动力学、动量和能量

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题定位本专题综合应用动力学、动量和能量的观点来解决物体运动的多过程问题.本专题是高考的重点和热点,命题情景新,联系实际密切,综合性强,侧重在计算题中命题,是高考的压轴题.

应考策略本专题在高考中主要以两种命题形式出现:一是综合应用动能定理、机械能守恒定律和动量守恒定律,结合动力学方法解决多运动过程问题;二是运用动能定理和能量守恒定律解决电场、磁场内带电粒子运动或电磁感应问题.由于本专题综合性强,因此要在审题上狠下功夫,弄清运动情景,挖掘隐含条件,有针对性的选择相应的规律和方法.

1.动量定理的公式Ft=p′-p除表明两边大小、方向的关系外,还说明了两边的因果关系,即合外力的冲量是动量变化的原因.

动量定理说明的是合外力的冲量与动量变化的关系,反映了力对时间的累积效果,与物体的初、末动量无必然联系.动量变化的方向与合外力的冲量方向相同,而物体在某一时刻的动量方向跟合外力的冲量方向无必然联系.

动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力,它可以是恒力,也可以是变力,当F为变力时,F应是合外力对作用时间的平均值.

2.动量守恒定律

(1)内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.

(2)表达式:m1v1+m2v2=m1v1′+m2v2′;或p=p′(系统相互作用前总动量p等于相互作用后总动量p′);或Δp=0(系统总动量的增量为零);或Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量的增量大小相等、方向相反).

(3)守恒条件

①系统不受外力或系统虽受外力但所受外力的合力为零.

②系统合外力不为零,但在某一方向上系统合力为零,则系统在该方向上动量守恒.

③系统虽受外力,但外力远小于内力且作用时间极短,如碰撞、爆炸过程.

3.解决力学问题的三个基本观点

(1)力的观点:主要是牛顿运动定律和运动学公式相结合,常涉及物体的受力、加速度或匀变速运动的问题.

(2)动量的观点:主要应用动量定理或动量守恒定律求解,常涉及物体的受力和时间问题,以

及相互作用物体的问题.

(3)能量的观点:在涉及单个物体的受力和位移问题时,常用动能定理分析;在涉及系统内能量的转化问题时,常用能量守恒定律.

1.力学规律的选用原则

(1)单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.

(2)多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题时,应选用动量守恒定律,然后再根据能量关系分析解决.

2.系统化思维方法,就是根据众多的已知要素、事实,按照一定的联系方式,将其各部分连接成整体的方法.

(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动.

(2)对多个研究对象进行整体思维,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).

解题方略

1.弹性碰撞与非弹性碰撞

碰撞过程遵从动量守恒定律.如果碰撞过程中机械能守恒,这样的碰撞叫做弹性碰撞;如果碰撞过程中机械能不守恒,这样的碰撞叫做非弹性碰撞.

2.应用动量守恒定律的解题步骤

(1)明确研究对象(系统包括哪几个物体及研究的过程);

(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);

(3)规定正方向,确定初、末状态动量;

(4)由动量守恒定律列式求解;

(5)必要时对结果进行讨论.

例1如图1所示,光滑水平面上有一质量为m=1 kg的小车,小车右端固定一水平轻质弹簧,弹簧左端连接一质量为m0=1 kg的物块,物块与上表面光滑的小车一起以v0=5 m/s的速度向右匀速运动,与静止在光滑水平面上、质量为M=4 kg的小球发生弹性正碰,若碰撞时间极短,弹簧始终在弹性限度内.求:

(1)碰撞结束时,小车与小球的速度;

(2)从碰后瞬间到弹簧被压至最短的过程,弹簧弹力对小车的冲量大小.

图1

解析 (1)设碰撞后瞬间小车的速度大小为v 1,小球的速度大小为v ,由动量守恒及机械能守恒有: m v 0=M v +m v 1 12m v 20=12m v 21+12

M v 2 解得v 1=m -M

m +M v 0=-3 m/s ,小车速度方向向左.

v =2m m +M v 0

=2 m/s ,小球速度方向向右. (2)当弹簧被压缩到最短时,物块与小车有共同进度, 设小车的速度大小为v 2,根据动量守恒定律有: m 0v 0+m v 1=(m 0+m )v 2,解得v 2=1 m/s.

设碰撞后瞬间到弹簧最短的过程,弹簧弹力对小车的冲量大小为I ,根据动量定理有I =m v 2-m v 1,解得I =4 N·s.

答案 (1)小车:3 m/s ,方向向左 小球:2 m/s ,方向向右 (2)4 N·s

预测1 (2016·全国乙卷·35(2))某游乐园入口旁有一喷泉,喷出的水柱将一质量为M 的卡通玩具稳定地悬停在

空中.为计算方便起见,假设水柱从横截面积为S 的喷口持续以速度v 0竖直向上喷出;玩具底部为平板(面积略大于S );水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g .求: (1)喷泉单位时间内喷出的水的质量;

(2)玩具在空中悬停时,其底面相对于喷口的高度.

答案 (1)ρv 0S (2)v 2

2g -M 2g 2ρ2v 20S

2

解析 (1)在刚喷出一段很短的Δt 时间内,可认为喷出的水柱保持速度v 0不变. 该时间内,喷出水柱高度Δl =v 0Δt ① 喷出水柱质量Δm =ρΔV ②

其中ΔV 为水柱体积,满足ΔV =ΔlS ③

由①②③可得:喷泉单位时间内喷出的水的质量为

相关文档
最新文档