普朗克黑体辐射公式推导(精.选)
黑体辐射公式的推导
普朗克和瑞利-金斯黑体辐射公式的推导1 引言马克斯·普朗克于1900年建立了黑体辐射定律的公式,并于1901年发表。
其目的是改进由威廉·维恩提出的维恩近似(至于描述黑体辐射的另一公式:由瑞利勋爵和金斯爵士提出的瑞利-金斯定律,其建立时间要稍晚于普朗克定律。
由此可见瑞利-金斯公式所导致的“紫外灾难”并不是普朗克建立黑体辐射定律的动机)。
维恩近似在短波范围内和实验数据相当符合,但在长波范围内偏差较大;而瑞利-金斯公式则正好相反。
普朗克得到的公式则在全波段范围内都和实验结果符合得相当好。
在推导过程中,普朗克考虑将电磁场的能量按照物质中带电振子的不同振动模式分布。
得到普朗克公式的前提假设是这些振子的能量只能取某些基本能量单位的整数倍,这些基本能量单位只与电磁波的频率有关,并且和频率成正比。
这即是普朗克的能量量子化假说,这一假说的提出比爱因斯坦为解释光电效应而提出的光子概念还要至少早五年。
然而普朗克并没有像爱因斯坦那样假设电磁波本身即是具有分立能量的量子化的波束,他认为这种量子化只不过是对于处在封闭区域所形成的腔(也就是构成物质的原子)内的微小振子而言的,用半经典的语言来说就是束缚态必然导出量子化。
普朗克没能为这一量子化假设给出更多的物理解释,他只是相信这是一种数学上的推导手段,从而能够使理论和经验上的实验数据在全波段范围内符合。
不过最终普朗克的量子化假说和爱因斯坦的光子假说都成为了量子力学的基石。
2 公式推导2.1 普朗克公式和瑞利-金斯公式的推导黑体是指在任何温度下,对于各种波长的电磁辐射的吸收系数恒等于1的物体。
黑体辐射的能量是由电磁场的本征振动引起的,为简化推导过程,在此将黑体简化为边长为L 的正方形谐振腔。
则腔内的电磁场满足亥姆霍兹方程: 2222u+k u 0 (k )ωμε∇== (1) 用分离变量法,令u(x,y,z)X(x)Y(y)Z(z)=则(1)式可分解为三个方程:222222222000x y z d X k X dx d Y k Y dyd Z k Z dz⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩ 其中2222x y zk k k ωμε++= 得(1)式的驻波解为:112233(,,)(cos sin )(cos sin )(cos sin )x x y y z z u x y z c k x d k x c k y d k y c k z d k z =+++由在x=0,x=L,y=0,y=L,z=0,z=L 上的边界条件0n E n∂=∂及0D E ⋅=可得:123cos sin sin sin cos sin sin sin cos x x y z y x y z z x y z E A k x k y k z E A k x k y k zE A k x k y k z⎧=⎪=⎨⎪=⎩ x x k n L π=,y y k n L π=,z z k n L π= ,,0,1,2,x y z n n n= (其中1A ,2A ,3A 满足关系1230x y z k A k A k A ++=)则j k (j 表示第j 个本征态)的绝对值为: 2222222()()()j x y z j k n n n n L Lππ=++= 换成第j 个本征态的频率得:222()2j j c n Lν= 当j L λ>>时,j λ和j ν可视为连续变化,不必取分立值,即有: 222()2c n Lν= (2) (2)式表明在整数n 空间一组整数,,x y z n n n 即对应一个本征模的频率。
普朗克黑体公式
普朗克黑体公式普朗克黑体公式一、什么是普朗克黑体公式?普朗克黑体公式是描述物体辐射能谱特性的公式,由德国物理学家马克斯·普朗克在1900年发现并提出。
它描述了黑体辐射发射的热能随着波长的变化而发生的变化,是理论上探讨电磁波辐射的一个基本理论。
二、普朗克黑体公式的推导普朗克在探讨黑体辐射问题时,通过对辐射器内发射的电磁波的频率与能量的关系进行研究,得出了他 berprzipslichen answer ,即离散的能量量子概念,这就是著名的基本性原理。
在此基础之上,普朗克成功地推导出了描述黑体辐射特性的公式,即普朗克黑体辐射公式。
根据公式,黑体辐射发射的能量谱与温度有关,其随波长λ变化的形状可以用以下公式表示:B(λ, T) = (2hc²/λ⁵) × 1/(ehc/λkT - 1)其中,B(λ, T)表示黑体在特定波长λ和温度T下辐射发射出的能量,h为普朗克常量,c为光速,k为玻尔兹曼常量,e为自然对数。
三、普朗克黑体公式的应用普朗克黑体公式在物理学、工程学、天文学等领域都有广泛的应用。
其中,最为关注的是黑体辐射的特性,因为这关系到很多光学设备的运用。
例如,在卫星辐射成像技术中,黑体的作用是模拟外部环境中的物理状态,通过测量其辐射能够精确计算卫星传感器输出的信号值。
同时,在光电探测、激光测距、夜视设备、光通讯和纳米技术领域等,都有普朗克黑体公式的应用。
四、结语普朗克黑体公式对于描述物体辐射能谱特性提供了重要的理论基础,其成功地解释了许多实验现象,同时也推动了原子物理学、固体物理学和光学等领域的发展。
在现代科技中,普朗克黑体公式的应用将会更加广泛,为科学技术的发展做出更加积极的贡献。
运用能量量子化的假设,推导黑体辐射公式
运用能量量子化的假设,推导黑体辐射公式能量量子化假设是量子力学的基本原理之一,它认为在微观世界中,能量只能以离散的形式存在,而不是连续的。
利用这一假设,我们可以推导出黑体辐射公式,即黑体辐射强度与频率的关系。
假设黑体内的辐射能量只能以能量量子的形式存在,且每个能量量子的能量为hf,其中h为普朗克常数,f为频率。
考虑黑体内的辐射能量密度u(f),即单位体积内辐射能量的大小。
根据能量量子化假设,能量密度u(f)可以表示为若干个能量量子的总和,即u(f) = N(f)hf其中N(f)为单位体积内频率为f的辐射能量量子数。
由于能量量子化假设,N(f)只能取整数值,即N(f) = 0,1,2,3,……考虑到同一频率下,每个能量量子的能量相同,因此黑体内辐射能量密度的大小取决于能量量子数的多少。
我们可以使用玻尔兹曼分布来描述不同能量量子数的概率分布,即P(N(f)) = (g/N)exp(-Nhf/kT)其中g为每个能量量子的简并度,N为黑体内总辐射能量量子数,k为玻尔兹曼常数,T为黑体的温度。
由于每个频率下的总辐射能量量子数为N = ΣN(f)因此可以将概率分布P(N(f))转化为概率分布P(N),即P(N) = (g/N)exp(-Nhf/kT)考虑到每个能量量子的能量为hf,因此黑体内总辐射能量U可以表示为U = Nhf将能量量子数的概率分布P(N)代入上式,可以得到黑体内总辐射能量的期望值E(U)为E(U) = ΣNhfP(N) = ΣNhf(g/N)exp(-Nhf/kT)将N从0开始求和,可以得到E(U)为E(U) = g(hf/kT)/(exp(hf/kT)-1)根据定义,黑体辐射强度I(f)可以表示为单位面积内单位频率范围内辐射能量的大小,即I(f) = c/4πu(f)其中c为光速。
将能量密度u(f)代入上式,可以得到黑体辐射强度与频率的关系为I(f) = (2hf^3/c^2)/(exp(hf/kT)-1)这就是著名的黑体辐射公式。
普朗克公式的推导过程
普朗克公式的推导过程
嘿,朋友!今天咱就来好好聊聊普朗克公式的推导过程。
先来说说黑体辐射,这就好比是一个神秘的黑盒子,不断向外辐射能量。
那怎么描述这种辐射呢?这就用到了普朗克公式 E=hf ,这里的 E 代表能量,h 是普朗克常数,f 是频率。
咱举个例子啊,就好像不同的音乐频率,高音就像高频率,能量大,低音就像低频率,能量小。
普朗克就像是发现了音乐背后的神秘规律一样了不起!
然后呢,普朗克通过一系列超级厉害的思考和计算,发现能量不是连续的,而是一份一份的,就像巧克力豆,一颗一颗的,不能再细分了。
这可真是让人大吃一惊啊!难道不是吗?
通过这一系列奇妙的推导和发现,普朗克公式就诞生啦!它就如同照亮黑暗的明灯,让我们对这个神奇的物理世界有了更深刻的理解。
哇塞,是不是超级酷?哈哈!。
普朗克黑体辐射公式的详细推导
普朗克黑体辐射公式的详细推导普朗克假设黑体辐射是由一系列离散的微观振动体产生的,这些振动体能够吸收和释放以能量量子(hf)为单位的能量。
当这些振动体处于平衡状态时,设振动体的能量分布函数为Ψ(ε),其中ε表示振动体的能量。
考虑单位体积和单位能量范围内的振动体数目,记为N(ε)dε,其中N表示单位体积内振动体的总数。
根据统计力学的理论,N(ε)dε可表达为波尔兹曼分布,即:N(ε)dε = g(ε)exp(-ε/kBT)dε其中,g(ε)表示在特定能量范围内的能量态的数目,exp(-ε/kBT)是由玻尔兹曼因子得到,k是玻尔兹曼常数,T是温度。
由于辐射的能量不连续,因此,可以将单位体积和单位频率范围内的振动体数目表示为N(v)dv,其中v表示频率,dv表示频率范围。
考虑到能量和频率之间的关系,有ε = hv,其中h是普朗克常数。
根据可加性和幂次原理,能量态的数目g(ε)应满足:g(ε)dε=4π(2m/h^2)^(3/2)ε^(1/2)dε其中,m是振动体的质量。
将ε和dε用v和dv表示,并对能量态的数目函数进行简化得到:g(v)dv = (8πv^2/c^3)dv其中,c是光速。
由于单位体积和单位能量范围内的振动体数目与单位体积和单位频率范围内的振动体数目之间有关系:N(ε)dε = N(v)dv将上述得出的g(ε)和g(v)带入上式,并整理可得:N(v) = (8πv^2/c^3)exp(-hv/kBT)dv可以将上式转化为单位面积、单位时间、单位频率范围内的能量密度u(v):u(v) = N(v)hv代入上式并进行整理,得到:u(v) = (8πhv^3/c^3)exp(-hv/kBT)dv利用频率和波长的关系,即v=c/λ,可以将上式转化为以波长表示的能量密度:u(λ) = (8πhc/λ^5)exp(-hc/λkBT)dλ这就是普朗克黑体辐射公式的最终形式。
通过对普朗克黑体辐射公式的推导,我们可以看出,普朗克假设了黑体辐射的能量是以能量量子为单位的离散量,这个假设是量子力学发展的重要先导。
黑体辐射的普朗克公式推导
黑体辐射的普朗克公式推导普朗克公式描述了黑体辐射的能量分布。
为了推导普朗克公式,我们可以按照以下步骤进行。
首先,我们考虑一个处于热平衡状态的黑体辐射腔室。
由于电磁波是由光子组成的,我们可以将其视为一种粒子,具有能量E和频率ν的量子。
根据量子理论,光子的能量与其频率之间存在关系:E = hν,其中h是普朗克常数。
接下来,我们考虑在辐射腔室中的光子数目与能量之间的关系。
根据统计物理学中的玻尔兹曼分布定律,光子数目n与能量E之间满足以下关系:n(E) = (1 / (exp(E / (kT)) - 1)在这里,k是玻尔兹曼常数,T是绝对温度。
该公式描述了光子在不同能量级上的分布情况。
为了得到黑体辐射的能量分布,我们需要计算每个能量级上光子的平均能量。
因此,我们可以使用平均能量公式:<E> = Σ(n * E) / Σn其中,Σ表示对所有能量级求和。
我们将这个表达式应用到光子数目公式中,得到:<E> = Σ((E / (exp(E / (kT)) - 1)) / Σ(1 / (exp(E / (kT)) - 1))接下来,我们将求和转化为积分,以便对能量连续变化的情况进行处理。
通过引入积分变量x = E / (kT),我们可以将上述表达式重写为:<E> = ∫((x^3 / (exp(x) - 1)) / ∫(x^2 / (exp(x) - 1))这就是普朗克公式的推导过程。
最后,我们可以根据上述公式计算不同温度下黑体辐射的能量分布。
需要注意的是,上述推导过程涉及了一些复杂的数学运算和近似方法,包括积分转换、级数展开等。
因此,要完整地推导出普朗克公式需要更详细的数学推导。
普朗克辐射公式
普朗克辐射公式
普朗克辐射公式是由德国物理学家马克斯·普朗克在1900年提出的一种描述黑体辐射的理论公式。
该公式是描述黑体辐射频谱能量密度的函数关系。
普朗克辐射公式可以表达为:
B(λ, T) = (2hc²/λ⁵) / (exp(hc/λkT) - 1)
其中,B(λ, T)为波长为λ,温度为T的黑体辐射的单位面积和单位波长的能量密度;h为普朗克常数,c为光速,k为玻尔兹曼常数。
根据普朗克辐射公式,黑体辐射的频谱能量密度与波长和温度有关。
根据公式可以计算不同波长下、不同温度下的黑体辐射的能量分布情况。
该公式的应用范围广泛,可以用于研究光源的颜色、亮度、辐射功率等物理性质。
普朗克黑体辐射公式的详细推导
普朗克黑体辐射公式的详细推导辐射是物体由于内部热运动而产生的电磁波。
普朗克假设黑体辐射是由许多振动的谐振子(即电磁振子)组成的,每个谐振子只能具有离散能量值。
普朗克假设这些能量是量子化的,即能量E只能取整数倍的基本能量hν,其中ν为辐射频率。
设一个振子的能量为E,频率为ν,则E=hν。
普朗克认为振子的能量只能取整数倍的基本能量hν,因此振子的能量只能是离散的。
假设在单位时间内,频率在ν到ν+dν范围内,能量在E到E+dE范围内的谐振子数为n(E,ν)。
则单位体积内频率在ν到ν+dν范围内,能量在E到E+dE范围内的谐振子数为:n(E,ν)dEdν为了求解n(E,ν),我们需要引入玻尔兹曼分布和玻尔兹曼常数k。
在热平衡状态下,系统中具有能量E的状况数(即相同的谐振子数)为:W(E)=n(E,ν)*e^(-E/kT)其中,T为系统的温度,n(E,ν)为单位体积内频率在ν到ν+dν范围内,能量在E到E+dE范围内的谐振子数。
根据统计物理学的理论,系统的熵S与状况数W的关系为:dS = k * ln W(E)将W(E)代入上式并对E求微分,我们可以得到:dS = k * [ d(n(E,ν)) - (E/kT) * dn(E,ν) ]根据熵的最大化原理,熵是关于能量的单调递增函数,即dS>=0,即有:d(n(E,ν)) - (E/kT) * dn(E,ν) >= 0 (式1)我们将式1两边对E积分,可得:∫(d(n(E,ν)) - (E/kT) * dn(E,ν)) = ∫0到E dn(E,ν) (式2)其中,积分区间为0到E。
对式2进行变换,得到:n(E,ν) - (∫0到E (E/kT) * dn(E,ν)) = ∫0到E dn(E,ν)整理后,我们可以得到:n(E,ν)=[∫0到E(1/e^(E/kT))]*n(E,ν)令x=E/(kT),则式子变为:n(E,ν)=[∫0到x(1/e^x)]*n(E,ν)通过计算可知,上式的积分结果为:∫0到x(1/e^x)=1-(1+x)e^(-x)将该结果代入n(E,ν)的表达式中,我们可以得到:n(E,ν)=(1-(1+x)e^(-x))*n(E,ν)(式3)进一步简化,我们可以得到:n(E,ν)=(1-(1+E/(kT))e^(-E/(kT)))*n(E,ν)(式4)根据统计物理学的经验公式,单位体积频率为ν到ν+dν范围内,能量为E到E+dE范围内的谐振子数n(E,ν)与能量E的关系为:n(E,ν)=C*E^3*1/(e^(E/(kT))-1)(式5)其中,C为常数。
普朗克黑体辐射公式推导
普朗克黑体辐射公式的推导所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。
黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。
辐射热平衡状态:处于某一温度T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。
实验发现:热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度T 有关而与黑体的形状和材料无关。
实验得到: 1.Wien 公式从热力学出发加上一些特殊的假设,得到一个分布公式:Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。
2. Rayleigh-Jeans 公式Rayleigh-Jeans 公式在低频区和实验相符,但是在高频区公式与实验不符,并且∞→=⎰∞v v d E E ,既单位体积的能量发散,而实验测得的黑体辐射的能量密度是4T E σ=,该式叫做Stefan-Bolzmann 公式,σ叫做Stefan-Bolzmann 常数。
3. Planck 黑体辐射定律1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。
作为辐射原子的模型,Planck 假定:(1)原子的性能和谐振子一样,以给定的频率v 振荡; (2)黑体只能以E=hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。
得到:νννπνρνd kT h C h d ⎪⎪⎭⎫ ⎝⎛-=1)/exp(1833该式称为Planck 辐射定律 h 为普朗克常数,h=s j .10626.634-⨯4,普朗克的推导过程:把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为).(),(wt r K i k k e C t r -=αβψ,为常系数振方向,表示两个互相垂直的偏ααk C 2,1=每一个简振模在力学上等价于一个自由度,记频率在()νννd +,内的自由度数为()ννd g ,则(0,v )范围内的总自由度数G(v)与g(v)的关系为()()ννννd g G ⎰=0。
普朗克定律推导
普朗克定律推导
普朗克定律是指黑体辐射的能量密度与温度之间的关系,由德国物理学家马克斯·普朗克在1900年提出。
普朗克定律的推导基于以下几点:
1. 假设空腔内部充满了电磁辐射,而电磁辐射的能量是以量子的形式传播的,即被称为光子的粒子。
2. 普朗克假设电磁辐射的能量E只能通过能级的整数倍hν来表达,其中h为普朗克常数(h=6.62607004 × 10^-34 J·s),ν为辐射的频率。
3. 根据平衡态统计物理学,可以得到在某一频率范围内,辐射在单位频率范围内的能量密度u(ν)与频率ν的关系为u(ν) =
aν^3,其中a为常数。
4. 根据热力学平衡的原理,辐射的能量密度u(ν)与黑体的绝对温度T之间存在关系,即u(ν) = Bν^3 / (e^(hν/kT) - 1),其中B 为常数,k为玻尔兹曼常数(k=1.38064852 × 10^-23 J/K)。
5. 根据维恩位移定律,辐射的峰值频率与温度成反比关系,即ν_max*T = C,其中C为常数。
综上所述,普朗克定律推导出黑体辐射的能量密度与温度之间的关系为u(ν) = Bν^3 / (e^(hν/kT) - 1)。
普朗克黑体辐射的推导过程
普朗克黑体辐射的推导过程普朗克黑体辐射推导,那可真是一场科学史上的奇妙冒险。
想象一下,黑体就像是一个超级神秘的大烤箱,它不停地向外发射着各种能量,就像烤箱里的热量想冲出来让全世界知道它的存在。
科学家们就像一群好奇的小老鼠,围着这个神秘烤箱想搞清楚到底怎么回事。
普朗克这个大佬登场了。
他可没打算用常规方法,他就像一个超级大厨,要做一道前所未有的科学大餐。
他知道这个黑体辐射的规律就像一团乱麻,之前的理论就像那些粗糙的菜谱,根本做不出美味的科学解释。
普朗克首先得面对这个能量的问题。
能量在黑体里就像一群调皮的小精灵,它们蹦蹦跳跳,没有一点规律。
他想把这些小精灵的行为给描述出来,可不像赶鸭子那么简单。
传统的理论就像一个小网兜,根本装不住这些精力旺盛的能量小精灵。
于是普朗克脑洞大开,他假设能量不是连续的,这就好比把水变成了一颗一颗的小水珠,而不是像之前认为的是一股水流。
这个想法在当时就像说地球是方的一样疯狂。
但普朗克不管,他就像一个叛逆的少年,坚信自己的想法。
然后他就开始捣鼓那些复杂的数学公式。
那些公式就像一个个难搞的小怪兽,他得一个一个去征服。
他把能量分成一份一份的,这就像是把一块大蛋糕切成了很多小块。
每一块能量都有自己的特点,就像每一块蛋糕都有不同的味道。
在推导过程中,他还得考虑各种物理条件,就像厨师做菜要考虑火候、调料的搭配一样。
他要让他的理论既能解释黑体在高温下的辐射,又能解释低温下的情况。
这就像要做一道菜既能让南方人爱吃,又能让北方人点赞。
随着推导的深入,那些数学公式变得越来越复杂,就像迷宫一样让人头晕目眩。
但普朗克没有放弃,他像一个执着的探险家,在这个迷宫里寻找着出口。
最后,经过他的不懈努力,他成功地推导出了黑体辐射公式。
这个公式就像一把神奇的钥匙,打开了黑体辐射这个神秘大门。
他的理论就像一阵清风,吹走了之前笼罩在黑体辐射上的迷雾。
这一推导让整个科学界都震惊了,普朗克也像一个超级英雄一样,站在了科学的舞台上。
黑体辐射与普朗克公式
理学院 物理系
§2.1黑体辐射与普朗克公式
dE
dV d
单色:单一波长(频率)
二.普朗克公式推导 1.普朗克光量子假说: 黑体由带电谐振子组成,且这些谐振子能量取值
只能为谐振子最小能量 = h 的整数倍。 2.普朗克公式:
在温度T的热平衡状态下,黑体辐射分配到每个 模式的平均能量为:
2019年11月21日星期四
理学院 物理系
§2.1黑体辐射与普朗克公式
E
h
eh / kT
1
K=1.3810ˉ²³—玻尔兹曼常数
由(1—6)式,在ν ~ν +dν 内光波模式数为:
M
8π 2d
c3
V
故,单位体积,单位频率间隔内模式数为:
2019年11月21日星期四
理学院 物理系
§2.1黑体辐射与普朗克公式
第2章 激光工作物质及基本原理
§2.1黑体辐射与普朗克公式
一.黑体辐射 1.热辐射:任何物体在任何温度下都在不断向外发射 各种波长电磁波现象。
2.黑体:完全吸收各种波长电磁波而无反射和透射的 物体。
3.单色能量密度:单位体积内,频率在ν 处的单位频 率间隔内的电磁辐射能量。
2019年11月21日星期四
mυ
M
V d
8π 2
c3
—单色Байду номын сангаас式密度
黑体辐射单色能量密度为:
ρυ
mυ
E
8π h
c3
3
1 eh/kT 1
……①
—黑体辐射普朗克公式 ,K =1.38×10-23玻尔兹 曼常数, h=6.63×10-34 普朗克常量 。
普朗克黑体辐射公式推导
普朗克黑体辐射公式推导普朗克黑体辐射公式是描述黑体辐射谱的一个重要公式,由德国物理学家马克斯·普朗克于公元1900年推导得出。
这个公式在量子力学的起源和发展中起到了重要的作用,被称为“普朗克的奇迹”。
下面我们将对普朗克黑体辐射公式进行推导。
首先,我们需要了解什么是黑体辐射。
黑体是指一个能将所有传入它的辐射吸收完全,并能以最大限度地辐射出来的理想物体。
黑体辐射谱指的是黑体在不同波长上辐射的强度分布特性。
普朗克的推导基于两个假设。
第一,电磁辐射是由许多具有不同能量的微观振动子组成的。
第二,这些微观振动子的能量是量子化的,即只能取离散的特定值。
根据热力学理论,一个谐振子在频率ω上分布的能量是由玻尔兹曼分布给出的:n(ω) = (1 / (exp(ħω / kT) - 1)其中n(ω)是单位体积中在频率ω上的振动子数,ħ是普朗克常量除以2π,k是玻尔兹曼常量,T是温度。
一个谐振子的能量为ħω,所以单位体积中在频率ω上的能量分布就是n(ω)乘以该能量:E(ω)=ħω*n(ω)现在我们将微观振动子的能量与频率进行积分,得到所有振动子的能量。
积分的范围从零到无穷大,对于每一个能量级别ΔE,能量能取的频率范围是(ΔE-ΔE+δΔE),其中δΔE是能量级别间的间隔。
我们有:E(ΔE)=∫(ΔE-ΔE+δΔE)E(ω)dω代入E(ω)的表达式:E(ΔE)=∫(ΔE-ΔE+δΔE)ħω*n(ω)dω然后将n(ω)的表达式代入:E(ΔE) = ∫(ΔE-ΔE+δΔE) ħω * (1 / (exp(ħω / kT) - 1)) dω接下来,我们通过变换积分变量,将积分变为更简洁的形式。
令x=ħω/(kT),代入上式:E(ΔE) = (kT)^4 / (ħ^3 c^2) ∫(ΔE-ΔE+δΔE) x^3 / (exp(x) - 1) dx右边的积分是一个标准的积分,可以通过数值计算或查表得到。
下面我们将这个积分表示为一个函数f(x)。
(完整word版)黑体辐射普朗克公式推导
黑体普朗克公式推导1. 空腔内的光波模式数在一个由边界限制的空间V 内,只能存在一系列独立的具有特定波矢k 的平面单色驻波。
这种驻波称为电磁波的模式或光波模式,以k 为标志。
设空腔为立方体,如下图x图1 立方体空腔沿三个坐标轴方向传播的波分别应满足的驻波条件是⎪⎪⎪⎩⎪⎪⎪⎨⎧=∆=∆=∆222λλλq z n y m x (1)式中m 、n 、q 为正整数。
将xx k λπ2=代入(1)式中,有xm k x ∆=π则在x 方向上,相邻两个光波矢量的间隔为: xx m x m k x ∆=∆--∆=∆πππ)1( 同理,相邻两光波矢在三个方向的间隔为:⎪⎪⎪⎩⎪⎪⎪⎨⎧∆=∆∆=∆∆=∆z k y k x k zy x πππ (2)因此每个波矢在波矢空间所占的体积元为 Vzy x k k k z y x 33ππ=∆∆∆=∆∆∆(3)xk y图2 波矢空间在波矢空间中,处于k 和k d 之间的波矢k 对应的点都在以原点为圆心、k 为半径、k d 为厚度的薄球壳内,这个球壳的体积为()k k k k k d 4d 3434233πππ=-- (4) 式中k =k 、k d d =k 。
根据(1)式的驻波条件,k 的三个分量只能取正值,因此k d 和k d 之间的、可以存在于V 中的光波模式在波矢空间所占的体积只是上述球壳的第一卦限,所以2d 8d 422kk k k V k ππ== (5) 由(3)式已知每个光波矢的体积元,则在该体积内的光波模式数为V kk V V M k 223d /2ππ== (6)式中乘以2是因为每个光波矢量k 都有两个可能的偏振方向,因此光波模式数是光波矢量数的2倍。
由于λπ2=k ,λλπd 2d 2=k ,上式可以用波长形式表示,即在体积为V 的空腔内,波长λλd +间隔的光波模式数为:λλπd 84VM = (7)2. 黑体辐射公式黑体辐射是黑体温度T 和辐射场波长λ的函数。
黑体辐射力计算公式
黑体辐射力计算公式普朗克辐射定律(Planck)则给出了黑体辐射的具体谱分布,在一定温度下,单位面积的黑体在单位时间、单位立体角内和单位波长间隔内辐射出的能量为B(λ,T)=2hc2 /λ5 ·1/exp(hc/λRT)-1B(λ,T)—黑体的光谱辐射亮度(W,m-2 ,Sr-1 ,μm-1 ) λ—辐射波长(μm)T—黑体绝对温度(K、T=t+273k)C—光速(2.998×108 m·s-1 )h—普朗克常数,6.626×10-34 J·SK—波尔兹曼常数(Bolfzmann),1.380×10-23 J·K-1 基本物理常数由图2.2可以看出:①在一定温度下,黑体的谱辐射亮度存在一个极值,这个极值的位置与温度有关,这就是维恩位移定律(Wien)λm T=2.898×103 (μm·K)λm —最大黑体谱辐射亮度处的波长(μm)T—黑体的绝对温度(K)根据维恩定律,我们可以估算,当T~6000K时,λm ~0.48μm(绿色)。
这就是太阳辐射中大致的最大谱辐射亮度处。
当T~300K,λm~9.6μm,这就是地球物体辐射中大致最大谱辐射亮度处。
②在任一波长处,高温黑体的谱辐射亮度绝对大于低温黑体的谱辐射亮度,不论这个波长是否是光谱最大辐射亮度处。
如果把B(λ,T)对所有的波长积分,同时也对各个辐射方向积分,那么可得到斯特番—波耳兹曼定律(Stefan-Boltzmann),绝对温度为T的黑体单位面积在单位时间内向空间各方向辐射出的总能量为B(T)B(T)=δT4 (W·m-2 )δ为Stefan-Boltzmann常数, 等于5.67×10-8 W·m-2 ·K-4 但现实世界不存在这种理想的黑体,那么用什么来刻画这种差异呢?对任一波长,定义发射率为该波长的一个微小波长间隔内,真实物体的辐射能量与同温下的黑体的辐射能量之比。
普朗克黑体辐射公式推导
普朗克黑体辐射公式推导步骤1:假设黑体内的辐射能量由一系列处于不同能级上的振子所组成。
考虑到振子的能量是量子化的,那么每个振子只能具有离散的能量,即E = nhv,其中E为能量,n为量子数,v为辐射频率,h为普朗克常数。
步骤2:设想黑体内的振子可以具有不同的能量量子数n,表示各个振子能量的分布情况。
我们假设振子的能量量子数n符合玻尔兹曼分布,即n能级的占有数为exp(-E_n / kT),其中E_n为n能级的能量,k为玻尔兹曼常数,T为黑体的温度。
步骤3:进一步假设振子的能量量子数n的平均值为,每个振子的能量为E = nhv,则黑体的总能量可以表示为U = ∑(nE) = ∑(nhvexp(-E_n / kT))。
在这里,∑代表对所有能级进行求和。
步骤4:将能量量子数n的平均值表示为,并代入总能量公式。
整理得:U = ∑((nvexp(-E_n / kT))hv步骤5:通过积分,将对所有可能的能级n进行求和替换为对能量E的积分。
利用代换关系dn = dE / hv,将求和替换为积分。
同样,将E_n也替换为E。
U = ∫(Eexp(-E / kT)) / (hv) * dE步骤6:对积分进行推导求解,得到:U = (kT)^4 / (h^3c^2) * ∫(E^3 / (exp(E / kT) - 1)) * dE这就是普朗克黑体辐射公式的具体形式,其中c为光速。
该公式描述了黑体辐射频谱与温度之间的依赖关系,表征了能量密度与频率的分布规律。
简单总结一下,普朗克黑体辐射公式的推导基于能量量子化和能级分布的假设。
通过对振子能量的分布以及总能量的计算,得到了描述黑体辐射的具体公式。
这个公式的重要性在于引入了能量的量子化概念,为后来量子力学的发展奠定了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普朗克黑体辐射公式的推导
所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。
黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。
辐射热平衡状态:处于某一温度T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。
实验发现:
热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度T 有关而与黑体的形状和材料无关。
实验得到: 1.Wien 公式
从热力学出发加上一些特殊的假设,得到一个分布公式:
Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。
2. Rayleigh-Jeans 公式
Rayleigh-Jeans 公式在低频区和实验相符,但是在
高频区公式与实验不符,并且
∞→=⎰∞
v v d E E ,既单位体积的能量发散,而
实
验测得的黑体辐射的能量密度是4
T E σ=,该
式
叫做Stefan-Bolzmann 公式,σ叫做Stefan-Bolzmann 常数。
3. Planck 黑体辐射定律
1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。
作为辐射原子的模型,Planck 假定:
(1)原子的性能和谐振子一样,以给定的频率v 振荡; (2)黑体只能以E=hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。
得到:
νννπνρνd kT h C h d ⎪⎪⎭
⎫ ⎝⎛-=1)/exp(1
833该式称为Planck 辐射定律 h 为普朗克常数,h=s j .10626.634
-⨯
4,普朗克的推导过程:
把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为)
.(),(wt r K i k k e C t r -=αβψ,
为常系数振方向,表示两个互相垂直的偏ααk C 2,1=
每一个简振模在力学上等价于一个自由度,记频率在(
)νννd +,内的自由度数为()ννd g ,
则(0,v )范围内的总自由度数G(v)与g(v)的关系为()()νννν
d g G ⎰=0。
借助几何方法求出()3338νπνc V G =
,取微分得()ννπννd c
V d g 2
3
8= 令E 代表体积为V 的空窖内热平衡辐射的总内能,()ννd T u ,代表单位体积,频率间隔在()νννd +,内的能量,
于是()ννεννd g d T u V E
⎰⎰∞
∞==0
~0)(,,的振子的平均能量代表频率为νε,()()ννπνννd c g V d g 23~81=≡代
表单位体积内频率间隔在()νννd +,内的振动自由度数。
可以得到
()d T v u ,适用,E=hv
,对即()νε其中(Z ν()1
-=kT
e
νε
把上式代入()(
)ννενd g d T v u ~
,=得到: ()1
8,/33-=kT h d e h c d T v u νν
νπν这就是普朗克辐射公式。
此
时
辐射场
的内能为
()()⎰⎰⎰∞
=∞
=∞
===-==-==0
33454
334
3
0/33
158,18/,18,n x n kT h n c h k a aT dx e x h kT c E kT hv x e
d h c d T u E ππννπ
ννν其中得令,5,对Planck 辐射定律的讨论:νννπνρνd kT h C h d ⎪⎪⎭
⎫ ⎝⎛-=1)/exp(1
833 (1)当v 很大(短波)时,因为exp(hv/kT)-1≈exp(hv/kT),
于是
Planck 定律化为Wien 公式。
νννπνρνd kT h C h d ⎪⎪⎭
⎫ ⎝⎛-=1)/exp(1
833变为νννπνρνd kT h C h d )/ex p(833-= 2)当v 公式。
3)
4)最新文件 5)。