二元函数可导 可微与连续性的关系
二元函数连续可微偏导之间的关系解读
一、引言对于一元函数而言,函数y=f(x在点x0处连续、导数存在、可微这三个概念的关系是很清楚的,即可微一定连续,但连续不一定可微,可微和导数存在是等价的。
对多元函数而言,由于偏导数的出现,使得他们之间的关系要复杂的多。
下面以二元函数为例,探讨其在点(x0,y0处连续、偏导数存在、可微、偏导数连续之间的关系。
二、二元函数连续、偏导数存在、可微、偏导数连续之间的关系1.可微与连续的关系假设函数f(x,y在点(x0,y0处可微,那么在该点连续,但反之不成立(同一元函数。
证明:因为f(x,y在点(x0,y0处可微,因此有0≤f(x0+△x,y0+△y-f(x0,y0≤A△x+B△y+O(O→(△x→0,△y→0,所以lim(△x,△y→(0,0f(x0+△x,y0+△y=f(x0,y0,故f(x,y在点(x0,y0处连续。
反之不成立。
例1.f(x,y=x2yx2+y2,x2+y2≠00,x2+y2=$在点(0,0处连续,但在该点不可微。
2.偏导数存在与可微的关系由定理17.1[1](可微的必要条件,函数f(x,y在点(x0,y0处可微,那么f(x,y在点(x0,y0的偏导数一定存在;但反之不成立,如例1中函数f(x,y在点(0,0处偏导数存在,但在此点不可微。
3.偏导数连续与可微的关系由定理17.2[2](可微的充分条件知,函数f(x,y在点(x0,y0处偏导数连续,那么f(x,y 在点(x0,y0处可微;但反之不成立,例2.f(x,y=(x2+y2sin1x2+y2,x2+y2≠00,x2+y2=%’’’&’’(0在点(0,0处可微,但偏导数在点(0,0不连续。
4.连续与偏导数存在之间的关系二元函数连续与偏导数存在之间没有必然的联系。
例3f(x,y=x2+y2(圆锥在点(0,0连续但在该点不存在偏导数。
更值得注意的是,即使函数在某点存在对所有自变量的偏导数,也不能保证函数在该点连续。
例4.f(x,yxyx2+y2,x2+y2≠00,x2+y2=$在点(0,0不连续,但f y(0,0=lim△y→∞0-0=0,f y(0,0=lim△y→∞0-0△y=0。
可导,连续,可微,可积之间的关系
可导,连续,可微,可积之间的关系在微积分学中,可导、连续、可微和可积是几个基本概念,它们之间的关系非常密切。
本文将从这几个概念的定义入手,逐一探讨它们之间的联系和区别。
一、可导和连续在数学中,函数的可导性是指函数在某一点处的导数存在。
而连续性则是指函数在某一点处的极限存在且等于函数在该点的函数值。
可导和连续的关系非常密切,它们之间的联系可以用以下定理来描述:定理1:若函数f(x)在点x0处可导,则f(x)在x0处连续。
证明:根据导数的定义,我们有:f'(x0)=lim(h->0)[f(x0+h)-f(x0)]/h因此,当h->0时,f(x0+h)-f(x0)趋近于0,即:lim(h->0)[f(x0+h)-f(x0)]=0因此,f(x)在x0处连续。
从上述定理可以看出,可导性是连续性的一种更高级别的要求。
如果一个函数在某一点处可导,那么它在该点处一定连续。
二、可微和可导在微积分学中,可微性是指函数在某一点处存在一个线性逼近,该逼近可以用函数在该点处的导数来表示。
而可导性是指函数在某一点处的导数存在。
可微和可导的关系可以用以下定理来描述:定理2:若函数f(x)在点x0处可微,则f(x)在x0处可导。
证明:根据可微性的定义,我们有:f(x)=f(x0)+f'(x0)(x-x0)+o(x-x0)其中,o(x-x0)表示x->x0时,x-x0趋近于0的高阶无穷小量。
将x=x0+h代入上式,得到:f(x0+h)=f(x0)+f'(x0)h+o(h)因此,当h->0时,f(x0+h)-f(x0)趋近于0,即:lim(h->0)[f(x0+h)-f(x0)]/h=f'(x0)因此,f(x)在x0处可导。
从上述定理可以看出,可微性是可导性的一种更高级别的要求。
如果一个函数在某一点处可微,那么它在该点处一定可导。
三、可积和连续在微积分学中,可积性是指函数在某一区间上的积分存在。
二元函数的连续、偏导数、可微之间的关系
摘要 (1)关键词 (1)Abstract (1)Key words (1)引言 (1)1二元函数连续、偏导数、可微三个概念的定义 (1)2二元函数连续、偏导数、可微三个概念之间的关系 (2)二元函数连续与偏导数存在之间的关系 (2)二元函数连续与可微之间的关系 (3)二元函数可微与偏导数存在之间的关系 (3)二元函数可微与偏导数连续之间的关系 (4)二元函数连续、偏导数、可微的关系图 (6)参考文献 (7)致谢 (8)二元函数的连续、偏导数、可微之间的关系摘要 一元函数可微与可导等价,可导必连续.但二元函数并非如此,以下文章给出了二元函数连续、偏导数、可微之间的关系,并给出了简单的证明,且用实例说明了它们之间的无关性和在一定条件下所具有的共性.关键词 二元函数 连续 偏导数 可微The Relationship among Continuation, Partial Derivativesand Differentiability in Binary FunctionAbstract Unary function differentiable with derivative equivalent, will be continuously differentiable. But the dual function is not the case, the following article gives a continuous function of two variables, partial derivatives, can be said the relationship between them, and gives a simple show, and illustrated with examples related between them and under certain conditions have in common..Key words binary function continuation partial derivatives differentiability引言 二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念.对于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理论知识.本文详细讨论这三者之间的关系.1 二元函数连续、偏导数、可微三个概念的定义定义1 设f 为定义在点集2D R ⊂上的二元函数,0D P ∈(0P 或者是D 的聚点,或者是D 的孤立点),对于任给的正数ε,总存在相应的正数δ,只要0,)(D P U P δ⋂∈,就有0)||()(f P f P ε<-,则称f 关于集合D 在点0P 连续.定义2 设函数(,),(,)z f x y x y D =∈,若00,)(y D x ∈且0,)(y f x 在0x 的某一邻域内有定义,则当极限00000000(,))(,)(,limlimx x x f x y f x y f x x y x x∆→∆→+-=∆∆∆∆存在时,则称这个极限为函数f 在点00,)(y x 关于x 的偏导数,记作0(,)|x y fx∂∂.定义3 设函数(,)z f x y =在点000,)(y P x 某邻域0()U P 内有定义,对于0()U P 中的点00,)(,)(y P x y x x y ++=∆∆,若函数f 在点0P 处的全增量可表示为0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+,其中A 、B 是仅与点0P 有关的常数,()ορρ=是较ρ高阶的无穷小量,则称函数f 在点0P 处可微.2 二元函数连续、偏导数、可微三个概念之间的关系二元函数连续与偏导数存在之间的关系例[1]122,(,)(0,0)(,)0,(,)(0,0)xyx y x yf x y x y ⎧≠⎪+=⎨⎪=⎩在(0,0)偏导数存在但不连续. 证明 因为 00(,0)(0,0)00(0,0)limlim 0x x x f x f f x x→→--===, 同理可知 (0,0)0y f =. 所以 (,)f x y 在(0,0)偏导数存在. 因为220,0limx y xyx y →→+ 极限不存在,所以 (,)f x y 在(0,0)不连续.例2[2](,)f x y =在(0,0)点连续,但不存在偏导数. 证明 因为0,00,lim (,)lim0(0,0)x y x y f x y f →→→→===,所以(,)f x y =在(0,0)点连续,因为00(,0)(0,0)(0,0)lim x x x f x f f x →→-== ,该极限不存在,同理 (0,0)y f 也不存在.所以(,)f x y =在点(0,0)连续,但不存在偏导数.此二例说明: 二元函数连续与偏导数存在不等价,偏导数存在不一定连续,连续不一定偏导数存在.这与一元函数不同.一元函数中,可导一定连续,连续不一定可导. 二元函数连续与可微之间的关系定理1[3] 若(,)z f x y =在点(,)x y 可微,则(,)z f x y =在点(,)x y 一定连续. 证明 (,)z f x y =在点(,)x y 可微,0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+ (1)所以 当0,0x y ∆→∆→时,有0z ∆→,即 (,)z f x y =在该点连续.例3[4]证明(,)(0,0)(,)0,(,)(0,0)x y f x y x y ≠==⎩在(0,0)点连续,但在(0,0)点不可微.证明 令cos ,sin x r y r θθ==,则(,)00x y r →⇔→.因为2cos sin |||cos sin |0(0)r r r r r θθθθ==≤→→,所以(,)f x y 在(0,0)点连续.按偏导数定义00(,0)(0,0)0(0,0)lim lim 0x x x f x f f xx ∆→∆→∆-===∆∆, 同理 (0,0)0y f = .若(,)f x y 在点(0,0)可微,则(0,0)(0,0)(0,0)(0,0)x y z dz f x y f f x f y ∆-=+∆+∆--∆-∆=应是ρ=较高阶的无穷小量. 因为220limlimz dzx yx y ρρρ→→∆-∆∆=∆+∆ 该极限不存在,所以(,)f x y 在点(0,0)不可微.此例说明: 二元函数在某点连续,不一定可微,但可微一定连续.这与一元函数有相同的结论.二元函数可微与偏导数存在之间的关系定理2[5] 若二元函数f 在其定义域内一点00,)(y x 处可微,则f 在该点关于每个自变量的偏导数都存在,且(1)式中的0000,),,)((x y A f y B f y x x ==.证明 因为 (,)z f x y =在点(,)x y 可微,则0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+.若令上式中0y ∆= ,则0000(,)(,)(||)z f x x y f x y A x x ο=+∆∆-=∆+∆, 所以 000000(,)(,)(||)lim lim x x A xf x x y f x y x A x ο∆→∆→=∆+∆-∆+=∆. 即A zx=∂∂.类似可证B z y =∂∂. 例4[6]设2222222,0(,)0,0x y x y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩,则(,)f x y 在点(0,0)偏导数存在,但在该点不可微.解 事实上(1)0(,0)(0,0)(0,0)lim0x x f x f f x →-==,(0,)(0,0)(0,0)lim0y y f y f f y→-==,故 (,)f x y 在点(0,0)偏导数存在. (2)因为200,limlimx y f dfρρ→∆→∆→∆-=,此时若令y k x ∆=∆,则230,0,lim limx y x y ∆→∆→∆→∆→=此极限显然不存在,所以0limf dfρρ→∆-不存在,所以 (,)f x y 在点(0,0)不可微.此例说明: 二元函数中,偏导数存在不一定可微;可微则偏导数存在.这与一元函数中,可微与可导等价有区别. 函数可微与偏导数连续之间的关系定理3[7] 若二元函数(,)z f x y =的偏导数在点00(,)x y 的某邻域内存在,且x f 与yf 在点00(,)x y 处连续,则函数f 在点00(,)x y 处可微.证明 我们把全增量0000,)(,)(y f x y z f x x y ++-∆=∆∆00000000[,),)][,)(,)](((y y y f x y f x x y f x y f x y =++-+++-∆∆∆∆在第一个括号里,它是函数0,)(y f x y +∆关于x 的偏增量;在第二个括号里,则是函数0(,)f x y 关于y 的偏增量.对它们分别应用一元函数的拉格朗日中值定理,得 010002,),(()x y y y z f x x y x f x y y θθ++++∆=∆∆∆∆∆ 12,10θθ<< (2) 由于x f 与y f 在点00(,)x y 处连续,因此有 01000,)(,)(x x y x y f x x y f θα++=+∆∆, (3)00200,(,)()y y y x y f x y f θβ++∆= ,(4)其中 当0,0x y ∆→∆→时,有0,0αβ→→. 将(3) ,(4)代入(2)式,则得0000(,)(,)x y x y x y z f x f y x y αβ=+∆∆∆+∆+∆. 所以 函数f 在点00(,)x y 处可微.例5[8]22()sin (,)(0,0)(,)0,(,)(0,0)x y x y f x y x y ⎧+≠⎪=⎨⎪=⎩在(0,0)处可微,但(,)x f x y 与(,)y f x y 均在(0,0)处不连续.解因为220,0lim ()sin0(0,0)x y x y f →→+==,所以 (,)f x y 在(0,0)处连续.00(,0)(0,0)(0,0)lim 0x x x f x f f x→→-===,同理 (0,0)0y f =.当220x y +≠时,0,0lim 2sinx x y f x →→=极限不存在,故(,)x f x y 在点(0,0)不连续. 同理可证(,)y f x y 在(0,0)处不连续.lim0f dfρρρ→→∆-==,所以(,)f x y 在(0,0)处可微.此例说明 二元函数偏导数连续并不是可微的必要条件.由此可知定理3是可微的充分条件.由此引出定理4,降低函数可微的条件.定理4[9] 若(,)f x y 在0()U P 内(,)x f x y 存在,且(,)x f x y 在00(,)o P x y 连续,(,)y f x y 在0P 存在,证明:f 在0P 可微.证明 0000(,)(,)f f x x y y f x y ∆=+∆+∆-00000000[(,)(,)][(,)(,)]f x x y y f x y y f x y y f x y =+∆+∆-+∆++∆- 由已知 (,)x f x y 存在,且在0(,)o x y 连续,有0000010(,)(,)(,)x f x x y y f x y y f x x y y xθ+∆+∆-+∆=+∆+∆∆11(,)(0)xf x y x x αα=∆+∆→,因为 0000000(,)(,)lim(,)y y f x y y f x y f x y y∆→+∆-=∆,所以 00000022(,)(,)(,)(0)y f x y y f x y f x y y y αα+∆-=∆+∆→ , 又因 1212||||||0x yααααρ∆+∆≤+→,所以 f 在点0P 可微. 注 此定理中(,)x f x y 与(,)y f x y 互换,结论仍然成立. 二元函数连续、偏导数、可微的关系如图二元函数连续二元函数偏导数存在二元函数可微二元函数偏导数连续参考文献[1]常庚哲,史济怀,数学分析[M].北京:高等教育出版社,:97[2]刘文灿,刘夜英,数学分析[M].西安:陕西人民出版社,:116[3]朱正佑,数学分析[M].上海:上海大学出版社,:188[4]黄玉民,李成章,数学分析[M].北京:科学出版社,:61-62[5]华东师范大学数学系. 数学分析(第二版)[M].北京:高等教育出版社,110[6]周良金,王爱国,函数连续及可微的关系[J].高等函授学报,19(5):35[7]陈纪修,於崇华,金路,数学分析(第二版)[M].北京:高等教育出版社,:142-143[8]刘新波,数学分析选讲[M].哈尔滨:哈尔滨工业大学出版社,:151[9]《大学数学名师导学丛书》编写组,数学分析名师导学[M].北京:中国水利水电出版社,2004:147-148致谢感谢老师对本论文从选题、构思、资料收集到最后定稿的各个环节给予的指引和教导,使我对分段函数的分析性质有了更深刻的认识,并最终得以完成毕业论文,对此我表示衷心的感谢,老师严谨的治学态度、丰富渊博的知识、敏锐的学术思维、精益求精的工作态度、积极进取的科研精神以及诲人不倦的师者风范是我毕生的学习楷模.通过这一阶段的努力,我的毕业论文已接近尾声,作为一个本科生的毕业论文,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有老师的亲切关怀和悉心指导,完成本次毕业论文将变得十分困难.老师平日工作繁多,但在这篇论文的写作过程中,老师不辞辛劳,多次就论文中许多核心的问题做深入细致的探讨并给我提出切实可行的指导性建议,才最终得以完成本次毕业论文.老师的这种一丝不苟的负责精神,使我深受感动.在此,请允许我向尊敬的老师表示真挚的谢意.最后,还要感谢我的辅导员在这四年来对我的帮助与鼓励,以及院系的所有领导对我的栽培与支持.并向在百忙中抽出时间对本论文进行评审,并提出宝贵意见的各位老师表示衷心的感谢,致以最崇高的敬意.。
二元函数的连续偏导可微
二元函数的连续性、偏导及可微之间的联系二元函数连续性、偏导数存在性、及可微的定义 1.二元函数的连续性定义 设f 为定义在D 上的二元函数,0P D ∈(它或者是D 的聚点,或者是D 的孤立点) ,对于任给的正数ε,总存在相应的正数δ,只要()0;P P D δ∈⋂,就有()()0f P f P ε-<, 则称f 在P 点连续2.二元函数的偏导数定义 设函数(,)z f x y =在点000(,)P x y 的某一邻域内有定义,当y 固定在0y 而x 在0x 处有增量x ∆ 时,相应地函数有增量x z ∆=0000(,)(,)f x x y f x y +∆-如果 00000(,)(,)limx f x x y f x y x∆→+∆-∆存在,则称此极限为函数z (,)f x y =在点000(,)P x y 处对x 的偏导数,记作00(,)x f x y 或()00,x y fx ∂∂对y 的偏导数同理 3.二元函数的可微性定义 设函数(,)z f x y =在点()000,P x y 的某邻域()0U P 内有定义,对于()0U P 中的点()00,(,)P x y f x x y y =+∆+∆,若函数f 在0P 处的全增量z ∆可表示为:()()0000(,),z f x x y y f x y A x B y o ρ∆=+∆+∆-=∆+∆+, (1)其中AB 是仅与点P 0有关的常数,ρ=,()o ρ是较高阶的无穷小量,则称函数f 在点P 0可微.并称(1)中A x B y ∆+∆为f 在点P 0的全微分,记作000(,)P dz df x y A x B y ==∆+∆说明:1)A 、B 是与x ∆y ∆无关的常数,但与0P 可能有关;2) dz 是z ∆的线性主部0lim0z dzρρ→∆-=二元函数连续性、偏导数存在性、及可微的联系多元函数是一元函数的推广,因此它保留着一元函数的许多性质,但也有些差异,这些差异主要是由多元函数的“多元”而产生的.对于多元函数,我们着重讨论二元函数,在掌握了二元函数的有关理论和研究方法之后,在将它推广到一般的多元函数中去.本文将通过具体实例来讨论二元函数连续性、偏导数存在性、及可微的联系. 一、二元函数连续性与偏导存在性间的关系偏导存在不一定连续,反之连续不一定有偏导存在 1)函数(,)f x y 在点000(,)p x y 连续,但偏导不一定存在. 例1.证明函数(,)f xy =(0,0)连续偏导数不存在.证明:∵(,)(0,0)(,)lim (,)lim0(0,0)x y x y f x y f →→===,故函数(,)f x y =(0,0)连续.由偏导数定义:001,(0,0)(0,0)(0,0)limlim 1,x x x x f x f f x x ∆→∆→∆>⎧+∆-===⎨-∆<∆⎩故(0,0)x f 不存在.同理可证(0,0)y f 也不存在.2)函数(,)f x y 在点000(,)P x y 偏导存在,但不一定连续.例 2.证明函数22,0(,)1,0x y xy f x y xy ⎧+==⎨≠⎩在点(0,0)处(0,0)x f ,(0,0)y f 存在,但不连续证明 : 由偏导数定义:00(0,0)(0,0)(0,0)lim lim 0x x x f x f f x x→∆→+∆-==∆=∆ 同理可求得(0,0)0y f =∵22(,)(0,0)(,)(0,0)lim (,)lim ()1(0,0)0x y x y f x y x y f →→=+=≠=故函数22,0(,)1,0x y xy f x y xy ⎧+==⎨≠⎩在点(0,0)处不连续.综上可见,二元函数的连续性与偏导存在性间不存在必然的联系. 二、二元函数的可微性与偏导间的关系1.可微性与偏导存在性1) 可微则偏导存在(可微的必要条件1)若二元函数(,)f x y 在其定义域内一点000(,)P x y 处可微,则f 在该点关于每个自变量的偏导都存在,且000000(,)(,)(,)x y df x y f x y dx f x y dy =+注1 定理1的逆命题不成立,2)偏导存在,不一定可微.例3证明函数22220(,)0,0x y f x y x y +≠=+=⎩在原点两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)lim lim 0x x x f x f f xx ∆→∆→+∆--===∆∆同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性. 用反证法.若函数f 在原点可微,则[](0,0)(0,0)(0,0)(0,0)x y f df f x y f f dx f dy ⎡⎤∆-=+∆+∆--+=⎣⎦应是较ρ=2200lim lim f df x y x y ρρρ→→∆-∆∆=∆+∆ 当动点(,)x y 沿直线y mx =趋于(0,0)时,则(,)(0,0)2222(,)(0,0)lim lim 11x y y mxx y xy m mx y m m →=→==+++ 这一结果说明动点沿不同斜率m 的直线趋于原点时,对应的极限值也不同.因此所讨论的极限不存在.故函数f 在原点不可微.例4. 22220(,)0,x y f x y x y +≠=+=⎪⎩在(0,0)处两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)limlim 0x x x f x f f x x∆→∆→+∆--===∆∆ 同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性.[](0,0)(0,0)(0,0)(0,0)x y f df f x y f f dx f dy ⎡⎤∆-=+∆+∆--+=⎣⎦为此考察极限limf dfρρρ→→∆-=当动点(,)x y 沿直线y =趋于时,则(,)(0,0)(,)limlim x y y mxx y →=→==0≠因此f 在原点不可微例5. 证明函数2222222,0(,)0,0x y x y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩在(0,0)两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)limlim 0x x x f x f f x x∆→∆→+∆--===∆∆ 同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性.(0,0)(0,0)0,x y df f dx f dy =+= 222(,)(0,0)x yf f x y f x y ∆∆∆=∆∆-=∆+∆从而()222230,(0,0)222limlimlim0()()x y x y f dfx y x y x y x y ρρρρ→→∆∆→∆∆∆-∆∆∆+∆==≠=∆+∆取因此f 在原点不可微注:本题还可以说明连续不一定可微例6.证明函数2222322222,0(,)()0,0x y x y f x y x y x y ⎧+≠⎪=⎨+⎪+=⎩在(0,0)连续,且两个偏导数都存在但不可微.证明(1)∵223222()x y x y ≤+∴0,4,εδεδε∀>∃=<<∴(,)(0,0)lim (,)0(0,0)x y f x y f →==故函数(,)f x y 在点(0,0)连续.(2)又00(,0)(0,0)0(0,0)lim lim 0x x x f x f f xx →→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===(3) (0,0)(0,0)0,x y df f x f y =∆+∆=(,)(0,0)(,)f f x y f f x y ∆=∆∆-=∆∆从而222220limlim ()()f dfx y x y x y ρρρ→→∆-∆∆=∆=∆∆+∆取不存在 故 f 在原点不可微注:本题还可以说明连续不一定可微2. 偏导连续与可微1)偏导连续,一定可微.(可微的充分条件)若二元函数(,)z f x y =的偏导在点000(,)P x y 的某邻域内存在,且x f 与y f 在点000(,)P x y 处连续,则函数(,)f x y 在点000(,)P x y 可微.注2 偏导连续是函数可微的充分而非必要条件.2)可微,偏导不一定连续例7.证明函数()222222221sin ,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)处不连续.证明 22(,),0x y x y ∀+≠,有222222121(,)2sincos x x f x y x x y x y x y =-+++222222121(,)2sin cos y y f x y y x y x y x y =-+++ (1)当y=x 时,极限2200111lim (,)lim(2sin cos )22x x x f x x x x x x→→=-不存在,则(,)x f x y 在(0,0)点不连续.同理可证(,)y f x y 在(0,0)点不连续.(2)∵ 200(,0)(0,0)1(0,0)limlim sin 0x x x f x f f x x x→→-===200(0,)(0,0)1(0,0)lim lim sin 0y y y f y f f y y y→→-===则(0,0)(0,0)0,x y df f dx f dy =+=2222222211(,)(0,0)()sinsin ((,):0)f f x y f x y x y x y x y ρρ∆=-=+=∀+≠+ 从而2221sin1limlimlim sin0f dfρρρρρρρρρ→→→∆-===即函数(,)f x y 在点(0,0)可微.例8. 证明函数()2222220(,)0,0x y x y f x y x y ⎧++≠⎪=⎨⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)处不连续.证明 22(,),0x y x y ∀+≠,有(,)2x f x y x =(,)2y f x y y = (1)当y=x时,极限00lim (,)lim(2x x x f x x x →→=不存在,则(,)x f x y 在(0,0)点间断.同理可证(,)y f x y 在(0,0)点间断.(2)∵00(,0)(0,0)(0,0)limlim 0x x x f x f f x x→→-===00(0,)(0,0)(0,0)lim lim 0y y y f y f f y y→→-===则(0,0)(0,0)0,x y df f dx f dy =+=(,)(0,0)(,)f f x y f f x y ∆=-=从而201cos1limlimlim cos0f dfρρρρρρρρρ→→→∆-===即函数(,)f x y 在点(0,0)可微.例9.证明函数2222221sin ,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)处不连续.证明 22(,),0x y x y ∀+≠,有22222222121(,)sin cos ()x x y f x y y x y x y x y =-+++22222222121(,)sin cos ()y xy f x y x x y x y x y =-+++(1)当y=x 时,极限2200111lim (,)lim(sin cos )222x x x f x x x x x x→→=-不存在,则(,)x f x y 在(0,0)点不连续.同理可证(,)y f x y 在(0,0)点不连续.(2)∵ 00(,0)(0,0)(0,0)limlim00x x x f x f f x→→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===则(0,0)(0,0)0,x y df f dx f dy =+=221(,)(0,0)sinf f x y f x y x y ∆=∆∆-=∆∆∆+∆从而()22,1limlimx y f dfx y ρρ→∆∆→∆-=∆+∆=0即函数(,)f x y 在点(0,0)可微.三、二元函数的连续性与可微性间的关系 1)可微,一定连续(可微的必要条件2)二元函数(,)f x y 在000(,)P x y 可微,则必然连续,反之不然.2)连续,不一定可微例10.证明函数3222222,0(,)0,0x x y f x y x yx y ⎧+≠⎪=+⎨⎪+=⎩在(0,0)连续,且偏导存在但不可微. 证明:(1)∵322222,x x x x x y x y=⋅≤++ ∴0,,,x y x εδεδδε∀>∃=<<<当时, ∴(,)(0,0)lim (,)0(0,0)x y f x y f →==故函数(,)f x y 在点(0,0)连续.(2) 00(,0)(0,0)(0,0)limlim 1x x x f x f xf xx →→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===(3) (0,0)(0,0),x y df f x f y x =∆+∆=∆(,)(0,0)(,)f f x y f f x y ∆=∆∆-=∆∆从而20limf dfρρρ→→∆-=不存在即函数(,)f x y 在点(0,0)不可微. 注:本题也可以说明偏导存在但不一定可微.例11.证明函数222222sin(),0(,)0,0x y xy x y x y f x y x y +⎧+≠⎪+=⎨⎪+=⎩在(0,0)连续,且偏导存在但不可微. 证明:(1)∵22sin(),222x y x y x y x y xy xy x y xy ++++≤⋅=≤+∴0,,,2x yx y εδεδδε+∀>∃=<<<当时, ∴(,)(0,0)lim (,)0(0,0)x y f x y f →==故函数(,)f x y 在点(0,0)连续.(2) 00(,0)(0,0)0(0,0)lim lim 0x x x f x f f xx →→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===(3) (0,0)(0,0)0,x y df f x f y =∆+∆=(,)(0,0)(,)f f x y f f x y ∆=∆∆-=∆∆从而0limf dfρρρ→→∆-=取y k x ∆=∆则23320022221sin (1)limlim (1)(1)x f dfk kx k k xk k ρρ→∆→∆-++=⋅=++ 不存在 故函数(,)f x y 在点(0,0)不可微.注:本题也可以说明偏导存在但不一定可微. 例12 .证明函数(,)f x y xy =在点(0,0)连续,但它在点(0,0)不可微.证明:(1)∵00lim (,)lim 0(0,0)x x y y f x y xy f →→→→===故函数(,)f x y xy =在点(0,0)连续.例13.证明函数222222,0(,)0,0xy x y x yf x y x y ⎧+≠⎪+⎪=⎨⎪⎪+=⎩在(0,0)连续 ,但不可微.证明:(1)∵2222222222x y xyx y x y x y++≤=++ ∴00lim (,)0(0,0)x y f x y f →→== 故函数(,)f x y 在点(0,0)连续.(2)不可微见例4综上所述二元函数连续性、偏导存在性及可微性间的关系如图所示:偏导连续可微连续 偏导存在补充1.确定α的值,使得函数()222222221sin ,0(,)0,0x y x y x y f x y x y α⎧++≠⎪+=⎨⎪+=⎩在点(0,0)处可微.2.设函数2222(,)sin 0(,)0,0g x y x y f x y x y ⎧+≠⎪=⎨⎪+=⎩, 证明:(1)若(0,0)0g =,g 在点(0,0)处可微,且(0,0)0dg =,则 f 在点(0,0)处可微,且(0,0)0df =.(2)若g 在点(0,0)处可导,且f 在点(0,0)处可微,则(0,0)0df =.3.确定正整数α的值,使得函数()22220(,)0,0x y x y f x y x y α⎧++≠⎪=⎨⎪+=⎩在点(0,0)处(1)连续,(2)偏导存在,(3)存在一阶连续偏导.4.设函数222222,0()(,)00,0px x y x y f x y p x y ⎧+≠⎪+=>⎨⎪+=⎩,试讨论它在(0,0)点处的连续性.。
二元函数连续可微偏导之间的关系解读
1.如果f在点(x0,y0处不连续或偏导数不存在,则f在点(x0,y0处不可微。
2.如果f在点(x0,y0处连续,存在f x(x0,y0、fy(x0,y0,则f在点(x0,y0处可微的充分必要条件是满足下列等价的任一式:
(1△z=f(x0+△x,y0+△y-f(x0,y0
=f x(x0,y0△x+f y(x0,y0△y+o((△x2+(△y2
4.连续与偏导数存在之间的关系
二元函数连续与偏导数存在之间没有必然的联系。
例3f(x,y=x2+y2
(圆锥在点(0,0连续但在该点不存在偏导数。更值得注意的是,即使函数在某点存在对所有自变量的偏导数,也不能保证函数在该点连续。
例4.f(x,y
xy
x2+y2
,x2+y2≠0
0,x2+y2=
$
在点(0,0不连续,但
三、巧妙设计变式训练,促进灵活迁移
所谓“变式”,是指在教学中变化引用的材料内容和形式,从不同角度、用不同方法进行教学,使思维的“触须”伸向不同方位和不向领域。因此,通过变式训练可以实现知识的有效迁移。教师要充分运用“变式”教学,通过“一题多变”、“一图多问”、“多题重组”等形式从多个方面构造问
题,使学生养成多角度、多方位处理问题的习惯。教师提出的问题越多,学生思维越发散,理解越深刻,并通过对所提问题的解答而达到灵活迁移的目的。例如,函数与方程、不等式的结合向来是中考或高考的热点,教师可以通过设计变式训练把三者结合的恰到好处:
(2△z=f(x0+△x,y0+△y-f(x0,y0
=f x(x0,y0△x+f y(x0,y0△y+ε((△x2+(△y2
知识点25可导可微与连续三个概念之间的关系
知识点25可导可微与连续三个概念之间的关系
一、概念介绍
可导:可导指的是函数的可导定义。
函数可导是指一个函数在一些点
存在它的导数。
可微:可微指的是函数的可微定义,即函数在一些区域上的可微定义,这意味着该函数在区域里的每一点都存在导数。
可微函数具有一阶连续性,即如果函数在一点处可微,则它的一阶连续性是成立的,即在邻近的任意
一点处都存在函数的导数。
连续:连续函数是指在它的定义域的任意区域上,函数的值都是连续的,即它的值在它的定义域的任意一点处都可以被无穷小区间所连接到另
一点。
1.连续性是可导和可微的基础:函数可导和可微的前提是连续性,如
果函数不连续,那么它就不能被定义为可导和可微函数,因为可导和可微
函数的定义都要求函数在一些区域上是连续的。
2.可微性是可导的前提条件:如果需要确定函数是否可导,首先要确
定函数是否可微。
只有函数是可微才能被确定为可导函数。
3.连续性是可微函数的充要条件:为了判断函数是否可微,首先要确
定函数是否连续。
只有函数连续,它才能被定义为可微函数;只有连续函
数才能确保在整个定义域上都存在导数,从而满足可微性的定义。
多元函数连续,可导,可微之间的关系
多元函数连续,可导,可微之间的关系多元函数连续、可导,可微之间的关系多元函数是一种指在多元空间中使用多个变量来定义函数的数学形式,并可应用于工程与科学技术领域中,运用数学语言解释物理现象和模拟实际情况。
多元函数连续性、可导性和可微性,是多元函数的基本性质,也是多元函数作为数学形式必须具备的要求。
本文将从三个方面讨论这三个概念之间的关系:多元函数的连续性、可导性和可微性之间的关系,多元函数的可微性如何产生,以及从连续性和可导性到可微性的推导。
一、多元函数的连续性、可导性和可微性之间的关系在探讨多元函数连续可导可微之间的关系之前,有必要先了解这三个概念的含义:多元函数的连续性指的是若多元函数的取值在某一附近的点所具有的连续变动特性,可导指的是在任意一点处多元函数的梯度仍然存在,而可微则指的是多元函数的导数在任意一点处仍然存在。
由于多元函数的可导性是多元函数的连续性的推广,而且可微性又依赖于可导性,因此可以表明:多元函数的可微性是建立在多元函数的连续性和可导性之上的,多元函数连续性及可导性是多元函数可微性的必要条件。
二、多元函数的可微性如何产生多元函数可微性的概念是根据一阶导数概念产生的,即一阶导数表示多元函数在某一点处的增函数率,而一阶导数一般在点连续可导的多元函数上才存在,而多元函数的可微性是指在某一点处梯度的连续变动特性,这就需要多元函数具备可连续可导的特性。
三、从连续性和可导性到可微性的推导由此可知,多元函数的连续性和可导性是产生可微性的必要条件,因此从连续性和可导性推导可微性,可做如下分析:首先,多元函数必须具备连续性,即若多元函数的取值在附近的点所具有的连续变动特性,可以得出多元函数的取值在不同的点上也是连续的,表达在概念上的话就是某一点的函数值变化,另一点的函数值也可以作无限接近的变动,以满足连续性的要求。
其次,多元函数必须具备可导性,即在任意一点处多元函数的梯度仍然存在,可以通过求出梯度的方式,根据多元函数具有可导性的要求,获得一阶导数,由此可以进一步得出多元函数的可微性。
连续性与可微性及导函数存在之间的关...
( x, y ) (0, 0 )
!0
f ( x, y)
∀ 80 ∀
因此函数 z= f (x, y )在点 (x, y )处连续。 反之, 如果函数 z = f ( x, y )在点 (x, y )处连续, 则由二 元函数连续的定义得
lmi f (x + x, y + y ) = f ( x, y)
( x, y ) ( 0, 0 )
个极限为函数 y = f (x )在点 x0 处的导数, 记为 f (x0 ), 即
f
( x0 ) =
lmi
x0
y x
=
lmi f (x0 +
x0
x ) - f (x0 ) x
=
f lmi
x x0
(
x) x
-
f ( x0 x0
)
如果函数 y = f (x )在开区间 I 内的每一点处都可导, 则称
函数 f (x)在开区间 I内可导。
x0
x
x0 x
当 x< 0时, lmi x = - 1; 当 x > 0时, lmi x
x 0-
x
x 0+
x
= 1, 所以 f (x) = x 在 x= 0处不可导。
性质 1: 一元函数在某点可导, 则函数在该点必连续; 反之不一定成立。
2 一元函数可导性与可微性的关系
首先, 设函数 y= f (x )在点 x0 可微, 则由可微的定义 有
y= A x + o( x)
在上式两端同除以 x 得
y x
=
A
+
o(
x) x
∀ 79 ∀
当
x
二元函数可微可导连续之间的关系
二元函数可微可导连续之间的关系在微积分学中,函数的连续性、可导性、可微性是非常重要的概念。
对于一元函数来说,这些概念都有明确的定义和证明,但对于二元函数来说,这些概念的关系就需要更深入的研究。
本文将探讨二元函数可微、可导和连续之间的关系。
一、连续性首先,我们来回顾一下二元函数的连续性。
对于二元函数$f(x,y)$,如果满足以下条件之一,就称 $f(x,y)$ 在点$(x_0,y_0)$ 处连续:1. $lim_{(x,y)rightarrow (x_0,y_0)} f(x,y) =f(x_0,y_0)$;2. $lim_{xrightarrow x_0} f(x,y_0) = f(x_0,y_0)$ 且$lim_{yrightarrow y_0} f(x_0,y) = f(x_0,y_0)$。
其中,条件 1 称为点极限的定义,条件 2 称为分量极限的定义。
二元函数的连续性是二元函数分析的基础,如果一个二元函数在某个点处不连续,那么这个点就不可能是这个函数的极值点或者奇点。
二、可导性接下来,我们来看二元函数的可导性。
对于二元函数$f(x,y)$,如果满足以下条件之一,就称 $f(x,y)$ 在点$(x_0,y_0)$ 处可导:1. $lim_{(x,y)rightarrow (x_0,y_0)} frac{f(x,y)-f(x_0,y_0)}{sqrt{(x-x_0)^2+(y-y_0)^2}}$ 存在;2. $lim_{hrightarrow 0} frac{f(x_0+h,y_0)-f(x_0,y_0)}{h}$ 和 $lim_{hrightarrow 0} frac{f(x_0,y_0+h)-f(x_0,y_0)}{h}$ 都存在。
其中,条件 1 称为偏导数的定义,条件 2 称为方向导数的定义。
如果一个二元函数在某个点处可导,那么这个点就一定是这个函数的极值点或者奇点。
三、可微性最后,我们来看二元函数的可微性。
多元函数可微可导连续之间的关系
多元函数可微可导连续之间的关系在微积分学中,函数的连续性、可导性和可微性是非常重要的概念。
对于一个多元函数来说,如果它在某个点处连续,则该点必须存在,且在该点处取值等于该点左右极限的平均值。
如果在某个点处可导,则该点处存在切平面,并且该点沿着任何方向的方向导数相同。
而可微性则强化了可导性的概念,要求函数在该点附近有一个唯一的线性逼近。
总的来说,可微性是比可导性更加严格的概念,而连续性则是更基本的概念。
对于一个多元函数来说,如果它在某个点处可微,则该点处必定存在连续性和可导性。
然而,反过来就不一定成立,即使一个函数在某个点处连续且可导,也不一定在该点处可微。
这是因为,除连续和可导外,可微性还需要满足一个更强的条件,即极限存在且唯一,因此连续性和可导性仅能保证在该点的某个邻域内存在函数值和导数的一阶逼近,但不能保证在该点处存在一个唯一的线性逼近。
在实际应用中,我们对于一个多元函数的连续性、可导性和可微性都需要进行研究和掌握,以便能更准确、完整地描述和分析这个函数的特性。
在具体问题中,我们需要根据实际需要选择不同的概念和方法,以便更好地解决问题。
除了上述的关系,我们还可以从另一角度来理解它们之间的关系。
对于一个多元函数,如果它在某个点处连续,则说明该点及其周围的点与该点的距离很小,函数值之间的差别也很小。
如果在该点处可导,则说明该点沿着任何方向的变化率相同,函数的变化率也比较平缓,更加光滑。
而可微性则说明该点附近存在一个线性逼近,函数的变化趋势是比较稳定的。
因此,我们可以认为连续性、可导性和可微性是函数光滑程度的不同描述方法。
连续性可以看作是函数在空间上的“连通性”或“完整性”,可导性则可以看作是函数的“斜率”或“变化率”,而可微性则是函数的“切线”或“局部逼近”。
这三种概念都是描述函数光滑程度的有效手段,能够帮助我们更加深入、全面地理解函数的特性。
需要注意的是,在实际应用中,连续性、可导性和可微性并不总是同时满足的,因此我们需要根据具体问题选择不同的分析方法,并特别留意函数在可能出现奇点、断点或不可导点的位置、特性和影响。
二元函数的连续、偏导数、可微之间的关系-推荐下载
目录摘要 (1)关键词 (1)Abstract (1)Key words (1)引言 (1)1二元函数连续、偏导数、可微三个概念的定义 (1)2二元函数连续、偏导数、可微三个概念之间的关系 (2)2.1二元函数连续与偏导数存在之间的关系 (2)2.2二元函数连续与可微之间的关系 (3)2.3二元函数可微与偏导数存在之间的关系 (3)2.4二元函数可微与偏导数连续之间的关系 (4)二元函数连续、偏导数、可微的关系图 (6)参考文献 (7)致谢 (8)本科生毕业论文2二元函数的连续、偏导数、可微之间的关系摘要 一元函数可微与可导等价,可导必连续.但二元函数并非如此,以下文章给出了二元函数连续、偏导数、可微之间的关系,并给出了简单的证明,且用实例说明了它们之间的无关性和在一定条件下所具有的共性.关键词 二元函数 连续 偏导数 可微The Relationship among Continuation, Partial Derivatives andDifferentiability in Binary FunctionAbstract Unary function differentiable with derivative equivalent, will be continuously differentiable. But the dual function is not the case, the following article gives a continuous function of two variables, partial derivatives, can be said the relationship between them, and gives a simple show, and illustrated with examples related between them and under certain conditions have in common..Key words binary function continuation partial derivatives differentiability引言 二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念.对于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理论知识.本文详细讨论这三者之间的关系.1 二元函数连续、偏导数、可微三个概念的定义定义1 设为定义在点集上的二元函数,(或者是的聚点,f 2D R ⊂0D P ∈0P D 或者是的孤立点),对于任给的正数,总存在相应的正数,只要D εδ,就有,则称关于集合在点连续.0,)(D P U P δ⋂∈0)||()(f P f P ε<-f D 0P 定义2 设函数,若且在的某一邻域(,),(,)z f x y x y D =∈00,)(y D x ∈0,)(y f x 0x 内有定义,则当极限存在时,则称这个00000000(,))(,)(,limlim x x x f x y f x y f x x y x x∆→∆→+-=∆∆∆∆本科生毕业论文3极限为函数在点关于的偏导数,记作.f 00,)(y x x 0(,)|x y fx∂∂定义3 设函数在点某邻域内有定义,对于中的(,)z f x y =000,)(y P x 0()U P 0()U P 点,若函数在点处的全增量可表示为00,)(,)(y P x y x x y ++=∆∆f 0P ,其中、是仅与点有关0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+A B0P 的常数,是较高阶的无穷小量,则称函数在点处可微.()ορρ=ρf 0P 2 二元函数连续、偏导数、可微三个概念之间的关系2.1 二元函数连续与偏导数存在之间的关系例 在偏导数存在但不连续.[1]122,(,)(0,0)(,)0,(,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩(0,0)证明 因为 ,00(,0)(0,0)00(0,0)limlim 0x x x f x f f x x→→--===同理可知 . 所以 在偏导数存在.(0,0)0y f =(,)f x y (0,0)因为 极限不存在,所以 在不连续.220,0limx y xyx y →→+(,)f x y (0,0)例在点连续,但不存在偏导数.2[2](,)f x y =(0,0)证明 因为 ,0,00,lim (,)lim0(0,0)x y x y f x y f →→→→===所以 在点连续,(,)f x y =(0,0)因为 ,该极限不存在,00(,0)(0,0)(0,0)lim x x x f x f f x →→-==同理 也不存在.(0,0)y f 所以 在点连续,但不存在偏导数.(,)f x y =(0,0)此二例说明: 二元函数连续与偏导数存在不等价,偏导数存在不一定连续,连续不一定偏导数存在.这与一元函数不同.一元函数中,可导一定连续,连续不一定可导.2.2 二元函数连续与可微之间的关系本科生毕业论文4定理 若在点可微,则在点一定连续.1[3](,)z f x y =(,)x y (,)z f x y =(,)x y 证明 在点可微,(,)z f x y =(,)x y (1)0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+所以 当时,有,即 在该点连续.0,0x y ∆→∆→0z ∆→(,)z f x y =例 证明在点连续,3[4](,)(0,0)(,)0,(,)(0,0)x y f x y x y ≠==⎩(0,0)但在点不可微.(0,0)证明 令,则.cos ,sin x r y r θθ==(,)00x y r →⇔→因为,2cos sin |||cos sin |0(0)r r r r r θθθθ==≤→→所以在点连续.(,)f x y (0,0)按偏导数定义,00(,0)(0,0)0(0,0)limlim 0x x x f x f f xx ∆→∆→∆-===∆∆同理 .(0,0)0y f =若在点可微,则(,)f x y(0,0)(0,0)(0,0)(0,0)(0,0)x y z dz f x y f f x f y ∆-=+∆+∆--∆-∆=应是较高阶的无穷小量.ρ=因为 该极限不存在,所以在点不可微.220limlimz dzx yx y ρρρ→→∆-∆∆=∆+∆(,)f x y (0,0)此例说明: 二元函数在某点连续,不一定可微,但可微一定连续.这与一元函数有相同的结论.2.3 二元函数可微与偏导数存在之间的关系定理 若二元函数在其定义域内一点处可微,则在该点关于每个2[5]f 00,)(y x f本科生毕业论文5自变量的偏导数都存在,且(1)式中的.0000,),,)((x y A f y B f y x x ==证明 因为 在点可微,则(,)z f x y =(,)x y .0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+若令上式中 ,则,0y ∆=0000(,)(,)(||)z f x x y f x y A x x ο=+∆∆-=∆+∆所以 .000000(,)(,)(||)limlim x x A xf x x y f x y x A x ο∆→∆→=∆+∆-∆+=∆即.类似可证.A zx=∂∂B z y =∂∂例 设,则在点偏导数存在,但在该4[6]2222222,0(,)0,0x y x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩(,)f x y (0,0)点不可微.解 事实上(1),(,0)(0,0)(0,0)lim0x x f x f f x→-==,(0,)(0,0)(0,0)lim0y y f y f f y→-==故 在点偏导数存在.(,)f x y (0,0)(2)因为 ,0,limlimx y f dfρρ→∆→∆→∆-=此时若令,则,y kx ∆=∆0,0,limlimx y x y ∆→∆→∆→∆→=此极限显然不存在,所以不存在,limf dfρρ→∆-所以 在点不可微.(,)f x y (0,0)此例说明: 二元函数中,偏导数存在不一定可微;可微则偏导数存在.这与一元函数中,可微与可导等价有区别.2.4 函数可微与偏导数连续之间的关系定理若二元函数的偏导数在点的某邻域内存在,且与3[7](,)z f x y =00(,)x y x f本科生毕业论文6在点处连续,则函数在点处可微.y f 00(,)x y f 00(,)x y 证明 我们把全增量0000,)(,)(y f x y z f x x y ++-∆=∆∆ 00000000[,),)][,)(,)](((y y y f x y f x x y f x y f x y =++-+++-∆∆∆∆在第一个括号里,它是函数关于的偏增量;在第二个括号里,则是函数0,)(y f x y +∆x 关于的偏增量.0(,)f x y y 对它们分别应用一元函数的拉格朗日中值定理,得 (2)010002,),(()x y y y z f x x y x f x y y θθ++++∆=∆∆∆∆∆12,10θθ<<由于与在点处连续,x f y f 00(,)x y 因此有 , (3)01000,)(,)(x x y x y f x x y f θα++=+∆∆ , (4)00200,(,)()y y y x y f x y f θβ++∆=其中 当时,有.0,0x y ∆→∆→0,0αβ→→将(3) ,(4)代入(2)式,则得.0000(,)(,)x y x y x y z f x f y x y αβ=+∆∆∆+∆+∆所以 函数在点处可微.f 00(,)x y 例在处可微,但与5[8]22()sin (,)(0,0)(,)0,(,)(0,0)x y x y f x y x y ⎧+≠⎪=⎨⎪=⎩(0,0)(,)x f x y 均在处不连续.(,)y f x y (0,0) 解 因为,220,0lim ()sin0(0,0)x y x y f →→+==所以 在处连续.(,)f x y (0,0),00(,0)(0,0)(0,0)lim 0x x x f x f f x→→-===本科生毕业论文7同理 .(0,0)0y f =当时,极限不存在,220x y +≠0,0lim 2x x y f x →→=故在点不连续. 同理可证在处不连续.(,)x f x y (0,0)(,)y f x y (0,0),lim0f dfρρρ→→∆-==所以在处可微.(,)f x y (0,0)此例说明 二元函数偏导数连续并不是可微的必要条件.由此可知定理3是可微的充分条件.由此引出定理4,降低函数可微的条件.定理若在内存在,且在连续,4[9](,)f x y 0()U P (,)x f x y (,)x f x y 00(,)o P x y 在存在,证明:在可微.(,)y f x y 0P f 0P 证明 0000(,)(,)f f x x y y f x y ∆=+∆+∆- 00000000[(,)(,)][(,)(,)]f x x y y f x y y f x y y f x y =+∆+∆-+∆++∆-由已知 存在,且在连续,(,)x f x y 0(,)o x y 有0000010(,)(,)(,)x f x x y y f x y y f x x y y xθ+∆+∆-+∆=+∆+∆∆ ,11(,)(0)xf x y x x αα=∆+∆→因为 ,0000000(,)(,)lim(,)y y f x y y f x y f x y y∆→+∆-=∆所以 ,00000022(,)(,)(,)(0)y f x y y f x y f x y y y αα+∆-=∆+∆→又因 ,所以 在点可微.1212||||||0x yααααρ∆+∆≤+→f 0P 注 此定理中与互换,结论仍然成立.(,)x f x y (,)y f x y 二元函数连续、偏导数、可微的关系如图二元函数连续二元函数偏导数存在本科生毕业论文8二元函数可微二元函数偏导数连续参考文献[1]常庚哲,史济怀,数学分析[M].北京:高等教育出版社,2003.6:97[2]刘文灿,刘夜英,数学分析[M].西安:陕西人民出版社,2004.9:116[3]朱正佑,数学分析[M].上海:上海大学出版社,2001.7:188[4]黄玉民,李成章,数学分析[M].北京:科学出版社,1995.5:61-62[5]华东师范大学数学系. 数学分析(第二版)[M].北京:高等教育出版社,110[6]周良金,王爱国,函数连续及可微的关系[J].高等函授学报2005.10,19(5):35[7]陈纪修,於崇华,金路,数学分析(第二版)[M].北京:高等教育出版社,2004.10:142-143[8]刘新波,数学分析选讲[M].哈尔滨:哈尔滨工业大学出版社,2009.3:151[9]《大学数学名师导学丛书》编写组,数学分析名师导学[M].北京:中国水利水电出版社,2004:147-148致谢感谢老师对本论文从选题、构思、资料收集到最后定稿的各个环节给予的指引和教导,使我对分段函数的分析性质有了更深刻的认识,并最终得以完成毕业论文,对此我表示衷心的感谢,老师严谨的治学态度、丰富渊博的知识、敏锐的学术思维、精益求精的工作态度、积极进取的科研精神以及诲人不倦的师者风范是我毕生的学习楷模.通过这一阶段的努力,我的毕业论文已接近尾声,作为一个本科生的毕业论文,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有老师的亲切关怀和悉心指导,完成本次毕业论文将变得十分困难.老师平日工作繁多,但在这篇论文的写作过程中,老师不辞辛劳,多次就论文中许多核心的问题做深入细致的探讨并给我提出切实可行的指导性建议,才最终得以完成本次毕业论文.老师的这种一丝不苟的负责精神,使我深受感动.在此,请允许我向尊敬的老师表示真挚的谢意.最后,还要感谢我的辅导员在这四年来对我的帮助与鼓励,以及院系的所有领导本科生毕业论文对我的栽培与支持.并向在百忙中抽出时间对本论文进行评审,并提出宝贵意见的各位老师表示衷心的感谢,致以最崇高的敬意.9。
多元函数可导与可微与连续的关系
多元函数可导与可微与连续的关系多元函数的可导性、可微性和连续性是微分学中的重要概念,它们之间存在一定的关系。
下面将详细讨论这三者之间的关系。
首先,我们来定义多元函数的可导性、可微性和连续性:1.可导性:设函数$f$在点$(a,b)$的其中一领域内有定义,如果下式成立:$$\lim_{{\Delta x \to 0 \atop \Delta y \to 0}}\frac{{f(a+\Delta x,b+\Delta y) - f(a,b) - A\Delta x - B\Delta y}}{{\sqrt{{\Delta x}^2 + {\Delta y}^2}}} = 0$$其中$A$和$B$是常数,则称函数$f$在点$(a,b)$处可导。
2.可微性:设函数$f$在点$(a,b)$的其中一领域内有定义,如果下式成立:$$f(a+\Delta x,b+\Delta y) = f(a,b) + A\Delta x + B\Delta y + o(\sqrt{{\Delta x}^2 + {\Delta y}^2})$$其中$A$和$B$是常数,则称函数$f$在点$(a,b)$处可微。
3. 连续性:设函数 $f$ 在点 $(a,b)$ 的其中一领域内有定义,如果 $\lim_{{\Delta x \to 0 \atop \Delta y \to 0}} f(a+\Deltax,b+\Delta y) = f(a,b)$,则称函数 $f$ 在点 $(a,b)$ 处连续。
接下来我们来讨论它们之间的关系。
1. 可导性与可微性的关系:可导必可微,即如果函数 $f$ 在点$(a,b)$ 处可导,则在该点处可微。
这是因为可导的定义中的误差项$o(\sqrt{{\Delta x}^2 + {\Delta y}^2})$ 比可微的定义中的误差项$A\Delta x + B\Delta y$ 高阶,可以忽略不计。
因此,可导函数在该点附近的线性近似是它的最佳近似。
多元函数连续,可导,可微之间的关系
多元函数连续,可导,可微之间的关系在数学中,多元函数的连续与可导、可微性是相关的重要概念,它们之间的关系也非常密切。
在本文中,我们将对这一关系进行详细讨论,以期更好地理解多元函数的连续、可导、可微性之间的联系。
首先,让我们来了解多元函数的连续与可导之间的联系。
在数学中,多元函数是连续的,只要它在某一点、多个点上具有连续性,就能定义在一定的空间内,在这个空间内,这个函数的取值也是一致的。
如果该函数具有可导的性质,那么就可以说它点的连续性决定它在某处的变化率,从而确定函数的可导性。
可以说,多元函数的连续性与可导性是密切相关的,一个不能成立就不可能存在另一个。
其次,多元函数的可微与可导之间的关系也是不可忽视的。
在数学中,多变量函数的可微性是讨论多变量函数的重要概念,它指的是某一函数在变化后存在可微分的性质,即当某一函数在某一点变化时,其在该点处的微分方向可以进行求解。
可微性决定多元函数有多大的变化率,而多元函数的可微性也正是由可导性决定的。
可以看出,可微性与可导性之间也是密不可分的,一个不存在就不可能存在另一个。
最后,多元函数的连续与可微之间的联系也是一个重要的话题。
在数学中,多元函数的连续性是一个重要的概念,它指的是某一函数的取值在整个空间内是一致的。
当多元函数具有连续性时,它就具有可微性,也就是说,当某一函数在某一点发生变化时,其在该点处的微分方向可以进行求解。
可以看出,多元函数的连续性与可微性也是密不可分的,一个不能存在就不可能存在另一个。
综上所述,多元函数的连续、可导、可微性之间的关系密切而不可忽视。
多元函数的连续性决定函数的可导性,而可导性又决定函数的可微性,它们之间的关系是相互依赖的,一个不能成立就不可能存在另一个,所以在学习多元函数时,我们应该特别注意它们之间的联系,有助于更好地理解这一概念。
总之,多元函数的连续、可导、可微性之间的关系是密切相关,它们之间的关联是相互依赖的,一个不能成立就不可能存在另一个。
二元函数连续可微可导三者关系
二元函数连续可微可导三者关系1. 首先,我们需要了解二元函数的连续性、可微性和可导性的定义。
一个二元函数是指一个拥有两个自变量和一个因变量的函数,通常表示为f(x, y)。
连续性是指函数在其定义域内不断接近于某一点的性质。
可微性是指函数在某一点处存在切线,可以用导数来表示切线的斜率。
可导性是可微性的一种特殊情况,指函数在某一点处存在有限的导数。
2. 当一个二元函数在一个点处连续时,意味着在该点处的函数值与其周围的点的函数值非常接近。
换句话说,如果我们选择足够接近这个点的任意两个点(x1, y1) 和(x2, y2),那么对应的函数值f(x1, y1) 和f(x2, y2) 的差异将非常小。
这表明函数在这个点处没有突变或跳跃。
3. 如果一个二元函数在某一点处连续可微,那么它在该点处的偏导数存在且连续。
偏导数是指函数在该点处关于每个自变量的导数。
换句话说,不仅函数的函数值连续,而且函数在该点处每个自变量的变化对函数值的影响也是连续的。
这意味着函数在该点处的切线可以通过偏导数来准确描述。
4. 但是,连续可微并不一定意味着函数在该点处可导。
可导性是一个更高的要求,它要求函数在该点处存在有限的导数。
导数是函数在某一点处切线的斜率,可以用来近似描述函数在该点处的变化率。
如果一个二元函数在某一点处可导,那么偏导数的存在意味着函数在该点处的切线是唯一的,即不存在不同的切线可以通过该点。
5. 总结来说,二元函数的连续性、可微性和可导性有以下关系:连续性是最基本的性质,它要求函数在某一点处的函数值连续;可微性要求函数在某一点处连续且偏导数连续;可导性是可微性的特殊情况,它要求函数在某一点处存在有限的导数。
这些性质相互关联,但并不是互相包含的关系。
函数可以连续但不可微,也可以连续可微但不可导。
6. 最后,需要注意的是,虽然我们在讨论二元函数的连续性、可微性和可导性,但这些概念同样适用于多元函数。
多元函数是指拥有多个自变量和一个因变量的函数,其连续性、可微性和可导性的定义和二元函数是类似的。
多元函数连续,可导,可微之间的关系
多元函数连续,可导,可微之间的关系函数的概念是数学中最基本的概念之一,它是将某一变量作为自变量,唯一确定另一变量作为因变量的运算关系的数学模型。
比较常见的函数有一元函数和多元函数,一元函数只有一个自变量,多元函数有两个或两个以上的自变量。
其中,多元函数连续、可导、可微之间存在着密切的关系,因此,认识其中的关系是非常重要的,本文将介绍多元函数连续、可导、可微之间的关系,以期更好的理解这些概念的内涵。
首先,我们来讨论多元函数的连续性。
连续性是指曲线上的数据是连续的,也就是说,曲线上的数据若有偏差,它们的偏差是有限的。
总的来说,多元函数的连续性可由以下几点表述:(1)多元函数在其定义域上的值只有有限多个,不存在无限多个;(2)两个连续的多元函数在其定义域上就一定会有一个点,使得它们的值相同;(3)多元函数在可微区域上的偏导数是连续的,也就是说,它在可微区域内的偏导数也只有有限多个,不存在无限多个。
其次,我们来讨论多元函数的可导性,以及多元函数可导与可微之间的关系。
可导性是指多元函数在其定义域内存在可以求得的导数,而且可以根据多元函数的偏导数来判断该函数的凹凸性。
总的来说,可导和可微是密不可分的,也就是说具有可导性的函数必然具有可微性,反之亦然。
此外,如果多元函数的可导性得以证明,则可以说此多元函数的连续性也得以证明。
最后,我们来看多元函数的可微性,它是指函数在可微区域内可以求得它的偏导数,而在可微区域外则不能求得它的偏导数。
多元函数的可微性是一个非常重要的概念,在证明某些函数的连续性或可导性时,可微性是一个非常重要的前提条件。
综上所述,多元函数的连续性、可导性和可微性之间存在着密切的关系,也就是说,只有在多元函数连续且可导的前提下,它才有可能具备可微性,而可微性又是该函数的连续性和可导性的前提条件。
因此,认识这三者之间的关系,对于更好的理解多元函数连续、可导和可微十分必要。
多元函数可微、可导、连续之间的关系
多元函数可微、可导、连续之间的关系首先,我们来讨论可微和可导的关系。
一个函数在某一点可微意味着它在该点附近有一个线性的近似。
具体来说,如果一个函数在点(a,b)可微,那么它在该点附近有一个线性逼近f(某,y)≈f(a,b)+f_某(a,b)(某-a)+f_y(a,b)(y-b)。
其中f_某(a,b)和f_y(a,b)分别表示函数在点(a,b)处对某和y的偏导数。
这里的近似对于(某,y)离(a,b)很近的点都成立。
而一个函数在某一点可导表示当自变量的某一个分量变化时,函数的变化率存在且唯一、具体来说,如果一个函数在点(a,b)可导,那么它在该点沿着任一方向的偏导数都存在。
这里的偏导数可以看作点(a,b)处的切线斜率,反映了函数在该点附近的变化趋势。
因此,可微性不仅说明了函数在点附近的近似性质,而且还说明了它在该点附近的变化趋势。
可微性是可导性的充分条件,而可导性是连续性的充分条件。
也就是说,如果一个函数在某一点可微,那么它在该点必定可导;如果一个函数在某一点可导,那么它在该点必定连续。
这是因为可微性和可导性都要求函数在该点附近存在一个线性的近似,而连续性则不要求函数在整个定义域内的变化趋势一致。
因此,可微性和可导性的要求更加严格,包含了连续性的要求。
总结起来,多元函数可微、可导和连续之间的关系可以用下面的图示表示:连续性→可导性→可微性。
也就是说,连续性是最基本的性质,可导性是在连续性的基础上要求函数在其定义域内的变化趋势唯一,可微性是在可导性的基础上要求函数在某一点附近存在一个线性的近似。
这些概念之间的关系在数学分析中有着重要的应用,可以用来研究函数的性质和进行函数的近似计算。
二元函数连续可微可导三者关系
二元函数连续可微可导三者关系二元函数的连续、可微和可导是数学分析中极为重要的概念,它们描述了函数在其中一点的连续性、平滑性和变化率。
在本文中,我们将详细讨论这三者之间的关系。
首先,我们来了解一下二元函数的连续性。
二元函数的连续性表示函数在定义域内的任意点上都具有无间断的性质。
具体来说,对于一个定义在平面上的二元函数f(x,y),如果在定义域内的任意点(x0,y0),当(x,y)趋近于(x0,y0)时,函数值f(x,y)也趋近于f(x0,y0),那么我们说函数f(x,y)在点(x0,y0)处连续。
接下来,我们考察二元函数的可微性。
二元函数的可微性表示函数在其中一点附近用线性映射来近似可以很好地近似原函数。
具体地说,对于一个定义在平面上的二元函数f(x,y),如果在点(x0,y0)处,存在一对常数A和B,使得当(x,y)趋近于(x0,y0)时,有以下关系成立:f(x,y)-f(x0,y0)=A(x-x0)+B(y-y0)+o(√((x-x0)²+(y-y0)²))其中o(√((x-x0)²+(y-y0)²))表示当(x,y)趋近于(x0,y0)时,o(√((x-x0)²+(y-y0)²))相对于√((x-x0)²+(y-y0)²)趋近于0。
这里,A 和B分别称为函数在点(x0,y0)的偏导数,可以用矩阵的形式表示为:Df(x0,y0)=[∂f/∂x,∂f/∂y]=[A,B]如果一个函数在定义域内的所有点上都可微,那么我们称其为可微函数。
最后,我们来看二元函数的可导性。
二元函数的可导性是可微性的一种特殊情况。
具体地说,对于一个定义在平面上的二元函数f(x,y),如果在点(x0,y0)处存在极限:lim (f(x0 + dx, y0 + dy) - f(x0, y0))(dx,dy)->(0,0)那么我们称函数f(x,y)在点(x0,y0)处可导,并且这个极限值称为函数f(x,y)在点(x0,y0)处的导数,记作:∇f(x0,y0)=(∂f/∂x,∂f/∂y)=(∂f/∂x,∂f/∂y)(x0,y0)其中,∂f/∂x和∂f/∂y分别表示函数f(x,y)对x和y的偏导数。
可导和可微和连续的关系
可导和可微和连续的关系哎,你知道吗?在数学这片浩瀚的海洋里,有那么几个小家伙,它们总是手拉手、肩并肩地出现,却又各自有着独特的性格和魅力。
它们就是“可导”、“可微”和“连续”,这三个听起来就让人头大的词儿,其实啊,用咱们老百姓的话一说,那就是三个好朋友,一起在数学的大道上溜达呢。
首先说说“连续”这位老兄吧,它就像是咱们走在一条平坦的大马路上,脚下的路啊,那叫一个顺畅,没有坑坑洼洼,没有断断续续。
在数学上,连续就是说函数图像上的点都紧紧挨着,你挨着我,我挨着你,就像是手拉手的小朋友,中间不留一丝缝隙。
这种感觉,就像是春天的风,温柔又连绵不断,让人心里那个舒坦啊。
然后,咱们再来瞅瞅“可导”这位小哥。
它呢,就像是连续老兄的好搭档,但比连续老兄还要精细那么一点点。
想象一下,你正在用放大镜观察那条平坦的大马路,突然发现,路面上的每一粒石子都排列得整整齐齐,而且,你还能看出这些石子排列的趋势,是往上坡走呢,还是下坡溜?这就是可导的魅力所在了。
在数学上,可导就是说函数在某一点上,有一个明确的“方向感”,也就是有一个确定的切线斜率,告诉我们函数在这一点上是上升还是下降,快还是慢。
这就像是你给了一个明确的手势,告诉人家:“嘿,往这边走,没错的!”最后,咱们得说说“可微”这位小姑娘了。
她啊,就像是可导小哥的贴心小棉袄,不仅继承了可导的精细,还更加地细腻入微。
如果说可导是给出了一个大致的方向,那么可微就是在这个方向上,又给你画了一个超级精确的小地图,告诉你每走一小步会遇到什么。
在数学上,可微就是说函数在某一点附近,可以用一个线性函数来近似地表示,这个近似啊,精确到让人惊叹。
就像是你在用一把超级精准的尺子,量出了每一步的长度,误差小到可以忽略不计。
这三个小家伙啊,虽然性格各异,但却是缺一不可。
没有连续,就像是大马路上突然多了个大坑,让人措手不及;没有可导,就像是失去了方向感,在原地打转;而没有可微,就像是走路的时候总是踩不准步子,摇摇晃晃。
高等数学可微可导连续有什么联系
高等数学可微可导连续有什么联系
在高等数学中,连续、可微和可导都是描述函数的性质的概念。
它们之间有如下联系:
1. 连续性与可微性的联系:若一个函数在某一点处可微,则它在该点处也是连续的。
这是因为可微性要求函数在某一点附近能够通过线性近似来描述,而线性近似的过程本质上是一个连续的过程。
2. 可导性与连续性的联系:若一个函数在某一点处可导,则它在该点处也是连续的。
这是因为可导性要求函数在某一点附近能够通过切线来描述,而切线在该点处存在且连续。
3. 可微性与可导性的联系:在一些情况下,可微和可导是等价的概念。
例如,如果一个函数在某一段区间内可微,则它在该段区间内也是可导的,并且导数等于函数的导函数。
这是因为可微性和可导性都关注函数在微小区间内的行为,而在这种情况下,它们的定义是相容的。
需要注意的是,虽然可微通常意味着可导,但可导不一定意味着可微。
例如,函数f(x) = |x|在x=0处是不可微的,但是在该
点是可导的。
另外,可微性和可导性也与函数的定义域和值域有关,需要根据具体情况判断它们之间的关系。
二元函数可导,可微,连续之间的关系
二元函数可导,可微,连续之间的关系
连续不一定有偏导,更不一定可微,有偏导不一定连续,也不一定可微,可微则偏导存在,有连续的偏导一定可微(充分条件)。
设函数y= f(x),若自变量在点x的改变量Δx与函数相应的改变量Δy有关系Δy=A×Δx+ο(Δx),其中A与Δx无关,则称函数f(x)在点x可微,并称AΔx为函数f(x)在点x的微分,记作dy,即dy=A×Δx,当x= x0时,则记作dy∣x=x0。
在数学中,连续是函数的一种属性。
直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。
如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。
导函数
如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间,导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。
进一步判断则需要知道导函数在附近的符号,对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。