高二上学期期中考试
山东省泰安市2023-2024学年度上学期高二期中考试语文试题【含答案】

山东省泰安市2023-2024学年度上学期高二期中考试语文试题高二语文试题2023.11本试卷共150分,考试时间150分钟。
注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(37分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成下面小题。
材料一:就广义的书写而言,胜迹所关联的历史、文学、宗教甚至神话、民俗都至关重要,但最终既体现“文”而又显现为“迹”的,无疑是具有物质性的题刻,尤其是摩崖石刻。
题刻的原始动力可能来自文本,但促使人们前往观赏的却不仅文本,还有作为遗迹的文字书写。
对于胜迹而言,题刻显然不仅具有指认的作用,对其塑造也有一定的意义,尤其是山东境内那些以摩崖石刻著名的山川:泰山经石峪金刚经、四山摩崖与云峰山刻石。
尽管宋人已经注意到泰山经石峪所刻的《金刚经》并留下题名,但文人的到访与题刻,在旅游成为风气的明代嘉隆以后才明显增多。
而由于金石学在清代的风行,这些摩崖题刻甚至超越地方风景的图绘与刊印,在胜迹的塑造中起到直接的作用。
在更多的情形下,摩崖与环境可能并不是一种协作的关系,而是互相提示的关系。
摩崖石刻的特点在于不可移动,因而是真正嵌入自然山水之中的文字,与名胜的关系更为密切。
诚如白谦慎先生所说,摩崖与特定的历史时间和地理空间联系,从而成为一个地区的历史文化遗产。
可见,要准确解释摩崖石刻的文字形式,我们确需将之置诸环境之中加以观察。
嘉庆二年(1797)二月初,黄易访碑岱麓,他不仅关心摩崖,也关心“奇观”,从他的描述中,我们发现他一会儿看自然风光,一会儿看石刻。
在登山时,他记录了道路两侧山石树木,奇峭逼人,有愈上愈妙之感。
嗣至玉皇顶,俯视周边山峦,盛称此乃“天下奇观”。
高二上学期期中考试试卷

第一学期期中练习高二化学考 生 须 知 1.本卷共8页,包括 19小题,满分为100分。
练习时间90分钟。
2.考生务必将答案答在答题纸上,在试卷上作答无效。
3.本试卷中可能用到的相对原子质量有H 1 C 12 N 14 O 16 Na 23 Fe 56 Cu 64 Zn 65 Ni 59第I 卷 选择题(共42分。
每道试题仅有1个正确答案)1.下列过程或装置能实现电能转化为化学能的是A .电动汽车充电B .火力发电C .燃料燃烧D .火星车太阳能帆板2.一定温度和压强下,2 mol H 2和1 mol O 2分别以点燃和形成氢氧燃料电池这两种方式发生化学反应,生成2 mol 液态水。
下列说法正确的是A .放出的热量相等B . 体系内能变化相等C .反应速率相等D . 反应的活化能相等3.下列实验装置或操作,能达到实验目的的是选项A B C D 装置或操作目的 电解法制金属钠 测定中和反应的反应热 防止铁片被腐蚀 测定锌与稀硫酸反应速率4.下列事实不能..用平衡移动原理解释的是 A .铁质器件附有铜质配件,久置,在接触处铁易生锈B .在NO 2和N 2O 4组成的体系中,恒温缩小容积,气体颜色先变深后变浅C .向FeCl 3溶液中滴加几滴KSCN 溶液,溶液呈红色,再加入少量铁粉,溶液红色变浅D.工业上用熔融的KCl和金属钠发生置换反应,可以分离出钾蒸气5.已知下列热化学方程式,所得结论正确的是A.N2(g)+3H2(g)2NH3(g) ∆H=-92.4kJ∙mol-1则一定条件下将2 mol N2和6mol H2置于一密闭容器中充分反应,放出的热量为184.8 kJ B.C(石墨,s)C(金刚石,s) ∆H>0 则金刚石比石墨稳定C.H+(aq)+OH-(aq)H2O(l) ∆H=-57.3 kJ∙mol-1则将含1mol CH3COOH的溶液与含1mol NH3·H2O的溶液混合,放出的热量为57.3 kJ D.S(s)+O2(g)SO2(g) ∆H1;S(g)+O2(g)SO2(g) ∆H2;则∆H2 <∆H16.下图为电镀实验装置,下列有关叙述不正确...的是A.电镀时,待镀铁制品应与直流电源负极相连B.通电后,溶液中的SO42-移向阳极C.镀铜时,理论上阳极和阴极质量变化在数值上相等D.待镀铁制品增重2.56 g,电路中通过的电子为0.04 mol7.碱性锌锰电池是普通锌锰电池的升级换代产品,图1、图2分别为碱性锌锰电池和普通锌锰电池的构造图。
高二语文期中考试试卷及答案上册

一、选择题(每题2分,共20分)1. 下列词语中,字形、字音完全正确的一项是()A. 沉默不语(yǔ)B. 雕梁画栋(diāo)C. 毛遂自荐(xuàn)D.美轮美奂(huàn)2. 下列句子中,没有语病的一项是()A. 他的学习成绩在短时间内得到了显著提高,这主要得益于他自己的刻苦努力。
B. 随着科技的发展,人们的生活水平日益提高,同时也带来了许多社会问题。
C. 在这次比赛中,他的表现非常出色,赢得了观众的一致好评。
D. 由于天气原因,火车晚点了两个小时,导致许多乘客错过了航班。
3. 下列各句中,加点的词语使用不正确的一项是()A. 他这次考试成绩优异,足以证明他的实力。
B. 这个项目对于我国来说具有重要的战略意义。
C. 他的言辞锋利,让人不敢反驳。
D. 她的厨艺精湛,做出的菜肴色香味俱佳。
4. 下列各句中,括号中的成语使用不恰当的一项是()A. 他的作品风格独特,独树一帜。
B. 她的演讲慷慨激昂,感染了在场的每一个人。
C. 他为人正直,光明磊落,深受同事们的尊敬。
D. 那位领导工作能力强,运筹帷幄,把公司治理得井井有条。
5. 下列各句中,句式变换不正确的一项是()A. 原句:他每天都坚持锻炼身体。
变换后:他锻炼身体已经成为他日常生活的一部分。
B. 原句:这本书对于我来说非常有价值。
变换后:我对这本书的价值有了更深刻的认识。
C. 原句:我国经济持续健康发展。
变换后:我国经济的持续健康发展是全体人民的共同愿望。
D. 原句:他非常喜欢阅读。
变换后:阅读是他最喜欢的活动之一。
6. 下列各句中,修辞手法使用不恰当的一项是()A. 月亮升上了树梢,好像一个大玉盘。
B. 那座山像一头雄狮,屹立在远方。
C. 他的歌声像泉水一样清澈,像山风一样悠扬。
D. 他的眼神像一把利剑,直刺人心。
7. 下列各句中,表达不准确的一项是()A. 这本书是我最喜欢的书籍之一。
B. 他是一位非常有才华的作家。
最新高二年级第一学期语文期中考试试卷(含答案)

最新高二年级第一学期语文期中考试试卷(含答案)考生注意:1.本试卷满分150分,考试时间150分钟。
2.所有答案必须写在答题纸上,写在试卷上无效。
一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
中国传统文化中的“礼”“礼”是中国传统文化的核心概念之一,它在中国历史的发展中扮演着重要的角色,深刻地影响着中国人的价值观和行为方式。
“礼”的内涵十分丰富。
首先,“礼”强调秩序和规范。
在中国传统文化中,社会的各个层面都有相应的礼仪规范,这些规范规定了人们在不同场合下的行为举止,从而维护了社会的秩序。
其次,“礼”注重道德修养。
礼仪不仅仅是外在的形式,更是内在道德的体现。
通过遵守礼仪,人们可以培养自己的品德,提高自己的道德境界。
最后,“礼”倡导和谐与包容。
礼仪的实施有助于协调人与人之间的关系,促进社会的和谐发展。
不同的文化和习俗都可以在“礼”的框架下得到尊重和包容。
“礼”在中国传统文化中具有重要的价值。
一方面,它有助于维护社会的稳定。
在一个有礼的社会中,人们遵守规范,尊重他人,矛盾和冲突就会减少,社会秩序得以维护。
另一方面,“礼”对于个人的成长和发展也具有积极的意义。
它可以培养人的自律、尊重他人和责任感等品质,提高个人的综合素质。
在当今社会,“礼”仍然具有重要的现实意义。
随着社会的发展和进步,人们的生活方式和价值观念发生了很大的变化,但是“礼”所倡导的秩序、道德和和谐等价值观念依然具有重要的指导意义。
我们应该继承和发扬“礼”的传统,将其融入到现代社会的建设中,促进社会的和谐发展。
1.下列关于原文内容的理解和分析,正确的一项是()(3分)A.“礼”是中国传统文化的唯一核心概念,贯穿中国历史发展始终。
B.中国传统文化认为,“礼”只强调外在形式,与内在道德无关。
C.“礼”思想有助于促进社会和谐稳定,对个人成长也有积极意义。
D.在当今社会,“礼”已经完全失去了现实意义。
(整理版)高二上学期期中考试

高二上学期期中考试数学试题第一卷〔选择题 共60分〕一、选择题〔本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪项符合题目要求的,请将正确的选项填涂在答题卡上.〕1、111242n +++=〔 〕 A 、1212--n B 、n 212- C 、1211--n D 、n211-2、不等式0322≥-+x x 的解集为〔 〕A 、}13|{-≤≥x x x 或B 、}31|{≤≤-x xC 、}31|{-≤≥x x x 或D 、}13|{≤≤-x x3、n S 是等比数列}{n a 的前n 项和,a S n n +=3,那么=1a 〔 〕 A 、a +3 B 、1- C 、2 D 、14、设等差数列}{n a 的前n 项之和为n S ,10100S =,那么47a a +=〔 〕 A 、12 B 、20 C 、40 D 、1005、等差数列}{n a 和等比数列}{n b ,它们的首项是一个相等的正数,且第3项也是相等的正数,那么2a 与2b 的大小关系为〔 〕A 、22b a ≤B 、22b a ≥C 、22b a <D 、22b a >6、在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,并且a =1,b =3,A =30°,那么c 的值为〔 〕。
A 、2B 、1C 、1或2D 、3或27.在△ABC 中,假设2lg sin lg cos lg sin lg =--C B A ,那么△ABC 的形状是〔 〕 A .直角三角形 B .等边三角形 C .不能确定 D .等腰三角形 8、下面结论正确的选项是〔 〕 A 、假设b a >,那么有ba 11<, B 、假设b a >,那么有||||c b c a >, C 、假设b a >,那么有b a >||, D 、假设b a >,那么有1>ba。
安徽省池州市贵池区2024-2025学年高二上学期期中检测数学试题含答案

2024~2025学年第一学期高二期中检测数学(答案在最后)全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:选择性必修第一册第一章~第二章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()1,2,4a =,()1,0,2b =-r,则a b ⋅的值为()A.()1,0,8- B.9C.-7D.7【答案】D 【解析】【分析】根据空间向量数量积坐标运算法则进行计算.【详解】()()1,1,2,00874,21a b ⋅⋅=-=-++=.故选:D2.直线+1=0x 的倾斜角为()A.34π B.4π C.2π D.不存在【答案】C 【解析】【分析】根据倾斜角的定义可得结果【详解】因为直线+1=0x 即直线1x =-垂直于轴,根据倾斜角的定义可知该直线的倾斜角为2π,故选:C.3.与直线20x y +=垂直,且在x 轴上的截距为-2的直线方程为().A.220x y -+=B.220x y --= C.220x y -+= D.220x y --=【答案】A 【解析】【分析】先求出直线的斜率,再利用直线的点斜式方程求解.【详解】由题得所求直线的斜率为12,∴所求直线方程为10(2)2y x -=+,整理为220x y -+=.故选:A【点睛】方法点睛:求直线的方程,常用的方法:待定系数法,先定式(从直线的五种形式中选择一种作为直线的方程),后定量(求出直线方程中的待定系数).4.如图所示,在平行六面体1111ABCD A B C D -中,点E 为上底面对角线11A C 的中点,若1BE AA x AB y AD =++,则()A.11,22x y =-=B.11,22x y ==-C.11,22x y =-=-D.11,22x y ==【答案】A 【解析】【分析】根据空间向量的线性运算即可求解.【详解】根据题意,得;11()2BE BB BA BC =++11122AA BA BC=++111,22AA AB AD =-+ 1BE AA xAB y AD =++ 又11,,22x y =-=∴故选:A5.已知向量()0,0,2a = ,()1,1,1b =- ,向量a b + 在向量a上的投影向量为().A.()0,0,3 B.()0,0,6C.()3,3,9- D.()3,3,9--【答案】A 【解析】【分析】根据空间向量的坐标运算及投影向量的公式计算即可.【详解】由题意可知()1,13a b +=-,,()6,2a b a a +⋅== ,所以向量a b + 在向量a上的投影向量为()()()60,0,20,0,322a b a a a a +⋅⋅=⨯=⋅ .故选:A6.若圆()()2213425O x y -+-=:和圆()()()222228510O x y r r +++=<<:相切,则r 等于A.6B.7C.8D.9【答案】C 【解析】【分析】根据的圆标准方程求得两圆的圆心与半径,再根据两圆内切、外切的条件,分别求得r 的值并验证510r <<即可得结果.【详解】圆()()2213425O x y -+-=:的圆心()13,4O ,半径为5;圆()()2222:28O x y r +++=的圆心()22,8O --,半径为r.=|r-5|,求得r=18或-8,不满足5<r<10.=|r+5|,求得r=8或-18(舍去),故选C.【点睛】本题主要考查圆的方程以及圆与圆的位置关系,属于基础题.两圆半径为,R r ,两圆心间的距离为d ,比较d 与R r -及d 与R r +的大小,即可得到两圆的位置关系.7.在空间直角坐标系Oxyz 中,已知点()2,1,0D ,向量()4,1,2,m m =⊥平面DEF ,则点O 到平面DEF 的距离为()A.21B.7C.21D.21【答案】B 【解析】【分析】根据空间向量的坐标运算直接计算点O 到平面DEF 的距离.【详解】因为()2,1,0D ,所以()2,1,0OD = ,又向量()4,1,2,m m =⊥平面DEF ,所以()4,1,2m =是平面DEF 的一个法向量所以点O 到平面DEF的距离为7OD m d m ⋅===.故答案为:7.8.已知直线l :x -my +4m -3=0(m ∈R ),点P 在圆221x y +=上,则点P 到直线l 的距离的最大值为()A.3B.4C.5D.6【答案】D 【解析】【分析】先求得直线过的定点的坐标,再由圆心到定点的距离加半径求解.【详解】解:直线l :x -my +4m -3=0(m ∈R )即为()()340x y m -+-=,所以直线过定点()3,4Q ,所以点P 到直线l的距离的最大值为16OQ r +=+=,故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线2y x =与0x y a ++=交于点()1,P b ,则()A.3a =-B.2b =C.点P 到直线30ax by ++=的距离为13D.点P 到直线30ax by ++=的距离为13【答案】ABD 【解析】【分析】联立直线方程结合其交点坐标求参数a 、b ,进而应用点线距离公式求P 到直线30ax by ++=的距离即可.【详解】由题意,得:210b b a =⎧⎨++=⎩,解得3a =-,2b =,故A 、B 正确,∴()1,2到直线3230x y -++=的距离13d ==,故C 错误,D 正确.故选:ABD.10.已知空间向量()()3,1,2,3,3,1a b =--= ,则下列说法正确的是()A.()32//a b a+B.()57a a b⊥+C.a =D.b =【答案】BCD 【解析】【分析】根据题意,结合向量的坐标运算,以及向量的共线和垂直的坐标表示,准确计算,即可求解.【详解】因为向量()()3,1,2,3,3,1a b =--= ,可得214,10a a b =⋅=-,对于A 中,由()323,3,8a b +=-,设32a b a λ+= ,即()3,3,8(3,1,2)λ-=--,可得33382λλλ-=-⎧⎪=-⎨⎪=⎩,此时方程组无解,所以32a b + 与a 不平行,所以A 错误;对于B 中,由()257575147(10)0a a b a a b ⋅+=+⋅=⨯+⨯-=,所以()57a a b ⊥+,所以B 正确;对于C中,由a ==,所以C 正确;对于D中,由b == D 正确.故选:BCD.11.直线2y x m =+与曲线y =恰有两个交点,则实数m 的值可能是()A.4B.5C.3D.4110【答案】AD 【解析】【分析】做出函数图象,数形结合,求出m 的取值范围,再进行选择.【详解】做出函数2y x m =+与y =的草图.设2y x m =+与圆224x y +=2=⇒m =m =-(舍去).因为函数2y x m =+与y =有两个交点,所以4m ≤<.故选:AD三、填空题:本题共3小题,每小题5分,共15分.12.已知在空间直角坐标系xOy 中,点A 的坐标为(1,2,)3-,点B 的坐标为(0,1,4)--,点A 与点C 关于x 轴对称,则||BC =___________.【答案】【解析】【分析】首先根据对称求出点C 的坐标,然后根据两点间的距离公式求||BC 的值即可.【详解】因为点A 与点C 关于x 轴对称,所以点C 的坐标为()1,2,3-,又因为点B 的坐标为(0,1,4)--,所以BC ==.13.过点()2,4作圆224x y +=的切线,则切线方程为___________.【答案】2x =或34100x y -+=【解析】【分析】考虑直线斜率不存在和直线斜率存在两种情况,利用圆心到直线距离等于半径列出方程,求出切线方程.【详解】①直线的斜率不存在时2x =满足,②直线斜率存在时,设切线方程为()42y k x -=-,则324d k ==⇒=,所以切线方程为4y -=()324x -,即34100x y -+=.故答案为:2x =或34100x y -+=.14.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点.若圆上存在一点C ,满足5344OC OA OB =+,则r 的值为________.【答案】【解析】【详解】22225325539OC OA OB OA 2OA OB OB44164416⎛⎫=+=+⋅⋅+ ⎪⎝⎭即222225159r r r cos AOB r 16816=+∠+,整理化简得cos∠AOB=-35,过点O 作AB 的垂线交AB 于D,则cos∠AOB=2cos 2∠AOD-1=-35,得cos 2∠AOD=15.又圆心到直线的距离为OD==,所以cos 2∠AOD=15=22OD r=22r ,所以r 2.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.已知直线l 过点()2,1P -.(1)若直线l 与直线230x y ++=垂直,求直线l 的方程(2)若直线l 在两坐标轴的截距互为相反数,求直线l 的方程.【答案】(1)240x y --=;(2)20x y +=或30x y --=.【解析】【分析】(1)根据直线方程垂直设出方程求解未知数即可;(2)根据截距的概念分类讨论求方程即可.【小问1详解】因为直线l 与直线230x y ++=垂直,所以可设直线l 的方程为20x y m -+=,因为直线l 过点()2,1P -,所以()2210m -⨯-+=,解得4m =-,所以直线l 的方程为240x y --=【小问2详解】当直线l 过原点时,直线l 的方程是2xy =-,即20x y +=.当直线l 不过原点时,设直线l 的方程为x y a -=,把点()2,1P -代入方程得3a =,所以直线l 的方程是30x y --=.综上,所求直线l 的方程为20x y +=或30x y --=16.已知向量()()1,1,,2,,a t t t b t t =--=.(1)若a b ⊥ ,求t 的值;(2)求b a -的最小值.【答案】(1)2(2)5【解析】【分析】(1)由空间向量垂直得到方程,求出答案;(2)计算出()1,21,0b a t t -=+-,利用模长公式得到b a -= ,求出最小值.【小问1详解】因为a b ⊥ ,所以0a b ⋅=,即()()22110t t t t -+-+=,解得2t=;【小问2详解】()1,21,0 b a t t-=+-所以b a-=.所以当15t=时,b a-取得最小值为5.17.如图,在四棱锥P ABCD-中,底面ABCD为直角梯形,//AD BC,AB BC⊥,AP⊥平面ABCD,Q为线段PD上的点,2DQ PQ=,1AB BC PA===,2AD=.(1)证明://BP平面ACQ;(2)求直线PC与平面ACQ所成角的正弦值.【答案】(1)证明见解析(2)13【解析】【分析】(1)利用三角形相似得2MD MB=,结合2DQ PQ=,则有//MQ BP,利用线面平行的判定即可证明;(2)以A为坐标原点,建立合适的空间直角坐标系,求出平面ACQ的法向量,利用线面角的空间向量法即可得到答案.【小问1详解】如图,连接BD与AC相交于点M,连接MQ,∵//BC AD,2AD BC=,则AMD CMB,∴2MD ADMB CB==,2MD MB=,∵2DQ PQ=,∴//MQ BP,BP ⊄ 平面ACQ ,MQ Ì平面ACQ ,∴//BP 平面ACQ ;【小问2详解】AP ⊥ 平面ABCD ,,AB AD ⊂平面ABCD ,,AP AB AP AD ∴⊥⊥,因为底面AB BC ⊥,则AB ,AD ,AP 两两垂直,以A 为坐标原点,建立如图所示空间直角坐标系,各点坐标如下:()0,0,0A ,()1,1,0C ,()0,0,1P ,220,,33Q ⎛⎫⎪⎝⎭.设平面ACQ 的法向量为(),,m x y z =,由()1,1,0AC = ,220,,33AQ ⎛⎫= ⎪⎝⎭ ,有02233AC m x y AQ m y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1x =,1y =-,1z =,可得()1,1,1m =- ,由()1,1,1CP =-- ,有1CP m ⋅=,CP m ==,则1cos ,3CP m == .故直线PC 与平面ACQ 所成角的正弦值为13.18.如图,在正方体1111ABCD A B C D -中,,F G 分别是棱1,CC AD 的中点,E 为棱AB 上一点,且异面直线1B E 与BG 所成角的余弦值为25.(1)证明:E 为AB 的中点;(2)求平面1B EF 与平面11ABC D 所成锐二面角的余弦值.【答案】(1)见解析(2)4242【解析】【分析】(1)以D 为坐标原点,建立如图所示的空间直角坐标系D xyz -,不妨令正方体的棱长为2,设()2,,0E a ,利用111cos ,B E BG B E BG B E BG⋅= ,解得1a =,即可证得;(2)分别求得平面1B EF 与平面11ABC D 的法向量m n ,,利用cos ,m n m n m n⋅=⋅ 求解即可.【小问1详解】证明:以D 为坐标原点,建立如图所示的空间直角坐标系D xyz -.不妨令正方体的棱长为2,则()0,0,0D ,()1,0,0G ,()2,2,0B ,()12,2,2B ,()0,2,1F ,设()2,,0E a ,则()10,2,2B E a =-- ,()1,2,0BG =-- ,所以()1121422cos ,5524B E BG a B E BG B E BG a ⋅-===-+ ,所以2430a a -+=,解得1a =(3a =舍去),即E 为AB 的中点.【小问2详解】由(1)可得()10,1,2B E =-- ,()2,1,1EF =- ,设(),,m x y z = 是平面1B EF 的法向量,则12020m B E y z m EF x y z ⎧⋅=--=⎪⎨⋅=-++=⎪⎩ .令2z =,得()1,4,2m =-- .易得平面11ABC D 的一个法向量为()12,0,2n DA == ,所以cos ,42m n m n m n ⋅===⋅ .所以所求锐二面角的余弦值为42.19.已知圆C 过点(1,0)M -且与直线20x +-=相切于点1,22⎛⎫ ⎪ ⎪⎝⎭,直线:30l kx y k --+=与圆C 交于不同的两点A ,B .(1)求圆C 的方程;(2)若圆C 与x 轴的正半轴交于点P ,直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k +是定值.【答案】(1)221x y +=(2)证明见解析.【解析】【分析】(1)确定圆心和半径,可得圆C 的方程.(2)把直线方程与圆C 方程联立,得到12x x +,21x x ,再表示出12k k +,运算整理即可.【小问1详解】过点1,22⎛⎫ ⎪ ⎪⎝⎭且与直线20x +-=垂直的直线为:1022x y ⎛⎫⎫---= ⎪⎪ ⎪⎭⎝⎭0y -=.又线段MN,其中1,22N ⎛⎫ ⎪ ⎪⎝⎭的垂直平分线为:()222213122x y x y ⎛⎫⎛⎫++=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭0y +=.由00y y -=+=,得圆心()0,0C ,又221r CM ==.故圆C 的方程为:221x y +=.【小问2详解】将()3y kx k =+-代入221x y +=得:()2231x kx k ⎡⎤++-=⎣⎦,整理得:()()()222123310k x k k x k ++-+--=.由0∆>⇒()()()22224341310k k k k ⎡⎤--+-->⎣⎦⇒43k >.设1,1,2,2,则()122231k k x x k -+=+,()2122311k x x k --=+.又()1,0P ,所以()111111133111k x y k k x x x -+===+---,同理:2231k k x =+-.所以121233211k k k x x +=++--()()()121236211x x k x x +-=+--()()1212123621x x k x x x x +-=+-++()()()22222336123123111k k k k k k k k k -⨯-+=+----+++()()()22222336123123111k k k k k k k k k -⨯-+=+----+++18629k k --=+23=-.所以1223k k +=-为定值.。
江苏省扬州中学2023-2024学年高二上学期11月期中试题 数学

江苏省扬州中学2023-2024学年第一学期期中考试高二数学2023.11试卷满分:150分 考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码.2.将选择题答案填写在答题卡的指定位置上(使用机读卡的用2B 铅笔在机读卡上填涂),非选择题一律在答题卡上作答,在试卷上答题无效.3.考试结束后,请将机读卡和答题卡交监考人员.一.单项选择题:本大题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一项是最符合题意的.(请将所有选择题答案填到答题卡的指定位置中.)1.经过(A 、()1,0B -两点的直线的倾斜角为( )A.π6 B.π3C.2π3D.5π62. 抛物线22x py =的准线方程是2y =,则实数p 的值为( )A. 8- B. 4- C. 4D. 83. 已知(),P x y 是椭圆22114425x y +=上的点,则x y +的值可能是( )A. 13B. 14C. 15D. 164. 若点()2,1在圆220x y x y a +-++=的外部,则a 的取值范围是( )A. 1,2⎛⎫+∞⎪⎝⎭B. 1,2⎛⎫-∞ ⎪⎝⎭C. 14,2⎛⎫- ⎪⎝⎭D. ()1,4,2⎛⎫-∞-⋃+∞⎪⎝⎭5. 已知12,F F 是椭圆 221259x y +=的两个焦点,过1F 的直线交椭圆于,M N 两点,则2MNF 的周长为( )A. 10B. 16C. 20D. 266. 已知抛物线2:16C y x =,直线:4l x =与C 交于A ,B 两点,M 是射线BA 上异于A ,B 的动点,圆1C 与圆2C 分别是OMA 和OMB △的外接圆(O 为坐标原点),则圆1C 与圆2C 面积的比值为( )A 小于1B. 等于1C. 大于1D. 与M 点的位置有关.7. 由伦敦著名建筑事务所Steyn Studio 设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品. 若将如图所示的大教堂外形弧线的一段近似看成双曲线22221y x a b-=(00)a b >>,下支的一部分,且此双曲线的下焦点到渐近线的距离为2,离心率为2,则该双曲线的方程为( )A. 221124y x -= B. 223144y x -=C. 22144x y -= D. 221164y x -=8. 已知点()2,4M ,若过点()4,0N 的直线l 与圆()22:69C x y -+=交于A 、B 两点,则MA MB +的最大值为( )A. 12B. C. 10D. 6二.多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中. )9. 已知直线2:(1)10l a a x y ++-+=,其中R a ∈,则( )A. 直线l 过定点(0,1)B. 当1a =-时,直线l 与直线0x y +=垂直C. 当0a =时,直线l 在两坐标轴上的截距相等D. 若直线l 与直线0x y -=10. 已知椭圆2222:1(0)x y E a b a b+=>>的两个焦点分别为12,F F ,与y 轴正半轴交于点B ,下列选项中给出的条件,能够求出椭圆E 标准方程的选项是( )A. 2,1a c ==B. 已知椭圆E 的离心率为12,短轴长为2C. 12BF F △是等边三角形,且椭圆E 的离心率为12D. 设椭圆E 的焦距为4,点B 在圆22()9x c y -+=上11. 抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.已知抛物线24y x =的焦点为F ,一束平行于x 轴的光线1l 从点()3,1M 射入,经过抛物线上的点()11,P x y 反射后,再经抛物线上另一点()22,Q x y 反射后,沿直线2l 射出,则下列结论中正确的是( )A. 34PQ k =- B. 121=x x C. 254PQ =D. 1l 与2l 之间的距离为412. 已知双曲线22:13y C x -=的左、右焦点分别为12,F F ,点P 是双曲线C 的右支上一点,过点P 的直线l 与双曲线C 的两条渐近线分别交于,M N ,则( )A. 2212PF PF -的最小值为8C. 若直线l 与双曲线C 相切,则点,M N 的纵坐标之积为2-;D. 若直线l 经过2F ,且与双曲线C 交于另一点Q ,则PQ 最小值为6.三.填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13. 若双曲线22221x y a b-=()0,0a b >>____.14. 若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到A (-2,1)的距离之和最小,则该点的坐标为________.15. 阿基米德是古希腊著名数学家、物理学家,他利用“逼近法”得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积. 已知椭圆22221x y a b+=(a >b >0)的右焦点为(3,0)F ,过F 作直线l 交椭圆于A 、B 两点,若弦AB 中点坐标为(2,1)-,则该椭圆的面积为_____________.16. 已知圆1C 和圆2C 与x 轴和直线(0)y kx k =>相切,两圆交于,P Q 两点,其中P 点坐标为(3,2),已知两圆半径的乘积为132,则k 的值为___________.的的四.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17. 已知方程2214x y m+=(R m ∈且0m ≠)(1)若方程表示焦点在y 上的椭圆,且离心率为12,求m 的值;(2)若方程表示等轴双曲线,求m 的值及双曲线的焦点坐标.18. 已知直线l 经过直线12:34110, :2380l x y l x y +-=+-=的交点M .(1)若直线l 经过点(3,1)P ,求直线l 的方程;(2)若直线l 与直线3250x y ++=垂直,求直线l 的方程.19. 已知圆C 经过()()1,4,5,0A B 两点,且在x 轴上截距之和为2.(1)求圆C 的标准方程;(2)圆M 与圆C 关于直线10x y -+=对称,求过点()3,0且与圆M 相切的直线方程.20. 已知双曲线:()2211551x y m m m -=<<--的一个焦点与抛物线C :()220y px p =>的焦点重合.(1)求抛物线C 的方程;(2)若直线l :8xty =+交抛物线C 于A 、B 两点,O 为原点,求证:以AB 为直径的圆经过原点O .21.已知直线:R)l y kx k =+∈,与双曲线22:13x C y -=左支交于A ,B 两点.(1)求实数k 的取值范围;(2)若OAB(O 为坐标原点),求此时直线l 的斜率k 的值.22. 已知椭圆()2222:10x y C a b a b +=>>过点(2.(1)求椭圆C 方程;(2)点,A B 分别为椭圆C 的上下顶点,过点()04P ,且斜率为k 的直线与椭圆C 交于不同的两点,M N ,探究直线,BM AN 的交点是否在一条定直线0l 上,若存在,求出该直线0l 的方程;若不存在,请说明理由.的的。
浙江省绍兴市2023-2024学年高二上学期期中数学试题含解析

绍兴2023学年第一学期期中考试高二(数学)试卷(答案在最后)一、选择题(本大题共8题,每小题5分,共40分.每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.已知向量()1,2,6a = ,()2,,1b y =- ,若a b ⊥ ,则y =()A.﹣2B.﹣1C.1D.2【答案】D 【解析】【分析】根据空间向量垂直转化为数量积为0计算即可.【详解】因为向量()1,2,6a = ,()2,,1b y =- ,a b ⊥,所以()122610a b y ⋅=⨯++⨯-=,解得2y =,故选:D.2.已知过()3,1A 、()1,3B -的直线与过()3,C m -、(),2D n 的直线互相垂直,则点(),m n 有()A.1个B.2个C.3个D.无数个【答案】D 【解析】【分析】根据直线的两个已知点,求得斜率,结合垂直直线的斜率关系,建立方程,可得答案.【详解】由()3,1A 与()1,3B -,则直线AB 的斜率13231AB k +==-,由AB CD ⊥,则直线CD 的斜率存在,即3n ≠-,且112CD AB k k -==-,由()3,C m -与(),2D n ,则2132m n -=-+,整理化简可得27n m =-,显然该方程有无数个解.故选:D.3.“圆”是中国文化的一个重要精神元素,在中式建筑中有着广泛的运用,最具代表性的便是园林中的门洞.如图,某园林中的圆弧形挪动高为2.5m ,底面宽为1m ,则该门洞的半径为()A.1.2mB.1.3mC.1.4mD.1.5m【答案】B 【解析】【分析】设半径为R ,根据垂径定理可以列方程求解即可.【详解】设半径为R ,()22212.52R R ⎛⎫-+= ⎪⎝⎭,解得251544R +=,化简得 1.3R =.故选:B.4.已知抛物线()220y px p =>的焦点在圆224x y +=上,则该抛物线的焦点到准线的距离为()A.1B.2C.4D.8【答案】C 【解析】【分析】根据焦点坐标即可求解4p =,由p 的几何意义即可求解.【详解】由于抛物线()220y px p =>的焦点为x 正半轴上,224x y +=与x 正半轴的交点为()2,0,故抛物线的焦点为()2,0,所以242pp =⇒=,因此抛物线的焦点到准线的距离为4p =,故选:C5.已知()2,2A --,()2,6B -,()4,2C -三点,直线l 1:20kx y k --=与直线l 2:20x ky ++=相交于点P ,则222PA PB PC ++的最大值()A.72B.80C.88D.100【答案】C 【解析】【分析】分析两直线特征,恒过定点,联立两直线方程,消去k ,得到交点P 的轨迹方程,然后借助于P 的坐标范围,求出222PA PB PC ++的最大值.【详解】直线l 1:20kx y k --=变形为()20k x y --=直线恒过定点()2,0,直线l 2:20x ky ++=直线恒过定点()2,0-,直线l 1:20kx y k --=与直线l 2:20x ky ++=相交于点P ,联立2020kx y k x ky --=⎧⎨++=⎩,消去k ,得224x y +=所以P 是以()0,0为圆心,半径为2的圆上一点,设(),P x y 且22y -≤≤,()()()()()()22222222222264+2P x y C x y x B P y A P =++++++-++-++[]22334681246880472,88x y y y y =+-+=-+=-∈,所以222PA PB PC ++的最大值为88,故选:C .6.已知双曲线()222210,0x y C a b a b-=>>:的左焦点为F 1,M 为C 的渐近线上一点,M 关于原点的对称点为N ,若190MF N ∠=︒,且11F N M ,则C 的渐近线方程为()A.3y x =± B.y = C.6y x =±D.y =【答案】B 【解析】【分析】根据直角三角形的性质即可求解160,MOF ∠=︒即可求解.【详解】如图所示,根据对称性,不妨设M 在左支,由于190MF N ∠=︒,且11F N M ,所以1160,2M F N MN MF ∠=︒=,由于,M N 关于原点对称,所以=OM ON ,结合190MF N ∠=︒可得1||||F OM ON O ==,所以160,MOF ∠=︒故渐近线MN 的倾斜角为60 ,∴双曲线C 的渐近线方程为y =.故选:B7.如图,由点P (3,0)-射出的部分光线被椭圆22:14x C y +=挡住,图中光线照不到的阴影区域(包括边界)为椭圆C 的“外背面”.若()()2251O x y t -+-= :位于椭圆C 的“外背面”,则实数t 的取值范围为()A.3085853055t +-≤≤ B.3085853055t ≤≤C.30585555t +-≤≤ D.30585555t -≤≤【答案】B 【解析】【分析】设过点P 的切线方程为(3)y k x =+,进而可得切线方程,利用新定义可求t 的最值,进而可求实数t 的取值范围.【详解】设过点P 的切线方程为(3)y k x =+,联立方程组22(3)14y k x x y =+⎧⎪⎨+=⎪⎩,得()222214243640k x k x k +++-=,则()()()2222244143640k k k ∆=-+-=,即251k =,解得55k =±,所以切线PM 的方程为:(3)5y x =+50y -+=,切线PN 的方程为:(3)5y x =-+50y ++=,若()()2251O x y t -+-= :位于椭圆C 的“外背面”,则与PN 相切时t 1=,解得5t =-或5t =,结合图形可得t 的最小值为30855-,则与PM 相切时t 1=,解得85305t =或85305t =,结合图形可得t 的最大值为5-,55t -≤≤.故选:B.8.教材44页第17题:在空间直角坐标系中,已知向量()(),,0u a b c abc =≠,点()0000,,P x y z ,点(),,P x y z .(1)若直线l 经过点0P ,且以u为方向向量,P 是直线l 上的任意一点,求证:000x x y y z z a b c---==;(2)若平面α经过点0P ,且以u 为法向量,P 是平面α内的任意一点,求证:()()()0000a x x b y y c z z -+-+-=.利用教材给出的材料,解决下面的问题:已知平面α的方程为70x y z -+-=,直线l 是平面230x y +-=与10x z ++=的交线,则直线l 与平面α所成角的正弦值为()A.9B.5C.15D.55【答案】A 【解析】【分析】根据题意得出平面的法向量,再求出平面的交线方向向量,最后用线面角公式即可.【详解】 平面α的方程为70x y z -+-=,∴平面α的一个法向量()1,1,1m =-,同理,可得平面230x y +-=的一个法向量()1,2,0n =,平面10x z ++=的一个法向量()1,0,1p = ,设平面230x y +-=与平面10x z ++=的交线的方向向量为(),,q x y z =,则200q n x y q p x z ⋅=+=⎧⎨⋅=+=⎩,取1y =,则()2,1,2q =- 设直线l 与平面α所成角为θ,则sin cos ,9m q m q m qθ⋅===故选:A【点睛】本题属于创新题目,是数学探索创新情境,具体是以平面方程为背景考查直线与平面所成的角,利用的法向量和方向向量的关系.二、选择题(本大题共4题,每小题5分,共20分.在每小题列出的四个选项中,有多项符合题目要求.全部选对得5分,部分选对得2分,有选错的得0分)9.下列说法正确的是()A.10y ++=的倾斜角为120︒B.经过点()2,1P ,且在,x y 轴上截距互为相反数的直线方程为10x y --=C.直线:20l mx y m ++-=恒过定点()1,2-D.直线1:210l x ay ++=,()2:140l a x y ---=,若12l l ⊥,则1a =-【答案】ACD 【解析】【分析】对于A ,根据直线方程,求得其斜率,利用斜率的定义,结合正切函数的定义,可得答案;对于B ,由题意,设出直线的点斜式方程,求出截距,建立方程,可得答案;对于C ,整理函数的一般方程,建立方程组,可得答案;对于D ,利用分类讨论思想,结合垂直直线的关系,建立方程,可得答案.【详解】对于A10y ++=,可得其斜率1k =,设其倾斜角为θ,则tan θ=,由[)0,πθ∈,则解得120θ= ,故A 正确;对于B ,由题意,直线斜率一定存在,可设为()220k k ≠,由过()2,1P ,则()212y k x -=-,令0y =,则212x k =-,令0x =,则212y k =-,由题意可得()221212k k -=--,整理可得2222310k k -+=,解得212k =或1,所以直线方程为20x y -=或10x y --=,故B 错误;对于C ,由直线方程20mx y m ++-=,整理可得()120x m y -++=,令1020x y -=⎧⎨+=⎩,解得12x y =⎧⎨=-⎩,所以直线过定点()1,2-,故C 正确;对于D ,当1a =时,直线1:210l x y ++=,则111,2A B ==,直线2:40l y +=,则220,1A B ==,由1212102120A A B B +=⨯+⨯=≠,则此时不符合题意;当1a ≠时,直线1:210l x ay ++=,则111,2A B a ==,直线()2:140l a x y ---=,则221,1A a B =-=-,由12l l ⊥,则()()121211210A A B B a a +=⨯-+⨯-=,解得1a =-,则此时符合题意,故D 正确.故选:ACD.10.已知点P 在⊙O :x 2+y 2=4上,点A (3,0),B (0,4),则()A.线段AP 长度的最大值是5B.满足15PBO ∠= 的点P 有且仅有2个C.过直线AB 上任意一点作⊙O 的两条切线,切点分别为M ,N ,则直线MN 过定点(12,1)D.2|PA |+|PB |的最小值为【答案】AD 【解析】【分析】圆上点到圆外点距离最大值为圆心与圆外点的距离加上半径,判断A ;利用15PBO ∠= 找到PB 直线,求出圆心到直线的距离,判断直线与圆的位置关系判断B ;作图通过图象分析判断C ;设设(),P x y ,设存在定点()0,C t ,使得点P 在⊙O 任意移动时均有12PC PB =,进而求出点P 的轨迹方程,结合点P 在⊙O 上个求得答案,判断D.【详解】对于A ,x 2+y 2=4圆心()0,0O ,半径2r =,3OA ==,所以max 5AP OA r =+=,故A 正确;对于B ,由题意知,当15PBO ∠= 时,()0,0O 到PB 直线距离等于4sin152=< ,此时符合要求PB 一共两条,且直线与⊙O 相交,故满足15PBO ∠= 的点P 有4个,故B 错误;对于C ,如图,显然过直线AB 上任意一点作⊙O 的两条切线,切点分别为M ,N ,则直线MN 不过定点(12,1),故C 错误;对于D ,2PA PB +的最小值,即为122PA PB ⎛⎫+⎪⎝⎭的最小值,假设存在定点()0,C t ,使得点P 在⊙O 任意移动时均有12PC PB =,设(),P x y ,=,化简得()2223381164x y t y t ++-=-,因为224x y +=,则有()2211t y t -=-,即()()1210t y t ---=,所以1t =,()0,1C ,所以()222PA PB PA PC AC +=+=≥,所以D 正确,故选:AD.11.如图,已知抛物线24y x =,过抛物线焦点F 的直线l 自上而下,分别交抛物线与圆()2211x y -+=于,,,A C D B 四点,则()A.3OA OB ⋅=-B.1AC BD ⋅=C.当直线l643AB AF ⋅= D.418AF BF +≥【答案】ABC 【解析】【分析】根据联立直线方程与抛物线方程,即可得韦达定理,进而由向量的坐标运算即可求解A ,根据焦半径即可求解BC ,结合基本不等式即可求解D.【详解】由题意可得()1,0F 设直线l 方程为1x ty =+,()()1122,,,A x y B x y 241y xx ty ⎧=⎨=+⎩,则2440y ty --=,所以12124,4y y t y y +==-,对于A ,()21212121231416y y x x y y OA y y OB +=+=-=⋅=- ,故A 正确,对于B ,()()()()()1212212111111116AC BD AF BD x x x y x y ⋅=-⋅-=+-⋅+===-,B 正确,对于C ,当直线l 直线l 方程为)1y x =-,联立直线与抛物线方程可得231030x x -+=,解得1213,3x x ==,所以()12123102,33x x y y +=++=所以()()121166421433AB AF x x x ⋅=+++=⨯=,故C 正确,对于D ,()()()()()1212121212421111111122t y y x x AF BF x x x x ty ty +++++=+==++++++,将12124,4y y t y y +==-代入可得()()()()21221212124114412224t y y t AF BF ty ty t y y t y y ++++===+++++,所以()445549411F AF BF AF BF BF AF AF BF AF B ⎛⎫+=+=+≥+= ⎪+⎪⎝⎭+ ,故D 错误,故选:ABC12.已知棱长为1的正方体1111ABCD A B C D -中,P 为正方体内及表面上一点,且1AP mAB nAD =+ ,其中[]0,1m ∈,[]0,1n ∈,则下列说法正确的是()A.当12n =时,1B P 与平面ABCD 所成角的最大值为π3B.当1m n +=时,11A C BP ⊥恒成立C.存在[]0,1n ∈,对任意[]0,1m ∈,CP 与平面11ABB A 平行恒成立D.当1m n +=时,22PA PC +的最小值为74【答案】BC 【解析】【分析】根据题意画出正方体,建立空间直角坐标系,利用空间向量进行逐项求解判断.【详解】由题意得:以点D 为坐标原点,DA 所在直线为x ,DC 所在直线为y 轴,1DD 所在直线为z 轴建立空间直角坐标系,如下图:则:()1,0,0A ,()11,0,1A ,()1,1,0B ,()11,1,1B ,()0,1,0C ,()10,1,1C ,()10,0,1D ,()0,1,0AB = ,()11,0,1AD =- ,(),,AP n m n =-,得:()1,,P n m n -对于A 项:当12n =时,11,,22P m ⎛⎫ ⎪⎝⎭,111,1,22B P m ⎛⎫=- ⎪⎝⎭ ,平面ABCD 的一个法向量为:()0,0,1m =,设1B P 与平面ABCD 所成的角为θ,所以:1111·2sin cos ,B P mB P m B P mθ===因为:[]0,1m ∈,所以:()21131222m ≤+-≤,所以:当1m =时,sin θ有最大值2,此时:π4θ=,故A 项错误;对于B 项:()111,1,0A C =- ,(),1,BP n m n =--则:11·10AC BP n m =+-= ,所以:11AC BP ⊥,所以:11A C BP ⊥,故B 项正确;对于C 项:由题意知平面11ABB A 的一个法向量为:()1,0,0n =,()1,1,CP n m n =-- ·1CP n n =- ,所以:当1n =时,·10CP n n =-= ,即:CP n ⊥,且CP 不在平面11ABB A 内,此时:对于任意[]0,1m ∈,CP 与平面11ABB A 平行恒成立,故C 项正确;对于D 项:当1m n +=时,得:(),,1P m m m -,()()()()22222222224111168433PA PC m m m m m m m m +=-++-++-+-=-+=-+⎭,当23m =时,有最小值43,故D 项错误.故选:BC.三、填空题(本大题共4题,每小题5分,共20分)13.两条平行直线3210x y --=与3210x y -+=间的距离______________.【答案】21313【解析】【分析】根据两平行线间距离公式计算.【详解】由题意13d==.故答案为:13.14.已知()2,4,a x=,()2,1,2b=r,()2,2,1c=-r,且,,a b c共面,则x的值为_____.【答案】5【解析】【分析】根据空间向量的基本定理,建立方程组,可得答案.【详解】设,Rλμ∈,则a b cλμ=+,可得222422xλμλμλμ=-⎧⎪=+⎨⎪=+⎩,解得215xλμ=⎧⎪=⎨⎪=⎩.故答案为:5.15.已知点()()0020A B,,,,圆()()222440M x y r r-+->=:()上恰有两点()1,2iP i=满足3i iP A PB⋅=,则r的取值范围是__________.【答案】37r<<【解析】【分析】根据数量积的坐标运算可得点P的轨迹为以点()1,0为圆心,半径为2的圆,即可根据两圆有两个交点求解.【详解】设(),P x y,则()()22,2,23PA PB x y x y x x y⋅=--⋅--=-+=,由2223x x y-+=得()2214x y-+=,故点P的轨迹为以点()1,0为圆心,半径为2的圆,要使圆()()222440M x y r r-+->=:()上恰有两点()1,2iP i=满足3i iP A PB⋅=,则()2214x y-+=与()()222440M x y r r-+->=:()两圆有两个交点,故22r r-<+,解得37r<<,故答案为:37r<<16.已知椭圆2221(1)x y mm+=>和双曲线2221(0)x y nn-=>有共同的焦点12,F F,记椭圆和双曲线的离心率分别为12,e e ,则221211e e +的值为____________.【答案】2【解析】【分析】利用椭圆与双曲线的定义得到,m n 关于c 的表达式,结合离心率的定义求解即可.【详解】设椭圆与双曲线的半焦距为c ,则22211m n c -=+=,则22221222,c c e e m n==,22221,1m c n c =+=-,所以22222222122211211m n e e c cc c c c ++-=+=+=.故答案为:2.四、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤)17.三棱柱111ABC A B C -中,12BM MA =uuu r uuu r ,11C N NB =uuu r uuu r .设AB a =,AC b =,1AA c =.(1)试用,,a b c 表示向量MN;(2)若1160BAC BAA CAA ∠=∠=∠=︒,11AB AC AA ===,求MN 的长.【答案】(1)111623MN a b c=++(2)56【解析】【分析】(1)根据向量的数乘与加法运算,结合题意,可得答案;(2)根据向量的数量积运算,可得答案.【小问1详解】由12BM MA =uuu r uuu r ,则1113MA BA =uuu r uuu r ,由11C N NB =uuu r uuu r,则11112B N BC =uuu r uuu u r ,由图形知()()111111*********MN MA A B B N BA AB B C c a a b a =++=++=-++-111623a b c =++ .【小问2详解】由题设条件:1cos cos602a b a b BAC ⋅=∠==or r r r ,同理可得12a b b c ⋅=⋅= ,则()222221111||94612462336MN a b c a b c a b b c a c⎛⎫=++=+++⋅+⋅+⋅ ⎪⎝⎭()1251943623636=+++++=,∴11156236MN a b c =++= .18.如图,在平行四边形OABC 中,点O 是原点,点A 和点C 的坐标分别是()()3013D ,,,,为线段AB 上的动点.(1)当D 运动到AB 中点时,求直线CD 的一般式方程;(2)求线段CD 的中点M 的轨迹方程.【答案】(1)35180x y +-=(2)5629022x y x ⎛⎫--=≤≤ ⎪⎝⎭【解析】【分析】(1)根据斜率公式计算35CD k =-,即可由点斜式求解方程,(2)根据中点坐标公式,代入AB 方程中即可求解.【小问1详解】∵()()1,3,4,3C B ∴,故7322D ⎛⎫⎪⎝⎭,,35CD k =-.所以直线CD 方程为()3315y x -=--,即35180x y +-=∴CD 所在直线方程一般式是35180x y +-=.【小问2详解】设点M 的坐标是(),M x y ,点D 的坐标是()00,D x y ,由平行四边形的性质得()43B ,,∵M 是线段CD 的中点,∴0031,22y x y x ++==,于是有0021,23x x y y -==-,直线AB 的方程为()33y x =-,∵点D 在线段AB 上运动,∴()00039034x y x =≤--≤,,∴()()3212390x y -=---,即5629022x y x ⎛⎫--=≤≤ ⎪⎝⎭.19.已知圆C 过点()8,1A ,且圆C 与两坐标轴均相切.(1)求圆C 的标准方程;(2)若半径小于6的圆C 与直线:0l x y m -+=交于A 、B 两点,____,求m 的值.从下列两个条件中任选一个补充在上面问题中并作答:条件①:120ACB ∠= ;条件②:AB =.注:如果选择多个条件分别作答,按第一个解答计分.【答案】(1)()()225525x y -+-=或()()221313169x y -+-=(2)条件选择见解析,2m =±【解析】【分析】(1)设圆C 的方程为()()()2220x a y b r r -+-=>,根据已知条件得出()()22281a b r -+-=,r a b ==,分a b =、=-b a 两种情况讨论,求出a 的值,即可得出圆C 的方程;(2)求出圆C 的方程,选①或选②,过点C 作CD AB ⊥于点D ,求出CD ,即为圆心C 到直线l 的距离,再利用点到直线的距离公式可求出m 的值.【小问1详解】解:设圆C 的方程为()()()2220x a y b r r -+-=>,因为圆C 过点()8,1A ,所以()()22281a b r -+-=,又因为圆C 两坐标轴均相切,所以r a b ==,若a b =,则()()22281a a a -+-=,整理可得218650a a -+=,解得5a =或13,此时,圆C 的方程为()()225525x y -+-=或()()221313169x y -+-=;若=-b a ,则()()22281a a a -++=,整理可得214650a a -+=,2144650∆=-⨯<,方程214650a a -+=无解.综上所述,圆C 的方程为()()225525x y -+-=或()()221313169x y -+-=.【小问2详解】解:因为圆C 的半径小于6,所以,圆C 的方程为()()225525x y -+-=,如果选择条件①:由120ACB ∠= ,5AC BC ==,得30ACB ABC ∠=∠= ,过点C 作CD AB ⊥于点D ,则D 为AB 的中点,则1522CD AC ==,所以圆心C 到直线l 的距离52d =,则52d ===,解得2m =±;如果选择条件②:AB =,在ABC 中,5AC BC ==,过点C 作CD AB ⊥于点D ,则52CD ==,所以圆心C 到直线l 的距离52d =,则52d ===,解得2m =±.20.已知双曲线C :()2222100x y a b a b-=>,>,点(A 在双曲线上.(1)求双曲线C 的方程;(2)双曲线C 上是否存在点B ,使得对双曲线C 上任意一点P (其中3P x ≠±),都有PA PB k k ⋅为定值?若存在,请求出该定值;若不存在,请说明理由.【答案】(1)22144x y -=(2)存在,定值为1【解析】【分析】(1)由离心率,双曲线所过点的坐标,及222+=a b c 列方程组求解可得;(2)设(,)P P P x y是双曲线上任一点,取点(3,B -,计算PA PB k k ⋅得定值.【小问1详解】由题意得22222951 ca abc a b⎧=⎪⎪⎪-=⎨⎪=+⎪⎪⎩,解得2 2 a b c ⎧=⎪=⎨⎪=⎩,故双曲线C 的方程为22144x y-=;【小问2详解】法一:存在点B (3,-,使得对双曲线上任意一点P (其中3P x ≠±),都有PA PB k k ⋅为定值1,证明如下:设(,)P P P x y 是双曲线22144x y -=上任意一点P (其中3P x ≠±),则22144p p x y -=,即22p p x y -=4∴22225513395p p p p PB PAp p p p y y y y k k x x x y ---⋅====+---.法二:设定点为00(,)B x y ,设(,)P P P x y 是双曲线22144x y-=上任意一点P (其中3P x ≠±),则22144p p x y -=,即22p p x y -=4,22001x y -=,22000002200000))3(3)3(3)34P P P P P P PA PBP P P P P P y y y y y y y y y k k x x x x x x x y x x x ---++-++=⋅==---++-+++,由于224P P x y =+,而P y 是任意的实数,要使得它为常数,这个常数只有为1,由00030y x +=+=⎪⎩得003x y =-⎧⎪⎨=⎪⎩0034x =+,所以存在定点(3,B -,使得PA PB k k 为定值且定值为1.21.在如图所示的试验装置中,两个正方形框架ABCD ,ABEF 的边长都是1,且它们所在的平面互相垂直.活动弹子M ,N 分别在正方形对角线AC 和BF 上移动,且CM 和BN 的长度保持相等,记CM BN a ==(0a <<.(1)问a 为何值时,MN 的长最小?(2)当MN 的长最小时,求平面MNA 与平面MNB 夹角的余弦值.【答案】(1)2a =(2)13【解析】【分析】(1)建立空间直角坐标系,利用空间两点间距离公式、配方法进行求解即可;(2)利用空间向量夹角公式进行求解即可.【小问1详解】因为平面ABCD ⊥平面ABEF ,,BC AB BE AB ⊥⊥,根据面面垂直的性质定理易知,CB ⊥平面ABEF ,于是BC BE ⊥,从而,,BC AB BE 两两垂直,如图建立空间直角坐标系,设()1,0,0A ,()0,0,1C ,()1,1,0F ,()0,1,0E ,CM BN a ==,M ∴,N ⎫⎪⎭.MN=MN==当2a=时,MN 最小,最小值为22;【小问2详解】由(1)可知,当M,N为中点时,MN最短,则1111,0,,,,02222M N⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,取MN的中点G,连接AG,BG,则111,,244G⎛⎫⎪⎝⎭,2AM AN==,2BM BN==,AG MN∴⊥,BG MN⊥,AGB∴∠是平面MNA与平面MNB的夹角或其补角.111,,244GA⎛⎫=--⎪⎝⎭,111(,)244GB=---,1·18cos,3·GA GBGA GBGA GB-∴==-.∴平面MNA与平面MNB夹角的余弦值是13.22.已知椭圆22122:1(0)x yC a ba b+=>>的离心率为12e=,且过点31,2P⎛⎫- ⎪⎝⎭.点P到抛物线22:2(0)C y px p=->的准线的距离为32.(1)求椭圆1C 和抛物线2C 的方程;(2)如图过抛物线2C 的焦点F 作斜率为(0)k k >的直线交抛物线2C 于A ,B 两点(点A 在x 轴下方),直线PF 交椭圆1C 于另一点Q .记FBQ ,APQ △的面积分别记为12S S 、,当PF 恰好平分APB ∠时,求12S S 的值.【答案】(1)221:143x y C +=,22:2=-C y x(2)15(35)56【解析】【分析】(1)由椭圆离心率和经过点P 可得答案;(2)设1:2⎛⎫=+⎪⎝⎭AB y k x ,()2112,2-A t t ,()2222,2-B t t ,设直线,PA PB 的斜率为12,k k ,且A ,F ,B 共线得AB AF k k =,从而()222121212+=++t t t t ,12k k +,12k k ,可求出直线PF 的斜率为0k .当PF 平分APB ∠时,利用0120010211--=++k k k k k k k k ,求出12t t +,从而AB k k =的值,由此直线3:32=--PQ y x ,由于11212211||,,24||+=-=-=-AF tt t t t BF t ,联立直线PQ 和椭圆方程可得||||=-P Q y PF QF y ,再利用||||= APF AFQ S PF S FQ ,||||=AFQ QFBS AF S BF 可得答案.【小问1详解】由于椭圆22122:1(0)x y C a b a b +=>>的离心率为12e =,则2222214c a b a a -==,所以2234a b =,故设221:(0)43λλ+=>x y C ,由于椭圆1C 经过点31,2P ⎛⎫- ⎪⎝⎭,从而13144λ=+=,故椭圆1C 的方程为221:143x y C +=.由于点P 到抛物线22:2(0)C y px p =->的准线2p x =的距离为32,则3122p +=,故1p =,从而抛物线22:2=-C y x .【小问2详解】由于1,02F ⎛⎫- ⎪⎝⎭,设1:2⎛⎫=+ ⎪⎝⎭AB y k x ,()2112,2-A t t ,()2222,2-B t t ,设直线,PA PB 的斜率为12,k k ,由于31,2P ⎛⎫- ⎪⎝⎭,则1112211324322142--==-+-+t t k t t ,22224342-=-+t k t ,由于()1222121222122-==-+-+AB t t k t t t t ,1212122=-+AF t k t ,且A ,F ,B 共线得AB AF k k =,故1212112122=---+t t t t ,从而1214t t =-,()()222212*********+=+-=++t t t t t t t t ,从而()()()()22121212121212222222121212432343434242421-+++++---+=+==-+-+-++t t t t t t t t t t k k t t t t t t ()()()212122121212681+++-=-++t t t t t t ,()()()()12121212122222222121212121612912543434242168481-++-++--=⋅==-+-+-++-++t t t t t t t t k k t t t t t t t t ,由于31,2P ⎛⎫- ⎪⎝⎭,则直线PF 的斜率为0323112==--+k ,当PF 平分APB ∠时,则0120010211--=++k k k k k k k k ,即()()()212012012220++--+=k k k k k k k k ,即()()()()()21212122212121212612593228181⎡⎤+++--++⨯-⨯-⨯-⎢⎥-++-++⎢⎥⎣⎦t t t t t t t t t t ()()()2121221212126081+++-=-++t t t t t t 即()()21212610+++-=t t t t ,从而1212t t +=-或1213+=t t ,从而()1212===-+AB k k t t 或3-,由于0k >,故2k =,由此直线3:21,:32=+=--AB y x PQ y x .由于11212211||,,24||+=-=-=-AF t t t t t BF t ,考虑到()2121212************++-+===--t t t t t t t t t t ,从而12352+=-t t ,从而||35||2=AF BF ,联立2213:32:143PQ y x x y C ⎧=--⎪⎪⎨⎪+=⎪⎩,即2131210+-=x x ,从而113=Q x ,则3453226=--=-Q Q y x ,从而3||13245||1526===-P Q PF y QF y ,由此||1326||1530=== APF AFQ S PF S FQ,||3||2+==== AFQ QFB S AF S BF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省沙洋中学2012年秋季高二期中考试英语试卷命题:杨萍审题:罗家群全卷满分150分。
考试用时120分钟。
第一部分:听力(共两节,满分30分)第一节(共五小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A,B,C,三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. When can the man see the headmaster?A. At 9:30.B. At 11:45.C. At 12:40.2. Why does the man want to keep the window shut?A. He is ill.B. He wants to open it himself.C. The air inside is fresh enough.3. What is Mike?A. A teacher.B. A student.C. A writer.4. What has made working at home possible?A. Personal computers.B. Communication industry.C. Living far from companies.5. Where is the woman?A. In a soap factory.B. In her house.C. At an information desk.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A,B,C,三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,然后回答6—7题。
6. Where does the conversation most probably take place?A. At home.B. On a bus.C. In the bank.7. Why do the two speakers want to buy a car?A. They have a lot of money.B. The man lives too far away from his office.C. The woman's office is too far away from her home.听第7段材料,然后回答8--10题。
8. Why won't Mr. Stone come to the clinic tomorrow?A. He can't spare the time.B. The clinic will be closed.D. Dr.! Milton won't come to work.9. When is the clinic open in a week?A. From Monday to Friday.B. On weekdays except Thursday.C. During the whole week.10. What time has finally been fixed for Mr. Stone to come?A. 5:30 p. m., Wednesday.B. 6:15 p. m., Wednesday.C. 6:15 p. m., Thursday.听第8段材料,然后回答11--13题。
11. What's the relationship between the two speakers?A. Neighbors.B. Doctor and patient.C. Friends.12. When did the woman cough most seriously?A. In the morning.B. In the afternoon.C. At night.13. What did the man do for the woman?A. He examined the woman carefully.B. He gave her some medicine and some advice as well.C. He just told her not to worry too much.听第9段材料,然后回答14--16题。
14. What's the possible relationship between the two speakers?A. Husband and wife.B. Friends.C. Strangers.15. Where does the conversation most probably take place?A. In a restaurant.B. At the woman s home.C. At the man's home.16. What does the woman ask the man to do?A. Have some soup.B. Have more rice.C. Bring his wife next time.听第10段材料,然后回答17--20题。
17. What did Nicholas do at eighteen months?A. He began to learn French.B. He read the newspaper.C. He took telephone messages.18. Why was Nicholas bored and unhappy at the two schools?A. He had too much homework.B. He almost couldn't learn anything special.C. His teachers often corrected his spelling.19. Who offered to help Nicholas finally?A. His classmates.B. His parents.C. A college.20. What is Nicholas' life like now?A. Busy without any social life.B. Full but boring.C. Busy at college and free at home.第二部分:词汇知识运用(共两节,满分30分)第一节:多项选择(共10个小题;每小题1分,满分10分)21. Banks must compete for customers who will to another bank if they are dissatisfiedwith the service they receiv e.A. transferB. switchC. appealD. resolve22. ——How many people attended the exhibit?——_____ speaking, about 200. I didn’t countA. StrictlyB. RoughlyC. generallyD. Honestly23. Harry _______ the story at the point where John had left off.A. took upB. took inC. took overD. took down24.At first he refused to admit he had stolen it but he and admitted everything when hewas shown the videotape(录像带) .A. broke upB. broke awayC. broke downD. broke in25. The manager was annoyed by the interruption while he was on vacation, so he turnedoff his mobile phone.A. continuousB. regularC. constantD. common26. In order to enrich people’s life, the local government has the construction of anotherstadium.A. refusedB. deliveredC. agreedD. approved27. Learning from mistakes can help us stay cautious and make informed decisions in thedays to come.A. preciousB. seriousC. curiousD. stupid28. Operate the electrical appliance following the attached to the box, or you’ll be at risk.A. instructionsB. explanationsC. introductionsD. descriptions29. The doctor made an of the damage and decided to have an operation on the patient rightaway.A. assessmentB. applicationC. appointmentD. arrangement30. Things getting worse, a bank spokesman was still unable to the situation.A. classifyB. simplifyC. terrifyD. clarify第二节:完形填空(共20小题;每小题1分,满分20分)阅读下面短文,从短文后所给各题的四个选项(A、B、C和D)中,选出可以填入空白处的最佳选项。
Thanksgiving Day was fast approaching and many people were preparing for the holiday. Dora Smith gave her class an assignment----to draw a picture of something which they would like to be 31 .Miss Dora thought her students′family would 32 the holiday with turkey and other traditional food of the season and these would be the 33 of most of her student s′art works.And so they were.But Reuben’s picture was kind of 34 .He draw a hand.Nothing else, just an empty hand, which soon aroused the 35 of his classmates﹒Whose hand could it be? One child 36 it was the hand of a farmer, because farmers 37 turkeys.Another suggested a police officer, because the police 38 and care for people.Still others guessed it was the hand of God, 39 God feeds us.And so actively the discussion went until the teacher almost 40 the young artist himself.When the students had begun other assignments, Miss Dora 41 at Rueben’s desk, bent down, and asked him whose hand it was.Little Rueben looked away and said in a low voice, “It’s 42 .”Rueben’s words reminded Miss Dora of the times when she had 43 his hand and walked with him here and there.She remembered how 44 she had said, “Take my hand, Rueben;we’ll go outside.”or, “Let me 45 you how to hold your pencil.”or, “Let’s do this together.”Rueben was most thankful for his teacher’s 46 .Brushing aside 47 ,the teacher went on with her work.The story shows 48 gratitude.It suggests something related to teachers teaching and parents parenting and friends showing friendship, and how much it 49 to the Ruebens of the world.They might not always say 50 , but they’ll remember the hand that reaches out.31. A. curious about B. familiar with C. thankful for D. satisfied with32. A. congratulate B. celebrate C. remember D. thank33. A. themes B. details C. causes D. lessons34. A. excellent B. terrible C. different D. new35. A. assumption B. imagination C. appreciation D. approval36. A. counted B. guessed C. expressed D. discovered37. A. raise B. need C. buy D. sell38. A. rule B. control C. educate D. protect39. A. for B. when C. if D. and40. A. forgot B. blamed C. adored D. suspected41. A. stared B. aimed C. stopped D. glanced42. A. mine B. his C. yours D. hers43. A. missed B. taken C. washed D. touched44. A. seldom B. often C. soon D. much45. A. lead B. show C. act D. direct46. A. assignment B. words C. teaching D. hand47. A. laughter B. a kiss C. tears D. a smile48. A. more than B. less than C. no longer D. nothing but49. A. costs B. measures C. means D. owes50. A. thanks B. nothing C. yes D. sorry第三部分:阅读理解(共20小题;每小题2分,满分40分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项。