理过程ꎬ并能够根据问题ꎬ应用合适的观点进行求解.该类题对学生的综合素质要求较高ꎬ教学过程切不可机械化㊁模板化ꎬ教师要引导学生多思考㊁多总结ꎬ达到 讲一题会一类 的教学效果ꎬ培养学生的解题思维.参考文献:[1]李得天.利用力学的三大观点解高考力学压轴题[J].高中数理化ꎬ2022(20):34-35.[责任编辑:李㊀璟]58。

2025高考物理总复习动力学和能量观点的综合应用

2025高考物理总复习动力学和能量观点的综合应用
a4=
=2.5
A
m/s2
从共速 v1 到刚好到达顶端,所走的位移
1 2
x4=2
4
=
52
2×2.5
m=5 m
故整个过程物体 A 向上所走的位移
xA=x1+x2+x3+x4=(2.5+4+1.6+5) m=13.1 m
可知高度
H=xAsin 30°=6.55 m。
(2)从开始到物体 A 与传送带第一次共速所用时间
(3)由于运输物体A,电动机要多消耗多少电能?
答案 (1)6.55 m
12 650
(2)
3
J
15 500
(3)
3
J
解析 (1)刚开始由于物体A的速度小于传送带速度,传送带给物体A向上的
滑动摩擦力,以物体A为对象,根据牛顿第二定律可得
FT+μmAgcos 30°-mAgsin 30°=mAa1
以物体B为对象,根据牛顿第二定律可得
1 +2
2
s2=
t2-v1t2=
2
3
m
此过程产生的内能
Q2=μmAgcos
1 000
30°·
s 2= 3
J
物体 A 从速度 v2 减速到再次与传送带共速,所用时间
2 -1
t3=
3
=
7-5
7.5
4
s=15
s
此过程物体 A 与传送带的相对位移大小
1 +2
4
s3=
t3-v1t3=
2
15
m
此过程产生的内能
以物体B为对象,根据牛顿第二定律可得
mBg-FT'=mBa2

专题6动力学、动量和能量观点的综合应用

专题6动力学、动量和能量观点的综合应用

考题一 动量定理和能量观点的综合应用1.动量定理公式:Ft =p ′-p 说明:(1)F 为合外力①恒力,求Δp 时,用Δp =Ft②b.变力,求I 时,用I =Δp =mv 2-mv 1③牛顿第二定律的第二种形式:合外力等于动量变化率 ④当Δp 一定时,Ft 为确定值:F =Δptt 小F 大——如碰撞;t 大F 小——缓冲(2)等式左边是过程量Ft ,右边是两个状态量之差,是矢量式.v 1、v 2是以同一惯性参照物为参照的.Δp 的方向可与mv 1一致、相反或成某一角度,但是Δp 的方向一定与Ft 一致. 2.力学规律的选用原则单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.例1 据统计人在运动过程中,脚底在接触地面瞬间受到的冲击力是人体自身重力的数倍.为探究这个问题,实验小组同学利用落锤冲击的方式进行了实验,即通过一定质量的重物从某一高度自由下落冲击地面来模拟人体落地时的情况.重物与地面的形变很小,可忽略不计.g 取10 m/s 2.下表为一次实验过程中的相关数据.重物(包括传感器)的质量m /kg重物下落高度H /cm 45 重物反弹高度h /cm 20 最大冲击力F m /N 850 重物与地面接触时间t /s(1)请你选择所需数据,通过计算回答下列问题: ①重物受到地面的最大冲击力时的加速度大小;②在重物与地面接触过程中,重物受到的地面施加的平均作用力是重物所受重力的多少倍. (2)如果人从某一确定高度由静止竖直跳下,为减小脚底在与地面接触过程中受到的冲击力,可采取什么具体措施,请你提供一种可行的方法并说明理由. 解析 (1)①重物受到最大冲击力时加速度的大小为a 由牛顿第二定律:a =F m -mgm解得a =90 m/s 2②重物在空中运动过程中,由动能定理mgh =12mv 2重物与地面接触前瞬时的速度大小v 1=2gH 重物离开地面瞬时的速度大小v 2=2gh重物与地面接触过程,重物受到的平均作用力大小为F ,设竖直向上为正方向 由动量定理:(F -mg )t =mv 2-m (-v 1) 解得F =510 N ,故F mg=6因此重物受到的地面施加的平均作用力是重物所受重力的6倍.(2)可以通过增加人与地面接触时间来减小冲击力(如落地后双腿弯曲),由动量定理Ft =Δmv 可知,接触时间增加了,冲击力F 会减小. 答案 (1)①90 m/s 2②6倍 (2)见解析 变式训练1.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动).此后经历时间t 安全带达到最大伸长量,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) +mg -mg +mg -mg答案 A解析 由自由落体运动公式得人下降h 距离时的速度为v =2gh ,在t 时间内对人由动量定理得(F -mg )t =mv ,解得安全带对人的平均作用力为F =m 2ght+mg ,A 项正确. 2.一质量为 kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图1所示.物块以v 0=9 m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7 m/s ,碰后以6 m/s 的速度反向运动直至静止.g 取10 m/s 2.图1(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为 s ,求碰撞过程中墙面对物块平均作用力的大小F ; (3)求物块在反向运动过程中克服摩擦力所做的功W . 答案 (1) (2)130 N (3)9 J解析 (1)对小物块从A 运动到B 处的过程中 应用动能定理-μmgs =12mv 2-12mv 20代入数值解得μ=(2)取向右为正方向,碰后滑块速度v ′=-6 m/s 由动量定理得:F Δt =mv ′-mv 解得F =-130 N其中“-”表示墙面对物块的平均作用力方向向左. (3)对物块反向运动过程中应用动能定理得 -W =0-12mv ′2解得W =9 J.考题二动量守恒定律和能量观点的综合应用1.动量守恒定律(1)表达式:m1v1+m2v2=m1v1′+m2v2′;或p=p′(系统相互作用前总动量p等于相互作用后总动量p′);或Δp=0(系统总动量的增量为零);或Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量的增量大小相等、方向相反).(2)动量守恒条件:①理想守恒:系统不受外力或所受外力合力为零.②近似守恒:外力远小于内力,且作用时间极短,外力的冲量近似为零,或外力的冲量比内力冲量小得多.③单方向守恒:合外力在某方向上的分力为零,则系统在该方向上动量守恒.动量守恒定律应用要注意的三性(1)矢量性:在一维运动中要选取正方向,未知速度方向的一律假设为正方向,带入求解.(2)同时性:m1v1和m2v2——作用前的同一时刻的动量m1v1′和m2v2′——作用后的同一时刻的动量(3)同系性:各个速度都必须相对于同一个惯性参考系.定律的使用条件:在惯性参考系中普遍适用(宏观、微观、高速、低速)2.力学规律的选用原则多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题时,应选用动量守恒定律,然后再根据能量关系分析解决.例2 如图2所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R= m,物块A以v0=6 m/s的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨上P处静止的物块B碰撞,碰后粘在一起运动,P点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L= m,物块与各粗糙段间的动摩擦因数都为μ=,A、B的质量均为m=1 kg(重力加速度g取10 m/s2;A、B视为质点,碰撞时间极短).图2(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 解析 (1)从A →Q 由动能定理得 -mg ·2R =12mv 2-12mv 2解得v =4 m/s >gR = 5 m/s在Q 点,由牛顿第二定律得F +mg =m v 2R解得F =22 N.(2)A 撞B ,由动量守恒得mv 0=2mv ′ 解得v ′=v 02=3 m/s设摩擦距离为x ,则-2μmgx =0-12·2mv ′2解得x = m 所以k =x L=45.(3)AB 滑至第n 个光滑段上,由动能定理得 -μ·2mgnL =12·2mv 2n -12·2mv ′2所以v n =错误! m/s (n <45). 答案 (1)4 m/s 22 N (2)45 (3)v n =错误! m/s (n <45) 变式训练3.如图3,在足够长的光滑水平面上,物体A 、B 、C 位于同一直线上,A 位于B 、C 之间.A 的质量为m ,B 、C 的质量都为M ,三者均处于静止状态.现使A 以某一速度向右运动,求m 和M 之间应满足什么条件,才能使A 只与B 、C 各发生一次碰撞.设物体间的碰撞都是弹性的.图3答案 (5-2)M ≤m <M解析 设A 运动的初速度为v 0,A 向右运动与C 发生碰撞,由动量守恒定律得mv 0=mv 1+Mv 2由机械能守恒定律得12mv 20=12mv 21+12Mv 22可得v 1=m -M m +M v 0,v 2=2m m +Mv 0 要使得A 与B 能发生碰撞,需要满足v 1<0,即m <MA 反向向左运动与B 发生碰撞过程,有 mv 1=mv 3+Mv 412mv 21=12mv 23+12Mv 24 整理可得v 3=m -M m +M v 1,v 4=2mm +Mv 1 由于m <M ,所以A 还会向右运动,根据要求不发生第二次碰撞,需要满足v 3≤v 2 即2m m +M v 0≥m -M m +M v 1=(m -M m +M)2v 0 整理可得m 2+4Mm ≥M 2解方程可得m ≥(5-2)M 另一解m ≤-(5+2)M 舍去所以使A 只与B 、C 各发生一次碰撞,须满足 (5-2)M ≤m <M .考题三 电学中动量和能量观点的综合应用系统化思维方法,就是根据众多的已知要素、事实,按照一定的联系方式,将其各部分连接成整体的方法.(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动.(2)对多个研究对象进行整体思维,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).例3 如图4所示,直角坐标系xOy 位于竖直平面内,x 轴与绝缘的水平面重合,在y 轴右方有垂直纸面向里的匀强磁场和竖直向上的匀强电场.质量为m 2=8×10-3kg 的不带电小物块静止在原点O ,A 点距O 点l = m ,质量m 1=1×10-3kg 的带电小物块以初速度v 0= m/s 从A 点水平向右运动,在O 点与m 2发生正碰并把部分电量转移到m 2上,碰撞后m 2的速度为 m/s ,此后不再考虑m 1、m 2间的库仑力.已知电场强度E =40 N/C ,小物块m 1与水平面的动摩擦因数为μ=,取g =10 m/s 2,求:图4(1)碰后m 1的速度;(2)若碰后m 2做匀速圆周运动且恰好通过P 点,OP 与x 轴的夹角θ=30°,OP 长为l OP = m ,求磁感应强度B 的大小;(3)其他条件不变,若改变磁场磁感应强度的大小,使m 2能与m 1再次相碰,求B ′的大小. 解析 (1)设m 1与m 2碰前速度为v 1,由动能定理 -μm 1gl =12m 1v 21-12m 1v 20代入数据解得:v 1= m/sv 2= m/s ,m 1、m 2正碰,由动量守恒有: m 1v 1=m 1v 1′+m 2v 2代入数据得:v 1′=- m/s ,方向水平向左 (2)m 2恰好做匀速圆周运动,所以qE =m 2g 得:q =2×10-3C由洛伦兹力提供向心力,设物块m 2做圆周运动的半径为R ,则qv 2B =m 2v22R轨迹如图,由几何关系有:R =l OP 解得:B =1 T(3)当m 2经过y 轴时速度水平向左,离开电场后做平抛运动,m 1碰后做匀减速运动.m 1匀减速运动至停止,其平均速度大小为: v =12|v 1′|= m/s>v 2= m/s ,所以m 2在m 1停止后与其相碰由牛顿第二定律有:F f =μm 1g =m 1am 1停止后离O 点距离:s =v 1′22a则m 2平抛的时间:t =s v 2平抛的高度:h =12gt 2设m 2做匀速圆周运动的半径为R ′,由几何关系有:R ′=12h由qv 2B ′=m 2v 22R ′,联立得:B ′= T答案 (1)- m/s ,方向水平向左 (2)1 T (3) T 变式训练4.如图5所示,C 1D 1E 1F 1和C 2D 2E 2F 2是距离为L 的相同光滑导轨,C 1D 1和E 1F 1为两段四分之一的圆弧,半径分别为r 1=8r 和r 2=r .在水平矩形D 1E 1E 2D 2内有竖直向上的匀强磁场,磁感应强度为B .导体棒P 、Q 的长度均为L ,质量均为m ,电阻均为R ,其余电阻不计,Q 停在图中位置,现将P 从轨道最高点无初速度释放,则:图5(1)求导体棒P 进入磁场瞬间,回路中的电流的大小和方向(顺时针或逆时针);(2)若P 、Q 不会在轨道上发生碰撞,棒Q 到达E 1E 2瞬间,恰能脱离轨道飞出,求导体棒P 离开轨道瞬间的速度;(3)若P 、Q 不会在轨道上发生碰撞,且两者到达E 1E 2瞬间,均能脱离轨道飞出,求回路中产生热量的范围.答案 (1)2BL grR,方向逆时针 (2)3gr(3)3mgr ≤Q ≤4mgr解析 (1)导体棒P 由C 1C 2下滑到D 1D 2,根据机械能守恒定律:mgr 1=12mv 2D ,v D =4gr导体棒P 到达D 1D 2瞬间:E =BLv D回路中的电流I =E 2R =2BL grR方向逆时针(2)棒Q 到达E 1E 2瞬间,恰能脱离轨道飞出,此时对Q :mg =mv 2Q r 2,v Q =gr设导体棒P 离开轨道瞬间的速度为v P ,根据动量守恒定律:mv D =mv P +mv Q 代入数据得,v P =3gr(3)由(2)知,若导体棒Q 恰能在到达E 1E 2瞬间飞离轨道,P 也必能在该处飞离轨道.根据能量守恒,回路中产生的热量:Q 1=12mv 2D -12mv 2P -12mv 2Q =3mgr若导体棒Q 与P 能达到共速v ,回路中产生的热量最多,则根据动量守恒:mv D =(m +m )v ,v =2gr回路中产生的热量:Q 2=12mv 2D-12(m +m )v 2=4mgr 综上所述,回路中产生热量的范围是3mgr ≤Q ≤4mgr .专题规范练1.如图1所示,水平桌面左端有一顶端高为h 的光滑圆弧形轨道,圆弧的底端与桌面在同一水平面上.桌面右侧有一竖直放置的光滑圆轨道MNP ,其形状为半径R = m 的圆环剪去了左上角135°后剩余的部分,MN 为其竖直直径,P 点到桌面的竖直距离也为R .一质量m = kg 的物块A 自圆弧形轨道的顶端静止释放,到达圆弧形轨道底端恰与一停在圆弧底端水平桌面上质量也为m 的物块B 发生弹性正碰(碰撞过程没有机械能的损失),碰后物块B 的位移随时间变化的关系式为x =6t -2t 2(关系式中所有物理量的单位均为国际单位),物块B 飞离桌面后恰由P 点沿切线落入圆轨道.(重力加速度g 取10 m/s 2)求:图1(1)BP 间的水平距离x BP ;(2)判断物块B 能否沿圆轨道到达M 点; (3)物块A 由静止释放的高度h . 答案 (1) m (2)不能 (3) m解析 (1)设碰撞后物块B 由D 点以初速度v D 做平抛运动,落到P 点时其竖直速度为v y =2gR同时v y v D=tan 45°,解得v D =4 m/s设平抛用时为t ,水平位移为x ,则有R =12gt 2x =v D t解得x = m物块B 碰后以初速度v 0=6 m/s ,加速度大小a =-4 m/s 2减速到v D ,则BD 间的位移为x 1=v 2D -v 202a= m故BP 之间的水平距离x BP =x +x 1= m(2)若物块B 能沿轨道到达M 点,在M 点时其速度为v M ,则有12mv 2M -12mv 2D =-22mgR设轨道对物块的压力为F N ,则F N +mg =m v 2MR解得F N =(1-2)mg <0,即物块不能到达M 点. (3)对物块A 、B 的碰撞过程,有:m A v A =m A v A ′+m B v 012m A v 2A =12m A v A ′2+12m B v 20 解得:v A =6 m/s设物块A 释放的高度为h ,则mgh =12mv 2A ,解得h = m2.如图2所示为过山车简易模型,它由光滑水平轨道和竖直面内的光滑圆形轨道组成,Q 点为圆形轨道最低点,M 点为最高点,圆形轨道半径R = m.水平轨道PN 右侧的水平地面上,并排放置两块长木板c 、d ,两木板间相互接触但不粘连,长木板上表面与水平轨道PN 平齐,木板c 质量m 3= kg ,长L =4 m ,木板d 质量m 4= kg.质量m 2= kg 的小滑块b 放置在轨道QN 上,另一质量m 1= kg 的小滑块a 从P 点以水平速度v 0向右运动,沿圆形轨道运动一周后进入水平轨道与小滑块b 发生碰撞,碰撞时间极短且碰撞过程中无机械能损失.碰后a 沿原路返回到M 点时,对轨道压力恰好为0.已知小滑块b 与两块长木板间动摩擦因数均为μ0=,重力加速度g =10 m/s 2.图2(1)求小滑块a 与小滑块b 碰撞后,a 和b 的速度大小v 1和v 2;(2)若碰后滑块b 在木板c 、d 上滑动时,木板c 、d 均静止不动,c 、d 与地面间的动摩擦因数μ至少多大(木板c 、d 与地面间的动摩擦因数相同,最大静摩擦力等于滑动摩擦力)(3)若不计木板c 、d 与地面间的摩擦,碰后滑块b 最终恰好没有离开木板d ,求滑块b 在木板c 上滑行的时间及木板d 的长度.答案 (1)4 m/s m/s (2) (3)1 s m解析 (1)根据题意可知:小滑块a 碰后返回到M 点时:m 1v 2M R=m 1g 小滑块a 碰后返回到M 点过程中机械能守恒:12m 1v 21=12m 1v 2M +m 1g (2R ) 代入数据,解得:v 1=4 m/s取水平向右为正方向,小滑块a 、b 碰撞前后:动量守恒:m 1v 0=-m 1v 1+m 2v 2机械能守恒:12m 1v 20=12m 1v 21+12m 2v 22 代入数据,解得:v 0= m/s ,v 2= m/s(2)若b 在d 上滑动时d 能静止,则b 在c 上滑动时c 和d 一定能静止μ(m 2+m 4)g >μ0m 2g解得μ>m 2m 2+m 4μ0≈ (3)小滑块b 滑上长木板c 时的加速度大小:a 1=μ0g = m/s 2此时两块长木板的加速度大小:a 2=μ0m 2m 3+m 4g = m/s 2 令小滑块b 在长木板c 上的滑行时间为t ,则:时间t 内小滑块b 的位移x 1=v 2t -12a 1t 2 两块长木板的位移x 2=12a 2t 2 且x 1-x 2=L解得:t 1=1 s 或t 2=103 s(舍去) b 刚离开长木板c 时b 的速度v 2′=v 2-a 1t 1= m/sb 刚离开长木板c 时d 的速度v 3=a 2t 1= m/sd 的长度至少为x :由动量守恒可知:m 2v 2′+m 4v 3=(m 2+m 4)v解得:v =2 m/sμ0m 2gx =12m 2v 2′2+12m 4v 23-12(m 2+m 4)v 2 解得:x = m3.如图3所示,两个圆形光滑细管在竖直平面内交叠,组成“8”字形通道,在“8”字形通道底端B 处连接一内径相同的粗糙水平直管AB .已知E 处距地面的高度h = m ,一质量m =1 kg 的小球a 从A 点以速度v 0=12 m/s 的速度向右进入直管道,到达B 点后沿“8”字形轨道向上运动,到达D 点时恰好与轨道无作用力,直接进入DE 管(DE 管光滑),并与原来静止于E 处的质量为M =4 kg 的小球b 发生正碰(a 、b 均可视为质点).已知碰撞后a 球沿原路返回,速度大小为碰撞前速度大小的13,而b 球从E 点水平抛出,其水平射程s = m.(g =10 m/s 2)图3(1)求碰后b 球的速度大小;(2)求“8”字形管道上下两圆的半径r 和R ;(3)若小球a 在管道AB 中运动时所受阻力为定值,请判断a 球返回到BA 管道时,能否从A 端穿出答案 (1)1 m/s (2) m m (3)不能解析 (1)b 球离开E 点后做平抛运动h =12gt 2,s =v b t ,解得v b =1 m/s(2)a 、b 碰撞过程,动量守恒,以水平向右为正方向,则有: mv a =-m ×13v a +Mv b解得v a =3 m/s碰前a 在D 处恰好与轨道无作用力,则有:mg =m v 2a rr = mR =h -2r 2= m (3)小球从B 到D ,机械能守恒:12mv 2B =12mv 2a +mgh 解得:12mv 2B = J 从A 到B 过程,由动能定理得:-W f =12mv 2B -12mv 20 解得:W f = J从D 到B ,机械能守恒:12m (v a 3)2+mgh =12mv B ′2 解得:12mv B ′2= J<W f 所以,a 球返回到BA 管道中时,不能从A 端穿出.4.如图4所示,整个空间中存在竖直向上的匀强电场,经过桌边的虚线PQ 与桌面成45°角,其上方有足够大的垂直纸面向外的匀强磁场,磁感应强度为B ,光滑绝缘水平桌面上有两个可以视为质点的绝缘小球,A 球对桌面的压力为零,其质量为m ,电量为q ;B 球不带电且质量为km (k >7).A 、B 间夹着质量可忽略的火药.现点燃火药(此时间极短且不会影响小球的质量、电量和各表面的光滑程度).火药炸完瞬间A 的速度为v 0.求:图4(1)火药爆炸过程中有多少化学能转化为机械能;(2)A 球在磁场中的运动时间;(3)若一段时间后A 、B 在桌上相遇,求爆炸前A 球与桌边P 的距离.答案 (1)k +12k mv 20 (2)3πm 2qB (3)2k -2-3π2k +1·mv 0qB解析 (1)设爆炸之后B 的速度大小为v B ,选向左为正方向,在爆炸前后由动量守恒可得:0=mv 0-kmv BE =12mv 20+12kmv 2B =k +12kmv 20(2)由A 球对桌面的压力为零可知重力和电场力等大反向,故A 球进入电场中将会做匀速圆周运动,如图所示则T =2πm qB 有几何知识可得:粒子在磁场中运动了34个圆周 则t 2=3πm 2qB(3)由0=mv 0-kmv B 可得:v B =v 0k由qv 0B =m v 20R 知,R =mv 0qB 设爆炸前A 球与桌边P 的距离为x A ,爆炸后B 运动的位移为x B ,时间为t B则t B =x A v 0+t 2+R v 0,x B =v B t B由图可得:R =x A +x B联立上述各式解得:x A =2k -2-3π2k +1·mv 0qB .。

动力学和能量观点的综合应用

动力学和能量观点的综合应用
1 1 m vP 2 = m vC 2 +mg·2R 2 2
mvP 2 在 P 点 N-mg= , R
联立代入数据解得 N=3 250 N.
答案:(2)3 250 N
(3)A点距过P点的水平地面的高度h.
解析:(3)对 A→P 过程,由动能定理得
h R R cos37 1 2 v mgh-μmgcos 37°× = m P 2 sin37
代入数据解得 h=45.5 m.
答案:(3)45.5 m
考点二
应用动力学和能量的观点分析“传送带”问题
1.动力学角度分析 首先要正确分析物体的运动过程,做好受力分析,然后利用运动学公式结合牛
顿第二定律求物体及传送带在相应时间内的位移 ,找出物体和传送带之间的
位移关系. 2.传送带问题中的功能关系分析
专题讲座五
动力学和能量观点的综合应用
核心探究 演练提升
核心探究
考点一
1.解题策略
分类探究·各个击破
直线、平抛、圆周运动组合问题
(1)动力学方法观点:牛顿运动定律、运动学基本规律. (2)能量观点:动能定理、机械能守恒定律、能量守恒定律. 2.解题关键 (1)抓住物理情景中出现的运动状态和运动过程,将物理过程分解成几个简单 的子过程. (2)两个相邻过程连接点的速度是联系两过程的纽带,也是解题的关键.很多 情况下平抛运动的末速度的方向是解题的重要突破口.
【典例1】如图所示,将一质量m=0.1 kg的小球自水平平台顶端O点水平抛出,小 球恰好无碰撞地落到平台右侧一倾角为α =53°的光滑斜面顶端A并沿斜面下滑, 斜面底端B与光滑水平轨道平滑连接,小球以不变的速率过B点后进入BC部分,再 进入竖直圆轨道内侧运动 . 已知斜面顶端与平台的高度差 h=3.2 m, 斜面高H=15 m,竖直圆轨道半径R=5 m.取sin 53°=0.8,cos 53°=0.6,g=10 m/s2,求:

高中物理-专题二第2讲动力学和能量观点的综合应用

高中物理-专题二第2讲动力学和能量观点的综合应用

第2讲 动力学和能量观点的综合应用专题复习目标学科核心素养 高考命题方向 1.本讲在应用机械能守恒定律解决问题的过程中,引导学生体会守恒的思想,领悟从守恒的角度分析问题的方法,增强分析和解决问题的能力。

2.掌握动力学和能量观点分析问题的基本思路和方法。

1.物理观念:能量观念。

2.科学推理和论证能力,应用牛顿第二定律、运动学公式、动能定理以及能量守恒定律分析和推理。

高考以创设较为复杂的运动情景为依托,强调受力分析、运动过程分析以及应用动力学和能量观点进行分析和推理。

主要题型:动力学方法和动能定理的应用;动力学和能量观点分析多运动过程问题。

一、动力学方法 1.运动学公式:速度公式:v =v 0+at ,位移公式:s =v 0t +12at 2,速度位移公式:v 2-v 20=2ax ,平均速度公式v -=v 0+v 2。

2.牛顿第二定律物体运动的加速度与物体受到的合外力成正比,与物体的质量成反比,加速度的方向与物体所受合外力的方向是一致的。

表达式:F 合=ma ,加速度是联系受力和运动的桥梁。

二、能量观点 1.动能定理(1)内容:物体所受合外力的功等于物体动能的变化量。

(2)表达式:W =12m v 22-12m v 21。

(3)应用技巧:如果一个物体有多个运动过程,应用动能定理的时候,可以对全过程和分过程应用动能定理列式。

2.机械能守恒定律(1)内容:在只有重力(或者弹力)做功的物体系统内,动能和势能可以相互转化,但机械能的总量保持不变。

(2)表达式3.功率表达式P=F v的应用(1)求v:由F牵-F阻=ma,P=F牵v,可求v=PF阻+ma。

(2)求v m:由P=F阻v m,可求v m=PF阻。

4.解决机车启动问题时的四点注意(1)分清是匀加速启动还是恒定功率启动。

(2)匀加速启动过程中,机车功率不断增大,最大功率是额定功率。

(3)以额定功率启动的过程中,牵引力不断减小,机车做加速度减小的加速运动,牵引力的最小值等于阻力。

专题6 力学三大观点的综合运用

专题6  力学三大观点的综合运用

高考定位力学中三大观点是指动力学观点,动量观点和能量观点.动力学观点主要是牛顿运动定律和运动学公式,动量观点主要是动量定理和动量守恒定律,能量观点包括动能定理、机械能守恒定律和能量守恒定律.此类问题过程复杂、综合性强,能较好地考查应用有关规律分析和解决综合问题的能力.考题1 动量和能量的观点在力学中的应用例1 如图1所示,长为L 的平台固定在地面上,平台的上平面光滑,平台上放有小物体A 和B ,两者彼此接触.物体A 的上表面是半径为R (R ≪L )的光滑半圆形轨道,轨道顶端有一小物体C ,A 、B 、C 的质量均为m .现物体C 从静止状态沿轨道下滑,已知在运动过程中,A 、C 始终保持接触.试求:图1(1)物体A 和B 刚分离时,物体B 的速度;(2)物体A 和B 刚分离后,物体C 所能达到距台面的最大高度; (3)判断物体A 从平台左边还是右边落地并简要说明理由.解析 (1)设C 物体到达最低点的速度是v C ,A 、B 、C 组成的系统在水平方向动量守恒,系统内机械能守恒.m v A +m v B -m v C =0①mgR =12m v 2A +12m v 2B +12m v 2C②在C 物体到达最低点之前一直有:v A =v B③ 联立①②③解得:v B =133gR ,方向水平向右④(2)设C 能够到达轨道最大高度为h ,A 、C 此时的水平速度相等,设它们的共同速度为v ,对系统应用动量守恒和机械能守恒规律可得:m v B -2m v =0⑤ mgR =mgh +12m v 2B +12·2m v 2⑥ 联立⑤⑥式解得:h =34R⑦(3)因为A 与B 脱离接触后B 的速度向右,A 、C 的总动量是向左的,又R ≪L ,所以A 从平台的左边落地.答案 (1)133gR ,方向水平向右 (2)34R (3)A 从平台的左边落地1.如图2,半径R =0.8 m 的四分之一圆弧形光滑轨道竖直放置,圆弧最低点D 与长为L =6 m 的水平面相切于D 点,质量M =1.0 kg 的小滑块A 从圆弧顶点C 由静止释放,到达最低点后,与D 点右侧m =0.5 kg 的静止物块B 相碰,碰后A 的速度变为v A =2.0 m /s ,仍向右运动.已知两物块与水平面间的动摩擦因数均为μ=0.1,若B 与E 处的竖直挡板相碰,没有机械能损失,取g =10 m/s 2.求:图2(1)滑块A 刚到达圆弧的最低点D 时对圆弧的压力; (2)滑块B 被碰后瞬间的速度; (3)讨论两滑块是否能发生第二次碰撞.答案 (1)30 N ,方向竖直向下 (2)4 m/s (3)见解析解析 (1)设小滑块运动到D 点的速度为v ,由机械能守恒定律有:MgR =12M v 2由牛顿第二定律有F N -Mg =M v2R联立解得小滑块在D 点所受支持力F N =30 N由牛顿第三定律有,小滑块在D 点时对圆弧的压力为30 N ,方向竖直向下. (2)设B 滑块被碰后的速度为v B ,由动量守恒定律: M v =M v A +m v B解得小滑块在D 点右侧碰后的速度v B =4 m/s(3)讨论:由于B 物块的速度较大,如果它们能再次相碰一定发生在B 从竖直挡板弹回后,假设两物块能运动到最后停止,达到最大的路程,则对于A 物块 -μMgs A =0-12M v 2A 解得s A =2 m对于B 物块,由于B 与竖直挡板的碰撞无机械能损失,则-μmgs B =0-12m v 2B解得s B =8 m(即从E 点返回2 m)由于s A +s B =10 m<2×6 m =12 m ,故它们停止运动时仍相距2 m ,不能发生第二次碰撞.1.弄清有几个物体参与运动,并划分清楚物体的运动过程.2.进行正确的受力分析,明确各过程的运动特点.3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析. 4.如含摩擦生热问题,则考虑用能量守恒定律分析.考题2 应用动力学观点、能量观点、动量观点解决综合问题例2 如图3所示,一倾斜的传送带倾角θ=37°,始终以v =12 m /s 的恒定速度顺时针转动,传送带两端点P 、Q 间的距离L =2 m ,紧靠Q 点右侧有一水平面长为x =2 m ,水平面右端与一光滑的半径R =1.6 m 的竖直半圆轨道相切于M 点,MN 为竖直的直径.现有一质量M =2.5 kg 的物块A 以v 0=10 m/s 的速度自P 点沿传送带下滑,A 与传送带间的动摩擦因数μ1=0.75,到Q 点后滑上水平面(不计拐弯处的能量损失),并与静止在水平面最左端的质量m =0.5 kg 的B 物块相碰,碰后A 、B 粘在一起,A 、B 与水平面的动摩擦因数相同均为μ2,忽略物块的大小.已知sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2.求:图3(1)A 滑上传送带时的加速度a 和到达Q 点时的速度; (2)若AB 恰能通过半圆轨道的最高点N ,求μ2;(3)要使AB 能沿半圆轨道运动到N 点,且从N 点抛出后能落到传送带上,则μ2应满足什么条件?审题突破 (1)由牛顿第二定律求出加速度,由运动学公式求出A 的速度.(2)A 、B 碰撞过程动量守恒,由动量守恒定律可以求出碰后的速度;由牛顿第二定律求出AB 在最高点的速度,然后应用机械能守恒定律与动能定理求出动摩擦因数.(3)物块离开N 点后做平抛运动,应用平抛运动规律、机械能守恒定律与动能定理求出动摩擦因数的范围.解析 (1)A 刚滑上传送带时,由牛顿第二定律得: Mg sin θ+μ1Mg cos θ=Ma , 代入数据得:a =12 m/s 2,A 在传送带上运动,速度与传送带速度相等时,由匀变速运动的速度位移公式得:v 2-v 20=2 as代入数据得:s =116m <L =2 m ,A 没有到达Q 点前已经与传送带速度相等,到达Q 点的速度为:v =12 m/s ;(2)设AB 碰后的共同速度为v 1,以A 的初速度方向为正方向,A 、B 碰撞过程中,由动量守恒定律得: M v =(M +m )v 1,代入数据得:v 1=10 m/s ,AB 恰好滑到最高点N 时速度为v 3,在最高点,由牛顿第二定律得:(M +m )g =(M +m )v 23R设AB 在M 点速度为v 2,由机械能守恒定律得: 12(M +m )v 22=12(M +m )v 23+(M +m )g ·2R , 在水平面上由动能定理得: 12(M +m )v 21-12(M +m )v 22=μ2(M +m )gx , 代入数据得:μ2=0.5;(3)①若以v 3由N 点抛出,做平抛运动,在竖直方向上:2R =12gt 2,水平方向上:x 1=v 3t ,联立并代入数据得:x 1=3.2 m >x ,则要使AB 能沿半圆轨道运动到N 点,并能落在传动带上,则μ2≤0.5; ②若AB 恰能落在P 点,在竖直方向上:2R -L sin θ=12gt ′2,水平方向上:x +L cos θ=v 3′t ′,由机械能守恒定律得:12(M +m )v 2′2=12(M +m )v 3′2+(M +m )g ·2R ,在水平面上由动能定理得:12(M +m )v 21-12(M +m )v 2′2=μ2(M +m )gx , 联立并代入数据得:μ2=0.09, 综上所述,μ2应满足:0.09≤μ2≤0.5.答案 (1)12 m /s 2 12 m/s (2)0.5 (3)0.09≤μ2≤0.52.(2014·广东·35)如图4所示的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿光滑轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.图4(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .答案 (1)3 m /s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J解析 (1)设P 1和P 2发生弹性碰撞后速度为v 2,根据动量守恒定律有:m v 1=2m v 2①解得:v 2=v 12=3 m/s碰撞过程中损失的动能为:ΔE =12m v 21-12×2m v 22②解得ΔE =9 J(2)P 滑动过程中,由牛顿第二定律知 ma =-μmg③ 可以把P 从A 点运动到C 点再返回B 点的全过程看作匀减速直线运动,根据运动学公式有3L =v 2t +12at 2④由①③④式得v 1=6L -at 2t①若t =2 s 时通过B 点,解得:v 1=14 m/s ②若t =4 s 时通过B 点,解得:v 1=10 m/s 故v 1的取值范围为:10 m /s ≤v 1≤14 m/s设向左经过A 点的速度为v A ,由动能定理知 12×2m v 2A -12×2m v 22=-μ·2mg ·4L 当v 2=12v 1=7 m/s 时,复合体向左通过A 点时的动能最大,E =17 J.根据题中设及的问题特点选择上述观点联合应用求解.一般地,要列出物体量间瞬时表达式,可用力和运动的观点即牛顿运动定律和运动学公式;如果碰撞及涉及时间的问题,优先考虑动量定理;涉及力做功和位移的情况时,优先考虑动能定理;若研究对象是互相作用的物体系统,优先考虑两大守恒定律.知识专题练 训练6题组1 动量和能量的观点在力学中的应用1.如图1所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,0点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B相碰后立即一起沿斜面向下运动,并恰好回到0点(A 、B 均初为质点).试求:图1(1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧的具有的弹性势能;(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆轨道与斜面相切于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,试问:v 为多大时物块A 恰能通过圆弧轨道的最高点?答案 (1)123gx 0 (2)14mgx 0 (3) (20+43)gx 0解析 (1)设A 与B 相碰前的速度为v 1,A 与B 相碰后共同速度为v 2由机械能守恒定律得mg 3x 0sin 30°=12m v 21由动量守恒定律得m v 1=2m v 2解以上二式得v 2=123gx 0(2)设A 、B 相碰前弹簧所具有的弹性势能为E p ,从A 、B 相碰后一起压缩弹簧到它们恰好到达O 点过程中,由机械能守恒定律知E p +12(2m )v 22=2mgx 0sin 30° 解得E p =14mgx 0(3)设物块A 与B 相碰前的速度为v 3,碰后A 、B 的共同速度为v 4 12m v 2+mg 3x 0sin 30°=12m v 23 m v 3=2m v 4A 、B 一起压缩弹簧后再回到O 点时二者分离,设此时共同速度为v 5,则 12(2m )v 24+E p =12(2m )v 25+2mgx 0sin 30° 此后A 继续上滑到半圆轨道最高点时速度为v 6,则 12m v 25=12m v 26+mg 2x 0sin 30°+mgR (1+sin 60°) 在最高点有mg =m v 26R联立以上各式解得v =(20+43)gx 0.2.如图2所示,质量为m 1的滑块(可视为质点)自光滑圆弧形槽的顶端A 处无初速度地滑下,槽的底端与水平传送带相切于左传导轮顶端的B 点,A 、B 的高度差为h 1=1.25 m .传导轮半径很小,两个轮之间的距离为L =4.00 m .滑块与传送带间的动摩擦因数μ=0.20.右端的轮子上沿距离地面高度h 2=1.80 m ,g 取10 m/s 2.图2(1)若槽的底端没有滑块m 2,传送带静止不运转,求滑块m 1滑过C 点时的速度大小v ;(结果保留两位有效数字)(2)在m 1下滑前将质量为m 2的滑块(可视为质点)停放在槽的底端.m 1下滑后与m 2发生弹性碰撞,且碰撞后m 1速度方向不变,则m 1、m 2应该满足什么条件?(3)满足(2)的条件前提下,传送带顺时针运转,速度为v =5.0 m/s.求出滑块m 1、m 2落地点间的最大距离(结果可带根号).答案 (1)3.0 m/s (2)m 1>m 2 (3)(6215-3) m解析 (1)滑块m 1滑到B 点有m 1gh 1=12m 1v 20 解得v 0=5 m/s滑块m 1由B 滑到C 点有-μm 1gL =12m 1v 2-12m 1v 20 解得v =3.0 m/s.(2)滑块m 2停放在槽的底端,m 1下滑并与滑块m 2弹性碰撞,则有 m 1v 0=m 1v 1+m 2v 2 12m 1v 20=12m 1v 21+12m 2v 22 m 1速度方向不变即v 1=m 1-m 2m 1+m 2v 0>0则m 1>m 2.(3)滑块经过传送带作用后做平抛运动h 2=12gt 2当两滑块速度相差最大时,它们的水平射程相差最大,当m 1≫m 2时,滑块m 1、m 2碰撞后的速度相差最大,经过传送带后速度相差也最大v 1=m 1-m 2m 1+m 2v 0=1-m 2m 11+m 2m 1v 0≈v 0=5.0 m/sv 2=2m 1m 1+m 2v 0=21+m 2m 1v 0≈2v 0=10.0 m/s 滑块m 1与传送带同速度,没有摩擦,落地点射程为 x 1=v 1t =3.0 m滑块m 2与传送带发生摩擦,有-μm 2gL =12m 2v 2′2-12m 2v 22 解得v 2′=221 m/s落地点射程为x 2=v 2′t =6215mm 2、m 1的水平射程相差最大值为Δx =(6215-3) m.题组2 应用动力学观点、能量观点、动量观点解决综合问题3.如图3所示,质量为M =4 kg 的木板静置于足够大的水平地面上,木板与地面间的动摩擦因数μ=0.01,板上最左端停放着质量为m =1 kg 可视为质点的电动小车,车与木板右端的固定挡板相距L =5 m .现通电使小车由静止开始从木板左端向右做匀加速运动,经时间t =2 s ,车与挡板相碰,车与挡板粘合在一起,碰撞时间极短且碰后自动切断小车的电源.(计算中取最大静摩擦力等于动摩擦力,并取g =10 m/s 2)图3(1)试通过计算说明:车与挡板相碰前,木板相对地面是静止还是运动的? (2)求出小车与挡板碰撞前,车的速率v 1和板的速率v 2; (3)求出碰后木板在水平地面上滑动的距离s . 答案 (1)向左运动 (2)4.2 m /s 0.8 m/s (3)0.2 m解析 (1)假设木板不动,电动车在板上运动的加速度为a 0,由L =12a 0t 2得:a 0=2Lt 2=2.5 m/s 2此时木板使车向右运动的摩擦力:f =ma 0=2.5 N 木板受车向左的反作用力:f ′=f =2.5 N木板受地面向右最大静摩擦力:f 0=μ(M +m )g =0.5 N 由于f ′>f 0,所以木板不可能静止,将向左运动;(2)设车与木板碰前,车与木板的加速度分别为a 1和a 2,相互作用力为F ,由牛顿定律与运动学公式: 对小车:F =ma 1 v 1=a 1t对木板:F -μ(m +M )g =Ma 2 v 2=a 2t两者的位移的关系:v 12t +v 22t =L联立并代入数据解得:v 1=4.2 m /s ,v 2=0.8 m/s ;(3)设车与木板碰后其共同速度为v ,两者相碰时系统动量守恒,以向右为正方向,有m v 1-M v 2=(m +M )v对碰后滑行s 的过程,由动能定理得: -μ(M +m )gs =0-12(M +m )v 2联立并代入数据,解得:s =0.2 m.4.如图4所示,光滑的水平面AB (足够长)与半径为R =0.8 m 的光滑竖直半圆轨道BCD 在B 点相切,D 点为半圆轨道最高点.A 点的右侧等高地放置着一个长为L =20 m 、逆时针转动且速度为v =10 m /s 的传送带.用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴接.甲的质量为m 1=3 kg ,乙的质量为m 2=1 kg ,甲、乙均静止在光滑的水平面上.现固定乙,烧断细线,甲离开弹簧后进入半圆轨道并可以通过D 点,且过D 点时对轨道的压力恰好等于甲的重力.传送带与乙物体间的动摩擦因数为0.6,重力加速度g 取10 m/s 2,甲、乙两物体可看作质点.图4(1)求甲球离开弹簧时的速度;(2)若甲固定,乙不固定,细线烧断后乙可以离开弹簧滑上传送带,求乙在传送带上滑行的最远距离;(3)甲、乙均不固定,烧断细线以后,求甲和乙能否再次在AB 面上水平碰撞?若碰撞,求再次碰撞时甲、乙的速度;若不会再次碰撞,请说明原因.解析 (1)设甲离开弹簧时的速度大小为v 0,运动至D 点的过程中机械能守恒: 12m 1v 20=m 1g ·2R +12m 1v 2D 在最高点D ,由牛顿第二定律,有2m 1g =m 1v 2D R联立解得:v 0=4 3 m/s(2)甲固定,烧断细线后乙的速度大小为v 乙,由能量守恒得E p =12m 1v 20=12m 2v 2乙得v 乙=12 m/s之后乙滑上传送带做匀减速运动:μm 2g =m 2a 得a =6 m/s 2乙速度为零时离A 端最远,最远距离为:s =v 2乙2a=12 m<20 m即乙在传送带上滑行的最远距离为12 m.(3)甲、乙均不固定,烧断细线后,设甲、乙速度大小分别为v 1、v 2,甲、乙分离瞬间动量守恒:m 1v 1=m 2v 2甲、乙弹簧组成的系统能量守恒:E p =12m 1v 20=12m 1v 21+12m 2v 22 答案 (1)4 3 m/s (2)12 m (3)见解析 解得:v 1=2 3 m/s ,v 2=6 3 m/s 甲沿轨道上滑时,设上滑最高点高度为h , 则12m 1v 21=m 1gh 得h =0.6 m<0.8 m则甲上滑不到等圆心位置就会返回,返回AB 面上时速度大小仍然是v 1=2 3 m/s 乙滑上传送带,因v 2=6 3 m /s<12 m/s ,则乙先向右做匀减速运动,后向左匀加速. 由对称性可知乙返回AB 面上时速度大小仍然为v 2=6 3 m/s故甲、乙会再次相撞,碰撞时甲的速度为2 3 m/s ,方向向右,乙的速度为6 3 m/s ,方向向左。

高考物理-动力学观点和能量观点的综合应用

高考物理-动力学观点和能量观点的综合应用

高考物理-动力学观点和能量观点的综合应用一、应用动力学和能量观点分析匀变速直线运动、平抛运动和圆周运动组合问题每个过程各阶段的运动具有独立性,首先熟练每种运动一般的解题思路和解决方法,其次要关注两相邻过程中连接点的速度,通常转折点速度的大小和方向是解决问题的重要突破口.(2016·湖北十堰模拟)如图所示,粗糙弧形轨道和两个光滑半圆轨道组成翘尾巴的S 形轨道.光滑半圆轨道半径为R ,两个光滑半圆轨道连接处C 、D 之间留有很小的空隙,刚好能够使小球通过,C 、D 之间距离可忽略.粗糙弧形轨道最高点A 与水平面上B 点之间的高度为h .从A 点静止释放一个可视为质点的小球,小球沿翘尾巴的S 形轨道运动后从E 点水平飞出,落到水平地面上,落点到与E 点在同一竖直线上B 点的距离为s .已知小球质量为m ,不计空气阻力,求:(1)小球从E 点水平飞出时的速度大小;(2)小球运动到半圆轨道的B 点时对轨道的压力; (3)小球沿翘尾巴S 形轨道运动时克服摩擦力做的功.[解析] (1)小球从E 点水平飞出做平抛运动,设小球从E 点水平飞出时的速度大小为v E 由平抛运动规律有 s =v E t4R =12gt 2联立解得v E =s 4 2gR.(2)小球从B 点运动到E 点的过程,机械能守恒 12m v 2B =mg ·4R +12m v 2E解得v 2B =8gR +s 2g 8R在B 点F N -mg =m v 2BR解得F N =9mg +mgs 28R2由牛顿第三定律可知小球运动到B 点时对轨道的压力为F N ′=9mg +mgs 28R2,方向竖直向下.(3)设小球沿翘尾巴的S 形轨道运动时克服摩擦力做的功为W ,则mg (h -4R )-W =12m v 2E解得W =mg (h -4R )-mgs 216R.[答案] (1)s 42g R (2)9mg +mgs 28R2,方向竖直向下(3)mg (h -4R )-mgs216R二、应用动力学和能量观点分析传送带模型、滑块—滑板模型 1.模型概述传送带模型典型的有水平和倾斜两种情况,涉及功能角度的问题主要有:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等,常依据功能关系或能量守恒定律求解.2.传送带模型问题中的功能关系分析 (1)功能关系分析:W F =ΔE k +ΔE p +Q . (2)对W F 和Q 的理解:①传送带的功:W F =Fx 传; ②产生的内能Q =F f s 相对.3.传送带模型问题的分析流程4.滑块—滑板模型:与传送带模型相比较要复杂一点,要多分析两者之间是否发生相对滑动的临界条件,需通过受力分析得到临界加速度,从而判断两者之间的相对位移情况,以便得出功能关系.如图所示,质量为m =1 kg 的滑块,在水平力F 作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上传送带时无能量损失),传送带的运行速度为v 0=3 m/s ,长为L =1.4 m ,今将水平力撤去,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g =10 m/s 2.(1)求水平作用力F 的大小; (2)求滑块下滑的高度;(3)若滑块滑上传送带时速度大于3 m/s ,求滑块在传送带上滑行的整个过程中产生的热量. [解析] (1)滑块静止在斜面上时,受到水平推力F 、重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F =mg tan θ,代入数据得F =1033N.(2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒,故有mgh =12m v 2,所以v =2gh .若滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有μmgL =12m v 20-12m v 2, 所以h 1=v 202g-μL ,代入数据得h 1=0.1 m.若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有-μmgL =12m v 20-12m v 2, 则h 2=v 202g+μL ,代入数据得h 2=0.8 m.(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移x =v 0t ,由机械能守恒可知mgh 2=12m v 2,对滑块由运动学公式知v 0=v -at ,a =μg 滑块相对传送带滑动的位移Δx =L -x , 相对滑动产生的热量Q =μmg Δx , 联立代入数据可得Q =0.5 J.[答案] (1)1033N (2)0.1 m 或0.8 m (3)0.5 J如图所示,AB 为半径R =0.8 m 的1/4光滑圆弧轨道,下端B 恰与小车右端平滑对接.小车质量M =3 kg ,车长L =2.06 m ,车上表面距地面的高度h =0.2 m ,现有一质量m =1 kg 的滑块,由轨道顶端无初速度释放,滑到B 端后冲上小车.已知地面光滑,滑块与小车上表面间的动摩擦因数μ=0.3,当车运动了t 0=1.5 s 时,车被地面装置锁定(g =10 m/s 2).试求:(1)滑块到达B 端时,轨道对它支持力的大小; (2)车被锁定时,车右端距轨道B 端的距离;(3)从车开始运动到被锁定的过程中,滑块与车面间由于摩擦而产生的内能大小. [解析] (1)由机械能守恒定律和牛顿第二定律得mgR =12m v 2B ,F N B -mg =m v 2BR则:F N B =30 N.(2)设滑块滑上小车后经过时间t 1与小车同速,共同速度大小为v 对滑块有:μmg =ma 1,v =v B -a 1t 1 对于小车:μmg =Ma 2,v =a 2t 1 解得:v =1 m/s ,t 1=1 s ,因t 1<t 0故滑块与小车同速后,小车继续向左匀速行驶了0.5 s ,则小车右端距B 端的距离为s 车=v2t 1+v (t 0-t 1)解得s 车=1 m.(3)Q =μmgs 相对=μmg ⎝⎛⎭⎫v B +v 2t 1-v2t 1解得Q =6 J.[答案] (1)30 N (2)1 m (3)6 J三、应用动力学和能量观点分析多阶段多过程运动 1.分析思路(1)对力学综合题中的多过程问题,关键是抓住物理情境中出现的运动状态与运动过程,将物理过程分解成几个简单的子过程.(2)找出各阶段是由什么物理量联系起来的,然后对于每一个子过程分别进行受力分析、过程分析和能量分析,选择合适的规律列出相应的方程求解.2.常见方法(1)若一个物体或多个物体参与了多个运动过程,有的过程只涉及运动和力的问题或只要求分析物体的动力学特点,则一般应用牛顿运动定律结合运动学公式求解.(2)若过程不太关注中间过程而只求初末状态之间的运动参量关系且涉及做功和能量转化问题,则一般应用动能定理、机械能守恒定律或能量守恒定律求解.如图所示,一物体质量m =2 kg ,在倾角θ=37°的斜面上的A 点以初速度v 0=3m/s 下滑,A 点距弹簧上端B 的距离AB =4 m .当物体到达B 点后将弹簧压缩到C 点,最大压缩量BC =0.2 m ,然后物体又被弹簧弹上去,弹到的最高位置为D 点,D 点距A 点的距离AD =3 m .挡板及弹簧质量不计,g 取10 m/s 2,sin 37°=0.6,求:(1)物体与斜面间的动摩擦因数μ; (2)弹簧的最大弹性势能E pm .[解析] (1)物体从开始位置A 点到最后D 点的过程中,弹性势能没有发生变化,动能和重力势能减少,机械能的减少量为ΔE =ΔE k +ΔE p =12m v 20+mgl AD sin 37°①物体克服摩擦力产生的热量为 Q =F f x ②其中x 为物体的路程,即x =5.4 m ③ F f =μmg cos 37°④由能量守恒定律可得ΔE =Q ⑤ 由①②③④⑤式解得μ=0.52. (2)由A 到C 的过程中,动能减少ΔE ′k =12m v 20⑥重力势能减少ΔE ′p =mgl AC sin 37°⑦摩擦生热Q =F f l AC =μmg cos 37°l AC ⑧由能量守恒定律得弹簧的最大弹性势能为 ΔE pm =ΔE ′k +ΔE ′p -Q ⑨ 联立⑥⑦⑧⑨解得ΔE pm =24.5 J. [答案] (1)0.52 (2)24.5 J四、应用动力学和能量观点分析生活中实际问题生活中很多问题都涉及直线运动、圆周运动、平抛运动等,如体育活动中的运动、生产生活中的模型,都可用动力学观点和能量观点解决.蹦床比赛分成预备运动和比赛动作两个阶段.最初,运动员静止站在蹦床上;在预备运动阶段,他经过若干次蹦跳,逐渐增加上升高度,最终达到完成比赛动作所需的高度;此后,进入比赛动作阶段.把蹦床简化为一个竖直放置的轻弹簧,弹力大小F =kx (x 为床面下沉的距离,k 为常量).质量m =50 kg 的运动员静止站在蹦床上,床面下沉x 0=0.10 m ;在预备运动中,假定运动员所做的总功W 全部用于增加其机械能;在比赛动作中,把该运动员视作质点,其每次离开床面做竖直上抛运动的腾空时间均为Δt =2.0 s ,设运动员每次落下使床面压缩的最大深度均为x 1.取重力加速度g =10 m/s 2,忽略空气阻力的影响.(1)求常量k ,并在图中画出弹力F 随x 变化的示意图;(2)求在比赛动作中,运动员离开床面后上升的最大高度h m ;(3)借助F -x 图象可以确定弹力做功的规律,在此基础上,求 x 1和W 的值. [解析] (1)床面下沉x 0=0.10 m 时,运动员受力平衡,mg =kx 0得k =mgx 0=5.0×103 N/mF -x 图线如图所示.(2)运动员从x =0处离开床面,开始腾空,其上升、下落的时间相等,h m =12g ⎝⎛⎭⎫Δt 22=5.0 m.(3)参考由速度-时间图象求位移的方法,知F -x 图线与x 轴所围的面积等于弹力做的功,从x 处到x =0,弹力做功W FW F =12·x ·kx =12kx 2运动员从x 1处上升到最大高度h m 的过程,根据动能定理,有 12kx 21-mg (x 1+h m )=0 得x 1=x 0+x 20+2x 0h m =1.1 m对整个预备运动,由题设条件以及功能关系,有W +12kx 20=mg (h m +x 0)得W =2 525 J. [答案] 见解析1.如图所示,一足够长的木板在光滑的水平面上以速度v 向右匀速运动,现将质量为m 的物体竖直向下轻轻地放置在木板上的右端,已知物体m 和木板之间的动摩擦因数为μ,为保持木板的速度不变,从物体m 放到木板上到它相对木板静止的过程中,须对木板施一水平向右的作用力F ,那么力F 对木板做功的数值为( )A.m v 24 B .m v 22C .m v 2D .2m v 2 解析:选C.由能量转化和守恒定律可知,拉力F 对木板所做的功W 一部分转化为物体m 的动能,一部分转化为系统内能,故W =12m v 2+μmg ·s 相,s 相=v t -v 2t ,v =μgt ,以上三式联立可得:W =m v 2,故C 正确.2.(多选)一足够长的传送带与水平面的夹角为θ,传送带以一定的速度匀速运动.某时刻在传送带适当的位置放上具有一定初速度的物块(如图甲所示),以此时为t =0时刻,作出小物块之后在传送带上的运动速度随时间的变化关系,如图乙所示(图中取沿斜面向下的运动方向为正方向,其中v 1>v 2).已知传送带的速度保持不变,g 取10 m/s 2.则( )A .0~t 1时间内,物块对传送带做负功B .物块与传送带间的动摩擦因数μ<tan θC .0~t 2时间内,传送带对物块做功为W =12m v 22-12m v 21 D .t 1时刻之后,物块先受滑动摩擦力,对其做正功,后受静摩擦力,对其做负功解析:选AD.由题图乙知,物块与传送带在t 2时刻相对静止,一起向下匀速运动,所以物块先向上做匀减速运动,减为零后再向下做匀加速运动,最后做匀速运动.0~t 1时间段内物块对传送带的摩擦力方向向上,对传送带做负功,A 正确;物块最后与传送带相对静止向下匀速运动,说明滑动摩擦力大于或等于物块重力沿传送带斜向下的分力,B 错;0~t 2时间内,物块相对初始位置升高了,物块的重力做负功,传送带对物块做的功W >12m v 22-12m v 21,C 错;根据以上分析知,D 正确. 3.如图,质量为M 、长为L 、高为h 的矩形滑块置于水平地面上,滑块与地面间动摩擦因数为μ;滑块上表面光滑,其右端放置一个质量为m 的小球.用水平外力击打滑块左端,使其在极短时间内获得向右的速度v 0,经过一段时间后小球落地.求小球落地时距滑块左端的水平距离.+M )gL =12M v 21-12解析:滑块左端滑到小球正下方时速度为v 1,由动能定理有-μ(m M v 20得v 21=v 20-2μ(m +M )gL M, 小球自由落体落到地面的时间t =2hg ,此过程中滑块的加速度的大小a =μMgM =μg ,滑块继续运动的最长时间t m =v 1μg,当t ≥t m 时,小球落地时距滑块左端的水平距离s =v 212μg =v 202μg -(m +M )L M, 当t <t m 时,小球落地时距滑块左端的水平距离s =v 1t -12at 2= 2h v 20g -4μLh (m +M )M-μh .答案:v 202μg -(m +M )L M 或 2h v 20g -4μLh (m +M )M-μh4.如图甲所示,在圆形水池正上方,有一半径为r 的圆形储水桶.水桶底部有多个水平小孔,小孔喷出的水在水池中的落点离水池中心的距离为R ,水桶底部与水池水面之间的高度差是h .为了维持水桶水面的高度不变,用水泵通过细水管将洒落的水重新抽回到高度差为H 的水桶上方.水泵由效率为η1的太阳能电池板供电,电池板与水平面之间的夹角为α,太阳光竖直向下照射(如图乙所示),太阳光垂直照射时单位时间内单位面积的电池板接收的能量为E 0.水泵的效率为η2,水泵出水口单位时间流出水的质量为m 0,流出水流的速度大小为v 0(不计水在细水管和空气中运动时所受的阻力).求:(1)水从小孔喷出时的速度大小;(2)水泵的输出功率;(3)为了使水泵的工作能维持水面的高度不变,太阳能电池板面积的最小值S .解析:(1)水从小孔喷出时速度沿水平方向,只受重力作用,做平抛运动,设水喷出时的速度大小为v ,有R -r =v th =12gt 2 解得v =R -r2h2gh .(2)水泵做功,既改变水的势能,又改变水的动能.由功能关系得P =m 0gH +12m 0v 20. (3)考虑单位时间内的能量转化及利用效率,太阳能电池板接收的太阳能中的一部分转变成电能E 1,电能通过水泵将其中的部分转变成水的机械能E 2,有E 1=η1E 0S cos αE 2=η2E 1E 2=m 0gH +12m 0v 20 解得S =m 0gH +12m 0v 20η1η2E 0cos α.答案:见解析5.如图所示,质量为m =1 kg 的可视为质点的小物块轻轻放在水平匀速运动的传送带上的P 点,随传送带运动到A 点后水平抛出,小物块恰好无碰撞的沿圆弧切线从B 点进入竖直光滑圆弧轨道下滑,圆弧轨道与质量为M =2 kg 的足够长的小车左端在最低点O 点相切,并在O 点滑上小车,水平地面光滑,当物块运动到障碍物Q 处时与Q 发生无机械能损失的碰撞,碰撞前物块和小车已经相对静止,而小车可继续向右运动(物块始终在小车上),小车运动过程中和圆弧无相互作用.已知圆弧半径R =1.0 m ,圆弧对应的圆心角θ为53°,A 点距水平面的高度h =0.8 m ,物块与小车间的动摩擦因数为μ=0.1,重力加速度g =10 m/s 2,sin 53°=0.8,cos 53°=0.6.试求:(1)小物块离开A 点的水平初速度v 1;(2)小物块经过O 点时对轨道的压力大小;(3)第一次碰撞后直至静止,物块相对小车的位移和小车做匀减速运动的总时间. 解析:(1)对小物块由A 到B 有:v 2y =2gh在B 点:tan θ=v yv 1解得v 1=3 m/s.(2)由A 到O ,根据动能定理有:mg (h +R -R cos θ)=12m v 20-12m v 21 在O 点:F N -mg =m v 20R解得:v 0=33 m/s ,F N =43 N由牛顿第三定律知,小物块对轨道的压力F N ′=43 N.(3)摩擦力F f =μmg =1 N ,物块滑上小车后经过时间t 达到的共同速度为v t ,则v 0-v t a m =v ta M,a m =2a M ,得v t =333m/s由于碰撞不损失能量,物块在小车上重复做匀减速和匀加速运动,相对小车始终向左运动,物块与小车最终静止,摩擦力做功使动能全部转化为内能,故有:F f l 相=12(M +m )v 2t 得l 相=5.5 m 小车从物块碰撞后开始匀减速运动,(每个减速阶段)加速度a 不变,a M =F fM=0.5 m/s 2,v t =a M t 得t =2333 s.答案:(1)3 m/s (2)43 N (3)5.5 m 2333 s6.(2016·潍坊模拟)如图所示,光滑半圆轨道AB 竖直固定,半径R =0.4 m ,与水平光滑轨道相切于A .水平轨道上平铺一半径r =0.1 m 的圆形桌布,桌布中心有一质量m =1 kg 的小铁块保持静止.现以恒定的加速度将桌布从铁块下水平向右抽出后,铁块沿水平轨道经A 点进入半圆轨道,到达半圆轨道最高点B 时对轨道刚好无压力,已知铁块与桌布间动摩擦因数μ=0.5,取g =10 m/s 2,求:(1)铁块离开B 点后在地面上的落点到A 的距离; (2)铁块到A 点时对圆轨道的压力大小; (3)抽桌布过程中桌布的加速度大小.解析:(1)在B 点,由牛顿第二定律,有mg =m v 2BR从B 点抛出后 水平方向x =v B t竖直方向2R =12gt 2代入数据得x =0.8 m.(2)A →B ,由机械能守恒m v 2A 2=2mgR +m v 2B2在A 点,由牛顿第二定律F ′N -mg =m v 2AR代入数据得F ′N =60 N由牛顿第三定律F N =F ′N =60 N. (3)铁块脱离桌布时的速度v 0=v A铁块在桌布上做匀加速直线运动,设铁块加速度为a 0,由牛顿第二定律μmg =ma 0 设铁块在桌布上的加速时间为t 0,由运动学公式 v 0=a 0t 0由公式r =12at 20-12a 0t 20 代入数据得a =5.25 m/s 2.答案:(1)0.8 m (2)60 N (3)5.25 m/s 2。

动力学方法和能量观点的综合应用

动力学方法和能量观点的综合应用

动力学方法和能量观点的综合应用
动力学方法是研究物体运动的一种基本方法,它建立在牛顿第二定律的基础上。

根据牛顿第二定律,物体的运动状态取决于作用在它上面的力和质量,加速度与所受外力成正比,反比于物体质量。

动力学方法的核心是通过分析物体所受的所有外力,并根据牛顿第二定律,求解加速度,并进而推导出物体的运动情况。

可以说,动力学方法和能量观点是两种不同的物理观点,但它们并不矛盾,而是相辅相成的。

在很多情况下,我们需要综合运用这两种方法来解决实际的物理问题。

在实际问题中,动力学方法和能量观点的综合应用也有许多其他的例子。

比如,在弹性碰撞问题中,我们可以通过动力学方法计算碰撞力和加速度的变化,然后利用能量观点来分析碰撞前后物体的动能变化,从而得到碰撞的结果;在机械振动问题中,我们可以通过动力学方法分析弹簧等外力对系统的作用,再利用能量观点来计算振动系统的总能量和势能的变化,从而得到振动的频率等。

综上所述,动力学方法和能量观点是物理学中重要的两种方法,在实际问题中可以综合运用,得到更全面准确的描述和分析。

无论是从力的角度还是从能量的角度来研究物体的运动,都有助于我们深入理解物理学的基本原理和应用。

动力学观点和能量观点的综合应用

动力学观点和能量观点的综合应用

动力学观点和能量观点的综合应用多种运动的组合问题角度1 直线运动与圆周运动的组合【真题示例1】 (2016·全国卷Ⅱ,25)轻质弹簧原长为2l ,将弹簧竖直放置在地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l 。

现将该弹簧水平放置,一端固定在A 点,另一端与物块P 接触但不连接。

AB 是长度为5l 的水平轨道,B 端与半径为l 的光滑半圆轨道BCD 相切,半圆的直径BD 竖直,如图所示。

物块P 与AB 间的动摩擦因数μ=0.5。

用外力推动物块P ,将弹簧压缩至长度l ,然后放开P 开始沿轨道运动,重力加速度大小为g 。

图1(1)若P 的质量为m ,求P 到达B 点时速度的大小,以及它离开圆轨道后落回到AB 上的位置与B 点之间的距离;(2)若P 能滑上圆轨道,且仍能沿圆轨道滑下,求P 的质量的取值范围。

解析 (1)依题意,当弹簧竖直放置,长度被压缩至l 时,质量为5m 的物体的动能为零,其重力势能转化为弹簧的弹性势能。

由机械能守恒定律知,弹簧长度为l 时的弹性势能为E p =5mgl ①设P 到达B 点时的速度大小为v B ,由能量守恒定律得E p =12m v 2B +μmg (5l -l )②联立①②式,并代入题给数据得v B =6gl ③若P 能沿圆轨道运动到D 点,其到达D 点时的向心力不能小于重力,即P 此时的速度大小v 应满足m v 2l -mg ≥0④设P 滑到D 点时的速度为v D ,由机械能守恒定律得12m v 2B =12m v 2D +mg ·2l ⑤ 联立③⑤式得v D =2gl ⑥v D 满足④式要求,故P 能运动到D 点,并从D 点以速度v D 水平射出。

设P 落回到轨道AB 所需的时间为t ,由运动学公式得2l =12gt 2⑦P 落回到AB 上的位置与B 点之间的距离为s =v D t ⑧联立⑥⑦⑧式得s =22l ⑨(2)设P 的质量为M ,为使P 能滑上圆轨道,它到达B 点时的速度不能小于零。

2024届高考物理复习讲义:专题强化九 动力学和能量观点的综合应用(一)——多运动组合问题

2024届高考物理复习讲义:专题强化九 动力学和能量观点的综合应用(一)——多运动组合问题

专题强化九动力学和能量观点的综合应用(一)——多运动组合问题学习目标掌握运用动力学和能量观点分析复杂运动的方法,进而利用动力学和能量观点解决多运动组合的综合问题。

1.分析思路(1)受力与运动分析:根据物体的运动过程分析物体的受力情况,以及不同运动过程中力的变化情况。

(2)做功分析:根据各种力做功的不同特点,分析各种力在不同运动过程中的做功情况。

(3)功能关系分析:运用动能定理、机械能守恒定律或能量守恒定律进行分析,选择合适的规律求解。

2.方法技巧(1)“合”——整体上把握全过程,构建大致的运动情景。

(2)“分”——将全过程进行分解,分析每个子过程对应的基本规律。

(3)“合”——找出各子过程之间的联系,以衔接点为突破口,寻求解题最优方案。

例1(2022·浙江1月选考,20)如图1所示,处于竖直平面内的一探究装置,由倾角α=37°的光滑直轨道AB、圆心为O1的半圆形光滑轨道BCD、圆心为O2的半圆形光滑细圆管轨道DEF、倾角也为37°的粗糙直轨道FG组成,B、D和F为轨道间的相切点,弹性板垂直轨道固定在G点(与B点等高),B、O1、D、O2和F点处于同一直线上。

已知可视为质点的滑块质量m=0.1kg,轨道BCD和DEF的半径R=0.15m,轨道AB长度l AB=3m,滑块与轨道FG间的动摩擦因数μ=7 8。

滑块与弹性板作用后,以等大速度弹回,sin37°=0.6,cos37°=0.8。

滑块开始时均从轨道AB上某点静止释放,图1(1)若释放点距B 点的长度l =0.7m ,求滑块到最低点C 时轨道对其支持力F N 的大小;(2)设释放点距B 点的长度为l x ,求滑块第1次经F 点时的速度v 与l x 之间的关系式;(3)若滑块最终静止在轨道FG 的中点,求释放点距B 点长度l x 的值。

答案(1)7N (2)v =12l x -9.6(m/s)(0.85m ≤l x ≤3m)(3)见解析解析(1)滑块从A 到C 的过程只有重力做功,机械能守恒,则mgl sin 37°+mgR (1-cos 37°)=12m v 2C 在C 点根据牛顿第二定律有F N -mg =m v 2CR代入数据解得F N =7N 。

高中物理-专题三第2课时 动力学和能量观点的综合应用

高中物理-专题三第2课时 动力学和能量观点的综合应用

第2课时动力学和能量观点的综合应用高考题型1多运动过程问题1.运动模型多运动过程通常包括匀变速直线运动、平抛运动、圆周运动或者是一般的曲线运动。

在实际问题中通常是两种或者多种运动的组合。

2.基本规律运动学的基本规律、牛顿运动定律、圆周运动的知识和动能定理。

3.分析技巧(1)多个运动过程的组合实际上是多种物理规律和方法的综合应用,分析这种问题时应注意要独立分析各个运动过程,而不同过程往往通过连接点的速度建立联系,有时对整个过程应用能量的观点解决问题会更简单。

(2)如果涉及加速度、时间和受力的分析和计算,一般应用动力学方法;如果只涉及位移、功和能量的转化问题,通常采用动能定理分析。

【例1】(2021·全国甲卷,24)如图1,一倾角为θ的光滑斜面上有50个减速带(图中未完全画出),相邻减速带间的距离均为d,减速带的宽度远小于d;一质量为m的无动力小车(可视为质点)从距第一个减速带L处由静止释放。

已知小车通过减速带损失的机械能与到达减速带时的速度有关。

观察发现,小车通过第30个减速带后,在相邻减速带间的平均速度均相同。

小车通过第50个减速带后立刻进入与斜面光滑连接的水平地面,继续滑行距离s后停下。

已知小车与地面间的动摩擦因数为μ,重力加速度大小为g。

图1(1)求小车通过第30个减速带后,经过每一个减速带时损失的机械能;(2)求小车通过前30个减速带的过程中在每一个减速带上平均损失的机械能;(3)若小车在前30个减速带上平均每一个损失的机械能大于之后每一个减速带上损失的机械能,则L应满足什么条件?答案(1)mgd sin θ(2)mg(29d+L)sin θ-μmgs30(3)L>d+μs sin θ解析(1)设小车通过第30个减速带后,经过每一个减速带时损失的机械能为ΔE,由小车通过第30个减速带后,在相邻减速带间的平均速度均相同,可知小车通过每一个减速带时重力势能的减少量等于经过减速带损失的机械能,即ΔE=mgd sin θ①(2)设小车通过前30个减速带的过程中在每一个减速带上平均损失的机械能为ΔE0,对小车从静止开始到进入水平面停止,由动能定理有mg(49d+L)sin θ-30ΔE0-20ΔE-μmgs=0-0②联立①②解得ΔE0=mg(29d+L)sin θ-μmgs30③(3)要使ΔE0>ΔE,有mg(29d+L)sin θ-μmgs30>mgd sin θ④解得L>d+μssin θ。

5力学三大观点的综合应用

5力学三大观点的综合应用

4.质量为 M 的小物块 A 静止在离地面高 h 的水平桌面的 边缘,质量为 m 的小物块 B 沿桌面向 A 运动并以速度 v0 与之 发生正碰(碰撞时间极短).碰后 A 离开桌面,其落地点离出发 点的水平距离为 L,碰后 B 反向运动,求 B 后退的距离.已知 B 与桌面间的动摩擦因数为μ,重力加速度为 g.
7.如图 T1-10 所示,质量 m=2 kg 的小球以初速度 v0 沿 光滑的水平面飞出后,恰好无碰撞地进入光滑的圆弧轨道,其
中圆弧 AB 对应的圆心角θ=53°,圆半径 R=0.5 m.若小球离
开桌面运动到 A 点所用时间 t=0.4 s.(sin53°=0.8,cos53°=
0.6, g=10 m/s2)
图 T1-8
解:物块在长木板上向右滑行时做减速运动,长木板做加 速运动,碰撞时物块再传递一部分能量给长木板,以后长木板 减速,物块加速直到速度相同为止.设木块和物块最后共同的 速度为v,由动量守恒定律得mv0=(m+M)v
设全过程损失的机械能为 ΔE,则 ΔE=12mv20-12(m+M)v2 因相对滑动而产生的内能为 Q=μmg·2s,在碰撞过程中损 失的机械能为 ΔE′,由能量守恒定律可得 ΔE=Q+ΔE′ 则 ΔE′=2mm+MMv20-2μmgs 代入数据得 ΔE′=2.4 J.
(舍去)
所以 v1=v0=2 μgl,v2=0.
1.有一传送装置如图 T1-5 所示,水平放置的传送带保持 以 v=2 m/s 的速度向右匀速运动.传送带两端之间的距离 L= 10 m,现有一物件以 v0=4 m/s 的初速度从左端滑上传送带,物 件与传送带之间的动摩擦因数μ=0.2.求物件从传送带的左端运 动到右端所用的时间 (取 g=10 m/s2).

专题(16)动力学和能量观点的综合应用(解析版)

专题(16)动力学和能量观点的综合应用(解析版)

2021年(新高考)物理一轮复习考点强化全突破专题(16)动力学和能量观点的综合应用(解析版)命题热点一 多运动组合问题1.抓住物理情景中出现的运动状态和运动过程,将物理过程分解成几个简单的子过程.2.两个相邻过程连接点的速度是联系两过程的纽带,也是解题的关键.很多情况下平抛运动的末速度的方向是解题的重要突破口.【例1】图1中给出了一段“S”形单行盘山公路的示意图.弯道1、弯道2可看做两个不同水平面上的圆弧,圆心分别为O 1、O 2,弯道中心线半径分别为r 1=10 m 、r 2=20 m ,弯道2比弯道1高h =12 m ,有一直道与两弯道圆弧相切.质量m =1 200 kg 的汽车通过弯道时做匀速圆周运动,路面对轮胎的最大径向静摩擦力是车重的1.25倍,行驶时要求汽车不打滑.(sin 37°=0.6,sin 53°=0.8,g =10 m/s 2)图1(1)求汽车沿弯道1中心线行驶时的最大速度v 1;(2)汽车以v 1进入直道,以P =30 kW 的恒定功率直线行驶了t =8.0 s 进入弯道2,此时速度恰为通过弯道中心线的最大速度,求直道上除重力以外的阻力对汽车做的功;(3)汽车从弯道1的A 点进入,从同一直径上的B 点驶离,有经验的司机会利用路面宽度,用最短时间匀速安全通过弯道.设路宽d =10 m ,求此最短时间(A 、B 两点都在轨道中心线上,计算时视汽车为质点).【答案】见解析【解析】(1)汽车在沿弯道1中心线行驶时,由牛顿第二定律得,kmg =m v 12r 1解得v 1=kgr 1=5 5 m/s.(2)设在弯道2沿中心线行驶的最大速度为v 2由牛顿第二定律得,kmg =m v 22r 2解得v 2=kgr 2=510 m/s在直道上由动能定理有Pt -mgh +W f =12mv 22-12mv 12 代入数据可得W f =-2.1×104 J.(3)沿如图所示内切的路线行驶时间最短,由图可得r ′2=r 12+[r ′-(r 1-d 2)]2 代入数据可得r ′=12.5 m设汽车沿该路线行驶的最大速度为v ′则kmg =m v ′2r ′得v ′=kgr ′=12.5 m/s由sin θ=r 1r ′=0.8 则对应的圆心角为2θ=106°路线长度s =106°360°×2πr ′≈23.1 m 最短时间t ′=s v ′≈1.8 s.变式1 如图2所示装置由一理想弹簧发射器及两个轨道组成.其中轨道Ⅰ由光滑轨道AB 与粗糙直轨道BC 平滑连接,高度差分别是h 1=0.20 m 、h 2=0.10 m ,BC 水平距离L =1.00 m .轨道Ⅰ由AE 、螺旋圆形EFG 和GB 三段光滑轨道平滑连接而成,且A 点与F 点等高.当弹簧压缩量为d 时,恰能使质量m =0.05 kg 的滑块沿轨道Ⅰ上升到B 点;当弹簧压缩量为2d 时,恰能使滑块沿轨道Ⅰ上升到C 点.(已知弹簧弹性势能与压缩量的平方成正比,g =10 m/s 2)图2(1)当弹簧压缩量为d 时,求弹簧的弹性势能及滑块离开弹簧瞬间的速度大小;(2)求滑块与轨道BC 间的动摩擦因数;(3)当弹簧压缩量为d 时,若沿轨道Ⅰ运动,滑块能否上升到B 点?请通过计算说明理由.【答案】(1)0.1 J 2 m/s (2)0.5 (3)见解析【解析】(1)由机械能守恒定律可得E 弹=ΔE k =ΔE p =mgh 1=0.05×10×0.20 J =0.1 J由ΔE k =12mv 02,可得v 0=2 m/s. (2)由E 弹Ⅰd 2,可得当弹簧压缩量为2d 时,ΔE k ′=E 弹′=4E 弹=4mgh 1由动能定理可得-mg (h 1+h 2)-μmgL =-ΔE k ′解得μ=3h 1-h 2L=0.5. (3)滑块恰能通过螺旋圆形轨道最高点需满足的条件是mg =mv 2R m由机械能守恒定律有v =v 0=2 m/s解得R m =0.4 m当R >0.4 m 时,滑块会脱离螺旋圆形轨道,不能上升到B 点;当R ≤0.4 m 时,滑块能上升到B 点.题型1 平抛运动+圆周运动的组合例2 山谷中有三块石头和一根不可伸长的轻质青藤,其示意图如图3.图中A 、B 、C 、D 均为石头的边缘点,O 为青藤的固定点,h 1=1.8 m ,h 2=4.0 m ,x 1=4.8 m ,x 2=8.0 m .开始时,质量分别为M =10 kg 和m =2 kg 的大、小两只滇金丝猴分别位于左边和中间的石头上,当大猴发现小猴将受到伤害时,迅速从左边石头的A 点水平跳至中间石头.大猴抱起小猴跑到C 点,抓住青藤下端,荡到右边石头上的D 点,此时速度恰好为零.运动过程中猴子均可看成质点,空气阻力不计,重力加速度g =10 m/s 2.求:图3(1)大猴从A 点水平跳离时速度的最小值;(2)猴子抓住青藤荡起时的速度大小;(3)猴子荡起时,青藤对猴子的拉力大小.【答案】(1)8 m/s (2)4 5 m/s (3)216 N【解析】(1)设猴子从A 点水平跳离时速度的最小值为v min ,根据平抛运动规律,有h 1=12gt 2Ⅰ x 1=v min t Ⅰ联立ⅠⅠ式,得v min =8 m/s.Ⅰ(2)猴子抓住青藤后的运动过程中机械能守恒,设荡起时速度为v C ,有(M +m )gh 2=12(M +m )v C 2Ⅰ v C =2gh 2=4 5 m/s.Ⅰ(3)设拉力为F T ,青藤的长度为L ,在最低点由牛顿第二定律得F T -(M +m )g =(M +m )v C 2LⅠ 由几何关系(L -h 2)2+x 22=L 2Ⅰ得:L =10 mⅠ联立ⅠⅠⅠ式并代入数据解得:F T =(M +m )g +(M +m )v C 2L=216 N. 题型2 直线运动+圆周运动+平抛运动的组合例3 (2019届湖州市模拟)某校科技节举行车模大赛,其规定的赛道如图4所示,某小车以额定功率18 W 由静止开始从A 点出发,加速2 s 后进入光滑的竖直圆轨道BC ,恰好能经过圆轨道最高点C ,然后经过光滑曲线轨道BE 后,从E 处水平飞出,最后落入沙坑中,已知圆半径R =1.2 m ,沙坑距离BD 平面高度h 2=1 m ,小车的总质量为1 kg ,g =10 m/s 2,不计空气阻力,求:图4(1)小车在B 点对轨道的压力大小;(2)小车在AB 段克服摩擦力做的功;(3)末端平抛高台h 1为多少时,能让小车落入沙坑的水平位移最大?最大值是多少?【答案】(1)60 N (2)6 J (3)1 m 4 m【解析】(1)由于小车恰好经过圆轨道最高点C ,即mg =mv C 2R由B →C ,根据动能定理可得-2mgR =12mv C 2-12mv B 2 在B 点由牛顿第二定律有,F N -mg =m v B 2R, 联立解得F N =60 N ,由牛顿第三定律得在B 点小车对轨道的压力为60 N ,方向竖直向下.(2)由A →B ,根据动能定理:Pt +W f =12mv B 2,解得W f =-6 J ,即小车在AB 段克服摩擦力做的功为6 J. (3)由B →E ,根据动能定理得-mgh 1=12mv E 2-12mv B 2, 飞出后,小车做平抛运动,所以h 1+h 2=12gt 2 水平位移x =v E t ,化简得x = v B 2-2gh 12(h 1+h 2)g ,即x = (60-20h 1)h 1+15, 当h 1=1 m 时,水平距离最大,x max =4 m.命题热点二 传送带模型问题传送带问题的分析流程和技巧1.分析流程2.相对位移一对相互作用的滑动摩擦力做功所产生的热量Q =F f ·x 相对,其中x 相对是物体间相对路径长度.如果两物体同向运动,x 相对为两物体对地位移大小之差;如果两物体反向运动,x 相对为两物体对地位移大小之和.3.功能关系(1)功能关系分析:W F =ΔE k +ΔE p +Q .(2)对W F 和Q 的理解:Ⅰ传送带的功:W F =Fx 传;Ⅰ产生的内能Q =F f ·x 相对. 模型1 水平传送带模型例4 倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6 m/s 的速度运动,运动方向如图5所示.一个质量为2 kg 的物体(可视为质点),从h =3.2 m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,物体向左最多能滑到传送带左右两端A 、B 连线的中点处,重力加速度g 取10 m/s 2,求:图5(1)传送带左、右两端A 、B 间的距离L ;(2)上述过程中物体与传送带组成的系统因摩擦产生的热量;(3)物体随传送带向右运动,最后沿斜面上滑的最大高度h ′.【答案】(1)12.8 m (2)160 J (3)1.8 m【解析】(1)物体从静止开始到在传送带上的速度等于0的过程中,由动能定理得:mgh -μmgL 2=0-0,解得L =12.8 m.(2)在此过程中,物体与传送带间的相对位移x 相=L 2+v 带·t ,又L 2=12μgt 2,而摩擦产生的热量Q =μmg ·x 相, 联立得Q =160 J.(3)物体随传送带向右匀加速运动,设当速度为v 带=6 m/s 时,向右运动的位移为x ,则μmgx =12mv 带2,得x =3.6 m <L 2,即物体在到达A 点前速度与传送带速度相等,最后以v 带=6 m/s 的速度冲上斜面,由动能定理得12mv 带2=mgh ′,解得h ′=1.8 m. 模型2 倾斜传送带模型例5 如图6所示,传送带与地面的夹角θ=37°,A 、B 两端间距L =16 m ,传送带以速度v =10 m/s ,沿顺时针方向运动,物体质量m =1 kg ,无初速度地放置于A 端,它与传送带间的动摩擦因数μ=0.5,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:图6(1)物体由A 端运动到B 端的时间.(2)系统因摩擦产生的热量.【答案】(1)2 s (2)24 J【解析】(1)物体刚放上传送带时受到沿斜面向下的滑动摩擦力和重力,由牛顿第二定律得:mg sin θ+μmg cos θ=ma 1,设物体经时间t 1,加速到与传送带同速,则v =a 1t 1,x 1=12a 1t 12 解得:a 1=10 m/s 2t 1=1 sx 1=5 m<L因mg sin θ>μmg cos θ,故当物体与传送带同速后,物体将继续加速由mg sin θ-μmg cos θ=ma 2L -x 1=vt 2+12a 2t 22 解得:t 2=1 s故物体由A 端运动到B 端的时间t =t 1+t 2=2 s.(2)物体与传送带间的相对位移x 相=(vt 1-x 1)+(L -x 1-vt 2)=6 m故Q =μmg cos θ·x 相=24 J.。

专题动力学和能量观点综合应用板块问题传送带问题和图像问题(原卷版)

专题动力学和能量观点综合应用板块问题传送带问题和图像问题(原卷版)

10专题:动力学和能量观点综合应用 板块问题、传送带问题和图像问题[学习目标]1. 会利用动力学和能量观点分析多运动组合问题.2. 能用功能关系处理板块模型3. 能用功能关系处理传送带模型4. 会分析处理图像类能量变化题型一、多过程问题 1.分析思路① 受力与运动分析:根据物体的运动过程分析物体的受力情况,以及不同运动过程中力的变化情况; ② 做功分析:根据各种力做功的不同特点,分析各种力在不同运动过程中的做功情况;③ 功能关系分析:运用动能定理、机械能守恒定律或能量守恒定律进行分析,选择合适的规律求解. 2.方法技巧① “合”——整体上把握全过程,构建大致的运动情景;② “分”——将全过程进行分解,分析每个子过程对应的基本规律;③ “合”——找出各子过程之间的联系,以衔接点为突破口,寻求解题最优方案. 二、传送带模型 1.设问的角度① 动力学角度:首先要正确分析物体的运动过程,做好受力分析,然后利用运动学公式结合牛顿第二定律求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系.② 能量角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等,常依据功能关系或能量守恒定律求解. 2.功能关系分析① 功能关系分析:W =ΔE k +ΔE p +Q .② 对W 和Q 的理解:①传送带克服摩擦力做的功:W =F f x 传; ②产生的内能:Q =F f x 相对. 三、板块模型“滑块—木板”模型问题的分析方法1.动力学分析:分别对滑块和木板进行受力分析,根据牛顿第二定律求出各自的加速度;从放上滑块到二者速度相等,所用时间相等,由t =Δv 2a 2=Δv 1a 1,可求出共同速度v 和所用时间t ,然后由位移公式可分别求出二者的位移.2.功和能分析:对滑块和木板分别运用动能定理,或者对系统运用能量守恒定律,Q E =∆机,即系统机械能的损失量等于产生的摩擦热.如图所示,要注意区分三个位移:① 求摩擦力对滑块做功时用滑块对地的位移x 滑;②求摩擦力对木板做功时用木板对地的位移x板;③求摩擦生热时用相对位移Δx.知识点一:多过程问题【探究重点】1.动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系。

高考物理总复习 专题五 动力学、动量和能量观点的综合应用

高考物理总复习 专题五 动力学、动量和能量观点的综合应用

专题五动力学、动量和能量观点的综合应用力学的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律).熟练应用三大观点分析和解决综合问题是本专题要达到的目的.考点一碰撞模型的拓展模型1“弹簧系统”模型1.模型图2.模型特点(1)在能量方面,由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒.(2)在动量方面,系统动量守恒.(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大.(4)弹簧处于原长时,弹性势能为零.例1. (多选)如图甲所示,物块a、b间拴接一个压缩后被锁定的轻质弹簧,整个系统静止放在光滑水平地面上,其中a物块最初与左侧固定的挡板相接触,b物块质量为1 kg.现解除对弹簧的锁定,在a物块离开挡板后,b物块的v ­ t关系图象如图乙所示.则下列分析正确的是( )A.a的质量为1 kgB.a的最大速度为4 m/sC.在a离开挡板后,弹簧的最大弹性势能为1.5 JD.在a离开挡板前,a、b及弹簧组成的系统动量和机械能都守恒模型2“滑块—木板”模型1.模型图2.模型特点(1)当滑块和木板的速度相等时木板的速度最大,两者的相对位移也最大.(2)系统的动量守恒,但系统的机械能不守恒,摩擦力与两者相对位移的乘积等于系统机械能的减少量,当两者的速度相等时,系统机械能损失最大.例2.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m.P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L.物体P 置于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p . 教你解决问题第一步:审条件 挖隐含①“与静止的P 2发生碰撞,碰撞时间极短”隐含→ P 的速度不变. ②“碰撞后P 1与P 2粘连在一起”隐含→ P 1、P 2获得共同速度. ③“P 压缩弹簧后被弹回并停在A 点”隐含→ P 1、P 2、P 三者有共同速度及整个碰撞过程中的弹性势能变化为零.第二步:审情景 建模型 ①P 1与P 2碰撞建模→ 碰撞模型.②P 与P 2之间的相互作用建模→ 滑块—滑板模型. 第三步:审过程 选规律 ①动量守恒定律―→求速度.②能量守恒定律―→求弹簧的压缩量x 及弹性势能E p .模型3“子弹打木块”模型 1.模型图2.模型特点(1)子弹打入木块若未穿出,系统动量守恒,能量守恒,即mv 0=(m+M)v,Q热=fL相对=12mv02-12(M+m)v2.(2)若子弹穿出木块,有mv0=mv1+Mv2,Q热=fL相对=1 2mv−0212mv−1212Mv22.例3.(多选)如图所示,一质量m2=0.25 kg的平顶小车,车顶右端放一质量m3=0.30 kg的小物体,小物体可视为质点,与车顶之间的动摩擦因数μ=0.45,小车静止在光滑的水平轨道上.现有一质量m1=0.05 kg 的子弹以水平速度v0=18 m/s射中小车左端,并留在车中,子弹与车相互作用时间很短.若使小物体不从车顶上滑落,g取10ms2.下列分析正确的是( )A.小物体在小车上相对小车滑行的时间为13sB.最后小物体与小车的共同速度为3 m/sC.小车的最小长度为1.0 mD.小车对小物体的摩擦力的冲量为0.45 N·s跟进训练1.[黑龙江哈尔滨模拟](多选)如图所示,两个小球A、B大小相等,质量分布均匀,分别为m1、m2,m1<m2,A、B与轻弹簧拴接,静止在光滑水平面上,第一次用锤子在左侧与A球心等高处水平快速向右敲击A,作用于A的冲量大小为I1,第二次两小球及弹簧仍静止在水平面上,用锤子在右侧与B球心等高处水平快速向左敲击B,作用于B的冲量大小为I2,I1=I2,则下列说法正确的是( )A.若两次锤子敲击完成瞬间,A、B两球获得的动量大小分别为p1和p2,则p1=p2B.若两次锤子敲击分别对A、B两球做的功为W1和W2,则W1=W2C.若两次弹簧压缩到最短时的长度分别为L1和L2,则L1<L2D.若两次弹簧压缩到最短时,A、弹簧、B的共同速度大小分别为v1和v2,则v1>v22.如图甲所示,质量为M=3.0 kg的平板小车C静止在光滑的水平面上,在t=0时,两个质量均为1.0 kg的小物体A和B同时从左右两端水平冲上小车,1.0 s内它们的v ­ t图象如图乙所示,g取10 m/s2.(1)小车在1.0 s内的位移为多大?(2)要使A、B在整个运动过程中不会相碰,车的长度至少为多少?考点二力学三大观点解决多过程问题1.三大力学观点的选择技巧根据问题类型,确定应采用的解题方法.一般来说,只涉及作用前后的速度问题,考虑采用动量守恒和能量守恒;涉及运动时间与作用力的问题,采用动量定理,考虑动能定理;涉及变化情况分析时由于涉及变量较多,一般采用图象法等.2.三大解题策略(1)力的观点解题:要认真分析运动状态的变化,关键是求出加速度.(2)两大定理解题:应确定过程的初、末状态的动量(动能),分析并求出过程中的冲量(功).(3)过程中动量或机械能守恒:根据题意选择合适的初、末状态,列守恒关系式,一般这两个守恒定律多用于求某状态的速度(率).例4.如图所示,质量为M=100 g、带有光滑弧形槽的滑块放在水平面上,弧形槽上圆弧对应的圆心角为θ=60°,半径R=0.2 m,与其处于同一竖直平面内的光滑半圆轨道cd的半径为r=0.2 m,c、d两点为半圆轨道竖直直径的两个端点,轨道与水平面相切于c点,已知b点左侧水平面光滑,b、c间的水平面粗糙.两质量分别为m1=100 g、m2=50 g的物块P、Q放在水平面上,两物块之间有一轻弹簧(弹簧与两物块均不拴接),用外力将轻弹簧压缩一定长度后用细线将两物块拴接在一起,初始时弹簧储存的弹性势能为E p=0.6 J.某时刻将细线烧断,弹簧将两物块弹开,两物块与弹簧分离时,物块P还未滑上弧形槽,物块Q还未滑到b点,此后立即拿走弹簧,物块P冲上弧形槽,已知/s2,两物块均可看成质点,忽略物块P冲上弧形槽瞬间的能量损失.(1)通过计算分析物块P能否从滑块左侧冲出,若能,求出物块P上升的最大高度,若不能,求出物块P和滑块的最终速度大小.(2)要使物块Q能冲上半圆轨道且不脱离半圆轨道,则物块Q与水平面间的动摩擦因数μ应满足什么条件?跟进训练3.如图所示,在竖直平面(纸面)内固定一内径很小、内壁光滑的圆管轨道ABC,它由两个半径均为R的四分之一圆管顺接而成,A、C两端切线水平.在足够长的光滑水平台面上静置一个光滑圆弧轨道DE,圆弧轨道D 端上缘恰好与圆管轨道的C端内径下缘水平对接.一质量为m的小球(可视为质点)以某一水平速度从A点射入圆管轨道,通过C点后进入圆弧轨道运动,过C点时轨道对小球的压力为2mg,小球始终没有离开圆弧轨道.已知圆弧轨道DE的质量为2m.重力加速度为g.求:(1)小球从A点进入圆管轨道时的速度大小;(2)小球沿圆弧轨道上升的最大高度.专题五 动力学、动量和能量观点的综合应用 关键能力·分层突破例1 解析:由题意可知,当b 的速度最小时,弹簧恰好恢复原长,设此时a 的速度最大为v ,由动量守恒定律和机械能守恒定律得:m b v 0=m b v 1+m a v ,12m b v 02=12m b v 12+12m a v 2,代入数据解得:m a =0.5 kg ,v =4m/s ,故A 错误,B 正确;两物块的速度相等时,弹簧弹性势能最大,由动量守恒定律和机械能守恒定律得:m b v 0=(m a +m b )v 2,E p =12m b v −0212(ma + mb)v 22,代入数据解得:E p =1.5 J ,故C 正确;在a 离开挡板前,a 、b 及弹簧组成的系统受到挡板向右的力,所以系统机械能守恒、动量不守恒,故D 错误.答案:BC例2 解析:(1)P 1、P 2碰撞瞬间,P 的速度不受影响,根据动量守恒mv 0=2mv 1,解得v 1=v02最终三个物体具有共同速度,根据动量守恒: 3mv 0=4mv 2, 解得v 2=34v 0(2)根据能量守恒,系统动能减少量等于因摩擦产生的内能:12×2mv +1212×2mv −0212×4mv 22=2mgμ(L+x)×2解得x =v 0232μg-L在从第一次共速到第二次共速过程中,弹簧弹性势能等于因摩擦产生的内能,即:E p=2mgμ(L+答案:(1)v0234v0(2)v0232μg-L 116mv02例3 解析:子弹射入小车的过程中,由动量守恒定律得:m1v0=(m1+m2)v1,解得v1=3 m/s;小物体在小车上滑行过程中,由动量守恒定律得(m1+m2)v1=(m1+m2+m3)v2,解得v2=1.5 m/s,选项B错误;以小物体为研究对象,由动量定理得I=μm3gt=m3v2,解得t=13s,选项A正确;小车对小物体的摩擦力的冲量为I=0.45 N·s,选项D正确;当系统相对静止时,小物体在小车上滑行的距离为l,由能量守恒定律得μm3gl=1 2(m1+m2)v−1212(m1+m2+m3)v22,解得l=0.5 m,所以小车的最小长度为0.5 m,选项C错误.答案:AD1.解析:由动量定理I=Δp可知,由于I1=I2,则两次锤子敲击完成瞬间有p1=p2,故A正确;由于两次锤子敲击完成瞬间两球具有动量大小相等,由E k=p 22m可知,A球获得的初动能更大,由动能定理可知W1>W2,故B错误;由动量守恒定律可得m1v0=(m1+m2)v,得v=m1v0m1+m2,由能量守恒有12m1v02=12(m1+m2)v2+E p,得E p=m1m22(m1+m2)v02,由于p1=p2,则质量越大的,初速度越小,即A球获得的初速度较大,则敲击A球后弹簧的最大弹性势能较大,即L1<L2,故C正确;由动量守恒定律可得m1v0=(m1+m2)v=p,得v=m1v0m1+m2=pm1+m2,则两次共速的速度大小相等,即v1=v2,故D错误.答案:AC2.解析:(1)由v-t图象可知:A、B的加速度大小为a A=2 m/s2,a B=2 m/s2由牛顿第二定律可知,f A=2 N,f B=2 N所以平板小车在1.0 s内所受合力为零,故小车不动,即位移为零.(2)由图象可知0~1.0 s内A、B的位移分别为:=3 m,=1 m1.0 s后,系统的动量守恒,三者的共同速度为v,则mv A=(M+2m)v,代入数据得:v=0.4 m/s1.0 s后A减速,小车和B一起加速且a车=23+1m/s2=0.5 m/s2车的长度至少为l=x A+x B+例 4 解析:(1)弹簧将两物块弹开的过程中弹簧与两物块组成的系统动量守恒、机械能守恒,设弹簧恢复原长后P、Q两物块的速度大小分别为v1、v2,则有0=m1v1-m2v2,E p=12m1v+1212m2v22解得v1=2 m/s,v2=4 m/s物块P以速度v1冲上滑块,P与滑块相互作用的过程中水平方向动量守恒,系统的机械能守恒,假设P不能从滑块的左侧冲出,且P在滑块上运动到最高点时的速度为v ,距水平面的高度为h ,则有m 1v 1=(m 1+M )v ,12m 1v 12=12(m 1+M)v 2+m 1gh解得h =0.1 m由于h =R(1-cos 60°),所以物块P 恰好不能从滑块左侧冲出,假设成立,之后物块P 沿弧形槽从滑块上滑下,设物块P 返回到水平面时的速度为v 3、滑块的速度为v 4,由动量守恒定律和机械能守恒定律得m 1v 1=m 1v 3+Mv 4,12m 1v 12=12m 1v +3212Mv 42 解得v 3=0,v 4=2 m/s.(2)若Q 恰能经过d 点,则Q 在d 点的速度v d 满足m 2g =m 2v d2rQ 从b 点运动到半圆轨道最高点d 的过程,由动能定理有-μm 2gx bc -2m 2gr =12m 2v −d 212m2v 22解得Q 恰能经过半圆轨道最高点时μ=0.3若Q 恰好能运动到与半圆轨道圆心等高点,则由动能定理得-μm 2g 解得Q 恰能运动到与半圆轨道圆心等高点时μ=0.6 若Q 恰能到达c 点,则由动能定理得-μm 2g 解得Q 恰能运动到c 点时μ=0.8分析可知,要使Q 能冲上半圆轨道且不脱离半圆轨道,应使0<μ≤0.3或0.6≤μ<0.8.答案:(1)见解析 (2)0<μ≤0.3或0.6≤μ<0.83.解析:(1)小球过C 点时,有2mg +mg =m v C2R,解得v C =√3gR .小球从A 到C ,由机械能守恒定律得12mv 02=12mv C 2+mg·2R,联立解得v 0=√7gR(2)小球冲上圆弧轨道后的运动过程,在水平方向上,由动量守恒定律得mv C=(m+2m)v共.由机械能守恒定律得12mv C2=12(m+2m)v共2+mgh,联立解得h=R.答案:(1)√7gR(2)R。

动力学和能能量观点的综合运用

动力学和能能量观点的综合运用

弹簧与圆环在同一竖直平面内,圆环上B点在O的正下方,当小球在A处受
到沿圆环切线方向的恒力F作用时,恰好与圆环间无相互作用,且处于静止
状态.已知:R=1.0 m,m=1.0 kg,∠AOB=θ=37°,弹簧处于弹性限度
内,ห้องสมุดไป่ตู้in 37°=0.6,cos 37°=0.8,重力加速度g=10 m/s2.求:
二轮复习
动力学和能量观点的综合应用
-----含弹簧类动力学和能量问题
学习目标
1、掌握含弹簧类的问题涉及运动学、牛顿运动定律、圆周运动等问题的
处理
2、熟练运用动能定理、机械能守恒定律、能量的转化和守恒定律解决此
类问题
3、注意平抛运动、竖直平面的圆周运动知识的运用
规律方法
1.相关规律和方法
动力学规律主要有:运动学的基本规律、牛顿运动定律、圆周运动的知
(1)物块由C点平抛出去后在水平轨道的落点与B点的距离; (2)物块在B点时对半圆轨道的压力大小; (3)物块在A点时弹簧的弹性势能.
谢谢!
(1)物块m过B点时的瞬时速度v0; (2)BP间的水平距离; (3)判断m能否沿圆轨道到达M点(要求写清计算过程)
例题分析
例题3、如图所示,一劲度系数很大的轻质弹簧下端固定在倾角θ=30° 的斜面底端,将弹簧上端压缩到A点锁定.一质量为m的小物块紧靠弹簧 上端放置,解除弹簧锁定,小物块将沿斜面上滑至B点后又返回,A、B 两点的高度差为h,弹簧锁定时具有的弹性势能Ep=5/4mgh,锁定及解除 锁定均无机械能损失,斜面上A点以下部分的摩擦不计,已知重力加速度 为g.求:
强化训练
2、如图所示,光滑水平轨道AB与光滑半圆形导轨BC在B点相切连接,半圆 导轨半径为R,轨道AB、BC在同一竖直平面内.一质量为m的物块在A处压 缩弹簧,并由静止释放,物块恰好能通过半圆导轨的最高点C.已知物块在到 达B点之前与弹簧已经分离,弹簧在弹性限度内,重力加速度为g.不计空气阻 力,求: .

2025高考物理总复习动力学和能量观点的综合应用

2025高考物理总复习动力学和能量观点的综合应用

考点三 用动力学和能量观点分析多运动组合问题
解得L′=10 m 第二种:当小物块恰能到达与圆心等高的位置时, 则12mvA2+mg(R-Rcos 37°)-μmgL1-mgr=0 解得L1=16 m
考点三 用动力学和能量观点分析多运动组合问题
当小物块恰能到达 D 点时,则12mvA2+mg(R-Rcos 37°)-μmgL2=0 解得L2=20 m 则小物块能到达D点且在DC之 间不脱离轨道,MN的长度满足 16 m≤L′≤20 m或者L′≤10 m。
考点二 滑块—木板模型综合问题
(1)A、C两点的高度差; 答案 0.8 m
小物块在 C 点速度大小为 vC=cosv053°=5 m/s,小物块在 C 点的竖直分 速度为 vy=vCsin 53°=4 m/s,下落高度为 h=v2yg2=0.8 m
考点二 滑块—木板模型综合问题
(2)小物块在圆弧轨道末端D点时对轨道的 压力; 答案 68 N,方向竖直向下
考点三 用动力学和能量观点分析多运动组合问题
(2)若MN的长度为L=6 m,求小物块 通过C点时所受轨道弹力的大小FN; 答案 60 N
考点三 用动力学和能量观点分析多运动组合问题
小物块从A点运动到C点,根据动能定理有 mg(R-Rcos 37°)-μmgL-2mgr=12mvC2-12mvA2 在 C 点,由牛顿第二定律得 FN+mg=mvrC2 代入数据解得FN=60 N
考点二 滑块—木板模型综合问题
2.功和能分析:对滑块和木板分别运用动能定理,或者对系统运用能量 守恒定律。如图所示,要注意区分三个位移: (1)求摩擦力对滑块做功时用滑块对地的位移x滑; (2)求摩擦力对木板做功时用木板对地的位移x板; (3)求摩擦生热时用相对位移Δx。

动力学和能量观点的综合应用(含解析)

动力学和能量观点的综合应用(含解析)

动力学和能量观点的综合应用类型一 传送带模型知识回望1.设问的角度(1)动力学角度:首先要正确分析物体的运动过程,做好受力分析,然后利用运动学公式结合牛顿第二定律求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系. (2)能量角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等,常依据功能关系或能量守恒定律求解. 2.功能关系分析(1)功能关系分析:W =ΔE k +ΔE p +Q . (2)对W 和Q 的理解:①传送带克服摩擦力做的功:W =F f x 传; ②产生的内能:Q =F f x 相对.例1 (2019·福建福州市期末质量检测)如图所示,水平传送带匀速运行的速度为v =2 m/s ,传送带两端A 、B 间距离为x 0=10 m ,当质量为m =5 kg 的行李箱无初速度地放在传送带A 端后,传送到B 端,传送带与行李箱间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2,求:(1)行李箱开始运动时的加速度大小a ; (2)行李箱从A 端传送到B 端所用时间t ; (3)整个过程行李箱对传送带的摩擦力做的功W . 【答案】(1)2 m/s 2 (2)5.5 s (3)-20 J【解析】(1)行李箱刚放上传送带时的加速度大小:a =F f m =μmg m =μg =2 m/s 2(2)经过t 1时间二者共速,t 1=v a =22s =1 s行李箱匀加速运动的位移为:x 1=12at 12=12×2×12 m =1 m行李箱随传送带匀速运动的时间:t 2=x 0-x 1v =10-12 s =4.5 s则行李箱从A 传送到B 所用时间:t =t 1+t 2=1 s +4.5 s =5.5 s (3)t 1时间内传送带的位移:x 2=v t 1=2×1 m =2 m根据牛顿第三定律,传送带受到行李箱的摩擦力大小F f ′=F f行李箱对传送带的摩擦力做的功:W =-F f ′x 2=-μmgx 2=-0.2×5×10×2 J =-20 J 变式训练1 如图所示,绷紧的传送带与水平面的夹角θ=30°,传送带在电动机的带动下,始终保持v 0=2 m/s 的速率运行,现把一质量为m =10 kg 的工件(可视为质点)轻轻放在传送带的底端,经过时间t =1.9 s ,工件被传送到h =1.5 m 的高处,g 取10 m/s 2,求:(1)工件与传送带间的动摩擦因数; (2)电动机由于传送工件多消耗的电能. 【答案】 (1)32(2)230 J 【解析】(1)由题图可知,传送带长x =hsin θ=3 m工件速度达到v 0前,做匀加速运动的位移x 1=v 02t 1匀速运动的位移为x -x 1=v 0(t -t 1) 解得加速运动的时间t 1=0.8 s 加速运动的位移x 1=0.8 m 所以加速度大小a =v 0t 1=2.5 m/s 2由牛顿第二定律有μmg cos θ-mg sin θ=ma 解得μ=32. (2)由能量守恒定律知,电动机多消耗的电能用于增加工件的动能、势能以及克服传送带与工件之间发生相对位移时摩擦力做功产生的热量. 在时间t 1内,传送带运动的位移 x 传=v 0t 1=1.6 m在时间t 1内,工件相对传送带的位移 x 相=x 传-x 1=0.8 m在时间t 1内,摩擦产生的热量 Q =μmg cos θ·x 相=60 J最终工件获得的动能E k =12m v 02=20 J工件增加的势能E p =mgh =150 J 电动机多消耗的电能 E =Q +E k +E p =230 J.变式训练2 (倾斜传送带问题)(多选)(2020·山西新绛中学月考)在大型物流系统中,广泛使用传送带来搬运货物.如图甲所示,倾角为θ的传送带以恒定的速率逆时针方向转动,皮带始终是绷紧的,将m =1 kg 的货物放在传送带上的A 端,经过1.2 s 到达传送带的B 端.用速度传感器分别测得货物与传送带的速度v 随时间t 变化的图象如图乙所示.已知重力加速度g =10 m/s 2,sin 37°=0.6,可知( )A .货物与传送带间的动摩擦因数为0.05B .A 、B 两点间的距离为1.2 mC .货物从A 运动到B 的过程中,传送带对货物做功-11.2 JD .货物从A 运动到B 的过程中,货物与传送带间因摩擦产生的热量为4.8 J 【答案】D【解析】0~0.2 s 内,货物沿传送带向下做匀加速直线运动,摩擦力沿斜面向下,a 1=g sin θ+μg cos θ=20.2 m/s 2=10 m/s 2;0.2~1.2 s 内,货物继续沿传送带向下做匀加速直线运动,a 2=g sin θ-μg cos θ=21 m/s 2=2 m/s 2,解得μ=0.5,θ=37°,故A 错误;从题图可知,0~1.2s 内,货物v -t 图线与t 轴围成的面积对应位移x =x 1+x 2=3.2 m ,则A 、B 两点间的距离为 3.2 m ,故B 错误;传送带对货物做的功即摩擦力做的功,W 1=F f x 1=μmg cos θ·x 1=0.8 J ,W 2=-F f x 2=-μmg cos θ·x 2=-12 J ,W =W 1+W 2=-11.2 J ,故C 正确;从题图乙可知,0~ 0.2 s 内,传送带比货物多走0.2 m .0.2~1.2 s 内,货物比传送带多走1 m ,所以货物从A 运动到B 的过程中,相对位移为1.2 m .因摩擦产生的热量Q =F f x 相对=μmg cos θ·x 相对=4.8 J ,故D 正确. 故选D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动力学和能量问题综合应用一、选择题(本题共10小题,每小题7分,共70分。

其中1~6为单选,7~10为多选)1. 北京获得2022年冬奥会举办权,冰壶是冬奥会的比赛项目。

将一个冰壶以一定初速度推出后将运动一段距离停下来。

换一个材料相同、质量更大的冰壶,以相同的初速度推出后,冰壶运动的距离将( )A .不变B .变小C .变大D .无法判断 答案 A解析 冰壶在冰面上以一定初速度被推出后,在滑动摩擦力作用下做匀减速运动,根据动能定理有-μmgs =0-12m v 2,得s =v 22μg,两种冰壶的初速度相等,材料相同,故运动的位移大小相等。

故选A 。

2. 如图所示,质量为m 的物体始终静止在斜面上,在斜面体从图中实线位置沿水平面向右匀速运动到虚线位置的过程中,下列关于物体所受各力做功的说法正确的是( )A .重力不做功B .支持力不做功C .摩擦力不做功D .合力做正功答案 A 解析 物体在水平方向移动,在重力方向上没有位移,所以重力对物体做功为零,A 正确;由题图知,斜面体对物体的支持力与位移的夹角小于90°,则支持力对物体做正功,B 错误;摩擦力方向沿斜面向上,与位移的夹角为钝角,所以摩擦力对物体做负功,C 错误;物体匀速运动时,合力为零,合力对物体做功为零,D 错误。

3.把动力装置分散安装在每节车厢上,使其既具有牵引动力,又可以载客,这样的客车车厢叫做动车。

而动车组就是几节自带动力的车厢加几节不带动力的车厢编成一组。

带动力的车厢叫动车,不带动力的车厢叫拖车。

设动车组运行过程中的阻力与质量成正比,每节动车与拖车的质量都相等,每节动车的额定功率都相等,若开动一节动车带三节拖车,最大速度可达到150 km/h。

当开动二节动车带三节拖车时,最大速度可达到( )A.200 km/h B.240 km/h C.280 km/h D.300 km/h 答案 B解析若开动一节动车带三节拖车,最大速度可达到150 km/h。

设动车的功率为P,每节车厢所受的阻力为f,当达到最大速度时动车的牵引力等于整体的阻力,则有:P=4f v,当开动二节动车带三节拖车时,有2P=5f v′,联立两式解得v′=240 km/h。

B正确,A、C、D错误。

4.如图甲所示,滑轮质量、摩擦均不计,质量为2 kg的物体在拉力F作用下由静止开始向上做匀加速运动,其速度随时间的变化关系如图乙所示,由此可知()A.物体加速度大小为2 m/s2B.F的大小为21 NC.4 s末F的功率为42 WD.4 s内F的平均功率为42 W答案 C解析由题图乙可知,v-t图象的斜率表示物体加速度的大小,即a=0.5 m/s2,由2F-mg=ma可得:F=10.5 N,A、B均错误;4 s末F的作用点的速度大小为v F=2v物=4 m/s,故4 s末F的功率为P=F v F=42 W,C正确;4 s 内物体上升的高度h=4 m,力F的作用点的位移l=2h=8 m,拉力F所做的功W=Fl=84 J,故平均功率P=Wt=21 W,D错误。

5.如图所示,将一可视为质点的物块从固定斜面顶端由静止释放后沿斜面加速下滑,设物块质量为m、物块与斜面间的动摩擦因数为μ,斜面高度h和底边长度x均可独立调节(斜面长度随之改变),下列说法正确的是()A.若只增大x,物块滑到斜面底端时的动能增大B.若只增大h,物块滑到斜面底端时的动能减小C.若只增大μ,物块滑到斜面底端时的动能增大D.若只增大m,物块滑到斜面底端时的动能增大答案 D解析对物块用动能定理可得mgh-W f=E k-0,其中E k为物块滑到斜面底端时的动能,W f为下滑过程物块克服摩擦力所做的功,而W f=fs=μF N s=μmg cosθ·s=μmgx,其中f为物块受到的摩擦力,s为斜面斜边长,F N为斜面对物块的支持力,故mgh-μmgx=E k-0,则D正确,A、B、C错误。

6.(2018·石家庄质检一)如图所示,质量为m的物体A和质量为2m的物体B 通过不可伸长的轻绳及轻质弹簧连接在轻滑轮两侧。

开始用手托着物体A使弹簧处于原长且轻绳伸直,此时物体A与水平地面的距离为h,物体B静止在地面上。

现由静止释放A,A与地面即将接触时速度恰好为0,此时物体B对地面恰好无压力,重力加速度为g,下列说法正确的是()A.物体A下落过程中一直处于失重状态B.物体A即将落地时,物体B处于失重状态C.从物体A开始下落到即将落地的过程中,弹簧的弹性势能最大值为mgh D.物体A下落过程中,A的动能和弹簧的弹性势能之和先增大后减小答案 C解析根据题述“A与地面即将接触时速度恰好为0”,可知A先加速后减速向下运动,加速度方向先向下后向上,物体A先处于失重状态后处于超重状态,A错误;根据题述“A与地面即将接触时速度恰好为0,此时物体B对地面恰好无压力”,可知此时轻绳中拉力大小等于B的重力,B处于静止状态,加速度为零,B错误;对A和弹簧组成的系统,在A由静止下落到A与地面即将接触的过程中,系统的重力势能、动能和弹性势能相互转化,物体A即将落地时,重力势能减少量为mgh,动能与初状态相同为0,此时弹簧的弹性势能最大为mgh,C正确;在物体A下落过程中,A的重力势能一直减小,A的动能和弹簧的弹性势能之和一直增大,D错误。

7.(2018·陕西宝鸡模拟)如图所示,内壁光滑的圆形轨道固定在竖直平面内,轻杆两端固定有甲、乙两球,甲球质量小于乙球质量,将两球放入轨道内,乙球位于最低点。

由静止释放轻杆后,甲球()A.能下滑到轨道的最低点B.下滑过程中杆对其做负功C.滑回时一定能返回到初始位置D.滑回的全过程,增加的重力势能等于乙球减少的重力势能答案BCD解析甲、乙两球组成的系统的机械能守恒,若甲球沿轨道能下滑到轨道的最低点,则乙球到达与圆心等高处,但由于乙球的质量比甲球的大,造成机械能增加,明显违背了机械能守恒定律,故甲球不可能滑到轨道最低点,A错误;根据机械能守恒定律知,甲球返回时,一定能返回到初始位置,C正确;甲球下滑过程中,乙球的机械能逐渐增大,所以甲球的机械能逐渐减小,根据功能关系知杆对甲球做负功,B正确;甲球滑回的全过程,甲球增加的机械能等于乙球减少的机械能,由于初、末态两球的速度均为零,即动能均为零,所以甲球增加的重力势能等于乙球减少的重力势能,D正确。

8.第一次将一长木板静止放在光滑水平面上,如图甲所示,一小铅块(可视为质点)以水平初速度v0由木板左端向右滑动,到达右端时恰能与木板保持相对静止。

第二次将长木板分成A、B两块,使B的长度和质量均为A的2倍,并紧挨着放在原水平面上,让小铅块仍以初速度v0由A的左端开始向右滑动,如图乙所示。

若小铅块相对滑动过程中所受的摩擦力始终不变,则下列说法正确的是()A .小铅块将从B 的右端飞离木板B .小铅块滑到B 的右端前已与B 保持相对静止C .第一次和第二次过程中产生的热量相等D .第一次过程中产生的热量大于第二次过程中产生的热量答案 BD解析 在第一次小铅块运动过程中,小铅块与木板之间的摩擦力使整个木板一直加速,第二次小铅块先使整个木板加速,当小铅块运动到B 上后A 停止加速,只有B 加速,加速度大于第一次的对应过程,故第二次小铅块与B 将更早共速,所以小铅块还没有运动到B 的右端,二者就已共速,A 错误,B 正确;由于第一次的相对路程大于第二次的相对路程,则第一次过程中产生的热量大于第二次过程中产生的热量,C 错误,D 正确。

9.(2018·重庆调研)如图所示,木块A 、B 的质量分别为m 1、m 2,A 、B 之间用一轻弹簧相连,将它们静置于一底端带有挡板的光滑斜面上,斜面的倾角为θ,弹簧的劲度系数为k 。

现对A 施加一平行于斜面向上的恒力F ,使A 沿斜面由静止开始向上运动。

当B 对挡板的压力刚好为零时,A 的速度刚好为v ,下列说法正确的是( )A .此时弹簧的弹力大小为m 1g sin θB .在此过程中拉力F 做的功为F (m 1+m 2)g sin θkC .在此过程中弹簧弹性势能增加了F (m 1+m 2)g sin θk -12m 1v 2 D .在此过程中木块A 重力势能增加了m 1(m 1+m 2)g 2sin 2θk答案 BD解析 根据题述“当B 对挡板的压力刚好为零时,A 的速度刚好为v ”,可知此时弹簧弹力大小等于木块B 的重力沿斜面的分力m 2g sin θ,A 错误。

初始状态,未对A 施加恒力F 时,设弹簧压缩量为x 1,对木块A ,由平衡条件可得,kx 1=m 1g sin θ,解得:x 1=m 1g sin θk ;当B 对挡板的压力刚好为零时,设弹簧拉伸了x 2,对木块B ,由平衡条件可得,kx 2=m 2g sin θ,解得:x 2=m 2g sin θk ,在此过程中拉力F 做的功为W =F (x 1+x 2)=F (m 1+m 2)g sin θk,B 正确。

在此过程中木块A 重力势能增加了ΔE p =m 1g ·(x 1+x 2)sin θ=m 1(m 1+m 2)g 2sin 2θk,D 正确。

设在此过程中弹簧弹性势能增加了ΔE ,根据功能关系,W =ΔE +m 1g (x 1+x 2)sin θ+12m 1v 2,解得ΔE =F (m 1+m 2)g sin θk -m 1(m 1+m 2)g 2sin 2θk -12m 1v 2,C 错误。

10.如图所示,水平光滑长杆上套有一个质量为m A 的小物块A ,细线跨过O 点的轻小光滑定滑轮一端连接A ,另一端悬挂质量为m B 的小物块B ,C 为O 点正下方杆上一点,滑轮到杆的距离OC =h 。

开始时A 位于P 点,PO 与水平方向的夹角为30°。

现将A 、B 同时由静止释放,则下列分析正确的是( )A .物块B 从释放到最低点的过程中,物块A 的动能不断增大B .物块A 由P 点出发第一次到达C 点的过程中,物块B 的机械能先增大后减小C .PO 与水平方向的夹角为45°时,物块A 、B 速度大小关系是v A =22v BD .物块A 在运动过程中最大速度为 2m B gh m A 答案 AD解析 如图,v A cos θ=v B ,当θ=90°时,v B =0,物体B 到达最低点,绳的拉力对A 一直做正功,A 动能不断增大,A 项正确;在此过程中绳的拉力对B 一直做负功,B 的机械能减小,B 项错误;PO 与水平面夹角为45°时,由v A cos45°=v B 得:v A =2v B ,C 项错误;A 的最大速度出现在θ=90°时,由系统机械能守恒得:m B g h sin30°-h =12m A v 2A ,解得v A = 2m B gh m A ,D 项正确。

相关文档
最新文档