八年级上期末试题及答案

合集下载

八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷一、精挑细选,火眼金睛(每小题3分,共24分)1.(3分)在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个2.(3分)当x=()时,分式﹣2与互为相反数.A.B.C.D.3.(3分)一组数据3,4,x,6,7的平均数是5,则这组数据的中位数和方差分别是()A.4和2 B.5和2 C.5和4 D.4和44.(3分)下列命题是假命题的是()A.等边三角形的三个角都是60°B.平行于同一条直线的两直线平行C.直线经过外一点有且只有一条直线与已知直线平行D.两边及一角分别对应相等的两个三角形全等5.(3分)如图,直线l∥m∥n,等边△ABC的顶点B、C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°6.(3分)下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形7.(3分)在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()A.110°B.30°C.50°D.70°8.(3分)已知关于x的分式方程的解为非负数,则a的取值范围是()A.a≤2 B.a<2 C.a≤2且a≠﹣4 D.a<2且a≠﹣4二、认真填写,试一试自己的身手(每小题3分,共24分)9.(3分)把命题“同角的余角相等”改写成“如果…那么…”的形式.10.(3分)当x=时,分式的值为零.11.(3分)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是.12.(3分)已知y﹣x=3xy,则代数式的值为.13.(3分)已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均数是.14.(3分)已知=+,则整式A﹣B=.15.(3分)如图,▱ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC交AD 于E,则△DCE的周长为cm.16.(3分)如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.三、认真解答,一定要细心!(本大题共9小题,共72分,在答案卷上要写出解答过程)17.(10分)解下列分式方程.(1)+1=(2)+=18.(8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.19.(6分)若关于x的方程+2=有增根,求增根和k的值.20.(8分)两组数据:3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据.(1)求出a,b的值;(2)求这组数据的众数和中位数.21.(8分)如图所示,在△ABC中,AB=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P.(1)求证:PE=PD;(2)若CE:AC=1:5,BC=10,求BP的长.22.(8分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?23.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.24.(8分)如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.25.(8分)在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF ⊥CD,垂足为F,求证:EF=AP.参考答案与试题解析一、精挑细选,火眼金睛(每小题3分,共24分)1.(3分)在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个【解答】解:、、9x+这3个式子的分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.2.(3分)当x=()时,分式﹣2与互为相反数.A.B.C.D.【解答】解:由题意可知:﹣2+=0x2﹣2x(x﹣5)+(x﹣5)(x+1)=0x2﹣2x2+10x+x2﹣4x﹣5=06x=5x=经检验,x=是分式方程的解故选:B.3.(3分)一组数据3,4,x,6,7的平均数是5,则这组数据的中位数和方差分别是()A.4和2 B.5和2 C.5和4 D.4和4【解答】解:∵数据3,4,x,6,7的平均数是5,∴3+4+x+6+7=5×5解得:x=5,∴中位数为5,方差为s2= [(3﹣5)2+(4﹣5)2+(5﹣5)2+(6﹣5)2+(7﹣5)2]=2.故选:B.4.(3分)下列命题是假命题的是()A.等边三角形的三个角都是60°B.平行于同一条直线的两直线平行C.直线经过外一点有且只有一条直线与已知直线平行D.两边及一角分别对应相等的两个三角形全等【解答】解:A、等边三角形的三个角都是60°,正确;B、平行于同一条直线的两直线平行,正确;C、直线经过外一点有且只有一条直线与已知直线平行,正确;D、两边及一角分别对应相等的两个三角形全等,错误;故选:D.5.(3分)如图,直线l∥m∥n,等边△ABC的顶点B、C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°【解答】解:如图,∵m∥n,∴∠1=25°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠2=60°﹣25°=35°,∵l∥m,∴∠α=∠2=35°.故选:C.6.(3分)下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形【解答】解;A、一组对边平行且一组对角相等的四边形是平行四边形,首先由两直线平行,同旁内角互补及等角的补角相等得出另一组对角相等,然后根据两组对角分别相等的四边形是平行四边形可知是个真命题,正确,不合题意;B、每组邻边都相等的四边形是菱形,正确,不合题意;C、对角线互相垂直的平行四边形是菱形,故此选项错误,符合题意;D、四个角都相等的四边形是矩形,正确,不合题意;故选:C.7.(3分)在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()A.110°B.30°C.50°D.70°【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠ADE=180°﹣∠B=70°∵∠E+∠F=∠ADE∴∠E+∠F=70°故选:D.8.(3分)已知关于x的分式方程的解为非负数,则a的取值范围是()A.a≤2 B.a<2 C.a≤2且a≠﹣4 D.a<2且a≠﹣4【解答】解:分式方程去分母得:2x+a=﹣x+2,移项合并得:3x=2﹣a,解得:x=,∵分式方程的解为非负数,∴≥0,且≠2,解得:a≤2,且a≠﹣4.故选:C.二、认真填写,试一试自己的身手(每小题3分,共24分)9.(3分)把命题“同角的余角相等”改写成“如果…那么…”的形式如果两个角是同一个角的余角,那么这两个角相等.【解答】解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,故答案为:如果两个角是同一个角的余角,那么这两个角相等.10.(3分)当x=3时,分式的值为零.【解答】解:分式的值为零,即x2﹣9=0,∵x≠﹣3,∴x=3.故当x=3时,分式的值为零.故答案为3.11.(3分)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是80°.【解答】解:延长DE交AB于F,∵AB∥CD,BC∥DE,∴∠AFE=∠B,∠B+∠C=180°,∴∠AFE=∠B=60°,∴∠AED=∠A+∠AFE=80°,故答案为:80°.12.(3分)已知y﹣x=3xy,则代数式的值为4.【解答】解:∵y﹣x=3xy,∴x﹣y=﹣3xy,则原式====4.故答案是:4.13.(3分)已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均数是3.【解答】解:一组数据x1,x2,x3,x4,x5的平均数是2,有(x1+x2+x3+x4+x5)=2,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均数是(2x1﹣1+2x2﹣1+2x3﹣1+2x4﹣1+2x5﹣1)=3.故答案为:3.14.(3分)已知=+,则整式A﹣B=﹣1.【解答】解:∵=+=,∴3x﹣4=A(x﹣2)+B(x﹣1),整理得出:3x﹣4=(A+B)x﹣2A﹣B,∴,解得:,则整式A﹣B=1﹣2=﹣1,故答案为:﹣1.15.(3分)如图,▱ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC交AD 于E,则△DCE的周长为8cm.【解答】解:∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC,∵EO⊥AC,∴AE=EC,∵AB+BC+CD+AD=16,∴AD+DC=8,∴△DCE 的周长是:CD +DE +CE=AE +DE +CD=AD +CD=8,故答案为:8.16.(3分)如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=4,△ABC 的面积是 42 .【解答】解:过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC ,∴OE=OD ,OD=OF ,即OE=OF=OD=4,∴△ABC 的面积是:S △AOB +S △AOC +S △OBC =×AB ×OE +×AC ×OF +×BC ×OD=×4×(AB +AC +BC )=×4×21=42,故答案为:42.三、认真解答,一定要细心!(本大题共9小题,共72分,在答案卷上要写出解答过程)17.(10分)解下列分式方程.(1)+1= (2)+=【解答】解:(1)方程两边都乘以2(x+3),得:4x+2(x+3)=7,解得:x=,当x=时,2(x+3)=≠0,所以分式方程的解为x=;(2)方程两边都乘以(1﹣3x)(1+3x),得:(1﹣3x)2﹣(1+3x)2=12,解得:x=﹣1,当x=﹣1时,(1﹣3x)(1+3x)=﹣8≠0,所以分式方程的解为x=﹣1.18.(8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.【解答】解:(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∵垂直于同一直线的两直线互相平行,∴CD∥EF;(2)∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=115°.19.(6分)若关于x的方程+2=有增根,求增根和k的值.【解答】解:方程两边都乘(x﹣3),得k+2(x﹣3)=﹣x+4∵原方程有增根,∴最简公分母(x﹣3)=0,解得x=3,当x=3时,k=1.20.(8分)两组数据:3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据.(1)求出a,b的值;(2)求这组数据的众数和中位数.【解答】解:(1)∵两组数据:3,a,2b,5与a,6,b的平均数都是8,∴,解得:;(2)若将这两组数据合并一组数据,按从小到大的顺序排列为3,5,6,6,12,12,12,一共7个数,第四个数是6,所以这组数据的中位数是6,12出现了3次,最多,即众数为12.21.(8分)如图所示,在△ABC中,AB=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P.(1)求证:PE=PD;(2)若CE:AC=1:5,BC=10,求BP的长.【解答】(1)证明:过点D作DF∥AC交BC于点F,∴∠ACB=∠DFB,∠FDP=∠E,∵AB=AC(已知),∴∠ACB=∠ABC,∴∠ABC=∠DFB,∴DF=DB;又∵CE=BD(已知),∴CE=DF;又∵∠DPF=∠CPE,∴△ECP≌△DFP,∴PE=PD;(2)解:∵CE=BD,AC=AB,CE:AC=1:5(已知),∴BD:AB=1:5,∵DF∥AC,∴△BDF∽△BAC,∴==;∵BC=10,∴BF=2,FC=8,∵△DFP≌△ECP,∴FP=PC,∴PF=4,则BP=BF+FP=6.22.(8分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?【解答】解:设原计划每天铺设管道x米,依题意得:,解得x=10,经检验,x=10是原方程的解,且符合题意.答:原计划每天铺设管道10米.23.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【解答】证明:(1)∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中,∴△AFD≌△CEB(SAS);(2)∵△AFD≌△CEB,∴AD=BC,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.24.(8分)如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.【解答】证明:在线段BC上截取BE=BA,连接DE,如图所示.∵BD平分∠ABC,∴∠ABD=∠EBD.在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵AD=CD,∴ED=CD,∴∠DEC=∠C.∵∠BED+∠DEC=180°,∴∠A+∠C=180°.25.(8分)在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF⊥CD,垂足为F,求证:EF=AP.【解答】证明:连接PC,∵四边形ABCD是正方形,∴∠BCD=90°,∠ABD=∠CBD=45°,BA=BC,∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF是矩形,∴PC=EF,在△ABP和△CBP中,,∴△ABP≌△CBP,∴PA=PC,∴AP=EF.。

八年级(上)期末数学试卷含答案

八年级(上)期末数学试卷含答案

八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列图案,不是轴对称图形的是()A.B.C.D.2.下列计算正确的是()A.(﹣3a2)3=﹣9a6B.(6a6)÷(﹣3a2)=2a3C.(a﹣3)2=a2﹣9 D.4a﹣5a=﹣a3.下列各式中,是最简二次根式的是()A. B.C.D.4.化简(﹣)÷的结果是()A.y B.C.D.5.已知a=,b=2﹣,则a与b的大小关系是()A.a>b B.a=b C.a<b D.不确定6.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS7.已知点P在∠AOB的平分线上,点P到OA的距离为10,点Q是OB边上的任意一点,则下列结论正确的是()A.PQ>10 B.PQ≥10 C.PQ<10 D.PQ≤108.已知a2﹣5a+2=0,则分式的值为()A.21 B.C.7 D.9.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD10.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分)11.计算:=.12.计算=.13.若分式的值为0,则a的值为.14.若9x2﹣mxy+25y2是完全平方式,则m=.15.实数a、b在数轴上的位置如图所示,化简=.16.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为cm.17.如图,在平面直角坐标中,已知四边形ABCD是正方形,点A在原点,点B的坐标是(3,1),则点D的坐标是.18.如图,已知点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点,现有如下结论:①∠ABD=∠BDN;②MB=NB;③MB⊥NB;④S△ABM=S△BCN,其中正确的结论是(只填序号).三、简单题(一)(本大题共4小题,共32分)19.(1)计算:()﹣3+(1﹣)0﹣;(2)先化简,再求值:÷﹣(+1),其中x=﹣.20.(1)分解因式:16x3﹣x;(2)已知a=2+,b=2﹣,求代数式﹣的值.21.如图,在△ABC中,AB=AD=DC,∠BAD=24°,求∠BAC的度数.22.解方程:+=.四、解答题(二)(本大题共2小题,共14分)23.如图,已知△ABC的三个顶点的坐标为:A(2,4),B(4,3),C(1,1),直线l过点(﹣1,0)且平行于y轴.(1)在图中作出△ABC关于x轴对称的△A′B′C′;(2)作出△ABC关于直线l对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标.24.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.五、证明与探究:(本大题共2小题,共20分)25.某经销商用8000元购进了一种衬衫,他以每件58元的价格出售,很快售完,又用17600元购进同种衬衫,数量是第一次的2倍,但每件进价比第一次多4元,服装店仍按每件58元出售,全部售完.(1)设他第一次购进这种衬衫的价格为x元/件,则他第一次购进这种衬衫件,他第二次购进这种衬衫件;(2)问他在这次服装生意中共盈利多少元?26.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点,OA、OB的长度分别为a 和b,且满足a2﹣2ab+b2=0.(1)判断△AOB的形状;(2)如图②,△COB和△AOB关于y轴对称,D点在AB上,点E在BC上,且AD=BE,试问:线段OD、OE是否存在某种确定的数量关系和位置关系?写出你的结论并证明;(3)将(2)中∠DOE绕点O旋转,使D、E分别落在AB,BC延长线上(如图③),∠BDE与∠COE 有何关系?直接说出结论,不必说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列图案,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项符合题意;C、是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项不合题意;故选:B.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列计算正确的是()A.(﹣3a2)3=﹣9a6B.(6a6)÷(﹣3a2)=2a3C.(a﹣3)2=a2﹣9 D.4a﹣5a=﹣a【考点】整式的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据积的乘方等于乘方的积,单项式的除法系数除系数,同底数的幂相除;差的平方等于平方和减积的二倍;合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、积的乘方等于乘方的积,故A错误;B、单项式的除法系数除系数,同底数的幂相除,故B错误;C、差的平方等于平方和减积的二倍,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.【点评】本题考查了整式的除法,熟记法则并根据法则计算是解题关键.3.下列各式中,是最简二次根式的是()A. B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含能开得尽方的因数或因式,故A错误;B、被开方数含分母,故B错误;C、被开方数含分母,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4.化简(﹣)÷的结果是()A.y B.C.D.【考点】分式的混合运算.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=,故选C【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.5.已知a=,b=2﹣,则a与b的大小关系是()A.a>b B.a=b C.a<b D.不确定【考点】分母有理化.【分析】把a=的分母有理化即可.【解答】解:∵a===2﹣,∴a=b.故选B.【点评】本题考查的是分母有理化,熟知分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式是解答此题的关键.6.如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS【考点】全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.7.已知点P在∠AOB的平分线上,点P到OA的距离为10,点Q是OB边上的任意一点,则下列结论正确的是()A.PQ>10 B.PQ≥10 C.PQ<10 D.PQ≤10【考点】角平分线的性质;垂线段最短.【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为10,再根据垂线段最短解答.【解答】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于10,∴点P到OB的距离为10,∵点Q是OB边上的任意一点,∴PQ≥10.故选B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.8.已知a2﹣5a+2=0,则分式的值为()A.21 B.C.7 D.【考点】分式的值.【分析】根据题意将原式变形得出a﹣5+=0,进而利用完全平方公式得出(a+)2=25,进而得出答案.【解答】解:∵a2﹣5a+2=0,∴a﹣5+=0,故a+=5,∴(a+)2=25,∴a2++4=25,∴=a2+=21.故选:A.【点评】此题主要考查了分式的值以及完全平方公式的应用,正确应用完全平方公式是解题关键.9.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD【考点】剪纸问题.【分析】利用图形的对称性特点解题.【解答】解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.故选:B【点评】解决本题的关键是利用图形的对称性把所求的线段进行转移.10.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】工程问题.【分析】关键描述语为:“共用了18天完成任务”;等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18.【解答】解:采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天.方程可表示为:.故选:B.【点评】列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题要注意采用新技术前后工作量和工作效率的变化.二、填空题(本题共8小题,每小题3分,共24分)11.计算:=﹣1.5.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:原式(﹣×1.5)2015×1.5=﹣1.5.故答案为:﹣1.5.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.12.计算=.【考点】二次根式的混合运算.【专题】计算题.【分析】根据乘方的意义得到原式=[(﹣1)(+1)]•(+1),然后前面两项利用平方差公式进行计算.【解答】解:原式=[(﹣1)(+1)]•(+1)=(2﹣1)(+1)=+1.故答案为+1.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.13.若分式的值为0,则a的值为4.【考点】分式的值为零的条件.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得:a2﹣16=0且a+4≠0,解得x=4.故答案为:4.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.14.若9x2﹣mxy+25y2是完全平方式,则m=±30.【考点】完全平方式.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【解答】解:∵9x2﹣mxy+25y2=(3x)2﹣mxy+(5y)2,∴﹣mxy=±2•3x•5y,解得m=±30.故答案为:±30.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.15.实数a、b在数轴上的位置如图所示,化简=﹣2b.【考点】二次根式的性质与化简;实数与数轴.【专题】计算题.【分析】由数轴可知a<0,b>0,a﹣b<0,根据二次根式的性质=|a|,化简计算.【解答】解:∵a<0,b>0,a﹣b<0,∴,=|a|﹣|b|﹣|a﹣b|,=﹣a﹣b+a﹣b=﹣2b.故本题答案为:﹣2b.【点评】本题考查了二次根式的性质与化简.关键是根据数轴判断被开方数中底数的符号.16.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为3cm.【考点】线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到NB=NA,根据三角形的周长公式计算即可.【解答】解:∵线段AB的垂直平分线交AC于点N,∴NB=NA,△BCN的周长=BC+CN+BN=7cm,∴BC+AC=7cm,又AC=4cm,∴BC=3cm,故答案为:3.【点评】此题主要考查线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.如图,在平面直角坐标中,已知四边形ABCD是正方形,点A在原点,点B的坐标是(3,1),则点D的坐标是(﹣1,3).【考点】全等三角形的判定与性质;坐标与图形性质;正方形的性质.【分析】过B作BE⊥x轴于E,过D作DF⊥y轴于F,于是得到∠BEA=∠DFA=90°,根据正方形的性质得到AD=AB,∠DAB=90°,求得∠DAF=∠BAE,推出△ABE≌△ADF,根据全等三角形的性质得到BE=DF,AE=AF,即可得到结论.【解答】解:过B作BE⊥x轴于E,过D作DF⊥y轴于F,∴∠BEA=∠DFA=90°,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠DAF=∠BAE,在△ABE与△AFD中,,∴△ABE≌△ADF,∴BE=DF,AE=AF,∵B的坐标是(3,1),∴AE=3,BE=1,∴AF=3,DF=1,∴点D的坐标是(﹣1,3).故答案为:(﹣1,3).【点评】本题考查了全等三角形的判定和性质,坐标与图形的性质,正方形的性质,正确的作出辅助线构造全等三角形是解题的关键.18.如图,已知点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点,现有如下结论:①∠ABD=∠BDN;②MB=NB;③MB⊥NB;④S△ABM=S△BCN,其中正确的结论是②③④(只填序号).【考点】全等三角形的判定与性质.【分析】①由三角形内最多只有一个直角得出该结论不成立;②通过证明△ABE≌△DBC得出AE=DC,根据直角三角形斜边上中线的特点,可得出结论成立;③通过证明△ABM≌△DBN得出∠DBN=∠ABM,通过等量替换得出结论成立;④由②中的三角形全等可知其面积也相等,故其面积的一半也相等,结论成立.【解答】解:①∵∠ABD=∠DBC,且点B在线段AC上,∴∠ABD=∠DBC=180°÷2=90°,在△BDC中,∠DBC=90°∴∠BDN=∠BDC<90°(三角形中最多只有一个直角存在),∴∠ABD≠∠BDN,即①不成立.②在直角△ABE与直角△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC,又M,N分别是AE,CD的中点,∴BM=AE,BN=DC,∴BM=BN,即②成立.③在△ABM和△DBN中,,∴△ABM≌△DBN,∴∠DBN=∠ABM,∴∠MBN=∠MBD+∠DBN=∠MBD+∠ABM=∠ABD=90°,∴MB⊥NB,即③成立.④∵M,N分别是AE,CD的中点,∴S△ABM=S△ABE,S△BCN=S△DBC,由②得知,△ABE≌△DBC,∴S△ABM=S△BCN,即④成立.故答案为:②③④.【点评】本题考查的全等三角形的判定和性质,解题的关键是通过证明三角形全等找到相应的等量关系,从而验证给出结论成立不成立.三、简单题(一)(本大题共4小题,共32分)19.(1)计算:()﹣3+(1﹣)0﹣;(2)先化简,再求值:÷﹣(+1),其中x=﹣.【考点】分式的化简求值;实数的运算;零指数幂;负整数指数幂.【分析】(1)分别根据0指数幂及负整数指数幂的计算法则、数的开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:(1)原式=8+1﹣11=﹣2;(2)原式=•﹣=﹣=,∴当x=﹣时,原式==﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(1)分解因式:16x3﹣x;(2)已知a=2+,b=2﹣,求代数式﹣的值.【考点】分式的化简求值;提公因式法与公式法的综合运用.【分析】(1)先提取公因式,再根据平方差公式进行分解即可;(2)先求出a+b,a﹣b及ab的值,再代入代数式进行计算即可.【解答】解:(1)原式=x(16x2﹣1)=x(4x+1)(4x﹣1);(2)∵a=2+,b=2﹣,∴a+b=4,ab=﹣1,a﹣b=2,∴原式====8.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.如图,在△ABC中,AB=AD=DC,∠BAD=24°,求∠BAC的度数.【考点】等腰三角形的性质.【分析】先根据AB=AD,∠BAD=24°求出∠B的度数,再由AD=DC得出∠C=∠DAC,根据三角形内角和定理得出∠DAC的度数,进而可得出结论.【解答】解:∵AB=AD,∠BAD=24°,∴∠B==78°.∵AD=DC,∴∠C=∠DAC.∵∠B+∠BAD+∠DAC+∠C=180°,即78°+2∠DAC+24°=180°,解得∠DAC=39°,∴∠BAC=∠BAD+∠DAC=24°+39°=63°.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.22.解方程:+=.【考点】解分式方程.【专题】计算题.【分析】把各分母进行因式分解,可得到最简公分母是x(x+1)(x﹣1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边都乘x(x+1)(x﹣1),得7(x﹣1)+3(x+1)=6x,解得x=1.经检验:x=1是增根.∴此方程无解.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.四、解答题(二)(本大题共2小题,共14分)23.如图,已知△ABC的三个顶点的坐标为:A(2,4),B(4,3),C(1,1),直线l过点(﹣1,0)且平行于y轴.(1)在图中作出△ABC关于x轴对称的△A′B′C′;(2)作出△ABC关于直线l对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标.【考点】作图-轴对称变换.【分析】(1)分别作出点A、B、C关于x轴对称的点,然后顺次连接;(2)分别作出点A、B、C关于直线l对称的点,然后顺次连接,并写出△A1B1C1三个顶点的坐标.【解答】解:(1)所作图形如图所示:(2)所作图形如图所示:A1(﹣4,4),B1(﹣6,3),C1(﹣3,1).【点评】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.24.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.【考点】全等三角形的判定与性质.【专题】探究型.【分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【解答】解:CF⊥DE,CF平分DE,理由是:∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS),∴DC=CE,∵CF平分∠DCE,∴CF⊥DE,CF平分DE(三线合一).【点评】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.五、证明与探究:(本大题共2小题,共20分)25.某经销商用8000元购进了一种衬衫,他以每件58元的价格出售,很快售完,又用17600元购进同种衬衫,数量是第一次的2倍,但每件进价比第一次多4元,服装店仍按每件58元出售,全部售完.(1)设他第一次购进这种衬衫的价格为x元/件,则他第一次购进这种衬衫件,他第二次购进这种衬衫件;(2)问他在这次服装生意中共盈利多少元?【考点】分式方程的应用.【分析】(1)第一批衬衫的进价为x元,则第二批的进价(x+4)元,利用总价÷单价=数量分别求得两次购进衬衫的数量即可;(2)根据题意可得等量关系:第一批所进的件数×2=第二批所进的件数,根据等量关系列出方程,解方程即可.【解答】解:(1)第一次购进这种衬衫件,第二次购进这种衬衫件;(2)依题意有:×2=,解得:x=40,经检验x=40是原分式方程的解.x+4=44,第一次,第二次的进价分别是40元和44元,第一次购进200件,第二次购进400件,所以两次共盈利200×18+400×14=9200元.答:在这次服装生意中共盈利9200元.【点评】此题主要考查了分式方程的应用,关键是理解题意,找出题目中的等量关系:第一批所进的件数×2=第二批所进的件数,列出方程,解决问题.26.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点,OA、OB的长度分别为a 和b,且满足a2﹣2ab+b2=0.(1)判断△AOB的形状;(2)如图②,△COB和△AOB关于y轴对称,D点在AB上,点E在BC上,且AD=BE,试问:线段OD、OE是否存在某种确定的数量关系和位置关系?写出你的结论并证明;(3)将(2)中∠DOE绕点O旋转,使D、E分别落在AB,BC延长线上(如图③),∠BDE与∠COE 有何关系?直接说出结论,不必说明理由.【考点】一次函数综合题.【分析】(1)根据a2﹣2ab+b2=0,可得a=b,又由∠AOB=90°,所以可得出△AOB的形状;(2)OD=OE,OD⊥OE,通过证明△OAD≌△OBE可以得证;(3)由∠DEB+∠BEO=45°,∠ACB=∠COE+∠BEO=45°,得出∠DEB=∠COE,根据三角形外角的性质得出∠ABC=∠BDE+∠DEB=90°,从而得出∠BDE+∠COE=90°,所以∠BDE与∠COE互余.【解答】解:(1)∵a2﹣2ab+b2=0.∴(a﹣b)2=0,∴a=b,又∵∠AOB=90°,∴△AOB为等腰直角三角形;(2)OD=OE,O D⊥OE,理由如下:如图②,∵△AOB为等腰直角三角形,∴AB=BC,∵BO⊥AC,∴∠DAO=∠EBO=45°,BO=AO,在△OAD和△OBE中,,△OAD≌△OBE(SAS),∴OD=OE,∠AOD=∠BOE,∵∠AOD+∠DOB=90°,∴∠DOB+∠BOE=90°,∴OD⊥OE;(3)∠BDE与∠COE互余,理由如下:如图③,∵OD=OE,OD⊥OE,∴△DOE是等腰直角三角形,∴∠DEO=45°,∴∠DEB+∠BEO=45°,∵∠ACB=∠COE+∠BEO=45°,∴∠DEB=∠COE,∵∠ABC=∠BDE+∠DEB=90°,∴∠BDE+∠COE=90°∴∠BDE与∠COE互余.【点评】本题是一次函数的综合题,考查了等腰三角形的判定和性质,三角形全等的判定和性质以及三角形外角的性质,熟练掌握性质定理是解题的关键.。

八年级(上)期末数学试卷(含答案)

八年级(上)期末数学试卷(含答案)

八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形中具有稳定性的是()A.直角三角形B.长方形C.正方形D.平行四边形2.(3分)已知点P1(﹣4,3)和P2(﹣4,﹣3),则P1和P2()A.关于原点对称B.关于y轴对称C.关于x轴对称D.不存在对称关系3.(3分)若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.04.(3分)已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a5.(3分)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=6.(3分)下列运算正确的是()A.(x3)2=x5B.(﹣2x)2÷x=4x C.(x+y)2=x2+y2D. +=1 7.(3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组8.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°9.(3分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)10.(3分)如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC 中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC =2S四边形AEPF,上述结论正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共5小题,每小题3分,共15分,把答案写在题中横线上)11.(3分)因式分解:x2﹣3x=.12.(3分)方程=1的解是.13.(3分)如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC 于点D,若AB=6,AC=9,则△ABD的周长是.14.(3分)若代数式x2+kx+25是一个完全平方式,则k=.15.(3分)如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.三、解答题(本大题共7个小题,共55分,解答应写出证明过程或演算步骤)16.(6分)计算:(1)[(a+b)2﹣(a﹣b)2]÷2ab(2)×÷(﹣)17.(8分)先化简,再求值:(1)(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中xy=1(2)先化简1﹣+,然后从0,1,﹣1,2四个数中选取一个合适的数作为x的值代入求值.18.(6分)如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF ⊥AC,垂足分别为E,F.求证:EB=FC.19.(8分)元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?20.(8分)在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE.(2)如图,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变,求证:△AEF≌△BCF.21.(8分)计算下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;…(1)根据以上规律,直接写出下式的结果:(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(2)你能否由此归纳出一般性的结论(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=(其中n为正整数);(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.22.(11分)如图1所示,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,∠BAC=90°.(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形中具有稳定性的是()A.直角三角形B.长方形C.正方形D.平行四边形【解答】解:三角形具有稳定性.故选:A.2.(3分)已知点P1(﹣4,3)和P2(﹣4,﹣3),则P1和P2()A.关于原点对称B.关于y轴对称C.关于x轴对称D.不存在对称关系【解答】解:∵P1(﹣4,3)和P2(﹣4,﹣3),∴横坐标相同,纵坐标互为相反数,∴P1和P2关于x轴对称的点,故选:C.3.(3分)若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.0【解答】解:根据题意得,x﹣1=0且x+1≠0,解得x=1且x≠﹣1,所以x=1.故选:A.4.(3分)已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【解答】解:由题可知:a=,b=1,c=﹣1∴b>a>c,故选:B.5.(3分)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=【解答】解:设江水的流速为vkm/h,根据题意得:=,故选:D.6.(3分)下列运算正确的是()A.(x3)2=x5B.(﹣2x)2÷x=4x C.(x+y)2=x2+y2D. +=1【解答】解:A、(x3)2=x6,此选项错误;B、(﹣2x)2÷x=4x2÷x=4x,此选项正确;C、(x+y)2=x2+2xy+y2,此选项错误;D、+=﹣==﹣1,此选项错误;故选:B.7.(3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组【解答】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.8.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°【解答】解:在正五边形ABCDE中,∠A=×(5﹣2)×180=108°又知△ABE是等腰三角形,∴AB=AE,∴∠ABE=(180°﹣108°)=36°.故选:B.9.(3分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)【解答】解:由题意这两个图形的面积相等,∴a2﹣b2=(a+b)(a﹣b),故选:D.10.(3分)如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC 中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC =2S四边形AEPF,上述结论正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠A PF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF ,故①②正确;∵△AEP ≌△CFP ,同理可证△APF ≌△BPE , ∴△EFP 是等腰直角三角形,故③错误; ∵△APE ≌△CPF , ∴S △APE =S △CPF ,∴四边形AEPF =S △AEP +S △APF =S △CPF +S △BPE =S △ABC .故④正确, 故选:C .二、填空题(本大题共5小题,每小题3分,共15分,把答案写在题中横线上)11.(3分)因式分解:x 2﹣3x= x (x ﹣3) . 【解答】解:x 2﹣3x=x (x ﹣3).故答案为:x (x ﹣3)12.(3分)方程=1的解是 x=3 .【解答】解:去分母得:x ﹣1=2, 解得:x=3,经检验x=3是分式方程的解, 故答案为:x=313.(3分)如图,已知在△ABC 中,DE 是BC 的垂直平分线,垂足为E ,交AC 于点D ,若AB=6,AC=9,则△ABD 的周长是 15 .【解答】解:∵DE 是BC 的垂直平分线, ∴DB=DC ,∴△ABD 的周长=AB +AD +BD=AB +AD +DC=AB +AC=15, 故答案为:15.14.(3分)若代数式x2+kx+25是一个完全平方式,则k=﹣10或10.【解答】解:∵代数式x2+kx+25是一个完全平方式,∴k=﹣10或10.故答案为:﹣10或10.15.(3分)如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后△CAP与△PQB全等.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.三、解答题(本大题共7个小题,共55分,解答应写出证明过程或演算步骤)16.(6分)计算:(1)[(a+b)2﹣(a﹣b)2]÷2ab(2)×÷(﹣)【解答】解:(1)原式=(a2+2ab+b2﹣a2+2ab﹣b2)÷2ab=4ab÷2ab=2;(2)原式=•(﹣)=﹣.17.(8分)先化简,再求值:(1)(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中xy=1(2)先化简1﹣+,然后从0,1,﹣1,2四个数中选取一个合适的数作为x的值代入求值.【解答】解:(1)原式=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy,当xy=1时,原式=9;(2)原式=1﹣+=1﹣+=1+=,当x=0时,原式=2.18.(6分)如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF ⊥AC,垂足分别为E,F.求证:EB=FC.【解答】证明:∵AD是△ABC的角平分线,DE⊥AB、DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△DFC中,,∴Rt△BED≌Rt△CFD(HL),∴EB=FC.19.(8分)元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?【解答】解:(1)设零售价为5x元,团购价为4x元,则解得,,经检验:x=是原分式方程的解,5x=2.5答:零售价为2.5元;(2)学生数为=38(人)答:王老师的班级里有38名学生.20.(8分)在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE.(2)如图,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变,求证:△AEF≌△BCF.【解答】证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠CAE,在△ABE和△ACE中,∵∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵AB=AC,点D是BC的中点,∴AD⊥BC,即∠ADC=90°,∴∠CAD+∠C=90°,∵BF⊥AC,∠BAC=45°,∴∠CBF+∠C=90°,∠BFC=∠AFE=90°,BF=AF,∴∠CAD=∠CBF;在△AEF和△BCF中,∵,∴△AEF≌△BCF(ASA).21.(8分)计算下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…(1)根据以上规律,直接写出下式的结果:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)你能否由此归纳出一般性的结论(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1(其中n为正整数);(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.【解答】解:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1,故答案为:x2﹣1;x3﹣1;x4﹣1;(1)(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1;故答案为:(1)x7﹣1;(2)x n﹣1;(3)1+2+22+23+24+…+235=(2﹣1)(235+234+233+…+2+1)=236﹣1.22.(11分)如图1所示,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,∠BAC=90°.(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.【解答】解:(1)CF=BD,且CF⊥BD,证明如下:∵∠FAD=∠CAB=90°,∴∠FAC=∠DAB.在△ACF和△ABD中,,∴△ACF≌△ABD∴CF=BD,∠FCA=∠DBA,∴∠FCD=∠FCA+∠ACD=∠DBA+∠ACD=90°,∴FC⊥CB,故CF=BD,且CF⊥BD.(2)(1)的结论仍然成立,如图2,∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;∴CF=BD,且CF⊥BD.。

八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷一、你是最聪明的,该怎样选你一定很清楚吧(每小题2分,共20分)1.下列长度的三条线段能组成三角形的是()A.1,2,3 B.4,5,9 C.6,8,10 D.5,15,82.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为()A.3.1×10﹣9米B.3.1×109米C.﹣3.1×109米D.0.31×10﹣8米3.下列计算正确的是()A.a•a2=a2B.(a2)2=a4 C.a2•a3=a6D.(a2b)3=a2•a34.三角形的两个内角分别为60°和80°,则它的第三个内角的度数是()A.70°B.60°C.50°D.40°5.下列分式是最简分式的是()A.B.C.D.6.如图案是轴对称图形的有()A.1个B.2个C.3个D.4个7.下列算式计算结果为x2﹣4x﹣12的是()A.(x+2)(x﹣6)B.(x﹣2)(x+6)C.(x+3)(x﹣4)D.(x﹣3)(x+4)8.如图,在△ABC中,AB=AC,∠BAC=108°,点D在BC上,且BD=AB,连接AD,则∠CAD 等于()A.30°B.36°C.38°D.45°9.下列各式中能用完全平方公式分解因式的是()A.x2+x+1 B.x2+2x+1 C.x2+2x﹣1 D.x2﹣2x﹣110.如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P,则下列结论:①图中全等的三角形只有两对;②△ABC 的面积等于四边形CDOE面积的2倍;③OD=OE;④CE+CD=BC,其中正确的结论有()A.1个B.2个C.3个D.4个二、比一比,看谁填得最好(每小题2分,共20分)11.若分式的值为0,则x的值等于.12.六边形的内角和等于度.13.在平面直角坐标系中,点P的坐标是(3,﹣2),则点P关于y轴对称的对称点的坐标是.14.若等腰三角形的两条边长分别为7cm和14cm,则它的周长为cm.15.已知x m=6,x n=4,则x m+n的值为.16.分解因式:a4﹣16=.17.已知,则的值是.18.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=度.19.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个即可)20.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n个图案中正三角形的个数为(用含n的代数式表示).三、解答题(每小题5分,共15分)21.计算:.22.因式分解:(x﹣y)3﹣4(x﹣y).23.如图,在△ABC中,∠C=90°,AB的垂直平分线DE交AC于D,垂足为E,若∠A=30°,CD=3.(1)求∠BDC的度数.(2)求AC的长度.四、(每小题5分,共15分)24.先化简,再求值:(a+2b)2+(a+b)(b﹣a),其中a=2,b=﹣1.25.解方程:.26.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.五、(每小题7分,共14)27.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.28.已知:如图,BE⊥CD于点E,BE=DE,BC=DA.判断DF与BC的位置关系,并说明理由.六、(每小题8分,共16分)29.列方程解应用题为了迎接春运高峰,铁路部门日前开始调整列车运行图,2015年春运将迎来“高铁时代”.甲、乙两个城市的火车站相距1280千米,加开高铁后,从甲站到乙站的运行时间缩短了11小时,大大方便了人们出行.已知高铁行使速度是原来火车速度的3.2倍,求高铁的行驶速度.30.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.参考答案与试题解析一、你是最聪明的,该怎样选你一定很清楚吧(每小题2分,共20分)1.下列长度的三条线段能组成三角形的是()A.1,2,3 B.4,5,9 C.6,8,10 D.5,15,8【考点】三角形三边关系.【分析】根据三角形任意两边之和都大于第三边逐个判断即可.【解答】解:A、1+2=3,不符合三角形三边关系定理,故本选项错误;B、4+5=9,不符合三角形三边关系定理,故本选项错误;C、6+8>10,6+10>8,8+10>6,符合三角形三边关系定理,故本选项正确;D、5+8<15,不符合三角形三边关系定理,故本选项错误;故选C.【点评】本题考查了三角形的三边关系定理的应用,主要考查学生对三角形的三边关系定理的理解能力,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.2.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为()A.3.1×10﹣9米B.3.1×109米C.﹣3.1×109米D.0.31×10﹣8米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000000031=3.1×10﹣9,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列计算正确的是()A.a•a2=a2B.(a2)2=a4 C.a2•a3=a6D.(a2b)3=a2•a3【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据同底数幂的乘法,可判断A、C,根据幂的乘方,可判断B,根据积的乘方,可判断D.【解答】解:A a•a2=a3,故A错误;B (a2)2=a4,故B正确;C a2•a3=a5,故C错误;D(a2b)3=a6b3,故D错误;故选:B.【点评】本题考查了幂的乘方与积得乘方,幂的乘方底数不变指数相乘,积得乘方等于每个因式分别乘方,再把所得的幂相乘.4.三角形的两个内角分别为60°和80°,则它的第三个内角的度数是()A.70°B.60°C.50°D.40°【考点】三角形内角和定理.【分析】因为三角形的内角度数和是180°,已知两个内角,先用减法求出第三个内角的度数由此得解.【解答】解:180°﹣60°﹣80°=40°.故选D.【点评】此题主要考查三角形的内角和,关键是根据三角形的内角和是180度解答.5.下列分式是最简分式的是()A.B.C.D.【考点】最简分式.【分析】要判断分式是否是最简分式,只需判断它能否化简,不能化简的即为最简分式.【解答】解:A.不能约分,是最简分式,B.=,C.=,D.=﹣1,故选:A.【点评】此题考查了最简分式,最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.6.如图案是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【专题】常规题型.【分析】根据轴对称图形的概念对各图形分析判断后即可得解.【解答】解:第一个图形是轴对称图形;第二个图形不是轴对称图形;第三个图形不是轴对称图形;第四个图形是轴对称图形.所以轴对称图形有第一个与第四个共2个图形.故选B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.7.下列算式计算结果为x2﹣4x﹣12的是()A.(x+2)(x﹣6)B.(x﹣2)(x+6)C.(x+3)(x﹣4)D.(x﹣3)(x+4)【考点】多项式乘多项式.【分析】利用十字相乘法分解因式即可得到结果.【解答】解:x2﹣4x﹣12=(x+2)(x﹣6),则(x+2)(x﹣6)=x2﹣4x﹣12.故选A.【点评】此题考查了多项式乘多项式,熟练掌握十字相乘法是解本题的关键.8.如图,在△ABC中,AB=AC,∠BAC=108°,点D在BC上,且BD=AB,连接AD,则∠CAD 等于()A.30°B.36°C.38°D.45°【考点】等腰三角形的性质.【分析】根据等腰三角形两底角相等求出∠B,∠BAD,然后根据∠CAD=∠BAC﹣∠BAD计算即可得解.【解答】解:∵AB=AC,∠BAC=108°,∴∠B=(180°﹣∠BAC)=(180°﹣108°)=36°,∵BD=AB,∴∠BAD=(180°﹣∠B)=(180°﹣36°)=72°,∴∠CAD=∠BAC﹣∠BAD=108°﹣72°=36°.故选B.【点评】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,等边对等角的性质,熟记性质并准确识图是解题的关键.9.下列各式中能用完全平方公式分解因式的是()A.x2+x+1 B.x2+2x+1 C.x2+2x﹣1 D.x2﹣2x﹣1【考点】因式分解-运用公式法.【分析】直接利用完全平方公式分解因式得出即可.【解答】解:A、x2+x+1,无法分解因式,故此选项错误;B、x2+2x+1=(x+1)2,故此选项错误;C、x2+2x﹣1,无法分解因式,故此选项错误;D、x2﹣2x﹣1,无法分解因式,故此选项错误;故选:B.【点评】此题主要考查了公式法分解因式,熟练应用乘法公式是解题关键.10.如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P,则下列结论:①图中全等的三角形只有两对;②△ABC 的面积等于四边形CDOE面积的2倍;③OD=OE;④CE+CD=BC,其中正确的结论有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;等腰直角三角形.【分析】结论①错误.因为图中全等的三角形有3对;结论②正确.由全等三角形的性质可以判断;结论③正确.利用全等三角形的性质可以判断.结论④正确.利用全等三角形和等腰直角三角形的性质可以判断.【解答】解:结论①错误.理由如下:图中全等的三角形有3对,分别为△AOC≌△BOC,△AOD≌△COE,△COD≌△BOE.由等腰直角三角形的性质,可知OA=OC=OB,易得△AOC≌△BOC.∵OC⊥AB,OD⊥OE,∴∠AOD=∠COE.在△AOD与△COE中,,∴△AOD≌△COE(ASA).同理可证:△COD≌△BOE.结论②正确.理由如下:∵△AOD≌△COE,∴S△AOD=S△COE,∴S四边形CDOE=S△COD+S△COE=S△COD+S△AOD=S△AOC=S△ABC,即△ABC的面积等于四边形CDOE的面积的2倍.结论③正确,理由如下:∵△AOD≌△COE,∴OD=OE;结论④正确,理由如下:∵△AOD≌△COE,∴CE=AD,∵AB=AC,∴CD=EB,∴CD+CE=EB+CE=BC.综上所述,正确的结论有3个.故选:C.【点评】本题是几何综合题,考查了等腰直角三角形、全等三角形的判定与性质等重要几何知识点.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.二、比一比,看谁填得最好(每小题2分,共20分)11.若分式的值为0,则x的值等于1.【考点】分式的值为零的条件.【专题】计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x2﹣1=0,x+1≠0,由x2﹣1=0,得x=﹣1或x=1,由x+1≠0,得x≠﹣1,∴x=1,故答案为1.【点评】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.六边形的内角和等于720度.【考点】多边形内角与外角.【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:(6﹣2)•180=720度,则六边形的内角和等于720度.【点评】解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.13.在平面直角坐标系中,点P的坐标是(3,﹣2),则点P关于y轴对称的对称点的坐标是(﹣3,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用关于y轴对称点的性质得出答案.【解答】解:点P的坐标是(3,﹣2),则点P关于y轴对称的对称点的坐标是:(﹣3,﹣2).故答案为:(﹣3,﹣2).【点评】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标关系是解题关键.14.若等腰三角形的两条边长分别为7cm和14cm,则它的周长为35cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为7cm和14cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①14cm为腰,7cm为底,此时周长为14+14+7=35cm;②14cm为底,7cm为腰,则两边和等于第三边无法构成三角形,故舍去.故其周长是35cm.故答案为:35.【点评】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.已知x m=6,x n=4,则x m+n的值为24.【考点】同底数幂的乘法.【专题】计算题;实数.【分析】原式逆用同底数幂乘法法则变形,将已知等式代入计算即可求出值.【解答】解:∵x m=6,x n=4,∴x m+n=x m•x n=6×4=24.故答案为:24.【点评】此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.16.分解因式:a4﹣16=(a+2)(a﹣2)(a2+4).【考点】因式分解-运用公式法.【分析】根据平方差公式进行分解即可,注意分解因式要彻底.【解答】解:a4﹣16=(a2﹣4)(a2+4)=(a+2)(a﹣2)(a2+4).故答案为:(a+2)(a﹣2)(a2+4).【点评】此题主要考查了公式法分解因式,正确记忆平方差公式是解题关键.17.已知,则的值是﹣2.【考点】分式的加减法.【分析】先把所给等式的左边通分,再相减,可得=,再利用比例性质可得ab=﹣2(a﹣b),再利用等式性质易求的值.【解答】解:∵﹣=,∴=,∴ab=2(b﹣a),∴ab=﹣2(a﹣b),∴=﹣2.故答案是:﹣2.【点评】本题考查了分式的加减法,解题的关键是通分,得出=是解题关键.18.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=50度.【考点】三角形的外角性质;等腰三角形的性质.【分析】根据等角对等边的性质可得∠A=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.【点评】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,等边对等角的性质,是基础题,熟记性质并准确识图是解题的关键.19.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠A=∠F或AC∥EF或BC=DE(答案不唯一).(只需填一个即可)【考点】全等三角形的判定.【专题】开放型.【分析】要判定△ABC≌△FDE,已知AC=FE,AD=BF,则AB=CF,具备了两组边对应相等,故添加∠A=∠F,利用SAS可证全等.(也可添加其它条件).【解答】解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).【点评】本题考查了全等三角形的判定;判定方法有ASA、AAS、SAS、SSS等,在选择时要结合其它已知在图形上的位置进行选取.20.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n个图案中正三角形的个数为4n+2(用含n的代数式表示).【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】分析可知规律是每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.【解答】解:第一个图案正三角形个数为6=2+4;第二个图案正三角形个数为2+4+4=2+2×4;第三个图案正三角形个数为2+2×4+4=2+3×4;…;第n个图案正三角形个数为2+(n﹣1)×4+4=2+4n=4n+2.故答案为:4n+2.【点评】此题考查了平面图形,主要培养学生的观察能力和空间想象能力.三、解答题(每小题5分,共15分)21.计算:.【考点】分式的混合运算.【分析】根据运算顺序,先算括号里面的,再约分即可.【解答】解:原式=÷=•=.【点评】本题考查了分式的混合运算,通分、因式分解和约分是解答的关键.22.因式分解:(x﹣y)3﹣4(x﹣y).【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=(x﹣y)[(x﹣y)2﹣4]=(x﹣y)(x﹣y+2)(x﹣y﹣2).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23.如图,在△ABC中,∠C=90°,AB的垂直平分线DE交AC于D,垂足为E,若∠A=30°,CD=3.(1)求∠BDC的度数.(2)求AC的长度.【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】(1)由AB的垂直平分线DE交AC于D,垂足为E,根据线段垂直平分线的性质,易得AD=BD,即可求得∠ABD的度数,又由三角形外角的性质,即可求得答案;(2)易得△BCD是含30°角的直角三角形的性质,继而求得BD的长,则可求得答案.【解答】解:(1)∵AB的垂直平分线DE交AC于D,垂足为E,∴AD=BD,∴∠ABD=∠A=30°,∴∠BDC=∠ABD+∠A=60°;(2)∵在△ABC中,∠C=90°,∠BDC=60°,∴∠CBD=30°,∴BD=ACD=2×3=6,∴AD=BD=6,∴AC=AD+CD=9.【点评】此题考查了线段垂直平分线的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.四、(每小题5分,共15分)24.先化简,再求值:(a+2b)2+(a+b)(b﹣a),其中a=2,b=﹣1.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式利用完全平方公式及平方差公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2+4ab+4b2+b2﹣a2=4ab+5b2,当a=2,b=﹣1时,原式=﹣8+5=﹣3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.25.解方程:.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程去分母,得(x﹣1)(x+2)﹣(x2﹣4)=8,解这个方程,得x=6,经检验,x=6是原方程的根,则原方程的解为x=6.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.26.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由∠1=∠2可得:∠EAD=∠BAC,再有条件AB=AE,∠B=∠E可利用ASA证明△ABC≌△AED,再根据全等三角形对应边相等可得BC=ED.【解答】证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即:∠EAD=∠BAC,在△EAD和△BAC中,∴△ABC≌△AED(ASA),∴BC=ED.【点评】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.五、(每小题7分,共14)27.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.【考点】作图-轴对称变换.【分析】(1)根据关于x轴对称的点的坐标特点画出△A1B1C1,并写出点C1的坐标即可;(2)根据关于y轴对称的点的坐标特点画出△A2B2C2,并写出点C2的坐标即可.【解答】解:(1)如图所示,点C1的坐标(3,﹣2);(2)如图2所示,点C2的坐标(﹣3,2).【点评】本题考查的是作图﹣轴对称变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键.28.已知:如图,BE⊥CD于点E,BE=DE,BC=DA.判断DF与BC的位置关系,并说明理由.【考点】全等三角形的判定与性质.【分析】利用HL证明Rt△BEC与Rt△AED全等,再利用全等三角形的性质解答即可.【解答】解:垂直关系,理由如下:∵BE⊥CD于点E,在Rt△BEC与Rt△AED中,,∴Rt△BEC≌Rt△AED(HL),∴∠B=∠D,∵∠D+∠EAD=90°,∠EAD=∠FAB,∴∠B+∠FAB=90°,∴DF⊥BC.【点评】此题考查全等三角形的判定和性质,关键是利用HL证明Rt△BEC与Rt△AED全等.六、(每小题8分,共16分)29.列方程解应用题为了迎接春运高峰,铁路部门日前开始调整列车运行图,2015年春运将迎来“高铁时代”.甲、乙两个城市的火车站相距1280千米,加开高铁后,从甲站到乙站的运行时间缩短了11小时,大大方便了人们出行.已知高铁行使速度是原来火车速度的3.2倍,求高铁的行驶速度.【考点】分式方程的应用.【分析】根据题意,设原来火车的速度是x千米/时,进而利用从甲站到乙站的运行时间缩短了11小时,得出等式求出即可.【解答】解:设原来火车的速度是x千米/时,根据题意得:﹣=11,解得:x=80,经检验,是原方程的根且符合题意.故80×3.2=256(km/h).答:高铁的行驶速度是256km/h.【点评】此题主要考查了分式的方程的应用,根据题意得出正确等量关系是解题关键.30.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为60°;②线段AD,BE之间的数量关系为AD=BE.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.【考点】全等三角形的判定与性质;等边三角形的性质;等腰直角三角形.【分析】(1)易证∠ACD=∠BCE,即可求证△ACD≌△BCE,根据全等三角形对应边相等可求得AD=BE,根据全等三角形对应角相等即可求得∠AEB的大小;(2)易证△ACD≌△BCE,可得∠ADC=∠BEC,进而可以求得∠AEB=90°,即可求得DM=ME=CM,即可解题.【解答】解:(1)∵∠ACB=∠DCE,∠DCB=∠DCB,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠CEB=∠ADC=180°﹣∠CDE=120°,∴∠AEB=∠CEB﹣∠CED=60°;(2)∠AEB=90°,AE=BE+2CM,理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°,∵点A、D、E在同一直线上,∴∠ADC=135°.∴∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM,∴AE=AD+DE=BE+2CM.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD≌△BCE是解题的关键.。

八年级(上)期末数学试卷有答案

八年级(上)期末数学试卷有答案

八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,共18分)每题只有一个正确的选项1.点P(﹣3,﹣4)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.二元一次方程x﹣2y=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.3.2015年7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是354.如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知DC=8,AD=4,则图中长为4的线段有()A.4条B.3条C.2条D.1条5.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD6.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.二、填空题(本大题共8个小题,每小题3分,共24分)7.的平方根是.8.某班有学生36人,其中男生比女生的2倍少6人.如果设该班男生有x人,女生有y人,那么可列方程组为.9.在Rt△ABC中,∠C=90°,AB=15,AC=12,则BC=.10.已知点A(0,2m)和点B(﹣1,m+1),直线AB∥x轴,则m=.11.某人沿直路行走,设此人离出发地的距离S(千米)与行走时间t(分钟)的函数关系如图,则此人在这段时间内最快的行走速度是千米/小时.12.如图,在△ABC中,∠B=66°,∠C=54°,AD是∠BAC的平分线,DE平分∠ADC交AC于E,则∠BDE=.13.如图,以等腰直角三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,…,如此作下去,若OA=OB=1,则第n个等腰直角三角形的斜边长为.14.如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为.三、解答题(本大题共4小题,每小题各6分,共24分)15.计算:.16.解方程组:.17.已知y+1与x﹣1成正比,且当x=3时y=﹣5,请求出y关于x的函数表达式,并求出当y=5时x的值.18.在由6个大小相同的小正方形组成的方格中:(1)如图(1),A、B、C是三个格点(即小正方形的顶点),判断AB与B C的关系,并说明理由;(2)如图(2),连结三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图并给出证明).四、(本大题共4小题,每小题各8分,共32分)19.如图,△ABC中,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,BD,CE交于点O,F,G分别是AC,BC延长线上一点,且∠EOD+∠OBF=180°,∠DBC=∠G,指出图中所有平行线,并说明理由.20.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为名;抽样中考生分数的中位数所在等级是;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?21.如图,一个小正方形网格的边长表示50米.A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立直角坐标系:(2)B同学家的坐标是;(3)在你所建的直角坐标系中,如果C同学家的坐标为(﹣150,100),请你在图中描出表示C同学家的点.22.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?五、(本大题共1小题,每小题10分,共10分)23.已知△ABC与△EFC都是等腰直角三角形,∠ACB=∠ECF=90°,E为AB边上一点.(1)试判断AE与BF的大小关系,并说明理由;(2)试说明AE2,BE2,EF2三者之间的关系.六、(本大题共1小题,每小题12分,共12分)24.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)每题只有一个正确的选项1.点P(﹣3,﹣4)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据第三象限内点的横坐标小于零,纵坐标小于零,可得答案.【解答】解:(﹣3,﹣4)位于第三象限,故选:C.【点评】本题考查了各象限内点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.二元一次方程x﹣2y=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.【考点】二元一次方程的解.【专题】计算题.【分析】将各项中x与y的值代入方程检验即可得到结果.【解答】解:将x=1,y=0代入方程得:左边=1﹣0=1,右边=1,即左边=右边,则是方程x﹣2y=1的解.故选B【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.2015年7月份,某市一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31.則下列关于这列数据表述正确的是()A.众数是30 B.中位教是31 C.平均数是33 D.极差是35【考点】极差;加权平均数;中位数;众数.【分析】根据极差、众数、平均数和中位数的定义对每一项进行分析即可.【解答】解:A、31出现了3次,出现的次数最多,则众数是31,故本选项错误;B、把这些数从小到大排列为30,31,31,31,33,33,35,最中间的数是31,则中位数是31,故本选项正确;C、这组数据的平均数是(30+31+31+31+33+33+35)÷7=32,故本选项错误;D、极差是:35﹣30=5,故本选项错误;故选B.【点评】本题考查了极差、众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数;求极差的方法是用一组数据中的最大值减去最小值.4.如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知DC=8,AD=4,则图中长为4的线段有()A.4条B.3条C.2条D.1条【考点】勾股定理;角平分线的性质;含30度角的直角三角形.【分析】利用线段垂直平分线的性质得出BE=EC,再利用全等三角形的判定与性质得出AB=BE,进而得出答案.【解答】解:∵∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足,∴AD=DE=4,BE=EC,∵DC=8,AD=4,∴BE=EC=4,在△ABD和△EBD中,∴△ABD≌△EBD(AAS),∴AB=BE=4,∴图中长为4的线段有3条.故选:B.【点评】此题主要考查了勾股定理以及角平分线的性质以及全等三角形的判定与性质,正确得出BE=AB是解题关键.5.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD【考点】平行线的判定;翻折变换(折叠问题).【分析】根据平行线的判定定理,进行分析,即可解答.【解答】解:A、∠1=∠2,根据内错角相等,两直线平行进行判定,故正确;B、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a∥b(内错角相等,两直线平行),故正确;C、测得∠1=∠2,∵∠1与∠2即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;D、在△AOB和△COD中,,∴△AOB≌△COD,∴∠CAO=∠DBO,∴a∥b(内错角相等,两直线平行),故正确.故选:C.【点评】本题考查了平行线的判定,解决本题的关键是熟记平行线的判定定理.6.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.【考点】一次函数图象与系数的关系;零指数幂;二次根式有意义的条件.【分析】首先根据二次根式中的被开方数是非负数,以及a0=1(a≠0),判断出k的取值范围,然后判断出k﹣1、1﹣k的正负,再根据一次函数的图象与系数的关系,判断出一次函数y=(k﹣1)x+1﹣k的图象可能是哪个即可.【解答】解:∵式子+(k﹣1)0有意义,∴解得k>1,∴k﹣1>0,1﹣k<0,∴一次函数y=(k﹣1)x+1﹣k的图象可能是:.故选:A.【点评】(1)此题主要考查了一次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数是非负数.二、填空题(本大题共8个小题,每小题3分,共24分)7.的平方根是±3.【考点】算术平方根;平方根.【分析】直接根据平方根的定义即可求解.【解答】解:的平方根是±3,故答案为:±3.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.注意:1或0平方等于它的本身.8.某班有学生36人,其中男生比女生的2倍少6人.如果设该班男生有x人,女生有y人,那么可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得两个等量关系:①男生+女生=36,②男生=女生的2倍﹣6.【解答】解:根据题意可得:,故答案为:.【点评】此题主要考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.9.在Rt△ABC中,∠C=90°,AB=15,AC=12,则BC=9.【考点】勾股定理.【分析】在Rt△ABC中,利用勾股定理可求出BC的长度.【解答】解:∵在Rt△ABC中,∠C=90°,AB=15,AC=12,∴BC===9.故答案为:9.【点评】此题考查了勾股定理的知识,属于基础题,掌握勾股定理的形式是关键.10.已知点A(0,2m)和点B(﹣1,m+1),直线AB∥x轴,则m=1.【考点】坐标与图形性质.【分析】根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.【解答】解:∵A(0,2m)和点B(﹣1,m+1),直线AB∥x轴,∴m+1=2m,解得m=1.故答案为:1.【点评】本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相同是解题的关键.11.某人沿直路行走,设此人离出发地的距离S(千米)与行走时间t(分钟)的函数关系如图,则此人在这段时间内最快的行走速度是8千米/小时.【考点】函数的图象.【分析】求速度用距离与时间的比即可,注意把分钟化为小时.【解答】解:此人在这段时间内最快的行走速度是=8千米/小时,故答案为:8.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.12.如图,在△ABC中,∠B=66°,∠C=54°,AD是∠BAC的平分线,DE平分∠ADC交AC于E,则∠BDE=132°.【考点】三角形的外角性质;角平分线的定义.【分析】根据三角形内角和定理和角平分线的定义求出∠BAD的度数,再根据三角形外角性质和角平分线的定义求出∠CDE,然后根据平角定义即可求出∠BDE的度数.【解答】解:∵∠B=66°,∠C=54°,∴∠BAC=180°﹣66°﹣54°=60°,∵AD是∠BAC的平分线,∴∠BAD=∠B AC=30°,∴∠ADC=∠B+∠BAD=66°+30°=96°,∵DE平分∠ADC交AC于E,∴∠CDE=∠ADC=48°,∴∠BDE=180°﹣48°=132°.【点评】本题主要考查三角形的一个外角等于和它不相邻的两个内角的和的性质和角平分线的定义,熟练掌握性质和定理是解题的关键.13.如图,以等腰直角三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,…,如此作下去,若OA=OB=1,则第n个等腰直角三角形的斜边长为.【考点】等腰直角三角形.【专题】规律型.【分析】本题要先根据已知的条件求出第一个、第二个斜边的值,然后通过这两个斜边的求解过程得出一般化规律,进而可得出第n个等腰直角三角形的斜边长.【解答】解:第一个斜边AB=,第二个斜边A1B1=,所以第n个等腰直角三角形的斜边长为:,故答案为:.【点评】此题考查等腰直角三角形问题,关键是要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值.14.如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为2或4.【考点】一次函数图象上点的坐标特征;等腰直角三角形.【专题】分类讨论.【分析】分为两种情况,画出图形,根据等腰三角形的性质求出即可.【解答】解:∵由,得,∴C(2,2);如图1,当∠CQO=90°,CQ=OQ,∵C(2,2),∴OQ=CQ=2,∴t=2,②如图2,当∠OCQ=90°,OC=CQ,过C作CM⊥OA于M,∵C(2,2),∴CM=OM=2,∴QM=OM=2,∴t=2+2=4,即t的值为2或4,故答案为:2或4;【点评】本题考查了用待定系数法求出一次函数解析式,等腰直角三角形等知识点的应用,题目是一道比较典型的题目,综合性比较强.三、解答题(本大题共4小题,每小题各6分,共24分)15.计算:.【考点】实数的运算;零指数幂.【专题】计算题;实数.【分析】原式第一项利用零指数幂法则计算,第二项利用二次根式性质计算,第三项利用乘方的意义化简,计算即可得到结果.【解答】解:原式=1+﹣1﹣=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.解方程组:.【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×2+②×3得:13x=﹣13,即x=﹣1,把x=﹣1代入①得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.17.已知y+1与x﹣1成正比,且当x=3时y=﹣5,请求出y关于x的函数表达式,并求出当y=5时x的值.【考点】待定系数法求一次函数解析式.【分析】设y+1=k(x﹣1),将x=3,y=﹣5代入,通过解方程求得k的值;然后把y=5代入函数解析式即可求得相应的x的值.【解答】解:依题意,设y+1=k(x﹣1)(k≠0),将x=3,y=﹣5代入,得到:﹣5+1=k(3﹣1),解得:k=﹣2.所以y+1=﹣2(x﹣1),即y=﹣2x+1.令y=5,解得x=﹣2.【点评】本题考查了待定系数法求得一次函数解析式.求一次函数的解析式时,设y=kx+b,注意k≠0.18.在由6个大小相同的小正方形组成的方格中:(1)如图(1),A、B、C是三个格点(即小正方形的顶点),判断AB与BC的关系,并说明理由;(2)如图(2),连结三格和两格的对角线,求∠α+∠β的度数(要求:画出示意图并给出证明).【考点】勾股定理;勾股定理的逆定理.【专题】几何图形问题.【分析】(1)连接AC,再利用勾股定理列式求出AB2、BC2、AC2,然后利用勾股定理逆定理解答;(2)类似于(1)的图形解答.【解答】解:(1)如图,连接AC,由勾股定理得,AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,∴AB2+BC2=AC2,∴△ABC是直角三角形,∠ABC=90°,∴AB⊥BC;(2)∠α+∠β=45°.证明如下:如图,由勾股定理得,AB2=12+22=5,BC2=12+22=5,AC2=12+32=10,∴AB2+BC2=AC2,∴△ABC是直角三角形,∵AB=BC,∴△ABC是等腰直角三角形.【点评】本题考查了勾股定理,勾股定理逆定理,等腰直角三角形的判定与性质,熟练掌握网格结构以及勾股定理和逆定理是解题的关键.四、(本大题共4小题,每小题各8分,共32分)19.如图,△ABC中,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,BD,CE交于点O,F,G分别是AC,BC延长线上一点,且∠EOD+∠OBF=180°,∠DBC=∠G,指出图中所有平行线,并说明理由.【考点】平行线的判定.【分析】根据同角的补角相等,和平行线的判定定理即可作出判断.【解答】解:EC∥BF,DG∥BF,DG∥EC.理由:∵∠EOD+∠OBF=180°,又∠EOD+∠BOE=180°,∴∠BOE=∠OBF,∴EC∥BF;∵∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∴∠DBC=∠ECB,又∵EC∥BF,∴∠ECB=∠CBF,∴∠DBC=∠CBF,又∵∠DBC=∠G,∴∠CBF=∠G,∴DG∥BF;∵EC∥BF,DG∥BF,∴DG∥EC.【点评】本题考查了平行线的判定定理,根据同角的补角相等证明∠BOE=∠OBF是关键.20.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为50名;抽样中考生分数的中位数所在等级是良好;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?【考点】扇形统计图;用样本估计总体;条形统计图;中位数.【专题】压轴题.【分析】(1)从条形图中各部分人数加起来就是所求的结果,中位数数据从小到大排列位于中间位置的数.(2)不及格的有8人,8除以总人数就是我们要求的结果.(3)从扇形统计图中根据九年级的人数可求出全校的人数,进而求出全校优良人数.【解答】解:(1)8+14+18+10=50,中位数是18,位于良好里面;故答案为:50,良好.(2)8人,×100%=16%;抽样中不及格的人数是8人.占被调查人数的百分比是16%.(3)500÷=1500,1500×=840(人).全校优良人数有840人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.如图,一个小正方形网格的边长表示50米.A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立直角坐标系:(2)B同学家的坐标是(200,150);(3)在你所建的直角坐标系中,如果C同学家的坐标为(﹣150,100),请你在图中描出表示C同学家的点.【考点】坐标确定位置.【分析】(1)由于A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校,则可确定A点位置,然后画出直角坐标系;(2)利用第一象限点的坐标特征写出B点坐标;(3)根据坐标的意义描出点C.【解答】解:(1)如图,(2)B同学家的坐标是(200,150);(3)如图.故答案为(200,150).【点评】本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.22.受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:到超市的路程(千米)运费(元/斤•千米)甲养殖场200 0.012乙养殖场140 0.015(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?【考点】一次函数的应用.【分析】(1)设从甲养殖场调运鸡蛋x斤,从乙养殖场调运鸡蛋y斤,根据题意列方程组即可得到结论;(2)从甲养殖场调运了x斤鸡蛋,从乙养殖场调运了(1200﹣x)斤鸡蛋,根据题意列方程组得到300≤x≤800,总运费W=200×0.012+140×0.015×(1200﹣x)=0.3x+2520,(300≤x≤800),根据一次函数的性质得到W随想的增大而增大,于是得到当x=300时,W最小=2610元,【解答】解:(1)设从甲养殖场调运鸡蛋x斤,从乙养殖场调运鸡蛋y斤,根据题意得:,解得:,∵500<800,700<900,∴符合条件.答:从甲、乙两养殖场各调运了500斤,700斤鸡蛋;(2)从甲养殖场调运了x斤鸡蛋,从乙养殖场调运了(1200﹣x)斤鸡蛋,根据题意得:,解得:300≤x≤800,总运费W=200×0.012x+140×0.015×(1200﹣x)=0.3x+2520,(300≤x≤800),∵W随x的增大而增大,∴当x=300时,W最小=2610元,∴每天从甲养殖场调运了300斤鸡蛋,从乙养殖场调运了900斤鸡蛋,每天的总运费最省.【点评】本题考查了二元一次方程组与一次函数的实际应用.此题难度适中,解题的关键是理解题意,抓住等量关系.五、(本大题共1小题,每小题10分,共10分)23.已知△ABC与△EFC都是等腰直角三角形,∠ACB=∠ECF=90°,E为AB边上一点.(1)试判断AE与BF的大小关系,并说明理由;(2)试说明AE2,BE2,EF2三者之间的关系.【考点】勾股定理;全等三角形的性质;全等三角形的判定.【分析】(1)可以根据全等三角形的性质,进行判断;(2)在(1)的基础上,得AE=BF,进而根据勾股定理即可证明.【解答】解:(1)AE=BF.理由如下:∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF.又AC=BC,CE=CF,∴△ACE≌△BCF,∴AE=BF.(2)AE2+BE2=EF2.理由如下:由已知,得∠CAE=∠CBF=45°,则∠EBF=90°.则BF2+BE2=EF2,又AE=BF,因此AE2+BE2=EF2.【点评】此题综合运用了等腰直角三角形的性质、全等三角形的性质和判定、以及勾股定理.六、(本大题共1小题,每小题12分,共12分)24.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.【考点】一次函数综合题.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【解答】解:(1)设直线AB的解析式是y=kx+b,根据题意得:,解得:,则直线的解析式是:y=﹣x+6;(2)在y=﹣x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴当M的横坐标是×4=1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=x中,当x=﹣1时,y=7,则M的坐标是(﹣1,7);综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).【点评】本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,利用M点横坐标为±1分别求出是解题关键.21。

人教版八年级上册语文期末测试题及答案

人教版八年级上册语文期末测试题及答案

人教版八年级上册语文期末测试题及答案八年级(上)语文期末测试题(人教版)一二三四总分一、积累与运用(28分)一)基础知识(24分)1、中国书法是我们民族文化的瑰宝,请将下面格言抄写在方格内,要求正确、工整、整洁(3分)古之立大事者,不惟有超世之才,亦必有坚韧不拔之志。

2、下列词语中加点字读音有误的一项是()(2分)A惟妙惟肖(xiào)绮丽(qǐ)憎恨(zēng)两栖(qī)B销声匿迹(nì)愧怍(zuò)琐屑(xiè)追溯(sù)C风雪载途(zài)蹒跚(pán shān)褶皱(zhě)震悚(sǒng)D日薄西山(bó)箱箧(qiè)殷红(yān)绥靖(súi)3、请根据具体的语境和拼音写出汉字。

(4分)①父亲明显该高兴,却露出些gān gà(。

)的笑。

②历史、现实,在雨中融合了——融成一幅悲哀而美丽、真实而荒miù()的画面③一个物种在新的环境中必然遵循物jìng(。

)天择的法则④有一个信客,年龄不小了,已经长途báshè(。

)了二三十年。

4、下列句子中加点词语使用有误的一项是()(2分)A、各级政府应该加大力度,因地制宜的发展地方农村经济,增加农民收入。

B、巴勒斯坦的XXX被誉为“东方的瑞士”,但“9.11”事件以后,来这里旅游的人几乎是凤毛麟角。

C、玉雕作品“翠玉白菜”因其材质上乘,惟妙惟肖,富有创意而被誉为我国的国宝。

D、看着他瘦骨嶙峋的样子,母亲的眼角潮湿了。

5、下列句子中说法错误的一项是()(2分)A、记序文的主要表达体式格局是叙说和描述,但议论和抒情在记序文中也经常运用。

B、申明文是客观的申明事物、说明事理的一种文体。

常见的申明顺序有三种:时间顺序,空间顺序和逻辑顺序。

C、说明文的结构一般有两种:总——分式和总——分——总式。

事物说明文大都用前者,事理说明文大都用后者。

八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷一、精心选一选(每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.(π﹣2013)0的计算结果是()A.π﹣2013 B.2013﹣πC.0 D.13.下列运算中正确的是()A.(x3)2=x5B.2a﹣5•a3=2a8C.D.6x3÷(﹣3x2)=2x4.把分式方程去分母后所得结果正确的是()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣25.如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是()A.∠DAE=∠CBE B.△DEA不全等于△CEBC.CE=DE D.△EAB是等腰三角形6.下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x7.若a、b、c是△ABC的三边,满足a2﹣2ab+b2=0且b2﹣c2=0,则△ABC的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形8.下列运算正确的是()A.B.C.D.9.对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣10.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2012m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处二、细心填一填(每小题4分,共40分)11.0.000608用科学记数法表示为.12.(1)(a2)3•(a2)4÷(a2)5=;(2)(2x﹣y)2﹣(2x+y)(﹣y+2x)=.13.等腰三角形一个角为50°,则此等腰三角形顶角为.14.已知4x2+mx+9是完全平方式,则m=.15.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是.16.若分式有意义,则x的取值范围是.17.已知x+y=6,xy=4,则x2y+xy2的值为.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.19.已知关于x的分式方程=1有增根,则a=.20.如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为度.三、作图题(第21题8分,共8分)21.如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于直线x=﹣1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;(2)求四边形ABED的面积.四、解答题(共72分)22.分解因式:(1)a3b﹣ab(2)x3y3﹣2x2y2+xy.23.计算:(1)﹣a﹣1(2)(﹣)÷.24.化简与求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=5,y=﹣6.25.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.26.解方程:.27.某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?五、综合题(共12分)28.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?参考答案与试题解析一、精心选一选(每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:B.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.2.(π﹣2013)0的计算结果是()A.π﹣2013 B.2013﹣πC.0 D.1【考点】零指数幂.【分析】根据零指数幂:a0=1(a≠0)进而得出答案.【解答】解:(π﹣2013)0=1.故选:D.【点评】此题主要考查了零指数幂:a0=1(a≠0),正确根据定义得出是解题关键.3.下列运算中正确的是()A.(x3)2=x5B.2a﹣5•a3=2a8C.D.6x3÷(﹣3x2)=2x【考点】整式的混合运算.【专题】计算题.【分析】A、原式利用幂的乘方运算法则计算得到结果,即可做出判断;B、原式利用同分母幂的乘法法则计算得到结果,即可做出判断;C、原式利用负指数幂法则计算得到结果,即可做出判断;D、原式利用单项式除以单项式法则计算得到结果,即可做出判断.【解答】解:A、(x3)2=x6,故选项错误;B、2a﹣5•a3=2a﹣2,故选项错误;C、3﹣2=,故选项正确;D、6x3÷(﹣3x2)=﹣2x,故选项错误.故选C.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.把分式方程去分母后所得结果正确的是()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣2【考点】解分式方程.【分析】根据等式的性质:两边都乘以(x﹣2),可得答案.【解答】解:去分母,得1+(1﹣x)=x﹣2,故D正确;故选:D.【点评】本题考查了解分式方程,利用了等式的性质.5.如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是()A.∠DAE=∠CBE B.△DEA不全等于△CEBC.CE=DE D.△EAB是等腰三角形【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】根据三角形的内角和定理就可以求出∠DAB=∠CBA,由等式的性质就可以得出∠DAE=∠CBE,根据AAS就可以得出△DEA≌△CEB;由△DEA≌△CEB就可以得出CE=DE,∠1=∠2就可以得出AE=BE,就可以得出结论.【解答】解:∵∠1+∠C+∠ABC=∠2+∠D+∠DAB=180°,且∠1=∠2,∠C=∠D,∴∠ABC=∠DAB,∴∠ABC﹣∠2=∠DAB﹣∠1,∴∠DAB=∠CBA.故A正确;在△DEA和△CEB中,∴△DEA≌△CEB(AAS),故B错误;∴AC=BD.∵∠1=∠2,∴BE=AE,∴△EAB是等腰三角形,AC﹣AE=BD﹣BE,故D正确;∴CE=DE.故C正确.故选B.【点评】本题考查了三角形全等的判定及性质的运用,等腰三角形的判定及性质的运用,等式的性质的运用,解答时证明三角形全等是关键.6.下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x【考点】因式分解的意义.【专题】因式分解.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.【解答】解:A、是多项式乘法,故A选项错误;B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,故B选项错误;C、提公因式法,故C选项正确;D、右边不是积的形式,故D选项错误;故选:C.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.7.若a、b、c是△ABC的三边,满足a2﹣2ab+b2=0且b2﹣c2=0,则△ABC的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形【考点】因式分解的应用;因式分解-运用公式法.【专题】计算题.【分析】把已知等式左边分解得到(a﹣b)2=0且(b+c)(b﹣c)=0,则a=b且b=c,即a=b=c,然后根据等边三角形的判定方法矩形判断.【解答】解:∵a2﹣2ab+b2=0且b2﹣c2=0,∴(a﹣b)2=0且(b+c)(b﹣c)=0,∴a=b且b=c,即a=b=c,∴△ABC为等边三角形.故选D.【点评】本题考查因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.8.下列运算正确的是()A.B.C.D.【考点】分式的乘除法;分式的加减法.【分析】利用分式的乘除运算与加减运算法则求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、,故本选项错误;B、,=•=,故本选项错误;C、,==,故本选项正确;D、==﹣,故本选项错误.故选C.【点评】此题考查了分式的乘除运算与加减运算法则.此题难度不大,注意掌握符号的变化是解此题的关键.9.对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣【考点】解分式方程.【专题】开放型.【分析】根据题中的新定义化简所求式子,计算即可得到结果.【解答】解:根据题意得:2⊗(2x﹣1)=﹣=1,去分母得:2﹣(2x﹣1)=4x﹣2,去括号得:2﹣2x+1=4x﹣2,移项合并得:6x=5,解得:x=,经检验是分式方程的解.故选A.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2012m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处【考点】规律型:图形的变化类.【分析】根据等边三角形和全等三角形的性质,可以推出,每行走一圈一共走了6个1m,2012÷6=335…2,行走了335圈又两米,即落到C点.【解答】解:∵两个全等的等边三角形的边长为1m,∴机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为6m,∵2012÷6=335…2,即正好行走了335圈又两米,回到第三个点,∴行走2012m停下,则这个微型机器人停在C点.故选:C.【点评】本题主要考查全等三角形的性质、等边三角形的性质,解题的关键在于求出2012为6的倍数余数是几.二、细心填一填(每小题4分,共40分)11.0.000608用科学记数法表示为 6.08×10﹣4.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000608用科学记数法表示为6.08×10﹣4,故答案为6.08×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(1)(a2)3•(a2)4÷(a2)5=a4;(2)(2x﹣y)2﹣(2x+y)(﹣y+2x)=2y2﹣4xy.【考点】整式的混合运算.【分析】(1)利用整式的乘方法则,积的乘方法则以及单项式的乘法法则化简即可.(2)先提公因式,然后再化简可以简便运算.【解答】解:(1)原式=a6•a8÷a10=a14﹣10=a4.故答案为a4.(2)原式=(2x﹣y)(2x﹣y﹣2x﹣y)=(2x﹣y)•(﹣2y)=2y2﹣4xy.故答案为2y2﹣4xy.【点评】本题考查整式的乘方法则,积的乘方法则以及单项式的乘法法则,灵活掌握运算法则是正确解题的关键.13.等腰三角形一个角为50°,则此等腰三角形顶角为50°或80°.【考点】等腰三角形的性质;三角形内角和定理.【分析】已知没有给出50°的角是顶角和是底角,所以要分两种情况进行讨论.【解答】解:分为两种情况:当50°是顶角时,顶角为50°当50°是底角时,其顶角是180°﹣50°×2=80°故填50°或80°.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.14.已知4x2+mx+9是完全平方式,则m=±12.【考点】完全平方式.【分析】这里首末两项是2x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【解答】解:∵4x2+mx+9是完全平方式,∴4x2+mx+9=(2x±3)2=4x2±12x+9,∴m=±12,m=±12.故答案为:±12.【点评】此题主要考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.15.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是2.【考点】整式的混合运算—化简求值.【专题】整体思想.【分析】根据多项式相乘的法则展开,然后代入数据计算即可.【解答】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4,当a+b=,ab=1时,原式=1﹣2×+4=2.故答案为:2.【点评】本题考查多项式相乘的法则和整体代入的数学思想.16.若分式有意义,则x的取值范围是x≠.【考点】分式有意义的条件.【分析】根据分式有意义的条件是分母不等于0列式计算即可.【解答】解:由题意得,1﹣2x≠0,解得,x≠,故答案为:x≠.【点评】本题主要考查了分式有意义的条件,掌握分式有意义的条件是分母不等于0是解题的关键.17.已知x+y=6,xy=4,则x2y+xy2的值为24.【考点】因式分解的应用.【专题】因式分解.【分析】先提取公因式xy,整理后把已知条件直接代入计算即可.【解答】解:∵x+y=6,xy=4,∴x2y+xy2=xy(x+y)=4×6=24.故答案为:24.【点评】本题考查了提公因式法分解因式,提取公因式后整理成已知条件的形式是解本题的关键.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.【考点】多边形内角与外角.【专题】应用题.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.故答案为:120.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.19.已知关于x的分式方程=1有增根,则a=1.【考点】分式方程的增根.【专题】计算题.【分析】方程两边都乘以最简公分母(x+2),把分式方程化为整式方程,再根据分式方程的最简公分母等于0求出方程有增根,然后代入求解即可得到a的值.【解答】解:方程两边都乘以(x+2)得,a﹣1=x+2,∵分式方程有增根,∴x+2=0,解得x=﹣2,∴a﹣1=﹣2+2,解得a=1.故答案为:1.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为80度.【考点】三角形内角和定理;翻折变换(折叠问题).【分析】根据三角形的内角和和折叠的性质计算即可.【解答】解:∵∠1:∠2:∠3=28:5:3,∴设∠1=28x,∠2=5x,∠3=3x,由∠1+∠2+∠3=180°得:28x+5x+3x=180°,解得x=5,故∠1=28×5=140°,∠2=5×5=25°,∠3=3×5=15°,∵△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,∴∠DCA=∠E=∠3=15°,∠2=∠EBA=∠D=25°,∠4=∠EBA+∠E=25°+15°=40°,∠5=∠2+∠3=25°+15°=40°,故∠EAC=∠4+∠5=40°+40°=80°,在△EGF与△CAF中,∠E=∠DCA,∠DFE=∠CFA,∴△EGF∽△CAF,∴α=∠EAC=80°.故填80°.【点评】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.三、作图题(第21题8分,共8分)21.如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于直线x=﹣1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;(2)求四边形ABED的面积.【考点】作图-轴对称变换.【分析】(1)先找出对称轴,再从三角形的各点向对称轴引垂线并延长相同单位得到各点的对应点,顺次连接即可,然后从坐标中读出各点的坐标;(2)从图中可以看出四边形ABED是一个梯形,根据梯形的面积公式计算.【解答】解:(1)D(﹣4,3);E(﹣5,1);F(0,﹣2);(5分)(2)AD=6,BE=8,∴S四边形ABED=(AD+BE)•2=AD+BE=14.(8分)【点评】本题的关键是找出各点的对应点,然后顺次连接.四、解答题(共72分)22.分解因式:(1)a3b﹣ab(2)x3y3﹣2x2y2+xy.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式ab,进而利用平方差公式分解因式得出答案;(2)直接提取公因式xy,进而利用完全平方公式分解因式得出答案.【解答】解:(1)a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1);(2)x3y3﹣2x2y2+xy=xy(x2y2﹣2xy+1)=xy(xy﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.23.计算:(1)﹣a﹣1(2)(﹣)÷.【考点】分式的混合运算.【分析】(1)先通分,再进行加减即可;(2)根据运算顺序,先算括号里面的,再进行分式的除法运算.【解答】解:(1)原式=﹣﹣==;(2)原式=(﹣)÷=•==﹣.【点评】本题考查了分式的混合运算,通分、因式分解和约分是解答的关键.24.化简与求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=5,y=﹣6.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式被除数括号中第一项利用完全平方公式展开,第二项利用平方差公式化简,最后一项利用单项式乘以多项式法则计算,合并后利用多项式除以单项式法则计算得到最简结果,将x与y 的值代入计算,即可求出值.【解答】解:原式=(x2﹣4xy+4y2+x2﹣4y2﹣4x2+2xy)÷2x=(﹣2x2﹣2xy)÷2x=﹣x﹣y,当x=5,y=﹣6时,原式=﹣5﹣(﹣6)=﹣5+6=1.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.25.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.【考点】全等三角形的判定与性质;三角形的外角性质.【专题】证明题.【分析】①利用SAS即可得证;②由全等三角形对应角相等得到∠AEB=∠CDB,利用外角的性质求出∠AEB的度数,即可确定出∠BDC的度数.【解答】①证明:在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);②解:∵△ABE≌△CBD,∴∠AEB=∠BDC,∵∠AEB为△AEC的外角,∴∠AEB=∠ACB+∠CAE=30°+45°=75°,则∠BDC=75°.【点评】此题考查了全等三角形的判定与性质,以及三角形的外角性质,熟练掌握全等三角形的判定与性质是解本题的关键.26.解方程:.【考点】解分式方程.【专题】计算题.【分析】方程右边分子分母提取﹣1变形后,两边都乘以x﹣3去分母后,去括号,移项合并将x系数化为1,求出x的值,将x的值代入检验,即可得到分式方程的解.【解答】解:方程变形为+2=,去分母得:1+2(x﹣3)=x﹣4,去括号得:1+2x﹣6=x﹣4,解得:x=1,将x=1代入得:x﹣3=1﹣3=﹣2≠0,则分式方程的解为x=1.【点评】此题考查了解分式方程,做题时注意分式方程要检验.27.某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?【考点】分式方程的应用;二元一次方程的应用.【分析】(1)首先设足球单价为x元,则篮球单价为(x+40)元,根据题意可得等量关系:1500元购进的篮球个数=900元购进的足球个数,由等量关系可得方程=,再解方程可得答案;(2)设恰好用完1000元,可购买篮球m个和购买足球n个,根据题意可得篮球的单价×篮球的个数m+足球的单价×足球的个数n=1000,再求出整数解即可.【解答】解:(1)设足球单价为x元,则篮球单价为(x+40)元,由题意得:=,解得:x=60,经检验:x=60是原分式方程的解,则x+40=100,答:篮球和足球的单价各是100元,60元;(2)设恰好用完1000元,可购买篮球m个和购买足球n个,由题意得:100m+60n=1000,整理得:m=10﹣n,∵m、n都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买篮球7个,购买足球5个;②购买篮球4个,购买足球10个;③购买篮球1个,购买足球15个.【点评】此题主要考查了分式方程和二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.五、综合题(共12分)28.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?【考点】全等三角形的判定.【专题】证明题;动点型.【分析】(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.【解答】解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=C Q,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.【点评】本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.下列图形中有且只有一条对称轴的是()A .B .C .D .2.如果分式62x -有意义,那么x 满足()A .2x =B .2x ≠C .0x =D .0x ≠3.下列各式不能用平方差公式计算的是()A .(2a -3b )(3a +2b )B .(4a 2-3bc )(4a 2+3bc )C .(3a +2b )(2b -3a )D .(3m +5)(5-3m )4.从正多边形的一个顶点可以引出5条对角线,则这个正多边形每个外角的度数为()A .135°B .45°C .60°D .120°5.如图,在△ABC 中,F 是高AD 和BE 的交点,BC =6,CD =2,AD =BD ,则线段AF 的长度为()A .2B .1C .4D .36.如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为()A .1B .2C .3D .47.如图,在△ABC 中,D 是CA 延长线上一点,∠B=40°,∠BAD=76°,则∠C 的度数为()A .36︒B .116︒C .26︒D .104︒8.已知:如图,在△ABC 中,边AB 的垂直平分线分别交BC 、AB 于点G 、D ,若△AGC 的周长为31cm ,AB=20cm ,则△ABC 的周长为()A .31cmB .41cmC .51cmD .61cm二、填空题9.数据0.00000008m ,用科学记数法表示为______________m10.若代数式02(2)(2)m m -++-有意义,则m 的取值范围是___________.11.因式分解:22123xy -=__________.12.若23x =,25y =,则2x y +=_____.13.如图,在△ABC 中,点E 、F 分别是AB 、AC 边上的点,EF ∥BC ,点D 在BC 边上,连接DE 、DF 请你添加一个条件___________________,使△BED ≌△FDE14.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是__________.15.如图,在Rt △ABC 中,∠C=90°,∠B=30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD=3,则BC 的长为___________16.当x_________时,分式235x -有意义.17.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为___.18.如图,过边长为1的等边ABC ∆的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交AC 边于D ,则DE 的长为______.三、解答题19.解方程:1x -53x +=020.先化简,再求值:()()2(23)22x y x y x y +-+-,其中13x =,12y =-.21.如图,在平面直角坐标系中(1)请在图中作出△ABC 关于直线m 的轴对称图形△A 1B 1C 1(2)坐标系中有一点M(-3,3),点M 关于直线m 的对称点为点N ,点N 关于直线n 的对称点为点E ,写出点N 的坐标;点E 的坐标.22.已知:如图,点E 、A 、C 在同一直线上,AB ∥CD ,AB =CE ,AC =CD求证:∠B =∠E23.如图,BD是△ABC的角平分线,AE丄BD交BD的'延长线于点E,∠ABC=72°,∠C:∠ADB=2:3,求∠BAC和∠DAE的度数.24.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB(1)若∠ABC=65°,则∠NMA的度数为(2)若AB=10cm,△MBC的周长是18cm①求BC的长度②若点P为直线MN上一点,则△PBC周长的最小值为cm25.问题:分解因式(a+b)2-2(a+b)+1答:将“a+b”看成整体,设M=a+b,原式=M2-2M+1=(M-1)2,将M还原,得原式=(a+b-1)2上述解题用到的是“整体思想”,这是数学解题中常用的一种思想方法.请你仿照上面的方法解答下列问题:(1)因式分解:(2a+b)2-9a2=(2)求证:(n+1)(n+2)(n 2+3n )+1的值一定是某一个正整数的平方(n 为正整数)26.如图,△ABC 是等边三角形,D 是边AC 的中点,EC ⊥BC 与点C ,连接BD 、DE 、AE 且CE=BD ,求证:△ADE 为等边三角形27.水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)28.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE ,我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.参考答案1.D【分析】根据轴对称图形的概念求解,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.不是轴对称图形,故此选项不合题意;B.有4条对称轴,故此选项不合题意;C.有3条对称轴,故此选项不合题意;D.有1条对称轴,故此选项符合题意.故选:D.2.B【分析】根据分式有意义的条件:分母不为零,得到不等式解不等式即可.【详解】要使分式62x-有意义,则x-2≠0,得到2x≠,故选B3.A【分析】利用平方差公式的结构特征判断即可.【详解】解:A.(2a-3b)(3a+2b)不符合平方差公式的特点,故不能用平方差公式计算;B.(4a2-3bc)(4a2+3bc)=16a4-9b2c2,故能用平方差公式计算;C.(3a+2b)(2b-3a)=4b2-9a2,故能用平方差公式计算;D.(3m+5)(5-3m)=25-9m2,故能用平方差公式计算;故选:A.4.B【分析】先由n边形从一个顶点出发可引出(n-3)条对角线,可求出多边形的边数,再根据正多边形的每个外角相等且外角和为360°.【详解】解:∵经过多边形的一个顶点有5条对角线,∴这个多边形有5+3=8条边,∴此正多边形的每个外角度数为360°÷8=45°,故选B5.A【分析】先求BD,AD的长,再证△BFD≌△ADC,即可得到FD的长,即可求解.【详解】∵BC=6,CD=2,∴BD=BC-CD =6-2=4,∴AD =BD=4∵AD 和BE 是三角形的高∴∠ADB=∠ADC=∠BEC=90°∴∠DAC+∠C=90°,∠EBC+∠C=90°∴∠DAC=∠EBC在△BFD 和△ADC 中DAC EBC BD AD ADB ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BFD ≌△ADC (ASA )∴FD=DC=2∴AF=AD-FD=2故选A6.B【分析】根据题意点Q 是射线OM 上的一个动点,要求PQ 的最小值,需要找出满足题意的点Q ,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P 作PQ 垂直OM ,此时的PQ 最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ ,利用已知的PA 的值即可求出PQ 的最小值.【详解】解:过点P 作PQ ⊥OM ,垂足为Q ,则PQ 为最短距离,∵OP 平分∠MON ,PA ⊥ON ,PQ ⊥OM ,∴PA=PQ=2,故选:B .7.A【详解】解:∵∠BAD 是△ABC 的一个外角,∴∠BAD=∠B+∠C ,∴∠C=∠BAD-∠B=76°-40°=36°.故选A.8.C【分析】已知△AGC 的周长,因为GB 等于AG ,所以△ABC 的周长等于AC+CG+GB+AB ,即等于△AGC 的周长+AB.【详解】∵DG 是AB 边的垂直平分线,∴GA=GB ,△AGC 的周长=AG+AC+CG=AC+BC=31cm ,又AB=20cm ,∴△ABC 的周长=AC+BC+AB=51cm ,故选C.【点睛】本题考查线段的垂直平分线的性质.把求△ABC 的周长进行转化是解题的关键.9.8810-⨯【分析】将原数写成10n a ⨯的形式,a 是大于等于1小于10的数.【详解】解:80.00000008810-=⨯.故答案是:8810-⨯.【点睛】本题考查科学记数法,解题的关键是掌握科学记数法的表示方法.10.2m ≠±【分析】根据零指数幂的法则和负整数指数幂的法则可得关于m 的不等式组,解不等式组即可得出答案.【详解】解:根据题意,得:20m +≠且20m -≠,解得:2m ≠±.故答案为2m ≠±.【点睛】本题考查了零指数幂和负整数指数幂的知识,属于基础题型,熟知运用零指数幂和负整数指数幂的运算法则进行计算的前提条件是解此题的关键.11.3(2x+y)(2x-y)【分析】先提取公因式,然后根据平方差公式因式分解即可.【详解】解:原式=3(4x 2-y 2)=3(2x+y )(2x-y ).【点睛】因式分解是本题的考点,熟练掌握因式分解的方法是解题的关键,本题用到了提取公因式法和公式法.12.15【分析】由23x=,25y =,根据同底数幂的乘法可得222x y x y +=⋅,继而可求得答案.【详解】∵23x=,25y =,∴2223515x y x y +=⋅=⨯=,故答案为15.【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.本题中要注意掌握公式的逆运算.13.BD=FE (答案不唯一);【分析】根据平行四边形的判定和性质、全等三角形的判定定理即可解答.【详解】当BD=FE 时,△BED ≌△FDE ,∵EF ∥BC ,当BD=FE 时,∴四边形BEFD 是平行四边形,∴∠B =∠DFE ,BE =FD∵BD =FE∴△BED ≌△FDE ,故答案为:BD =FE .【点睛】本题考查了全等三角形的判定,利用了平行四边形的判定及其性质,全等三角形的判定,利用平行四边形的性质得出三角形全等的条件是解题关键.14.110°或70°【详解】解:分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.15.9【详解】∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=∠DAE+∠B=60°,∴∠CAD=30°,∴AD=2DC=6,即BD=6,∴BC=9.【点睛】本题主要考查的知识点有线段垂直平分线的性质、直角三角形30°角所对的直角边等于斜边的一半的性质,熟练运用各性质是解题的关键.16.5 3≠【分析】根据分母不等于0列式求解即可.【详解】由题意得3x-5≠0,x5 3≠.故答案为5 3≠.【点睛】本题考查了分式有意义的条件,熟知分母不为零时分式有意义是解答本题的关键.17.5000x=8000600+x【分析】设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.【详解】解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,由题意得:5000x=8000600+x.故答案是:5000x =8000600+x .【点睛】本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.18.12【分析】过P 作PF ∥BC 交AC 于F ,得出等边三角形APF ,推出AP=PF=QC ,根据等腰三角形性质求出EF=AE ,证△PFD ≌△QCD ,推出FD=CD ,推出DE=12AC 即可.【详解】解:过P 作PF ∥BC 交AC 于F,∵PF ∥BC ,△ABC 是等边三角形,∴∠PFD=∠QCD ,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,∴△APF 是等边三角形,∴AP=PF=AF ,∵PE ⊥AC ,∴AE=EF ,∵AP=PF ,AP=CQ ,∴PF=CQ ,在△PFD 和△QCD 中PFD QCDPDF CDQ PF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFD ≌△QCD ,∴FD=CD ,∵AE=EF ,∴EF+FD=AE+CD ,∴AE+CD=DE=12AC ,∵AC=1,∴DE=12;故答案为:12.【点睛】本题综合考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.19.x=34【分析】方程两边同乘以x(x+3),得到整式方程,解整式方程,把得到的根代入最简公分母检验即可.【详解】解:x +3-5x=04x=3x=34检验:当x=34时,x (x+3)≠0,故x=34是原方程的根.【点睛】本题考查的是分式方程的解法,解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.20.21210xy y +,12【分析】先利用完全平方公式与平方差公式计算乘法,再合并同类项,最后代入计算即可.【详解】()()2(23)22x y x y x y +-+-()222241294x xy y x y =++--22222412941210x xy y x y xy y =++-+=+,当13x =,12y =-时,原式21111210322⎛⎫⎛⎫=⨯⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭522=-+12=.【点睛】本题主要考查了整式的混合运算,涉及了完全平方公式,平方差公式,解题的关键是熟练掌握整式混合运算的运算顺序和运算法则.21.(1)见解析;(2)(1,3),(1,1).【分析】(1)利用网格结构分别找出点A 、B 、C 关于直线m 的对称点,然后顺次连接即可.(2)利用网格结构找出点M 关于直线m 的对称点N ,再找出点N 关于直线n 的对称点E ,写出其坐标即可.【详解】(1)如图即为ABC 关于直线m 的轴对称图形111A B C △.(2)如图,即可知点M 关于直线m 的对称点N 的坐标是(1,3);点N 关于直线n 的对称点E 的坐标是(1,1).故答案为:(1,3);(1,1).【点睛】本题考查画轴对称图形和轴对称-坐标的变化.了解轴对称的性质是解答本题的关键.22.见解析【分析】根据平行线的性质可得∠BAC=∠ECD ,再由条件AB=CE ,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应角相等即可求证结论.【详解】证明:∵AB ∥CD∴∠BAC=∠ECD∵在△ABC 和△CED 中,AB CE BAC ECD AC CD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CED (SAS )∴∠B=∠E【点睛】本题考查了平行线的性质,全等三角形的判定和性质,解题的关键是证明△ABC ≌△CED .23.∠BAC =36°,∠DAE=18°.【分析】先根据BD 是△ABC 的角平分线,∠ABC =72°求出∠EBC=36°,由∠C :∠ADB =2:3可设∠C=2x ,则∠ADB=3x,根据在△BCD 中的外角定理列出方程即可求解x,再根据等腰三角形的及垂直的性质求解.【详解】∵BD 是△ABC 的角平分线,∠ABC =72°∴∠EBC=36°,∵∠C :∠ADB =2:3可设∠C=2x ,则∠ADB=3x,在△BCD 中∠ADB=∠EBC+∠C即3x=36°+2x解得x=36°,∴∠C=72°,∠ADB=108°,故∠BAC=180°-∠C-∠ABC=36°,在△DAE 中,AE 丄BD∴∠DAE=∠ADB-90°=18°.【点睛】此题主要考查角度的求解,解题的关键是熟知三角形的外角定理.24.(1)40°;(2)①8cm ;②18【分析】(1)先根据等腰三角形的性质求出∠A=50°,根据垂直平分线的定义得到∠ANM =90°,然后根据直角三角形两锐角互余求解即可;(2)①根据垂直平分线的性质得AM=BM ,△MBC 的周长是18cm ,AC=AB=10cm ,即可求BC 的长度;②当点P 与点M 重合时,△PBC 周长的最小,即为△MBC 的周长.【详解】解:(1)∵AB=AC ,∴∠ABC=∠C∵∠ABC=65°,∴∠C=65°,∴∠A=50°,∵MN 是AB 的垂直平分线,∴∠ANM =90°,∴∠NMA=90°-50°=40°;(2)①∵MN 是线段AB 的垂直平分线,∴AM=MB .∵△MBC 的周长是18cm ,AB=10cm ,∴BM+MC+BC=AM+MC+BC=AC+BC=AB+BC=18cm ,∴BC=18-AB=18-10=8cm ;②∵MN 是线段AB 的垂直平分线,∴点A 和点B 关于直线MN 对称,∴当点P 与点M 重合时,△PBC 周长的值最小,∴△PBC 的周长的最小值为18cm .【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,轴对称-最短路线问题,解决本题的关键是掌握线段垂直平分线的性质和等腰三角形的性质.25.(1)()()5+a b b a -;(2)见解析【分析】(1)根据平方差公式分解因式即可求解;(2)先根据多项式乘以多项式进行计算,再根据完全平方公式分解即可求解.【详解】解:(1)原式()()22=2+3a b a -()()=2+32+3a b a a b a +-()()=5+a b b a -证明(2)(n+1)(n+2)(n 2+3n )+1=(n 2+3n+2)(n 2+3n )+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n+1)2故当n 为正整数时,(n+1)(n+2)(n 2+3n )+1的值一定是某一个正整数的平方【点睛】本题考查因式分解,解题的关键是熟练掌握平方差公式、完全平方公式的应用.26.证明见解析【分析】利用△ABC 是等边三角形,D 为边AC 的中点,求得∠ADB=90°,再用SAS 证明△CBD ≌△ACE ,推出AE=CD=AD ,∠AEC=∠BDC=90°,根据直角三角形斜边上中线性质求出DE=AD ,即可证明.【详解】证明:∵△ABC 是等边三角形,D 是边AC 的中点,∴AD=DC ,BC=CA ,BD ⊥AC ,∴∠BDC=90°,即∠DBC+∠DCB=90°,∵EC ⊥BC ,∴∠BCE=90°,即∠ACE+∠BCD=90°,∴∠ACE=∠DBC ,在△CBD 和△ACE 中,BC CA DBC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩∴△CBD ≅△ACE (SAS )∴CD=AE ,∴∠AEC=∠CDB=90°∵D 为AC 的中点∴AD=DE ,AD=DC ,∴AD=AE=DE ,即△ADE 为等边三角形.【点睛】本题主要考查等边三角形的性质和判定,全等三角形的性质和判定,直角三角形斜边上的中线等.解答此题的关键是先证明△CBD ≌△ACE ,然后再利用三边相等证明此三角形是等边三角形.27.(1)进价为180元;(2)至少打6折.【分析】(1)根据题意,列出等式24003370025x x ⨯=+,解等式,再验证即可得到答案;(2)设剩余的仙桃每件售价打y 折,由题意得到不等式,再解不等式,即可得到答案.【详解】解:(1)设第一批仙桃每件进价x 元,则24003370025x x ⨯=+,解得180x =.经检验,180x =是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y 折.则:3700370022580%225(180%)0.1370044018051805y ⨯⨯+⨯⨯-⨯-≥++,解得6y ≥.答:剩余的仙桃每件售价至少打6折.【点睛】本题考查分式方程的应用和一元一次不等式的应用,解题的关键是熟练掌握分式方程的应用和一元一次不等式的应用.28.(1)见解析;(2)A(32,52)或(52,-32).【分析】(1)过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N .根据“K 字模型”即可证明AH=DM 和AH=EN ,即EN=DM ,再根据全等三角形的判定和性质即可证明DG=EG ,即点G 是DE 的中点.(2)分情况讨论①当A 点在OB 的上方时,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .根据“K 字模型”即可证明AC BD OC AD DE ===,,再利用B 点坐标即可求出A 点坐标.②当A 点在OB 的下方时,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .同理即能求出A 点坐标.【详解】(1)如图,过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N ,则∠DMA=90°,∠ENG=90°.∵∠BHA=90,∴∠2+∠B=90°.∵∠BAD=90°,∴∠1+∠2=90°.∴∠B=∠1.在△ABH 和△DAM 中1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≅△DAM (AAS ),∴AH=DM .同理△ACH ≅△EAN (AAS ),∴AH=EN .∴EN=DM .在△DMG 和△ENG 中MGD NGE DMG ENG DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG ≅△ENG (AAS ).∴DG=EG .∴点G 是DE的中点.(2)根据题意可知有两种情况,A 点分别在OB 的上方和下方.①当A 点在OB 的上方时,如图,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .利用“K 字模型”可知ACO BDA ≅ ,∴AC BD OC AD DE ===,,设AC x =,则BD x =,∵1DE BD BE x =+=+,∴1OC AD DE x ===+,又∵4CD AD AC =+=,即14x x ++=,解得32x =,∴32AC =,35122DE =+=.即点A 坐标为(32,52).②当A点在OB的下方时,如图,作AP垂直于y轴,BM垂直于x轴,PA和BM的延长线交于点Q.根据①同理可得:52AP=,32MQ=.即点A坐标为(52,32-).。

八年级上册数学期末考试试题含答案

八年级上册数学期末考试试题含答案

八年级上册数学期末考试试卷一、选择题(共12小题).1.﹣2021的相反数是()A.﹣2021B.﹣C.D.20212.下列英文字母中,是轴对称图形的是()A.B.C.D.3.若代数式有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠2 4.小马虎在下面的计算中只做对了一道题,他做对的题目是()A.a3•a5=a15B.(﹣a3)2=a6C.(2y)3=6y3D.a6÷a3=a2 5.将0.000000076用科学记数法表示为()A.7.6×108B.0.76×10﹣9C.7.6×10﹣8D.0.76×1096.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.将分式中的x,y的值同时扩大到原来的3倍,则分式的值()A.扩大到原来的3倍B.缩小到原来的C.保持不变D.无法确定8.下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一个角是60°的等腰三角形是等边三角形C.有一组邻边相等的四边形是菱形D.对角线相等的四边形是矩形9.一副直角三角尺如图摆放,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=30°,∠F=45°,则∠CED的度数是()A.15°B.25°C.45°D.60°10.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD交AD于点E,AB=6,BC=10,则EF长为()A.1B.2C.3D.411.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x只,树为y棵,则可列出方程组为()A.B.C.D.12.如图,在Rt△ABC中,AB=AC,∠BAC=90°,D、E为BC上两点,∠DAE=45°,F为△ABC外一点,且FB⊥BC,FA⊥AE,则下列结论:①CE=BF;②BD2+CE2=DE2;③;④CE2+BE2=2AE2,其中正确的是()A.①②③④B.①②④C.①③④D.②③二、填空题(每题3分,共12分)13.分解因式:x2y﹣9y=.14.﹣=.15.如图,一圆柱体的底面周长为24cm,高AB为9cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,则蚂蚁爬行的最短路程是cm.16.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2021=.三、解答题(17、18、19题每小题各6分,20、21题各8分,22、23题每小题各9分)17..18.先化简,再求代数式÷(a﹣)的值,其中a=﹣1.19.利用所学的知识计算:(1)已知a>b,且a2+b2=13,ab=6,求a﹣b的值;(2)已知a、b、c为Rt△ABC的三边长,若a2+b2+25=6a+8b,求Rt△ABC的周长.20.今年受疫情影响,我市中小学生全体在家线上学习.为了了解学生在家主动锻炼身体的情况,某校随机抽查了部分学生,对他们每天的运动时间进行调查,并将调查统计的结果分为四类:每天运动时间t≤20分钟的学生记为A类,20分钟<t≤40分钟记为B类,40分钟<t≤60分钟记为C类,t>60分钟记为D类.收集的数据绘制两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)这次共抽取了名学生进行调查统计;(2)扇形统计图中D类所对应的扇形圆心角大小为;(3)将条形统计图补充完整;(4)如果该校共有3000名学生,请你估计该校B类学生约有多少人?21.笔直的河流一侧有一旅游地C,河边有两个漂流点A.B.其中AB=AC,由于某种原因,由C到A的路现在已经不通,为方便游客决定在河边新建一个漂流点H(A,H,B 在一条直线上),并新修一条路CH测得BC=5千米,CH=4千米,BH=3千米,(1)问CH是否为从旅游地C到河的最近的路线?请通过计算加以说明;(2)求原来路线AC的长.22.很多企业纷纷加入生产口罩的大军中来,长沙某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的1.5倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.(1)求甲、乙两厂房每天各生产多少箱口罩?(2)已知甲、乙两厂房生产这种口罩每天的生产费分别是1500元和1200元,现有15000箱口罩的生产任务,甲厂房单独生产一段时间后另有安排,剩余任务由乙厂房单独完成.如果总生产费不超过36300元,那么甲厂房至少生产了多少天?23.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.四、综合题(每小题各10分,共20分)24.定义:对于平面直角坐标系中的任意两点A(x1,y1)和B(x2,y2),我们把它们的横、纵坐标的差的平方和的算术平方根称作这两点的“湘一根”,记作Q[A,B],即.(1)若A(2,1)和B(﹣2,3),则Q[A,B]=;(2)若点M(1,2),N(a,a﹣3),其中a为任意实数,求Q[M,N]的最小值;(3)若m为常数,且m>0,点A的坐标为(0,5m),B点的坐标为(8m,﹣m),C 点的坐标为(x,0),求Q[A,C]+Q[B,C]的最小值以及Q[A,C]﹣Q[B,C]的最大值.(用含m的代数式表示)25.如图,在平面直角坐标系中,矩形ABCO的顶点O与坐标原点重合,顶点A、C在坐标轴上,B(8,4),将矩形沿EF折叠,使点A与点C重合.(1)求点E的坐标;(2)点P从O出发,沿折线O﹣A﹣E方向以每秒2个单位的速度匀速运动,到达终点E时停止运动,设点P的运动时间为t,△PCE的面积为S,求S与t的关系式,并直接写出t的取值范围.(3)在(2)的条件下.当PA=PE时,在平面直角坐标原中是否存在点Q.使得以点P、E、G、Q为顶点的四边形为平行四边形?若不存在,请说明理由;若存在,请求出点Q的坐标.参考答案一、选择题(共12小题).1.﹣2021的相反数是()A.﹣2021B.﹣C.D.2021解:﹣2021的相反数是:2021.故选:D.2.下列英文字母中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.3.若代数式有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠2解:由分式及二次根式有意义的条件可得:x﹣1≥0,x﹣2≠0,解得:x≥1,x≠2,故选:D.4.小马虎在下面的计算中只做对了一道题,他做对的题目是()A.a3•a5=a15B.(﹣a3)2=a6C.(2y)3=6y3D.a6÷a3=a2解:A、a3•a5=a8,故本选项不合题意;B、(﹣a3)2=a6,故本选项符合题意;C、(2y)3=8y3,故本选项不合题意;D、a6÷a3=a3,故本选项不合题意;故选:B.5.将0.000000076用科学记数法表示为()A.7.6×108B.0.76×10﹣9C.7.6×10﹣8D.0.76×109解:将0.000000076用科学记数法表示为7.6×10﹣8,故选:C.6.不等式组的解集在数轴上表示正确的是()A.B.C.D.解:,由不等式①,得x<2,由不等式②,得x≥﹣1,故原不等式组的解集是﹣1≤x<2,故选:A.7.将分式中的x,y的值同时扩大到原来的3倍,则分式的值()A.扩大到原来的3倍B.缩小到原来的C.保持不变D.无法确定解:由题意得:=,无法确定,故选:D.8.下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一个角是60°的等腰三角形是等边三角形C.有一组邻边相等的四边形是菱形D.对角线相等的四边形是矩形解:A、一组对边平行,另一组对边相等的四边形不一定是平行四边形,原命题是假命题;B、有一个角是60°的等腰三角形是等边三角形,是真命题;C、有一组邻边相等的平行四边形是菱形,原命题是假命题;D、对角线相等的平行四边形是矩形.原命题是假命题;故选:B.9.一副直角三角尺如图摆放,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=30°,∠F=45°,则∠CED的度数是()A.15°B.25°C.45°D.60°解:∵∠B=90°,∠A=30°,∴∠ACB=60°.∵∠EDF=90°,∠F=45°,∴∠DEF=45°.∵EF∥BC,∴∠CEF=∠ACB=60°,∴∠CED=∠CEF﹣∠DEF=60°﹣45°=15°.故选:A.10.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD交AD于点E,AB=6,BC=10,则EF长为()A.1B.2C.3D.4解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=10,DC=AB=6.∴∠AFB=∠FBC.∵BF平分∠ABC,∴∠ABF=∠FBC.∴∠AFB=∠ABF.∴AF=AB=6.同理可得DE=DC=6.∴EF=AF+DE﹣AD=6+6﹣10=2.故选:B.11.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x只,树为y棵,则可列出方程组为()A.B.C.D.解:设诗句中谈到的鸦为x只,树为y棵,则可列出方程组为:.故选:D.12.如图,在Rt△ABC中,AB=AC,∠BAC=90°,D、E为BC上两点,∠DAE=45°,F为△ABC外一点,且FB⊥BC,FA⊥AE,则下列结论:①CE=BF;②BD2+CE2=DE2;③;④CE2+BE2=2AE2,其中正确的是()A.①②③④B.①②④C.①③④D.②③解:①∵∠BAC=90°,FA⊥AE,∠DAE=45°,∴∠CAE=90°﹣∠DAE﹣∠BAD=45°﹣∠BAD,∠FAB=90°﹣∠DAE﹣∠BAD=45°﹣∠BAD,∴∠FAB=∠EAC,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵FB⊥BC,∴∠FBA=45°,∴△AFB≌△AEC,∴CE=BF,故①正确,②:由①中证明△AFB≌△AEC,∴AF=AE,∵∠DAE=45°,FA⊥AE,∴∠FAD=∠DAE=45°,∴△AFD≌△AED,连接FD,∵FB=CE,∴FB2+BD2=FD2=DE2,故②正确,③:如图,设AD与EF的交点为G,∵∠FAD=∠EAD=45°,AF=AE,∴AD⊥EF,EF=2EG,∴S△ADE=•AD•EG==,故③正确,④:∵FB2+BE2=EF2,CE=BF,∴CE2+BE2=EF2,在RT△AEF中,AF=AE,AF2+AE2=EF2,∴EF2=2AE2,∴CE2+BE2=2AE2,故④正确.故选:A.二、填空题(每小题3分,共12分)13.分解因式:x2y﹣9y=y(x+3)(x﹣3).解:原式=y(x2﹣9)=y(x+3)(x﹣3).故答案为:y(x+3)(x﹣3).14.﹣=.解:原式=3﹣2=,故答案为:.15.如图,一圆柱体的底面周长为24cm,高AB为9cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,则蚂蚁爬行的最短路程是15cm.解:如图所示:由于圆柱体的底面周长为24cm,则AD=24×=12cm.又因为CD=AB=9cm,所以AC==15cm.故蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程是15cm.故答案为:15.16.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2021=22020.解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠2=∠3=60°,∵∠MON=30°,∴∠1=60°﹣30°=30°,又∵∠3=60°,∴∠OB1A2=60°+30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3是等边三角形,同理可得:OA2=B2A2=2,∴a2=2a1=2,同理:a3=4a1=4=22,a4=8a1=8=23,a5=16a1=16=24,…,以此类推:所以a2021=22020.故答案是:22020.三、解答题(17、18、19题每小题各6分,20、21题各8分,22、23题每小题各9分)17..解:原式=2+2﹣+4﹣1=7﹣.18.先化简,再求代数式÷(a﹣)的值,其中a=﹣1.解:原式=÷=•=,当a=﹣1时,原式==﹣6﹣3.19.利用所学的知识计算:(1)已知a>b,且a2+b2=13,ab=6,求a﹣b的值;(2)已知a、b、c为Rt△ABC的三边长,若a2+b2+25=6a+8b,求Rt△ABC的周长.解:(1)∵a2+b2=13,ab=6,∴(a﹣b)2=a2+b2﹣2ab=13﹣2×6=1,∵a>b,∴a﹣b=1;(2)∵a2+b2+25=6a+8b,∴a2﹣6a+9+b2﹣8b+16=0,∴(a﹣3)2+(b﹣4)2=0,∴a=3,b=4,当4是直角边时,斜边长==5,则Rt△ABC的周长=3+4+5=12,当4是斜边时,另一条直角边长==,则Rt△ABC的周长=3+4+=7+,综上所述,Rt△ABC的周长为12或7+.20.今年受疫情影响,我市中小学生全体在家线上学习.为了了解学生在家主动锻炼身体的情况,某校随机抽查了部分学生,对他们每天的运动时间进行调查,并将调查统计的结果分为四类:每天运动时间t≤20分钟的学生记为A类,20分钟<t≤40分钟记为B类,40分钟<t≤60分钟记为C类,t>60分钟记为D类.收集的数据绘制两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)这次共抽取了50名学生进行调查统计;(2)扇形统计图中D类所对应的扇形圆心角大小为36°;(3)将条形统计图补充完整;(4)如果该校共有3000名学生,请你估计该校B类学生约有多少人?解:(1)这次共抽取了15÷30%=50名学生进行调查统计,故答案为:50;(2)D类有学生:50﹣15﹣22﹣8=5(人),扇形统计图中D类所对应的扇形圆心角的度数是:360°×=36°,故答案为:36°;(3)补全条形统计图如下:(4)估计该校B类学生约有3000×=1320(人).21.笔直的河流一侧有一旅游地C,河边有两个漂流点A.B.其中AB=AC,由于某种原因,由C到A的路现在已经不通,为方便游客决定在河边新建一个漂流点H(A,H,B 在一条直线上),并新修一条路CH测得BC=5千米,CH=4千米,BH=3千米,(1)问CH是否为从旅游地C到河的最近的路线?请通过计算加以说明;(2)求原来路线AC的长.解:(1)CH是从旅游地C到河的最近的路线,理由是:在△CHB中,∵CH2+BH2=42+32=25,BC2=25,∴CH2+BH2=BC2∴△HBC是直角三角形且∠CHB=90°,∴CH⊥AB,所以CH是从旅游地C到河的最近的路线;(2)设AC=AB=x千米,则AH=(x﹣3)千米,在Rt△ACH中,由已知得AC=x,AH=x﹣3,CH=4,由勾股定理得:AC2=AH2+CH2∴x2=(x﹣3)2+42解这个方程,得x=,答:原来的路线AC的长为千米.22.很多企业纷纷加入生产口罩的大军中来,长沙某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的1.5倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.(1)求甲、乙两厂房每天各生产多少箱口罩?(2)已知甲、乙两厂房生产这种口罩每天的生产费分别是1500元和1200元,现有15000箱口罩的生产任务,甲厂房单独生产一段时间后另有安排,剩余任务由乙厂房单独完成.如果总生产费不超过36300元,那么甲厂房至少生产了多少天?解:(1)设乙厂房每天生产x箱口罩,则甲厂房每天生产1.5x箱口罩,依题意,得:﹣=5,解得:x=400,经检验,x=400是原分式方程的解,且符合题意,∴1.5x=600,答:甲厂房每天生产600箱口罩,乙厂房每天生产400箱口罩;(2)设甲厂房生产了m天,则乙厂房生产了天,依题意,得:1500m+1200×≤36300,解得:m≥29,答:甲厂房至少生产了29天.23.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE=DE,在△AFE和△DBE中,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵AD为BC边上的中线∴DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S菱形ADCF=AC▪DF=×4×5=10.四、综合题(每小题各10分,共20分)24.定义:对于平面直角坐标系中的任意两点A(x1,y1)和B(x2,y2),我们把它们的横、纵坐标的差的平方和的算术平方根称作这两点的“湘一根”,记作Q[A,B],即.(1)若A(2,1)和B(﹣2,3),则Q[A,B]=2;(2)若点M(1,2),N(a,a﹣3),其中a为任意实数,求Q[M,N]的最小值;(3)若m为常数,且m>0,点A的坐标为(0,5m),B点的坐标为(8m,﹣m),C 点的坐标为(x,0),求Q[A,C]+Q[B,C]的最小值以及Q[A,C]﹣Q[B,C]的最大值.(用含m的代数式表示)解:(1)Q[A,B]==2,故答案为:2.(2)如图,由题意,点N在直线y=x﹣3上运动,根据垂线段最短可知,当MN⊥直线y=x﹣3时,MN的值最小,此时N(3,0),∵M(1,2),∴Q[M,N]的最小值==2.(3)如图1中,∵m>0,A(0,5m),∴B(8m,﹣m)在第四象限,A在y轴的正半轴上,∴当A,C,B共线时,Q[A.C]+Q[C,B]的值最小,最小值==10m.如图2中,作点B关于x轴的对称点B′,当点C在AB′的延长线上时,Q[A,C]﹣Q[B,C]的值最大,最大值=Q[A,B′]==4m.25.如图,在平面直角坐标系中,矩形ABCO的顶点O与坐标原点重合,顶点A、C在坐标轴上,B(8,4),将矩形沿EF折叠,使点A与点C重合.(1)求点E的坐标;(2)点P从O出发,沿折线O﹣A﹣E方向以每秒2个单位的速度匀速运动,到达终点E时停止运动,设点P的运动时间为t,△PCE的面积为S,求S与t的关系式,并直接写出t的取值范围.(3)在(2)的条件下.当PA=PE时,在平面直角坐标原中是否存在点Q.使得以点P、E、G、Q为顶点的四边形为平行四边形?若不存在,请说明理由;若存在,请求出点Q的坐标.解:(1)如图1,在矩形ABCO中,B(8,4),∴AB=8,BC=4,设AE=x,则EC=x,BE=8﹣x,Rt△EBC中,由勾股定理得:EB2+BC2=EC2,∴(8﹣x)2+42=x2,∴x=5,即AE=5,∴E(5,4);(2)分两种情况:①当P在OA上时,0≤t≤2,如图2,S=S矩形OABC﹣S△PAE﹣S△BEC﹣S△OPC,=8×4﹣×5(4﹣2t)﹣×3×4﹣×8×2t,=﹣3t+16,②当P在AE上时,2<t≤4.5,如图3,S=PE•BC=×4×(8﹣2t)=﹣4t+16.综上所述,S=;(3)存在,由PA=PE可知:P在AE上,如图4,过G作GH⊥OC于H,∵AP+PE=5,∴AP=3,PE=2,设OF=x,则FG=x,FC=8﹣x,由折叠得:∠CGF=∠AOF=90°,由勾股定理得:FC2=FG2+CG2,∴(8﹣x)2=x2+42,解得x=3,∴FG=3,FC=8﹣3=5,FC•GH=FG•CG,×5×GH=×3×4,GH=2.4,由勾股定理得:FH==1.8,∴OH=3+1.8=4.8,∴G(4.8,﹣2.4),∵点P、E、G、Q为顶点的四边形为平行四边形,且PE=2,∴Q(6.8,﹣2.4)或(2.8,﹣2.4).。

八年级(上学期)期末数学试卷(含答案解析)

八年级(上学期)期末数学试卷(含答案解析)

八年级(上学期)期末数学试卷(含答案解析)(时间90分钟,满分100分)题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.以下列各数为边长,能构成直角三角形的是()A. 1,2,2B. 1,,2C. 4,5,6D. 1,1,2.在如图所示的直角坐标系中,M,N的坐标分别为()A. M(2,-1),N(2,1)B. M(2,-1),N(1,2)C. M(-1,2),N(1,2)D. M(-1,2),N(2,1)3.在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8,方差分别为S甲2=0.24,S乙2=0.42,S丙2=0.56,S丁2=0.75,成绩最稳定的是()A. 甲.B. 乙C. 丙D. 丁4.若a<<b,且a与b为连续整数,则a与b的值分别为()A. 1;2B. 2;3C. 3;4D. 4;55.如图,直线a∥b,下列各角中与∠1相等的是()A. ∠2B. ∠3C. ∠4D. ∠56.估计3的运算结果应在()A. 14到15之间B. 15到16之间C. 16到17之间D. 17到18之间7.下列函数中经过第一象限的是()A. y=-2xB. y=-2x-1C.D. y=x2+28.下列命题错误的个数有()①实数与数轴上的点一一对应;②无限小数就是无理数;③三角形的一个外角大于任何一个和它不相邻的内角;④两条直线被第三条直线所截,同旁内角互补.A. 1个B. 2个C. 3个D. 4个9.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A. 90B. 100C. 110D. 12110.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法不正确的是()A. 甲的速度保持不变B. 乙的平均速度比甲的平均速度大C. 在起跑后第180秒时,两人不相遇D. 在起跑后第50秒时,乙在甲的前面二、填空题(本大题共5小题,共15.0分)11.当a= ______ 时,代数式+1取值最小.12.将直线y=3x向上平移3个单位,得到直线______.13.如图,直线AB:y=kx+b与直线CD:y=mx+n交于点E(3,1),则关于x的二元一次方程组的解为______.14.点A(-2a,a-1)在x轴上,则A点的坐标是______,A点关于y轴的对称点的坐标是______.15.图(1)中的梯形符合条件时,可以经过旋转和翻折形成图案(2).三、解答题(本大题共7小题,共55.0分)16..17.某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.社团名称人数文学社团18科技社团a书画社团45体育社团72其他b请解答下列问题:(1)a= ______ ,b= ______ ;(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为______ ;(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.18.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?19.为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求幸福商场甲、乙两种节能灯各购进了多少只?(2)全部售完100只节能灯后,商场共计获利多少元?20.在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于y轴的对称△A1B1C1;(2)写出对称点A1、B1、C1的坐标;(3)在y轴上找一点Q,使QA+QB最小.21.(1)如图,在△ABC中,∠A=40°,∠B=70°,CD是AB边上的高,CE是∠ACB的平分线,DF⊥CE于F,求∠CDF的度数.(2)计算:(-x)2•x3•(-2y)3+(2xy)2•(-x)3•y22.如图:一次函数y=-x+3的图象与坐标轴交于A、B两点,点P是函数y=-x+3(0<x<4)图象上任意一点,过点P作PM⊥y轴于点M,连接OP.(1)当AP为何值时,△OPM的面积最大?并求出最大值;(2)当△BOP为等腰三角形时,试确定点P的坐标.答案和解析1.【答案】B【解析】解:A、12+22≠22,不符合勾股定理的逆定理,不能构成直角三角形;B、12+()2=22,符合勾股定理的逆定理,能构成直角三角形;C、42+52≠62,不符合勾股定理的逆定理,不能构成直角三角形;D、12+12≠()2,不符合勾股定理的逆定理,不能构成直角三角形.故选:B.根据勾股定理的逆定理可知,当三角形中三边的关系为:a2+b2=c2时,则三角形为直角三角形.此题考查的是勾股定理的逆定理:已知三角形ABC的三边满足:a2+b2=c2时,则三角形ABC是直角三角形.解答时,只需看两较小数的平方和是否等于最大数的平方.2.【答案】D【解析】解:点M在第二象限,那么横坐标小于0,是-1,纵坐标大于0,是2,即M点的坐标为(-1,2);又因为点N在第一象限,那么它的横,纵坐标都大于0,即N的坐标为(2,1).故选:D.先判断象限内点的坐标的符号特点,进而找相应坐标.本题主要考查了平面直角坐标系中各个象限内点的符号,注意先找横坐标,再找纵坐标.3.【答案】A【解析】解:∵S甲2=0.24,S乙2=0.42,S丙2=0.56,S丁2=0.75,,∴S甲2<S乙2<S丙2<S丁2,∴成绩最稳定的是甲,故选:A.根据方差的意义求解可得.本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.4.【答案】B【解析】解:∵4<7<9,∴2<<3,∵a<<b,且a与b是两个连续整数,∴a=2,b=3.故选:B.根据4<7<9,结合a<<b,且a与b为连续整数,即可得出a、b的值.本题考查了估算无理数的大小,解题的关键是找出2<<3.5.【答案】C【解析】解:∵a∥b,∴∠2=∠3,又∵∠2+∠1=180°,∠3+∠4=180°,∴∠1=∠4,故选:C.依据平行线的性质,即可得到∠2=∠3,再根据∠2+∠1=180°,∠3+∠4=180°,即可得到∠1=∠4.本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.6.【答案】C【解析】解:3=12+3,∵,∴,∴,即3的运算结果应在16到17之间.故选:C.先进行二次根式的运算,然后再进行估算.本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.7.【答案】D【解析】【分析】本题考查了一次函数图象与系数的关系、正(反)比例函数的性质以及二次函数的性质,逐一分析四个选项中函数图象经过的象限是解题的关键.A、由k=-2,可得出正比例函数y=-2x的图象经过第二、四象限,A不符合题意;B、由k=-2、b=-1,可得出一次函数y=-2x-1的图象经过第二、三、四象限,B不符合题意;C、由k=-2,可得出反比例函数y=-的图象在第二、四象限,C不符合题意;D、由a=1、b=0、c=2,可得出二次函数y=x2+2的图象经过第一、二象限,D符合题意.此题得解.【解答】解:A、∵k=-2,∴正比例函数y=-2x的图象经过第二、四象限,A不符合题意;B、∵k=-2,b=-1,∴一次函数y=-2x-1的图象经过第二、三、四象限,B不符合题意;C、∵k=-2,∴反比例函数y=-的图象在第二、四象限,C不符合题意;D、∵a=1,b=0,c=2,∴二次函数y=x2+2的图象经过第一、二象限,D符合题意.故选:D.8.【答案】B【解析】解:①实数与数轴上的点一一对应,正确,不符合题意;②无限不循环小数就是无理数,故原命题错误,符合题意;③三角形的一个外角大于任何一个和它不相邻的内角,正确,不符合题意;④两条平行直线被第三条直线所截,同旁内角互补,故原命题错误,符合题意.错误的有2个,故选:B.利用实数的性质、无理数的定义、三角形的外角的性质及平行线的性质分别判断后即可确定正确的选项.考查了命题与定理的知识,解题的关键是了解实数的性质、无理数的定义、三角形的外角的性质及平行线的性质,难度不大.9.【答案】C【解析】【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.本题考查了勾股定理的应用,作出辅助线构造出正方形是解题的关键.【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,易得△CAB≌△BOF≌△FLG,∴AB=OF=3,AC=OB=FL=4,∴OA=OL=3+4=7,∵∠CAB=∠BOF=∠L=90°,所以四边形AOLP是正方形,OL=7,所以KL=3+7=10,LM=4+7=11,因此矩形KLMJ的面积为10×11=110.故选:C.10.【答案】B【解析】解:由图象可知,甲的速度保持不变,故选项A正确;甲的速度为:800÷180=4米/秒,乙的平均速度为:800÷220=3米/秒,∵4>3,∴乙的平均速度比甲的平均速度小,故选项B错误;在起跑后第180秒时,甲到达终点,乙离终点还有一段距离,他们不相遇,故选项C正确;在起跑后第50秒时,乙在甲的前面,故选项D正确;故选:B.根据题意和函数图象中的数据可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.11.【答案】-【解析】解:∵代数式+1取值最小时,则取到最小,∴2a+1=0,解得:a=-.故答案为:-.根据二次根式的性质代数式+1取值最小,则取到最小,进而求出即可.此题主要考查了二次根式的定义,关键是掌握二次根式中的被开方数为非负数.12.【答案】y=3x+3【解析】解:将直线y=3x向上平移3个单位,得到直线:y=3x+3.故答案为y=3x+3.利用一次函数“上加下减”的平移规律即可得出答案.此题主要考查了一次函图象与平移变换,正确记忆平移规律“左加右减,上加下减”是解题关键.13.【答案】【解析】解:∵直线AB:y=kx+b与直线CD:y=mx+n交于点E(3,1),则关于x的二元一次方程组的解为,故答案为:.利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断.本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.14.【答案】(-2,0)(2,0)【解析】解:∵点A(-2a,a-1)在x轴上,∴a-1=0,解得:a=1,∴A(-2,0),∴A点关于y轴的对称点的坐标(2,0),故答案为:(-2,0)、(2,0).根据x轴上的坐标特点:纵坐标为0可得a-1=0,解出a的值,进而可得A点坐标,再根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.此题主要考查了坐标轴上点的坐标特点,以及关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.15.【答案】底角为60°且上底与两腰相等的等腰梯形【解析】试题分析:利用等腰梯形的性质求解.从图得到,梯形的上底与两腰相等,上底角为360°÷3=120°,∴下底角=60°,∴梯形符合底角为60°且上底与两腰相等的等腰梯形条件时,可以经过旋转和翻折形成图案(2).16.【答案】解:原式=-2+2-2-2(-1)×1=-2+2-2-2+2-2.【解析】分别进行负整数指数幂、二次根式的化简、绝对值的化简、零指数幂等运算,然后合并.本题考查了二次根式的混合运算,涉及了负整数指数幂、二次根式的化简、绝对值的化简、零指数幂等知识掌握运算法则是解答本题关键.17.【答案】解:(1)36;9;(2)90°;(3)估计该校学生中选择“文学社团”的人数是3000×=300(人).【解析】【分析】本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.(1)根据体育社团的人数是72人,所占的百分比是40%即可求得调查的总人数,然后利用百分比的意义求得a和b的值;(2)利用360°乘以对应的百分比求解;(3)用样本估计总体,利用总人数乘以对应的百分比求解.【解答】解:(1)调查的总人数是72÷40%=180(人),则a=180×20%=36(人),则b=180-18-45-72-36=9(人).故答案是36;9;(2)书画社团”所对应的扇形圆心角度数是360°×=90°.故答案为90°;(3)见答案.18.【答案】解:设水池的深度为x尺,由题意得:x2+52=(x+1)2,解得:x=12,则x+1=13,答:水深12尺,芦苇长13尺.【解析】首先设水池的深度为x尺,则这根芦苇的长度为(x+1)尺,根据勾股定理可得方程x2+52=(x+1)2,再解即可.此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.19.【答案】解:(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意得:,解得:.答:商场购进甲种节能灯40只,购进乙种节能灯60只.(2)40×(40-30)+60×(50-35)=1300(元).答:商场共计获利1300元.【解析】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据幸福商场用3300元购进甲、乙两种节能灯共计100只,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据总利润=每只甲种节能灯的利润×购进数量+每只乙种节能灯的利润×购进数量,即可求出结论.本题考查二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.20.【答案】解:(1)如图,△A1B1C1即为所求;(2)由图可得,A1(-1,2)B1(-3,1)C1(2,-1);(3)如图,Q点就是所求的点.【解析】(1)根据轴对称的性质,作出△ABC关于y轴的对称△A1B1C1;(2)根据△A1B1C1各顶点的位置,写出其坐标即可;(3)连接A1B,交y轴于点Q,则QA+QB最小.本题主要考查了轴对称的性质以及轴对称变换的运用,解决问题时注意:凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.21.【答案】解:(1)∵∠A=40°,∠B=70°,∴∠ACB=180°-40°-70°=70°.∵CE是∠ACB的平分线,∴∠BCE=∠ACB=×70°=35°.∵CD⊥AB即∠CDB=90°,∴∠BCD=180°-90°-70°=20°,∴∠DCE=∠BCE-∠BCD=35°-20°=15°.∵DF⊥CE即∠DFC=90°,∴∠CDF=180°-90°-15°=75°;(2)(-x)2•x3•(-2y)3+(2xy)2•(-x)3•y=x2•x3•(-8y3)+4x2y2•(-x3)•y=-8x5y3-4x5y3=-12x5y3.【解析】(1)由DF⊥CE可知,要求∠CDF的度数,只需求出∠FCD,只需求出∠BCE和∠BCD即可;(2)根据整式的混合运算的法则计算即可.本题主要考查了三角形的内角和定理、直角三角形的两锐角互余、角平分线的定义等知识,在三角形中求角度时,通常需利用三角形内角和定理和外角的性质,还考查了整式的混合运算.22.【答案】解:(1)令点P的坐标为P(x0,y0)∵PM⊥y轴∴S△OPM=OM•PM=将代入得∴当x0=2时,△OPM的面积有最大值S max=,即:PM=2,∴PM∥OB,∴即∵直线AB分别交两坐标轴于点A、B,∴A(0,3),B(4,0),∴OA=3,OB=4,∴AB=5,∴AP=;(2)①在△BOP中,当BO=BP时BP=BO=4,AP=1∵P1M∥OB,∴∴,将代入代入中,得∴P1(,);②在△BOP中,当OP=BP时,如图,过点P作PM⊥OB于点N∵OP=BP,∴ON=将ON=2代入中得,∴点P的坐标为P(2,),即:点P的坐标为(,)或(2,).【解析】(1)先设出点P的坐标,进而得出点P的纵横坐标的关系,进而建立△OPM的面积与点P的横坐标的函数关系式,即可得出结论;(2)分两种情况,利用等腰三角形的两边相等建立方程即可得出结论.此题是一次函数综合题,主要考查了三角形的面积公式,等腰三角形的性质,用方程的思想和函数思想解决问题是解本题的关键.。

八年级上册语文期末考试试卷及答案(人教版)

八年级上册语文期末考试试卷及答案(人教版)

八年级(上)期末语文试题附答案一、积累与运用(17分)1. 选出注音有错误的一项( )(3分)A.要塞(sài)歼(jiān)灭绥(suí)靖锐不可当(dāng)B.寒噤(jìn)蹿(cuàn)跳震悚(sǒng)杯盘狼藉(jí)C.蹒跚(shān)尴尬(gà)伛(yǔ)身呆滞(zhì)笨拙D.愧怍(zu?)轩榭(xuān)伧俗(cāng)销声匿(nì)迹[2. 下列词语书写完全正确的一项是( )(3分)A.雾凇沆砀僦凭看幕五彩斑斓唠唠叨叨B.充耳不闻在劫难逃无动于衷清荣竣茂C.天衣无缝相安无事风雪载途因地制宜D.衰草连天世外桃园巧妙绝伦惟妙惟肖3.根据句意,下列加点词语可以用括号中的词语替换的是()(3分)A.舍前有两棵梨树,等到月升中天,清光从树间筛洒而下,地上阴影斑驳..(斑斓),此时尤为幽绝。

B:奶粉含有有毒物质被揭发后,政府急谋对策,遏止..(遏制)相关制品流入市面。

C:北雁南飞,活跃在田间草际的昆虫也都销声匿迹....(杳无音信)了。

D:人要变成野兽,比变成圣徒要容易千万倍。

自古以来,变成野兽的人多如牛毛,但变成圣徒的人却寥寥无几....(寥若晨星)4.明代才子徐文长外出访友,在友人家居住多日,毫无辞归之意。

友人在客厅写了个纸条“下雨天留客天留我不留”,意思是:下雨,天留客。

天留,我不留。

明知是逐客令,但徐文长却把纸条高声念了一遍,友人听后哭笑不得,只好又留他多住几日。

请用恰当的标点符号把徐文长的意思表现出来。

(2分)下雨天留客天留我不留5.填空。

(6分)[(1)“,。

”是苏轼《记承天寺夜游》一文中写月光的高度传神之笔,句中没写一个“月”字,却无处不见皎洁的月光。

(2)《渡荆门送别》的颔联:,。

(3),甲光向日金鳞开。

(4)《使至塞上》中的名句是:__________________________,__________________________。

八年级上语文期末试题及答案

八年级上语文期末试题及答案

八年级上语文期末试题一、基础知识积累与运用(每题3分,共18分)1.下列词语字形和加点字注音完全正确的一项是A.婆娑.(suō)踌躇.(chú)重峦叠障(zhànɡ)B.虬.枝(qiú)题跋.(bá)潜.滋暗长(qián)C.洨.河(jiáo)丘壑.(hè)摩肩接踵.(zhǒnɡ)D.遏.制(è)推祟.(chónɡ)无动于衷.(zhōnɡ)2.下列句子中,加点的成语使用不恰当的一项是A.黄、红色绸缎的鞋面上,根根分明的虎须,黑白相间的虎眼,小巧的虎嘴虎鼻,额上清晰的“王”字……一双双婴儿鞋上的老虎威风凛凛,惟妙惟肖....引人赞。

B.推进乡村振兴,需要因地制宜....,积极探索符合本地实际的发展路径和方法策略。

C.面对初春的西湖风光,我不由地赞叹:太美了,真是春寒料峭....啊!D.金黄色的银杏叶除了自身美以外,还能自出心裁....地用于作画、制作手工作品,给人们的生活带来更多的诗情画意。

3.下列句子中,标点符号使用有误的一项是A.这是什么精神——这是国际主义的精神;这是共产主义的精神B.杨绛先生走了,但是她的睿智、坚忍、倔强……还有她的温度,永远萦绕在我们心中。

C.没有实力,信心不过是无源之水;没有信心,拼搏只能是无本之木。

D.做隧道的时候,泥土搬到哪里去了呢?为什么墙壁不会塌下来呢?谁都以为蝉的幼虫用有抓的腿爬上爬下,会将泥土弄塌了,把自己的房子塞住。

4.下列句子中,没有语病的一项是A.福州市荣获“全国卫生城市”的原因是全市人民共同努力的结果。

B.期末复习中,不少学生存在着复习重点不突出,时间安排不合理。

C.菲律宾单方面提交南海国际仲裁案,不是为了解决争端,而是妄图否定中国在南海的领土主权。

D.三月的昆明是一年中最美好的时间,每到这个时节就会有大批的中外游客慕名前来。

5.下列说法有误的一项是A.《白杨礼赞》先描写高原的“雄壮”“伟大”,然后写出景色的“单调”,就赞美白杨树来说,这是采用了欲扬先抑的写法。

八年级(上)期末数学试卷(含答案解析)

八年级(上)期末数学试卷(含答案解析)

八年级(上)期末数学试卷一、单项选择题(共10个小题,每小题3分,满分30分)1.计算a2•a的结果是()A.a2B.2a3C.a3D.2a22.下面图形是用木条钉成的支架,其中不容易变形的是()A.B. C.D.3.下列算式结果为﹣3的是()A.﹣31B.(﹣3)0C.3﹣1D.(﹣3)24.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.扩大为原来的10倍B.扩大为原来的5倍C.缩小为原来的D.不变5.下列图形中,不是轴对称图形的是()A.正方形B.等腰直角三角形C.等边三角形D.含30°的直角三角形6.下列变形,是因式分解的是()A.x(x﹣1)=x2﹣x B.x2﹣x+1=x(x﹣1)+1C.x2﹣x=x(x﹣1) D.2a(b+c)=2ab+2ac7.若等腰三角形中有一个角等于40°,则这个等腰三角形顶角的度数为()A.40°B.100°C.40°或100°D.40°或70°8.如图,AC、BD相交于点O,∠A=∠D,要使得△AOB≌△DOC,还需补充一个条件,下面补充的条件不一定正确的是()A.OA=OD B.AB=DC C.OB=OC D.∠ABO=∠DCO9.如图,D是AB的中点,将△ABC沿过点D的直线折叠,使点A落在BC边上点F处,若∠B=50°,则∠EDF的度数为()A.40°B.50°C.60°D.80°10.某厂接到加工720件衣服的订单,每天做48件正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为()A.B.C.D.二、填空题(共6个小题,每小题4分,满分24分)11.分式有意义的x的取值范围为.12.禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为m.13.如图,已知OC平分∠AOB,CD∥OB,若OD=6cm,则CD的长等于.14.一个五边形有三个内角是直角,另两个内角都等于n°,求n的值=.15.a+2﹣=.16.如图,AB=AC=10,AB的垂直平分线DE交AB于点D,交AC于点E,则边BC的长度的取值范围是.17.因式分解:(x﹣1)(x+4)+4.18.解分式方程:.19.如图,∠A=∠C,∠1=∠2.求证:AB=CD.四、解答题(二)(共3个小题,每小题7分,满分21分)20.化简:(﹣)+,再选取一个适当的x的数值代入求值.21.如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.22.如图,在△ABC中,∠A=72°,∠BCD=31°,CD平分∠ACB.(1)求∠B的度数;(2)求∠ADC的度数.23.甲乙两车站相距450km,一列货车从甲车站开出3h后,因特殊情况在中途站多停了一会,耽误了30min,后来把货车的速度提高了0.2倍,结果准时到达乙站,求这列货车原来的速度.24.在直角△ABC中,∠ACB=90°,∠B=60°,AD,CE分别是∠BAC和∠BCA的平分线,AD,CE相交于点F.(1)求∠EFD的度数;(2)判断FE与FD之间的数量关系,并证明你的结论.25.如图,点A、B、C在一条直线上,△ABD、△BCE均为等边三角形,连接AE 和CD,AE分别交BD、CD于点P、M,CD交BE于点Q,连接PQ.求证:(1)∠DMA=60°;(2)△BPQ为等边三角形.参考答案与试题解析一、单项选择题(共10个小题,每小题3分,满分30分)1.计算a2•a的结果是()A.a2B.2a3C.a3D.2a2【考点】46:同底数幂的乘法.【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:a2•a=a3.故选:C.2.下面图形是用木条钉成的支架,其中不容易变形的是()A.B. C.D.【考点】L1:多边形;K4:三角形的稳定性.【分析】根据三角形的稳定性进行解答.【解答】解:含有三角形结构的支架不容易变形.故选:B.3.下列算式结果为﹣3的是()A.﹣31B.(﹣3)0C.3﹣1D.(﹣3)2【考点】6F:负整数指数幂;1E:有理数的乘方;6E:零指数幂.【分析】结合负整数指数幂、有理数的乘方以及零指数幂的概念和运算法则进行求解即可.【解答】解:A、﹣31=﹣3,本选项正确;B、(﹣3)0=1≠﹣3,本选项错误;C、3﹣1=≠﹣3,本选项错误;D、(﹣3)2=9≠﹣3,本选项错误.故选A.4.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.扩大为原来的10倍B.扩大为原来的5倍C.缩小为原来的D.不变【考点】65:分式的基本性质.【分析】根据题意将10x与10y代入原式后化简即可求出答案.【解答】解:由题意可知:==故选(D)5.下列图形中,不是轴对称图形的是()A.正方形B.等腰直角三角形C.等边三角形D.含30°的直角三角形【考点】P3:轴对称图形.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A、正方形是轴对称图形,不合题意;B、等腰直角三角形是轴对称图形,不合题意;C、等边三角形是轴对称图形,不合题意;平行四边形不是轴对称图形,符合题意;D、含30°的直角三角形不是轴对称图形,符合题意;故选:D.6.下列变形,是因式分解的是()A.x(x﹣1)=x2﹣x B.x2﹣x+1=x(x﹣1)+1C.x2﹣x=x(x﹣1) D.2a(b+c)=2ab+2ac【考点】51:因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、是符合因式分解的定义,故本选项正确;D、右边不是整式积的形式,不是因式分解,故本选项错误;故选C.7.若等腰三角形中有一个角等于40°,则这个等腰三角形顶角的度数为()A.40°B.100°C.40°或100°D.40°或70°【考点】KH:等腰三角形的性质.【分析】由等腰三角形中有一个角等于40°,可分别从①若40°为顶角与②若40°为底角去分析求解即可求得答案.【解答】解:∵等腰三角形中有一个角等于40°,∴①若40°为顶角,则这个等腰三角形的顶角的度数为40°;②若40°为底角,则这个等腰三角形的顶角的度数为:180°﹣40°×2=100°.∴这个等腰三角形的顶角的度数为:40°或100°.故选:C.8.如图,AC、BD相交于点O,∠A=∠D,要使得△AOB≌△DOC,还需补充一个条件,下面补充的条件不一定正确的是()A.OA=OD B.AB=DC C.OB=OC D.∠ABO=∠DCO【考点】KB:全等三角形的判定.【分析】根据ASA可以推出两三角形全等;根据AAS可以推出两三角形全等;根据AAS可以推出两三角形全等;根据AAA不能推出两三角形全等.【解答】解:A、∵在△AOB和△DOC中∴△AOB≌△DOC(ASA),正确,故本选项错误;B、∵在△AOB和△DOC中∴△AOB≌△DOC(AAS),正确,故本选项错误;C、∵在△AOB和△DOC中∴△AOB≌△DOC(AAS),正确,故本选项错误;D、根据三个角对应相等的两个三角形不全等,错误,故本选项正确;故选D.9.如图,D是AB的中点,将△ABC沿过点D的直线折叠,使点A落在BC边上点F处,若∠B=50°,则∠EDF的度数为()A.40°B.50°C.60°D.80°【考点】PB:翻折变换(折叠问题);K7:三角形内角和定理.【分析】连接AF交DE于G,由翻折的性质可知点G是AF的中点,故此DG是△ABF的中位线,于是得到DG∥BF,由平行线的性质可求得∠ADE=50°.【解答】解:如图所示:连接AF交DE于G.∵由翻折的性质可知:AG=FG.∴点G是AF的中点.又∵D是AB的中点,∴DG是△ABF的中位线.∴DG∥FB.∴∠ADE=∠B=∠EDF=50°.故选B.10.某厂接到加工720件衣服的订单,每天做48件正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为()A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【分析】本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.【解答】解:因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,可以列出方程:.故选:A二、填空题(共6个小题,每小题4分,满分24分)11.分式有意义的x的取值范围为x≠1.【考点】62:分式有意义的条件.【分析】分式有意义时,分母不等于零.【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.12.禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为 1.02×10﹣7m.【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.13.如图,已知OC平分∠AOB,CD∥OB,若OD=6cm,则CD的长等于6cm.【考点】KJ:等腰三角形的判定与性质.【分析】根据题意,可得∠AOC=∠BOC,又因为CD∥OB,求得∠C=∠AOC,则CD=OD可求.【解答】解:∵OC平分∠AOB,∴∠AOC=∠BOC;又∵CD∥OB,∴∠C=BOC,∴∠C=∠AOC;∴CD=OD=6cm.故答案为:6cm.14.一个五边形有三个内角是直角,另两个内角都等于n°,求n的值=135.【考点】L3:多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给五边形有三个角是直角,另两个角都等于n,列方程可求解.【解答】解:依题意有3×90+2n=(5﹣2)•180,解得n=135.故答案为:135.15.a+2﹣=.【考点】6B:分式的加减法.【分析】先通分,然后进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解:a+2﹣=+=.故答案为:.16.如图,AB=AC=10,AB的垂直平分线DE交AB于点D,交AC于点E,则边BC的长度的取值范围是0<BC<10.【考点】KG:线段垂直平分线的性质.【分析】根据线段垂直平分线的性质和三角形的三边关系即可得到结论.【解答】解:∵AB的垂直平分线DE交AB于点D,∴AE=BE,∴AE+CE=AC=10,∴0<BC<10,故答案为:0<BC<10.三、解答题(一)(共3个小题,每小题6分,满分18分)17.因式分解:(x﹣1)(x+4)+4.【考点】53:因式分解﹣提公因式法.【分析】首先去括号,进而合并同类项,再利用提取公因式法分解因式得出答案.【解答】解:原式=x2+3x﹣4+4=x2+3x=x(x+3).18.解分式方程:.【考点】B3:解分式方程.【分析】观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘x(x﹣2),得3(x﹣2)=x,解得x=3.检验:把x=3代入x(x﹣2)=3≠0.∴原方程的解为:x=3.19.如图,∠A=∠C,∠1=∠2.求证:AB=CD.【考点】KD:全等三角形的判定与性质.【分析】根据全等三角形的判定和性质即可得到结论.【解答】证明:在△ABD和∠△CDB中,,∴△ABD≌△CDB,∴AB=CD.四、解答题(二)(共3个小题,每小题7分,满分21分)20.化简:(﹣)+,再选取一个适当的x的数值代入求值.【考点】6D:分式的化简求值.【分析】先化简题目中的式子,然后选取合适的值代入化简后的式子即可解答本题,注意x不能取0或1.【解答】解:(﹣)+======,当x=2时,原式==3.21.如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.【考点】P7:作图﹣轴对称变换;PA:轴对称﹣最短路线问题.【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用对称点求最短路线的性质得出答案.【解答】解:(1)如图所示:△A1B1C1为所求作的三角形;(2)如图,点P的坐标为:(0,1).22.如图,在△ABC中,∠A=72°,∠BCD=31°,CD平分∠ACB.(1)求∠B的度数;(2)求∠ADC的度数.【考点】K7:三角形内角和定理.【分析】(1)根据角平分线的定义求出∠ACB,再利用三角形的内角和等于180°列式计算即可得解;(2)根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:(1)∵CD平分∠ACB,∠BCD=31°,∴∠ACD=∠BCD=31°,∴∠ACB=62°,∵在△ABC中,∠A=72°,∠ACB=62°,∴∠B=180°﹣∠A﹣∠ACB=180°﹣72°﹣62°=46°;(2)在△BCD中,由三角形的外角性质得,∠ADC=∠B+∠BCD=46°+31°=77°.五、解答题(三)(共3个小题,每小题9分,满分27分)23.甲乙两车站相距450km,一列货车从甲车站开出3h后,因特殊情况在中途站多停了一会,耽误了30min,后来把货车的速度提高了0.2倍,结果准时到达乙站,求这列货车原来的速度.【考点】B7:分式方程的应用.【分析】设货车原来的速度为x km/h,根据等量关系:按原速度行驶所用时间﹣提速后时间=,列出方程,求解即可【解答】解:设货车原来的速度为x km/h,根据题意得:﹣=,解得:x=75.经检验:x=75是原方程的解.答:货车原来的速度是75 km/h.24.在直角△ABC中,∠ACB=90°,∠B=60°,AD,CE分别是∠BAC和∠BCA的平分线,AD,CE相交于点F.(1)求∠EFD的度数;(2)判断FE与FD之间的数量关系,并证明你的结论.【考点】K7:三角形内角和定理.【分析】(1)根据三角形内角和定理和角平分线的定义计算求解;(2)在AC上截取AG=AE,则EF=FG;根据ASA证明△FCD≌△FCG,得DF=FG,故判断EF=FD.【解答】解:(1)∵△ABC中,∠ACB=90°,∠B=60°∴∠BAC=30°,∵AD、CE分别是∠BAC、∠BCA的平分线∴∠FAC=∠BAC=15°,∠FCA=∠ACB=45°∴∠AFC=180°﹣∠FAC﹣∠FCA=120°,∴∠EFD=∠AFC=120°;(2)FE与FD之间的数量关系为FE=FD;证明:在AC上截取AG=AE,连接FG,∵AD是∠BAC的平分线,∴∠1=∠2又∵AF为公共边在△EAF和△GAF中∵,∴△AEF≌△AGF∴FE=FG,∠AFE=∠AFG=60°,∴∠CFG=60°,又∵FC为公共边,∠DCF=∠FCG=45°在△FDC和△FGC中∵,∴△CFG≌△CFD,∴FG=FD∴FE=FD.25.如图,点A、B、C在一条直线上,△ABD、△BCE均为等边三角形,连接AE 和CD,AE分别交BD、CD于点P、M,CD交BE于点Q,连接PQ.求证:(1)∠DMA=60°;(2)△BPQ为等边三角形.【考点】KD:全等三角形的判定与性质;KM:等边三角形的判定与性质.【分析】(1)根据等边三角形的性质,可证明△ABE≌△DBC,可求得∠BAE=∠BDC,则可证得∠ABD=∠DMA=60°;(2)由等边三角形的性质,结合(1)中的结论可证明△ABP≌△DBQ,可得BP=BQ,则可证得结论.【解答】证明:(1)∵△ABD、△BCE均为等边三角形,∴AB=DB,EB=CB,∠ABD=∠EBC=60°,∴∠ABD+∠DBE=∠EBC+∠DBE,即∠ABE=∠DBC,在△ABE和△DBC中∴△ABE≌△DBC (SAS),∴∠BAE=∠BDC,在△ABP和△DMP中,∠BAE=∠BDC,∠APB=∠DPM,∴∠DMA=∠ABD=60°;(2)∵△ABD、△BCE均为等边三角形,∴AB=DB,∠ABD=∠EBC=60°,∵点A、B、C在一条直线上,∴∠DBE=60°,即∠ABD=∠DBE,由(1)得∠BAE=∠BDC,在△ABP和△DBQ中∴△ABP≌△DBQ(ASA),∴BP=BQ,∴△BPQ为等边三角形.。

八年级(上学期)期末数学试卷及答案解析

八年级(上学期)期末数学试卷及答案解析

八年级(上学期)期末数学试卷及答案解析(时间90分钟,满分100分)一、选择题(本大题共10小题,共30.0分)1.在-1.4141,,π,,,3.14这些数中,无理数的个数为()A. 2B. 3C. 4D. 52.下列方程组中是二元一次方程组的是()A. B.C. D.3.点M(3,2)关于x轴对称的点的坐标为()A. (-3,2)B. (-3,-2)C. (3,-2)D. (2,-3)4.下列各组数,能够作为直角三角形的三边长的是()A. 4,6,8B. ,,C. 5,12,14D. 2,2,25.下列四个命题中,假命题有()(1)两条直线被第三条直线所截,内错角相等.(2)如果∠1和∠2是对顶角,那么∠1=∠2.(3)一个锐角的余角一定小于这个锐角的补角.(4)如果∠1和∠3互余,∠2与∠3的余角互补,那么∠1和∠2互补.A. 1个B. 2个C. 3个D. 4个6.在“百善孝为先”朗诵比赛中,晓晴根据七位评委所给的某位参赛选手的分数制作了如下表格:如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是()A. 平均数B. 中位数C. 众数D. 方差7.菱形ABCD的边长为2,∠A=60°,点G为AB的中点,以BG为边作菱形BEFG,其中点E在CB的延长线上,点P为FD的中点,则PB=()A. B. C. D.8.如图,在△ABC中,DE∥AC,,DE=3,则AC的长为A. 3B. 4C. 6D. 99.如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,则△ABC的面积是()A. 10B. 16C. 18D. 2010.下列四个选项中,函数y=ax+a与y=ax2(a≠0)的图象表示正确的是()A. B.C. D.二、填空题(本大题共6小题,共18.0分)11.已知|a-2|+(b+3)2=0,则b a=______.12.反比例函数与在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为.13.在平面直角坐标系中,将点P(-1,2)向下平移2个单位长度,再向左平移1个单位长度得到点Q,则点Q的坐标为______.14.如图,在△ABC中,∠B=40°,∠C=60°,AD是△ABC的高,AE是△ABC的角平分线,则∠EAD的度数是______.15.如图,将Rt△ABC放置在平面直角坐标系中,C与原点重合,CB在x轴上,若AB=2,点B的坐标为(4,0),则点A的坐标为____.16.如图,线段CD两个端点的坐标分别为C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的两倍,得到线段AB,则线段AB的中点E的坐标为______ .三、解答题(本大题共8小题,共52.0分)17.按要求解答(1)解方程:2(x-2)2=8;(2)计算:.18.解方程组:.19.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点的坐标分别是A(-1,5),B(-1,0),C(-4,3).(1)求△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,C1的坐标.20.如图,把△ABC先向上平移4个单位长度,再向右平移2个单位长度,得到△A'B'C'.(1)在图中画出△A'B'C';(2)求△ABC的面积.21.某中学八年级的篮球队有10名队员.在“二分球”罚篮投球训练中,这10名员各投篮50次的进球情况如下表:进球数423226201918人数112123针对这次训练,请解答下列问题:(1)求这10名队员进球数的平均数、中位数;(2)求这支球队投篮命中率______;(3)若队员小亮“二分球”的投篮命中率为55%,请你分析一下小亮在这支球队中的投篮水平.22.如图,在正方形ABCD中,点E、F分别是边AB、AD的中点,DE与CF相交于G,DE、CB的延长线相交于点H,点M是CG的中点.求证:(1)BM∥GH;(2)BM⊥CF.23.甲从学校A出发到相距14km的E地办事,到达距学校2km的B地时发现未带所需证件,打电话给在学校的乙,乙随即出发在C处追上甲后立即返回.当乙回到学校时,甲到达距E还有3km的D地.求学校到C地的距离.24.△ABC是等边三角形,点A与点D的坐标分别是A(4,0),D(10,0).(1)如图1,当点C与点O重合时,求直线BD的解析式;(2)如图2,点C从点O沿y轴向下移动,当以点B为圆心,AB为半径的⊙B与y轴相切(切点为C)时,求点B的坐标;(3)如图3,点C从点O沿y轴向下移动,当点C的坐标为C(0,)时,求∠ODB的正切值.答案和解析1.【答案】B【解析】解:=2,故在-1.4141,,π,,,3.14这些数中,无理数有:,π,,共3个.故选:B.根据无理数的定义求解即可.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【答案】B【解析】解:A、当a不是常数时,此方程组是三元二次方程组,故A错误;B、符合二元一次方程组的定义,故B正确;C、是分式方程组,故C错误;D、是三元一次方程组,故D错误.故选:B.分别根据二元一次方程组的定义对四个选项进行逐一分析即可.本题考查的是二元一次方程组的定义,二元一次方程组也满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.3.【答案】C【解析】解:点M(3,2)关于x轴对称的点的坐标为(3,-2).故选C.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.4.【答案】D【解析】解:A、42+62≠82,不能构成直角三角形,故此选项不符合题意;B、()2+()2≠()2,不能构成直角三角形,故此选项不符合题意;C、52+122≠142,不能构成直角三角形,故此选项不符合题意;D、(2)2+(2)2=(2)2,能构成直角三角形,故此选项符合题意.故选:D.欲判断是否是直角三角形的三边长,只需验证两小边的平方和是否等于最长边的平方即可.此题主要考查了勾股定理的逆定理,掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.5.【答案】A【解析】解:(1)两条平行线被第三条直线所截,内错角相等,原命题是假命题.(2)如果∠1和∠2是对顶角,那么∠1=∠2,是真命题.(3)一个锐角的余角一定小于这个锐角的补角,是真命题.(4)如果∠1和∠3互余,∠2与∠3的余角互补,那么∠1和∠2互补,是真命题;故选:A.根据平行线的性质、对顶角、补角进行判断即可.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.【答案】B【解析】解:去掉一个最高分和一个最低分对中位数没有影响,故选:B.根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.7.【答案】A【解析】解:如图,连接BF、BD,∵菱形ABCD的边长为2,∴AB=BC=CD=2,∵∠A=60°,∴△BCD是等边三角形,∴BD=BC=2,∠DBC=60°,∴∠DBA=60°,∵点G为AB的中点,∴菱形BEFG的边长为1,即BE=EF=BG=1,∵点E在CB的延长线上,∠GBE=60°,∴∠FBG=30°,连接EG,∴EG⊥FB于点O,∴OB=,∴FB=,∵∠DBF=∠DBA+∠FBG=90°,根据勾股定理,得DF==,∵点P为FD的中点,∴PB=DF=.故选:A.连接BF、BD,根据菱形ABCD的边长为2,可得AB=BC=CD=2,由∠A=60°,可得△BCD是等边三角形,进而可求∠DBF=90°,再根据勾股定理分别求出BF、PF的长,进而可得PB的长.本题考查了菱形的性质、等边三角形的判定与性质、直角三角形斜边上的中线、勾股定理,解决本题的关键是掌握菱形的性质.8.【答案】D【解析】解:∵DE∥AC∴△BED∽△BCA故选D.9.【答案】A【解析】解:动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D之间时,△ABP 的面积不变.函数图象上横轴表示点P运动的路程,x=4时,y开始不变,说明BC=4,x=9时,接着变化,说明CD=9-4=5.∴△ABC的面积为=×4×5=10.故选A.本题难点在于应找到面积不变的开始与结束,得到BC,CD的具体值.解决本题应首先看清横轴和纵轴表示的量.10.【答案】B【解析】解:当a>0时,y=ax2的图象是抛物线,顶点在原点,开口向上,函数y=ax+a的图象是一条直线,在第一、二、三象限,故选项A错误,选项B正确,当a<0时,y=ax2的图象是抛物线,顶点在原点,开口向下,函数y=ax+a的图象是一条直线,在第二、三、四象限,故选项C、D错误,故选:B.根据题目中的函数解析式,讨论a>0 和a<0时,两个函数的函数图象,从而可以解答本题.本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】9【解析】解:∵|a-2|+(b+3)2=0,∴a-2=0,b+3=0,解得a=2,b=-3.∴b a=(-3)2=9.故答案为:9.先根据非负数的性质求出a、b的值,再代入代数式进行计算即可.本题考查了非负数的性质,熟知几个非负数的和为0时,其中每一项必为0是解答此题的关键.12.【答案】1【解析】试题分析:由于AB∥x轴,可知AB两点的纵坐标相等,于是可设A点坐标是(a,c),B点坐标是(b,c),于是可得=,即b=a,进而可求AB,据图可知△AOB的高是c,再利用面积公式可求其面积.由于AB∥x轴,设A点坐标是(a,c),B点坐标是(b,c),那么=,即b=a,∴AB=|a-b|=a,∵c=,∴S△AOB=AB•c=×a×=1,故答案是:1.13.【答案】(-2,0)【解析】解:平移后点Q的坐标为(-1-1,2-2),即(-2,0),故答案为:(-2,0).根据平移规律:横坐标右移加,左移减;纵坐标上移加,下移减即可得.此题主要考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.掌握点的坐标的变化规律是解题的关键.14.【答案】10【解析】解:∵∠B=40°,∠C=60°,∴∠BAC=180°-60°-40°=80°,∵AE为∠BAC角平分线,∴∠BAE=80°÷2=40°,∵AD为△ABC的高,∴∠ADB=90°,∴∠DAC=90°-∠C=90°-60°=30°,∴∠EAD=∠EAC-∠DAC=40°-30°=10°,即∠EAD的度数是10°,故答案为:10.首先根据三角形的内角和定理,求出∠BAC的度数是多少;然后根据AE为角平分线,求出∠BAE的度数是多少;最后在Rt△DAC中,求出∠DAC的度数,即可求出∠EAD的度数是多少.此题主要考查了三角形的内角和定理,三角形高、中线的定义,解答此题的关键是明确:三角形的内角和是180°.15.【答案】(3,)【解析】解:作AC⊥OB于C,如图所示:∵点B的坐标为(4,0),∴OB=4,∵∠OAB=90°,AB=2,∴OA==2,∵△OAB的面积=OB•AC=OA•AB,∴AC===,∴OC==3,∴A(3,);故答案为:(3,).作AC⊥OB于C,由勾股定理求出OA=2,由△OAB的面积求出AC==,再由勾股定理求出OC即可.本题主要考查了坐标与图形性质,直角三角形的性质,三角形面积,勾股定理,熟练掌握勾股定理是解答此题的关键.16.【答案】(7,4)【解析】解:∵C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的两倍,∴A(6,6),B(8,2),∵E是AB中点,∴E(7,4),故答案为:(7,4).直接利用位似图形的性质得出对应点坐标乘以2得出A、B两点坐标,再求中点即可.此题主要考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.17.【答案】解:(1)方程整理得:(x-2)2=4,开方得:x-2=2或x-2=-2,解得:x=4或x=0;(2)原式=9-3+2+2-=10-.【解析】(1)方程整理后,利用平方根定义开方即可求出解;(2)原式利用平方根、立方根定义,以及绝对值的代数意义计算即可求出值.此题考查了实数的运算,熟练掌握运算法则及方程的解法是解本题的关键.18.【答案】解一:①+②×3,得5 x=10,解得x=2.把x=2代入②得y=-1.∴原方程组的解是;解二:由②得:x=3+y③,把③代入①得 2(3+y)+3y=1,解得y=-1.把y=-1代入③得x=2.∴原方程组的解是.【解析】解一:①+②×3得到一个关于x的一元一次方程,求出x,把x的值代入②求出y即可;解二:由②得x=3+y③,把③代入①得到一个关于y的一元一次方程,求出y,把y的值代入③求出x即可.本题考查了解二元一次方程组,明确基本思想是消元,基本方法是代入法与加减法.是基础知识,需熟练掌握.19.【答案】解:(1)△ABC的面积为×3×5=;(2)如图所示,△A1B1C1即为所求;(3)由图知,A1(1,5),C1(4,3).【解析】(1)直接利用三角形的面积公式求解即可;(2)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可;(3)结合图形可得答案.本题主要考查作图—轴对称变换,解题的关键是掌握轴对称变换的定义与性质.20.【答案】解:(1)如图所示.(2).【解析】(1)利用点平移的坐标规律写出点A′、B′、C′的坐标,然后描点即可;(2)利用三角形面积公式求解.本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21.【答案】解:(1)23.8,19.5;(2)47.6%;(3)若队员小亮投篮命中率为55%,小亮在这支球队中的投篮水平处于中上水平.【解析】解:(1)平均数为:=23.8;把这些数从小到大排列,则中位数是:=19.5;故答案为:23.8,19.5;(2)这支球队投篮命中率是:×100%=47.6%,故答案为:47.6%;(3)见答案.【分析】(1)进球数的平均数=进球总数÷人数,10个数据中位数应是第5个和第6个数的平均数;(2)根据投篮命中率=进球总数÷投球总数×100%解答即可;(3)根据投篮命中率和中位数进行解答即可.本题主要考查了平均数的求法以及中位数的求法,用到的知识点是:中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数;平均数=总数÷个数.要学会用适当的统计量分析问题.22.【答案】证明:(1)∵正方形ABCD,∴∠A=∠EBH=90°,AD=BC,∵E是AB的中点,∴AE=BE,∵∠AED=∠BEH,∴△AED≌△BEH,∴AD=BH,∴BC=BH,即点B为CH的中点,又点M为CG的中点,∴BM为△CGH的中位线,∴BM∥GH.(2)∵四边形ABCD为正方形,∴AB=AD=CD,∠A=∠ADC=90°,又∵点E、F分别是边AB、AD的中点,∴AE=AB,DF=AD,∴AE=DF,∴△AED≌△DFC,∴∠ADE=∠DCF,∵∠ADE+∠CDE=90°,∴∠DCF+∠CDE=90°,∴∠CGH=90°,∵BM∥GH,∴∠CMB=∠CGH=90°,∴BM⊥CF.【解析】(1)根据正方形的性质得到∠A与∠EBH都为直角,边AD与BC的相等,再根据已知的点E为AB 的中点得到AE=BE,另加一对对顶角的相等,根据“ASA”证得三角形ADE与三角形BHE全等,根据全等三角形的对应边相等可得BH=AD,等量代换可得BH=BC,从而得到点B为CH的中点,再由已知的点M 为CG的中点,可得BM为三角形CGH的中位线,根据中位线定理即可得到BM与GH的平行;(2)根据正方形的性质得到正方形的四条边相等,∠A与∠DAC都为直角,又点E、F分别是边AB、AD的中点,可得AE=DF,根据“SAS”证得三角形AED与三角形DFC全等,根据全等三角形的对应角相等可得∠ADE与∠DCF的相等,又∠ADE+∠CDE=90°,根据等量代换可得∠DCF+∠CDE=90°,从而得到∠CGH为90°,最后由第一问得到的平行,根据两直线平行,同位角相等即可得到∠CMB为90°,即BM⊥CF.此题考查了正方形的性质,全等三角形的判定与性质以及平行线的判定与性质.是一道把三角形的知识与四边形知识综合在一起的一道证明题,是历年中考必考的题型,要求学生熟练掌握有关知识,结合图形,勇于探索,锻炼了学生发散思维能力.23.【答案】解:设学校到C地的距离为xkm,则B、C两地间的距离为(x-2)km,C、D两地间的距离为(x-2)km,根据题意得:x+(x-2)+3=14,解得:x=6.5.答:学校到C地的距离为6.5km.【解析】设学校到C地的距离为xkm,则B、C两地间的距离为(x-2)km,C、D两地间的距离为(x-2)km,根据A到E地的距离为14km,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24.【答案】解:(1)∵A(4,0),∴OA=4,∴等边三角形ABC的高就为2,∴B(2,-2).设直线BD的解析式为y=kx+b,由题意,得,解得:,∴直线BD的解析式为:y=x-;(2)作BE⊥x轴于E,∴∠AEB=90°.∵以AB为半径的⊙S与y轴相切于点C,∴BC⊥y轴.∴∠OCB=90°∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACO=30°,∴AC=2OA.∵A(4,0),∴OA=4,∴AC=8,∴由勾股定理得:OC=4.作BE⊥x轴于E,∴AE=4,∴OE=8,∴B(8,-4);(3)如图3,以点B为圆心,AB为半径作⊙B,交y轴于点C、E,过点B作BF⊥CE于F,连接AE.∵△ABC是等边三角形,∴AC=BC=AB,∠ABC=∠ACB=∠BAC=60°,∴∠OEA=∠ABC=30°,∴AE=2OA.∵A(4,0),∴OA=4,∴AE=8.在Rt△AOE中,由勾股定理,得OE=4.∵C(0,),∴OC=2,在Rt△AOC中,由勾股定理,得AC=2.∵CE=OE-OC=4=2.∵BF⊥CE,∴CF=CE=,∴OF=2+=3.在Rt△CFB中,由勾股定理,得BF2=BC2-CF2,=28-3=25,∴BF=5,∴B(5,-3).过点B作BQ⊥x轴于点Q,∴BQ=3,OQ=5,∵D(10,0),∴DQ=5,∴tan∠ODB==.【解析】(1)先根据等边三角形的性质求出B点的坐标,直接运用待定系数法就可以求出直线BD的解析式;(2)作BE⊥x轴于E,就可以得出∠AEB=90°,由圆的切线的性质就可以而出B的纵坐标,由直角三角形的性质就可以求出B点的横坐标,从而得出结论;(3)以点B为圆心,AB为半径作⊙B,交y轴于点C、E,过点B作BF⊥CE于F,连接AE.根据等边三角形的性质圆心角与圆周角之间的关系及勾股定理就可以点B的坐标,作BQ⊥x轴于点Q,根据正切值的意义就可以求出结论.本题考查了等边三角形的性质的运用,勾股定理的运用,待定系数法求一次函数的解析式的运用,圆周角与圆心角的关系定理的运用,切线的性质的运用及直角三角形的性质的运用,解答时灵活运用勾股定理求线段的值是关键.。

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试题一、单选题1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A .B .C .D .2.下列长度的三条线段能组成三角形的是()A .2,4,7B .1,3,2C .6,8,10D .3,2,63.下列计算正确的是()A .()235aa =B .()2322a a =C .34a a a ⋅=D .2a-a=24.已知等腰三角形的两边长分别为6和2,则它的周长是()A .10B .14C .10或8D .10或145.若分式211x x --的值为0,则x 的值是()A .1B .0C .1-D .±16.如图,∠AOB 内一点P ,P 1,P 2分别是P 关于OA 、OB 的对称点,P 1P 2交OA 于点M ,交OB 于点N .若△PMN 的周长是5cm ,则P 1P 2的长为()A .6cmB .5cmC .4cmD .3cm7.若23m =,22n =,则22m n +=()A .5B .6C .7D .128.如图,在△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB=10cm ,则△DEB 的周长为()A .4cmB .6cmC .10cmD .不能确定9.如果a+b=3,那么2b aa a ab ⎛⎫-⋅⎪-⎝⎭的值是()A .3B .-3C .13D .13-10.如图,在Rt ABC 中,AD 是BAC ∠的平分线,DE AB ⊥,垂足为E .若8cm,5cm BC BD ==,则DE 的长为()A .23cmB .3cmC .4cmD .5cm二、填空题11.点P (-2,4)关于x 轴对称的点的坐标为________.12.分解因式:3m 2﹣3n 2=_____.13.要使分式13x -有意义,x 需满足的条件是________.14.如果等腰三角形的一个内角为50度,那么这个等腰三角形的底角是____度.15.(﹣8)2019×0.1252020=_________.16.建筑公司修建一条400米长的道路,开工后每天比原计划多修10米,结果提前2天完成了任务.如果设建筑公司实际每天修x 米,那么可得方程是________.17.在一自助夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了200m 到达B 地,再沿北偏东30°方向走,恰能到达目的地C (如图),那么,由此可知,B 、C 两地相距_________m .18.如图,将一副直角三角板,按如图所示的方式摆放,则∠α的度数是___________.三、解答题19.(1)计算:212232-⎛⎫--+⎪⎝⎭;(2)分解因式:22363x xy y -+-.20.解方程:(1)31511x x =---;(2)214111x x x +-=--.21.先化简,再求值:221x 4x 41x 1x 1-+⎛⎫-÷ ⎪--⎝⎭,其中x=3.22.如图,在平面直角坐标系中,A (1,2),B (3,1),C (-2,-1).(1)在图中作出△ABC 关于y 轴的对称图形111A B C △;(2)在x 轴上画出点P ,使PA+PB 最小(保留作图痕迹).23.已知:如图所示,点B ,E ,C ,F 在同一直线上,AB ∥DE ,∠ACB=∠F ,AC=DF .求证:BE=CF .24.已知:如图,在△ABC 中,D 为BC 上的一点,AD 平分∠EDC ,且∠E=∠B ,DE=DC ,求证:AB=AC .25.某药店用1000元购进若干医用防护口罩,很快售完,接着又用2500元购进第二批口罩,已知第二批所购口罩的数量是第一批所购口罩数的2倍,且每只口罩的进价比第一批的进价多0.5元.求第一批口罩每只的进价是多少元?26.观察下列等式,用你发现的规律解答问题.111122=-⨯,1112323=-⨯,1113434=-⨯……(1)计算:111111223344556++++⨯⨯⨯⨯⨯的值.(2)求()11111112233445561n n ++++++⨯⨯⨯⨯⨯+ 的值(用含n 的式子表示).27.如图所示,在△ABC 中,AD 平分∠BAC 交BC 于点D ,BE 平分∠ABC 交AD 于点E .(1)若∠C=50°,∠BAC=60°,求∠ADB 的度数;(2)若∠BED=45°,求∠C 的度数;(3)猜想∠BED 与∠C 的关系,并说明理由.参考答案1.A 2.C 3.C 4.B 5.C 6.B 7.D 8.C 9.A 10.B 11.(2,4)--12.()()3m n m n +-13.3x ≠14.50或65【详解】试题解析:(1)当这个内角是50°的角是顶角时,则它的另外两个角的度数是65°,65°;(2)当这个内角是50°的角是底角时,则它的另外两个角的度数是80°,50°;所以这个等腰三角形的底角的度数是50或65.15.-0.125【详解】解:()()20192019202080.1250.12580.1250.125-⨯=-⨯⨯=-.故答案为:-0.125.【点睛】本题主要考查积的乘方,熟练掌握积的乘方是解题的关键.16.400400210x x-=-【分析】设实际每天修x 米,则原计划每天修(x−10)米,根据实际比原计划提前2天完成了任务,列出方程即可.【详解】解:设建筑公司实际每天修x 米,由题意得:400400210x x-=-,故答案为:400400210x x-=-.【点睛】本题考查分式方程的应用,理解题意,找到合适的等量关系是解决问题的关键.本题的等量关系为原计划用的天数-实际用的天数=2.17.200【详解】解:由已知得:∠ABC=90°+30°=120°,∠BAC=90°﹣60°=30°,∴∠ACB=180°﹣∠ABC ﹣∠BAC=180°﹣120°﹣30°=30°,∴∠ACB=∠BAC ,∴BC=AB=200.18.75︒【分析】根据直角三角板的已知角度以及三角形外角性质即可求解.【详解】如图,304575DCB ABC α∠=∠+∠=︒+︒=︒故答案为:75︒19.(1)1-;(2)()23x y --【分析】(1)先化简绝对值、计算负整数指数幂与零指数幂,再计算加减法即可得;(2)综合利用提取公因式法和完全平方公式分解因式即可得.【详解】解:(1)原式241=-+1=-;(2)原式()2232x xy y=--+()23x y =--.20.(1)95x =(2)无解【分析】(1)先去分母,即方程两边同时乘以(x-1),将方程化成整式方程求解,然后检验即可求解;(2)先去分母,即方程两边同时乘以(x-1)(x+1)将方程化成整式方程求解,然后检验即可求解;(1)解:方程两边同时乘以(1-x),得-3=1-5(x-1)解得:95x =,检验:把95x =代入x-1=45≠0,所以95x =是原分式方程的解,∴95x =;(2)解:方程两边同时乘以(x-1)(x+1),得()()()21114x x x +-+-=222114x x x -+-+=-2x=2x=-1,检验:把x=-1代入(x-1)(x+1)=0,所以x=-1不是原分式方程的解,∴原方程无解.21.x 1x 2+-,4【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x 的值代入计算即可求出值.【详解】解:原式=()()()2x 2x 11x 1x 1x 1---÷-+-()()()2x 1x 1x 2x 1x 2+--=⋅--x 1x 2+=-.当x=3时,原式=31432+=-.【点睛】本题考查分式的化简求值、完全平方公式、平方差公式,熟练掌握分式的混合运算法则是解答的关键.22.(1)见解析(2)见解析【分析】(1)分别作出三个顶点关于y 轴的对称点,再顺次连接即可得;(2)作点A 关于x 轴的对称点A ',连接A B '与x 轴的交点即为所求.(1)解:111A B C △如图所示,(2)如图所示,点P 即为所求.【点睛】本题考查了作图—轴对称变换以及轴对称最短路径问题,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.【详解】证明:∵AB DE ∥,∴B DEF ∠=∠,在ABC 和DEF 中,B DEF ACB F AC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF AAS △≌△,∴BC EF =,∴BE CF =.24.【详解】证明:∵AD 平分∠EDC ,∴∠ADE=∠ADC ,又DE=DC ,AD=AD ,∴△ADE ≌△ADC ,∴∠E=∠C ,又∠E=∠B ,∴∠B=∠C ,∴AB=AC.25.2元.【分析】设第一批口罩每只的进价是x 元,则第二批口罩每只的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购口罩的数量是第一批所购口罩数的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设第一批口罩每只的进价是x 元,则第二批口罩每只的进价是(x+0.5)元,依题意,得:2500100020.5x x=⨯+,解得:x =2,经检验,x =2是原方程的解,且符合题意.答:第一批口罩每只的进价是2元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.26.(1)56(2)1n n +【分析】(1)根据所给的等式的特点进行求解即可;(2)根据所给的等式得出规律,然后对所求的式子进行拆项即可求解.(1)解:111111223344556++++⨯⨯⨯⨯⨯1111111111223344556=-+-+-+-+-116=-56=;(2)解:∵111122=-⨯,1112323=-⨯,1113434=-⨯,…,∴()11111n n n n =-⨯++,∴()11111112233445561n n ++++++⨯⨯⨯⨯⨯+ 1111111111112233445561n n =-+-+-+-+-++-+ 111n =-+1n n =+.27.(1)80°(2)90°(3)1902BED C ∠=︒-∠,理由见解析【分析】(1)由角平分线的定义可得∠DAC =30°,再由三角形外角性质即可求∠ADB 的度数;(2)由三角形的外角性质可得∠BAD +∠ABE =45°,再由角平分线的定义得∠BAC =2∠BAD ,∠ABC =2∠ABE ,从而得∠BAC +∠ABC =90°,利用三角形的内角和即可求∠C 的度数;(3)由三角形的外角性质得∠BED =∠BAD +∠ABE ,结合角平分线的定义可求得∠BAD +∠ABE =12(∠BAC +∠ABC ),由三角形的内角和可求解.(1)∴1302DAC BAC ∠=∠=︒.∵ADB ∠是ADC 的外角,∴503080ADB C DAC ∠=∠+∠=︒+︒=︒;(2)∵BED ∠是ABE △的外角,45BED ∠=︒,∴45BAD ABE BED ∠+∠=∠=︒.∵AD ,BE 分别是BAC ∠,ABC ∠的角平分线,∴2BAC BAD ∠=∠,2ABC ABE ∠=∠,∴()290BAC ABC BAD ABE ∠+∠=∠+∠=︒.11∵180BAC ABC C ∠+∠+∠=︒,∴()1801809090C BAC ABC ∠=︒-∠+∠=︒-︒=︒;(3)1902BED C ∠=︒-∠.理由:∵BED ∠是ABE △的外角,∴BED BAD ABE ∠=∠+∠.∵AD ,BE 分别是BAC ∠,ABC ∠的角平分线,∴12BAD BAC ∠=∠,12ABE ABC ∠=∠,∴()12BAD ABE BAC ABC ∠+∠=∠+∠.∵180BAC ABC C +=︒-∠∠∠,∴()()11118090222BED BAD ABE BAC ABC C C ∠=∠+∠=∠+∠=︒-∠=︒-∠,即:1902BED C ∠=︒-.。

八年级(上)期末数学试卷有答案解析

八年级(上)期末数学试卷有答案解析

八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.2.下列运算中,正确的是()A.(x2)3=x5B.3x2÷2x=x C.x3•x3=x6D.(x+y2)2=x2+y43.已知等腰三角形一边长为4,一边的长为10,则等腰三角形的周长为()A.14 B.18 C.24 D.18或244.等于()A.B. C.D.5.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠EAD的度数为()A.80°B.70°C.30°D.110°6.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.97.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x8.下列式子中是完全平方式的是()A.a2﹣ab﹣b2B.a2+2ab+3 C.a2﹣2b+b2D.a2﹣2a+19.已知,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD:CD=9:7,则D到AB的距离为()A.18 B.16C.14 D.1210.小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.二、填空题(每小题3分,共18分)11.已知空气的单位体积质量为0.00124g/cm3,将它用科学记数表示为g/cm3.12.因式分解:2m2﹣8n2=.13.已知点M(x,y)与点N(﹣2,﹣3)关于x轴对称,则x+y=.14.一个等腰三角形的一腰上的高与另一腰的夹角为40°,则它的顶角为:°.15.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为.16.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,则∠DBC=度.三、解答题(每小题10分,共15分)17.(1)解方程:=﹣3(2)计算:(2m﹣1n﹣2)﹣2•(﹣)÷(﹣)18.如图,电信部门要在公路m,n之间的S区域修建一座电视信号发射塔P.按照设计要求,发射塔P到区域S内的两个城镇A,B的距离必须相等,到两条公路m,n的距离也必须相等.发射塔P 建在什么位置?在图中用尺规作图的方法作出它的位置并标出(不写作法但保留作图痕迹).四、解答题(每小题7分,共21分)19.先化简,再求值:3(a+1)2﹣(a+1)(2a﹣1),其中a=1.20.如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE.求证:(1)△ABC≌△DEF;(2)GF=GC.21.有一项工作需要在规定日期内完成,如果甲单独做,刚好如期完成;如果乙单独做,就要超过规定日期3天.现在由甲、乙两人合做2天,剩下的工作由乙单独做,刚好如期完成,问规定日期是几天?五、解答题(每小题8分,共16分)22.一个零件的形状如图所示,按规定∠A=90°,∠C=25°,∠B=25°,检验员已量得∠BDC=150°,请问:这个零件合格吗?说明理由.23.如图,△ABD中,∠BAD=90°,AB=AD,△ACE中,∠CAE=90°,AC=AE.(1)求证:DC=BE;(2)试判断∠AFD和∠AFE的大小关系,并说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选:A.【点评】轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.下列运算中,正确的是()A.(x2)3=x5B.3x2÷2x=x C.x3•x3=x6D.(x+y2)2=x2+y4【考点】整式的除法;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【分析】根据①幂的乘方,底数不变,指数相乘;②单项式除以单项式,系数除以系数,同底数幂除以同底数幂,对于只在被除式里含有的字母,则连同指数作为商的一个因式,③同底数幂相乘:底数不变,指数相加;④完全平方公式:(a±b)2=a2±2ab+b2,对每一个选项进行分析即可得到答案.【解答】解:A、(x2)3=x2×3=x6,故此选项错误;B、3x2÷2x=(3÷2)•(x2÷x)=x,故此选项错误;C、x3•x3=x3+3=x6,故此选项正确;D、(x+y2)2=x2+y4+2xy2,故此选项错误.故选:C.【点评】此题主要考查了幂的乘方,单项式除以单项式,同底数幂乘法,完全平方公式,需要同学们牢固掌握基础知识,熟练掌握计算法则.3.已知等腰三角形一边长为4,一边的长为10,则等腰三角形的周长为()A.14 B.18 C.24 D.18或24【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】由于等腰三角形的底边和腰不能确定,故应分两种情况进行讨论.【解答】解:当4为底时,其它两边都为10,10、可以构成三角形,周长为24;当4为腰时,其它两边为4和10,因为4+4=8<10,所以不能构成三角形,故舍去.故选C.【点评】本题考查的是等腰三角形的性质及三角形的三边关系,解答此题时要注意分类讨论,舍去不符合条件的情况.4.等于()A.B. C.D.【考点】整式的除法.【专题】计算题.【分析】原式利用单项式除以单项式法则计算即可得到结果.【解答】解:原式=ac.故选B.【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.5.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠EAD的度数为()A.80°B.70°C.30°D.110°【考点】全等三角形的性质;三角形内角和定理.【分析】根据全等三角形的性质求出∠D和∠E,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△ADE,∠B=80°,∠C=30°,∴∠B=∠D=80°,∠E=∠C=30°,∴∠EAD=180°﹣∠D﹣∠E=70°,故选B.【点评】本题考查了三角形内角和定理,全等三角形的性质的应用,能根据全等三角形的性质得出∠B=∠D=80°,∠E=∠C是解此题的关键,注意:全等三角形的对应边相等,对应角相等.6.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.9【考点】多边形内角与外角.【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n ﹣2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8.故选C.【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.7.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x【考点】分式的加减法.【专题】计算题.【分析】将分母化为同分母,通分,再将分子因式分解,约分.【解答】解:=﹣===x,故选:D.【点评】本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.8.下列式子中是完全平方式的是()A.a2﹣ab﹣b2B.a2+2ab+3 C.a2﹣2b+b2D.a2﹣2a+1【考点】完全平方式.【分析】完全平方公式:(a±b)2=a2±2ab+b2.看哪个式子整理后符合即可.【解答】解:符合的只有a2﹣2a+1.故选D.【点评】本题考查了完全平方公式结构特点,有两项是两个数的平方,另一项是加或减去这两个数的积的2倍.9.已知,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD:CD=9:7,则D到AB的距离为()A.18 B.16 C.14 D.12【考点】角平分线的性质.【分析】首先由线段的比求得CD=16,然后利用角平分线的性质可得D到边AB的距离等于CD的长.【解答】解:∵BC=32,BD:DC=9:7∴CD=14∵∠C=90°,AD平分∠BAC∴D到边AB的距离=CD=14.故选C.【点评】此题主要考查角平分线的性质:角平分线上的任意一点到角的两边距离相等.做题时要由已知中线段的比求得线段的长,这是解答本题的关键.10.小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】首先表示出爸爸和小朱的速度,再根据题意可得等量关系:小朱走1440米的时间=爸爸走1440米的时间+10分钟,根据等量关系,表示出爸爸和小朱的时间,根据时间关系列出方程即可.【解答】解:设小朱速度是x米/分,则爸爸的速度是(x+100)米/分,由题意得:=+10,即:=+10,故选:B.【点评】此题主要考查了由实际问题抽象出分式方程,关键是分析题意,表示出爸爸和小朱的时间各走1440米所用时间,再由时间关系找出相等关系,列出方程.二、填空题(每小题3分,共18分)11.已知空气的单位体积质量为0.00124g/cm3,将它用科学记数表示为 1.24×10﹣3g/cm3.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00124=1.24×10﹣3.故答案为:1.24×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.因式分解:2m2﹣8n2=2(m+2n)(m﹣2n).【考点】提公因式法与公式法的综合运用.【分析】根据因式分解法的步骤,有公因式的首先提取公因式,可知首先提取系数的最大公约数2,进一步发现提公因式后,可以用平方差公式继续分解.【解答】解:2m2﹣8n2,=2(m2﹣4n2),=2(m+2n)(m﹣2n).【点评】本题考查了提公因式法,公式法分解因式,因式分解一定要进行到每个因式不能再分解为止.13.已知点M(x,y)与点N(﹣2,﹣3)关于x轴对称,则x+y=1.【考点】关于x轴、y轴对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y).【解答】解:根据题意,得x=﹣2,y=3.∴x+y=1.【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.根据对称点坐标之间的关系可以得到方程或方程组问题.14.一个等腰三角形的一腰上的高与另一腰的夹角为40°,则它的顶角为:50或130°.【考点】等腰三角形的性质;直角三角形的性质.【专题】分类讨论.【分析】等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能出现题中所说情况,所以舍去不计,另外两种情况可以根据垂直的性质及外角的性质求出顶角的度数.【解答】解:①当为锐角三角形时,如图,高与右边腰成40°夹角,由三角形内角和为180°可得,顶角为50°;②当为钝角三角形时,如图,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为50°,所以三角形的顶角为130°.故答案为50°或130°.【点评】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,进行分类讨论是正确解答本题的关键,难度适中.15.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为22cm.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质求出AD=DC,根据△ABD的周长求出AB+BC=14cm,即可求出答案.【解答】解:∵DE是AC的垂直平分线,AE=4cm,∴AC=2AE=8cm,AD=DC,∵△ABD的周长为14cm,∴AB+AD+BD=14cm,∴AB+AD+BD=AB+DC+BD=AB+BC=14cm,∴△ABC的周长为AB+BC+AC=14cm+8cm=22cm,故答案为:22cm【点评】本题考查了线段垂直平分线性质的应用,能运用性质定理求出AD=DC是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.16.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,则∠DBC=18度.【考点】三角形内角和定理.【分析】利用了三角形内角和等于180°计算即可知.【解答】解:设∠A=x,则∠C=∠ABC=2x.根据三角形内为180°知,∠C+∠ABC+∠A=180°,即2x+2x+x=180°,所以x=36°,∠C=2x=72°.在直角三角形BDC中,∠DBC=90°﹣∠C=90°﹣72°=18°.故填18°.【点评】本题通过设适当的参数,利用三角形内角和定理建立方程求出∠C后,再利用在直角三角形中两个锐角互余求得∠DBC的值.三、解答题(每小题10分,共15分)17.(1)解方程:=﹣3(2)计算:(2m﹣1n﹣2)﹣2•(﹣)÷(﹣)【考点】分式的混合运算;解分式方程.【分析】(1)先把分式方程化为整式方程,再求出x的值,代入公分母进行检验即可;(2)从左到右依次计算即可.【解答】解:(1)去分母得,1=﹣(1﹣x)﹣3(x﹣2),去括号得,1=﹣1+x﹣3x+6,移项,合并同类项得,2x=4,系数化为1得,x=2,检验:当x=2时,x﹣2=0,故原方程无解;(2)原式=m2n4•(﹣)•(﹣)=﹣•(﹣)=.【点评】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.18.如图,电信部门要在公路m,n之间的S区域修建一座电视信号发射塔P.按照设计要求,发射塔P到区域S内的两个城镇A,B的距离必须相等,到两条公路m,n的距离也必须相等.发射塔P 建在什么位置?在图中用尺规作图的方法作出它的位置并标出(不写作法但保留作图痕迹).【考点】作图—应用与设计作图;角平分线的性质;线段垂直平分线的性质.【分析】作线段AB的垂直平分线,再作直线m与n的夹角的角平分线,两线的交点就是P点.【解答】解:如图所示.【点评】此题主要考查了应用设计与作图,关键是掌握角平分线的性质和线段垂直平分线的性质.四、解答题(每小题7分,共21分)19.先化简,再求值:3(a+1)2﹣(a+1)(2a﹣1),其中a=1.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式第一项利用完全平方公式展开,第二项利用多项式乘以多项式法则计算,去括号合并得到最简结果,将a的值代入计算即可求出值.【解答】解:原式=3a2+6a+3﹣2a2+a﹣2a+1=a2+5a+4,当a=1时,原式=1+5+4=10.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,多项式乘多项式法则,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.20.如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE.求证:(1)△ABC≌△DEF;(2)GF=GC.【考点】全等三角形的判定与性质.【分析】(1)先根据BF=CE证明BC=EF,然后利用“边角边”即可证明△ABC和△DEF全等;(2)根据全等三角形对应角相等可得∠ACB=∠DFE,再根据等角对等边证明即可.【解答】证明:(1)∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB⊥BE,DE⊥BE,∴∠B=∠E=90°,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)根据(1)△ABC≌△DEF,所以∠ACB=∠DFE,所以GF=GC(等角对等边).【点评】本题考查了全等三角形的判定与性质,比较简单,证明出BC=EF是解题的关键.21.有一项工作需要在规定日期内完成,如果甲单独做,刚好如期完成;如果乙单独做,就要超过规定日期3天.现在由甲、乙两人合做2天,剩下的工作由乙单独做,刚好如期完成,问规定日期是几天?【考点】分式方程的应用.【专题】应用题.【分析】求的是原计划的工效,工作时间明显,一定是根据工作总量来列等量关系.等量关系为:甲乙合作2天的工作量+乙(规定日期﹣2)天的工作量=1.【解答】解:设规定日期是x天,则甲独做需x天完成,乙独做需(x+3)天完成.依题意列方程:.解得:x=6.经检验:x=6是原方程的解.答:规定日期是6天.【点评】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.五、解答题(每小题8分,共16分)22.一个零件的形状如图所示,按规定∠A=90°,∠C=25°,∠B=25°,检验员已量得∠BDC=150°,请问:这个零件合格吗?说明理由.【考点】三角形的外角性质.【分析】连接AD并延长,根据三角形的外角的性质得到∠CDE=∠C+∠CAD,∠BDE=∠B+∠DAB,计算出∠BDC的度数,比较即可.【解答】解:这个零件不合格;理由:如图,连接AD延长到E点,∵∠CDE是△ADC的外角,∠BDE是△ABD的外角,∴∠CDE=∠C+∠CAD,∠BDE=∠B+∠DAB,∴∠BDC=∠CDE+∠BDE=∠C+∠CAD+∠B+∠DAB,即∠BDC=∠B+∠C+∠A=25°+25°+90°=140°,但检验员已量得∠BDC=150°,∴可以判断这个零件不合格.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.23.如图,△ABD中,∠BAD=90°,AB=AD,△ACE中,∠CAE=90°,AC=AE.(1)求证:DC=BE;(2)试判断∠AFD和∠AFE的大小关系,并说明理由.【考点】全等三角形的判定与性质.【分析】(1)求出∠DAC=∠BAE,根据SA S得出△DAC≌△BAE,即可得出结论;(2)根据全等三角形的性质得出两三角形面积相等和DC=BE,根据面积公式求出AM=AN,根据角平分线的判定方法即可得出结论.【解答】(1)证明:∵∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE,又AD=AB,AC=AE,∴△DAC≌△BAE(SAS),∴DC=BE.(2)解:∠AFD=∠AFE,理由如下:过A作AM⊥DC于M,AN⊥BE于N,如图所示:∵△DAC≌△BAE,∴S△ACD=S△ABE,DC=BE,∴DC×AM=BE×AN,∴AM=AN,∴点A在∠DFE的平分线上,∴∠AFD=∠AFE.【点评】本题考查了全等三角形的性质和判定,角平分线性质的应用,解此题的关键是推出△ACD≌△AEB,注意:到角两边距离相等的点在角的平分线上.。

八年级(上)期末数学试卷带答案解析

八年级(上)期末数学试卷带答案解析

八年级(上)期末数学试卷一、选择题(本题共18分,每小题3分)1.下列运算中正确的是()A.a2•a3=a5B.(a2)3=a5 C.a6÷a2=a3D.a5+a5=2a102.下列各式中,正确的是()A.B.C.D.3.在平面直角坐标系xOy中,点P(2,1)关于y轴对称的点的坐标是()A.(﹣2,1)B.(2,1)C.(﹣2,﹣1)D.(2,﹣1)4.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°5.已知等腰三角形的一边长为4,另一边长为8,则它的周长是()A.12 B.16 C.20 D.16或206.如图在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=3,BD=2CD,则BC=()A.7 B.8 C.9 D.10二、填空题(本题共24分,每小题3分)7.因式分解:3x2﹣6x+3=.8.计算:a2b2÷()2=.9.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=.10.使分式有意义的x的取值范围是.11.若分式的值为0,则x的值为.12.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为.13.在平面直角坐标系xOy中,已知点A(2,﹣2),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的有个.14.中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门,请你按这种规律写出第n个数据是.三、解答题(本题共24分,每小题6分)15.已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.16.已知x2+y2+6x﹣4y+13=0,求(xy)﹣2.17.先化简,(﹣x+1)÷,再选一个你喜欢的数代入求值.18.如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.四、解答题(本题共32分,每小题8分)19.解方程:(1)+=(2)﹣=.20.△ABC中,AB=AC,D是BC中点,DE⊥AB于E,DF⊥AC于F,求证:DE=DF.21.如图,在四边形ABDE中,C是BD边的中点.若AC平分∠BAE,∠ACE=90°,猜想线段AE、AB、DE的长度满足的数量关系为并证明.22.如图,已知∠MAN=120°,AC平分∠MAN,∠ABC+∠ADC=180°,求证:①DC=BC;②AD+AB=AC.23.已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.24.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?参考答案与试题解析一、选择题(本题共18分,每小题3分)1.下列运算中正确的是()A.a2•a3=a5B.(a2)3=a5 C.a6÷a2=a3D.a5+a5=2a10【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法,可判断A;根据幂的乘方,可判断B;根据同底数幂的除法,可判断C;根据合并同类项,可判断D.【解答】解:A、同底数幂的乘法底数不变指数相加,故A正确;B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、合并同类项系数相加字母部分不变,故D错误;故选:A.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.2.下列各式中,正确的是()A.B.C.D.【考点】分式的基本性质.【专题】计算题.【分析】利用分式的基本性质化简各项得到结果,即可作出判断.【解答】解:A、﹣=,本选项错误;B、﹣=,本选项错误;C、=,本选项错误;D、﹣=,本选项正确.故选:D.【点评】此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.3.在平面直角坐标系xOy中,点P(2,1)关于y轴对称的点的坐标是()A.(﹣2,1)B.(2,1)C.(﹣2,﹣1)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:点P(2,1)关于y轴对称的点的坐标是(﹣2,1).故选A.【点评】本题考查了关于x轴、y轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°【考点】全等三角形的性质.【分析】根据三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.【点评】本题考查了全等三角形的性质,解题的关键是找准对应角.5.已知等腰三角形的一边长为4,另一边长为8,则它的周长是()A.12 B.16 C.20 D.16或20【考点】等腰三角形的性质.【专题】分类讨论.【分析】因为三角形的底边与腰没有明确,所以分两种情况讨论.【解答】解:等腰三角形的一边长为4,另一边长为8,则第三边可能是4,也可能是8,(1)当4是底边时,4+4=8,不能构成三角形;(2)当8是底边时,不难验证,可以构成三角形,周长=8+4+4=20.故选C.【点评】本题主要考查分情况讨论的思想,利用三角形三边关系判断是否能构成三角形也是解好本题的关键.6.如图在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=3,BD=2CD,则BC=()A.7 B.8 C.9 D.10【考点】勾股定理;角平分线的性质.【专题】计算题.【分析】要求BC,因为BC=BD+CD,且BD=2CD,所以求CD即可,求证△ADE≌△ADC即可得:CD=DE,可得BC=BD+DE.【解答】解:∵在△AD E和△ADC中,,∴△ADE≌△ADC,∴CD=DE,∵BD=2CD,∴BC=BD+CD=3DE=9.故答案为:9.【点评】本题考查了全等三角形的证明,解本题的关键是求证△ADE≌△ADC,即CD=DE.二、填空题(本题共24分,每小题3分)7.因式分解:3x2﹣6x+3=3(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2﹣6x+3,=3(x2﹣2x+1),=3(x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8.计算:a2b2÷()2=a4.【考点】分式的乘除法.【分析】首先计算乘方,然后把除法转化为乘法,进行约分即可.【解答】解:原式=a2b2÷=a2b2•=a4.故答案是:a4.【点评】分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.9.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】先作辅助线,然后利用垂直平分线的性质求出AD=BD,最后解直角三角形计算.【解答】解:连接BD∵DE垂直平分AB∴AD=BD∴∠DBA=∠A=30°∴∠CBD=30°∴BD=2CD=4∴AC=CD+AD=CD+BD=2+4=6.答案6.【点评】此题主要考查线段的垂直平分线的性质和直角三角形的性质.10.使分式有意义的x的取值范围是x≠3.【考点】分式有意义的条件.【分析】根据分母为零,分式无意义;分母不为零,分式有意义,可得x﹣3≠0,解可得答案.【解答】解:由题意得:x﹣3≠0,解得:x≠3.故答案为:x≠3.【点评】此题主要考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.11.若分式的值为0,则x的值为﹣1.【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得x2﹣1=0且x﹣1≠0,解得x=﹣1.故答案为﹣1.【点评】由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.12.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为60°或120°.【考点】等腰三角形的性质.【专题】计算题;分类讨论.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.13.在平面直角坐标系xOy中,已知点A(2,﹣2),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的有4个.【考点】等腰三角形的性质;坐标与图形性质.【分析】要使△AOP为等腰三角形,只需分两种情况考虑:OA当底边或OA当腰.当OA是底边时,则点P即为OA的垂直平分线和x轴的交点;当OA是腰时,则点P即为分别以O、A为圆心,以OA为半径的圆和x轴的交点(点O除外).【解答】解:当OA当底边时,则点P(2,0);当OA当腰时,则点P(4,0)或(2,0)或(﹣2,0).故答案为:4.【点评】此题综合考查了等腰三角形的性质以及坐标与图形的性质,注意分情况考虑.14.中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门,请你按这种规律写出第n个数据是.【考点】规律型:数字的变化类;列代数式.【专题】规律型;猜想归纳;实数.【分析】由前四个数可知,分子是序数与2和的平方,分母比分子小4,可得第n个数据.【解答】解:∵第1个数:;第2个数:;第3个数:;第4个数:;…∴第n个数据是:.故答案为:.【点评】本题主要考查数字的变化规律,解题的切入点在分子这一平方数,据此容易得到第n个数据.三、解答题(本题共24分,每小题6分)15.已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式利用完全平方公式及平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣4x﹣1=0,即x2﹣4x=1,∴原式=4x2﹣12x+9﹣x2+y2﹣y2=3x2﹣12x+9=3()+9=12.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.16.已知x2+y2+6x﹣4y+13=0,求(xy)﹣2.【考点】配方法的应用;非负数的性质:偶次方.【分析】已知等式变形后,利用非负数的性质求出x与y的值,即可确定出所求式子的值.【解答】解:∵x2+y2+6x﹣4y+13=0,∴(x+3)2+(y﹣2)2=0,∴x+3=0,y﹣2=0,∴x=﹣3,y=2,∴(xy)﹣2=(﹣3×2)﹣2=.【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.17.先化简,(﹣x+1)÷,再选一个你喜欢的数代入求值.【考点】分式的化简求值.【分析】根据分式的混合运算法则化简即可,取值时使得分式有意义.【解答】解:原式==•=,当x=0时,原式=1.【点评】本题考查分式的混合运算法则,熟练掌握法则是正确解题的关键,注意取值时使得分式有意义.18.如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.【考点】全等三角形的判定与性质.【专题】证明题.【分析】求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.【解答】证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB,∴DE=AB.【点评】本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.四、解答题(本题共32分,每小题8分)19.解方程:(1)+=(2)﹣=.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4+3x+9=7,移项合并得:3x=﹣6,解得:x=﹣2,经检验x=﹣2是分式方程的解;(2)去分母得:x﹣3+2x+6=12,解得:x=3,经检验x=3是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.△ABC中,A B=AC,D是BC中点,DE⊥AB于E,DF⊥AC于F,求证:DE=DF.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】根据AB=AC,D是BC中点,DE⊥AB于E,DF⊥AC于F,利用角角边定理可证此题,【解答】证明:∵AB=AC,D是BC中点,∴∠ABC=∠ACB,BD=DC.∵DE⊥AB于E,DF⊥AC于F,∴∠DEB=∠DFC=90°在△DEB和△DFC中,,∴△DEB≌△DFC(AAS),∴DE=DF.【点评】此题主要考查学生对全等三角形的判定与性质和等腰三角形的性质的理解和掌握,难度不大,是一道基础题.21.如图,在四边形ABDE中,C是BD边的中点.若AC平分∠BAE,∠ACE=90°,猜想线段AE、AB、DE的长度满足的数量关系为并证明.【考点】全等三角形的判定与性质.【分析】在AE上取一点F,使AF=AB,即可得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△CEF≌△CED.就可以得出结论.【解答】解:AE=AB+DE;理由:在AE上取一点F,使AF=AB.∵AC平分∠BAE,∴∠BAC=∠FAC.在△ACB和△ACF中,,∴△ACB≌△ACF(SAS),∴BC=FC,∠ACB=∠ACF.∵C是BD边的中点.∴BC=CD,∴CF=CD.∵∠ACE=90°,∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°∴∠ECF=∠ECD.在△CEF和△CED中,,∴△CEF≌△CED(SAS),∴EF=ED.∵AE=AF+EF,∴AE=AB+DE.【点评】本题考查了角平分线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.22.如图,已知∠MAN=120°,AC平分∠MAN,∠ABC+∠ADC=180°,求证:①DC=BC;②AD+AB=AC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】①在AN上截取AE=AC,连接CE,先证明△ACE是等边三角形,得出∠AEC=60°,AC=EC=AE,再证明△ADC≌△EBC,得出DC=BC即可;②由全等三角形的性质得出AD=BE,即可得出结论.【解答】证明:①在AN上截取AE=AC,连接CE,如图所示:∵AC平分∠MAN,∠MAN=120°,∴∠CAB=∠CAD=60°,∴△ACE是等边三角形,∴∠AEC=60°,AC=EC=AE,又∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,∴∠ADC=∠EBC,在△ADC和△EBC中,,∴△ADC≌△EBC(AAS),∴DC=BC,AD=BE;②由①得:AD=BE,∴AB+AD=AB+BE=AE,∴AB+AD=AC.【点评】本题考查了全等三角形的判定与性质、角平分线的定义、等边三角形的判定与性质;通过作辅助线构造全等三角形是解决问题的关键.23.已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】(1)由等腰直角三角形的性质得出AB=BC,BD=BE,∠ABC=∠DBE=90°,得出∠ABD=CBE,证出△ABD≌△CBE(SAS),得出AD=CE;(2)△ABD≌△CBE得出∠BAD=∠BCE,再由∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,得出∠AFC=∠ABC=90°,证出结论.【解答】(1)证明:∵△ABC和△DBE是等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,即∠ABD=CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE;(2)延长AD分别交BC和CE于G和F,如图所示:∵△ABD≌△CBE,∴∠BAD=∠BCE,∵∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,又∵∠BGA=∠CGF,∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,∴∠AFC=∠ABC=90°,∴AD⊥CE.【点评】本题考查了等腰直角三角形的性质和全等三角形的判定与性质;证明三角形全等是解决问题的关键.24.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?【考点】分式方程的应用.【分析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做15天,余下的工程由甲队单独需要10天完成,可得出方程解答即可;(2)先计算甲、乙合作需要的时间,然后计算费用即可.【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是原分式方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=22.5(天),则该工程施工费用是:22.5×(6500+3500)=225000(元).答:该工程的费用为225000元.【点评】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.下列图形中,不是..轴对称图形的是()A .B .C .D .2.要使分式12x x +-有意义,则x 的取值应满足()A .2x ≠B .1x ≠-C .2x =D .1x =-3.点M (3,2)关于y 轴的对称点的坐标为()A .(﹣3,2)B .(3,﹣2)C .(﹣3,﹣2)D .(1,2)4.12020-的值是()A .2020-B .12020-C .12020D .15.用科学记数法表示0.0000098是()A .0.98×10﹣5B .9.8×106C .9.8×10﹣5D .9.8×10﹣66.下列设计的原理不是利用三角形的稳定性的是()A .由四边形组成的伸缩门B .自行车的三角形车架C .斜钉一根木条的长方形窗框D .照相机的三脚架7.如图,ABC 中,36A ∠=︒,AB AC =,BD 平分ABC ∠交AC 于点D ,则图中的等腰三角形共有()个.A .2B .3C .4D .58.下列计算正确的是()A .()22224a b a b -=-B .()222224a b a ab b -=-+C .()()2571235x x x x +-=--D .()232324612x x x x x --=-+9.如图,AC ,BD 相交于点O ,OA=OC ,要使△AOB ≌△COD ,则下列添加的条件中错误的是()A .∠A =∠CB .∠B =∠DC .OB =OD D .AB =CD10.如图所示,OP 平分∠AOB ,PA ⊥OA 于点A ,PB ⊥OB 于点B .下列结论中,不一定成立的是()A .PA=PBB .PO 平分∠APBC .OA=OBD .AB 垂直平分OP二、填空题11.当x_____时,分式25x x -有意义.12.因式分解:22ax ax a -+=_________.13.某个等腰三角形的一个角为50°,则它的底角为______.14.(9a 2﹣6ab )÷3a =_____.15.若一条长为24cm 的细线能围成一边长等于9cm 的等腰三角形,则该等腰三角形的腰长为_____cm .16.若x-y=3,xy=2,则x 2+y 2=_____.17.如图,五边形ABCDE 中,//AE BC ,则C D E ∠+∠+∠的度数为__________.18.如图,M 为∠AOB 内一定点,E 、F 分别是射线OA 、OB 上一点,当 MEF 周长最小时,若∠OME =40°,则∠AOB =_____.三、解答题19.计算:(a+b )(a-b )-(a-2b )220.如图,在ABC 中,AB AD DC ==,26BAD ∠=︒,求B Ð和C ∠的度数.21.如图,AB ⊥CB ,DC ⊥CB ,E 、F 在BC 上,∠A=∠D ,BE=CF ,求证:AF=DE .22.如图,在平面直角坐标系中,A (-1,5),B (-1,0),C (-4,3).(1)作出△ABC 关于y 轴的对称图形△A'B'C';(2)写出点A',B',C'的坐标;(3)在y 轴上找一点P ,使PA+PC 的长最短.23.先化简,再求值:(32)2xx x -++,其中32x =-.24.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y )2+2(x+y )+1.解:将“x+y”看成整体,令x+y=A ,则原式=A 2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:(1)因式分解:1+2(2x-3y )+(2x-3y )2.(2)因式分解:(a+b )(a+b-4)+4;25.如图,△ABD ,△AEC 都是等边三角形,连接CD ,BE 交于点F .求证:(1)∠BFC =120°;(2)FA 平分∠DFE .26.如图,在 ABC 是等腰直角三角形,∠ACB=90°,点D 、E 分别是 ABC 内的点,且EA=EB ,BD=AC ,BE 平分∠DBC .(1)求证: DBE ≌ CBE ;(2)求证:∠BDE=45°.27.数学课上,我们知道可以用图形的面积来解释一些代数恒等式,如图1可以解释完全平方公式:()2222a b a ab b +=++.(1)如图2(图中各小长方形大小均相等),请用两种不同的方法求图2中阴影部分的面积(不化简):方法1:S =阴影_________________;方法2∶S =阴影_________________.(2)由(1)中两种不同的方法,你能得到怎样的等式?(3)①已知()216+=m n ,3mn =,请利用(2)中的等式,求m n -的值.②已知()2213m n +=,()225m n -=,请利用(2)中的等式,求mn 的值.参考答案1.C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A 、B 、D 选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;C 选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;故选:C .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.【分析】根据分式有意义的条件即可求出答案.【详解】解:∵12x x +-在实数范围内有意义,∴-20x ≠.∴2x ≠故选A .【点睛】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.3.A【分析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】解:点(3,2)关于y 轴的对称点的坐标是(-3,2).故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.4.C【分析】根据负整数指数幂的计算公式解答.【详解】12020-的值是12020,故选:C .【点睛】此题考查负整数指数幂计算公式,熟记公式是解题的关键.5.D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:用科学记数法表示0.0000098是9.8×10-6.故选:D .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.【分析】利用三角形的稳定性进行解答.【详解】解:由四边形组成的伸缩门是利用了四边形的不稳定性,故A 不是利用三角形的稳定性;B 、C 、D 都是利用三角形的稳定性;故选:A .【点睛】此题主要考查了三角形的稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.7.B【分析】由已知条件,利用三角形的内角和定理及角平分线的性质得到各角的度数,根据等腰三角形的定义及等角对等边得出答案.【详解】解:∵AB AC =,∴ABC 是等腰三角形,∵36A ∠=︒,∴72C ABC ∠=∠=︒,∵BD 平分ABC ∠交AC 于D ,∴36ABD DBC ∠=∠=︒,∴36A ABD ∠=∠=︒,∴ABD △是等腰三角形.∵363672BDC A ABD C ∠=∠+∠=︒+︒=︒=∠,∴BDC 是等腰三角形.∴共有3个等腰三角形.故选B .【点睛】本题考查了等腰三角形的判定与性质及三角形内角和定理,解题的关键是正确求得各角的度数.8.D【分析】分别依据完全平方公式和多项式乘多项式法则、单项式乘多项式法则计算即可.【详解】解:A .(a-2b )2=a 2-4ab+4b 2,此选项不符合题意;B .(a-2b )2=a 2-4ab+4b 2,此选项不符合题意;C .(x+5)(x-7)=x 2-2x-35,此选项不符合题意;D.-3x(2x2-4x)=-6x3+12x2,此选项符合题意;故选D.【点睛】本题考查完全平方公式和多项式乘多项式,解题的关键是熟练掌握完全平方公式和多项式乘多项式法则.9.D【分析】根据全等三角形的判定定理依次分析判断即可.【详解】∵∠AOB=∠COD,OB=OD,∴当添加∠A=∠C时,可根据“AAS”判断△AOB≌△COD;当添加∠B=∠D时,可根据“ASA”判断△AOB≌△COD;当添加OB=OD时,可根据“SAS”判断△AOB≌△COD.如果添加AB=CD,则根据“SSA”不能判定△AOB≌△COD.故选:D.【点睛】此题考查了全等三角形的判定定理,熟记全等三角形的判定定理并应用是解题的关键.10.D【分析】根据角平分线上的点到角的两边距离相等可得PA=PB,再利用“AAS”证明△AOP 和△BOP全等,根据全等三角形对应角相等可得∠AOP=∠BOP,全等三角形对应边相等可得OA=OB.【详解】解:∵OP平分∠AOB,PA⊥OA,PB⊥OB,∴PA=PB,故A选项正确;∵∠PAO=∠PBO=90°,∠POA=∠POB,OP=OP,∴△AOP≌△BOP(AAS),∴∠APO=∠BPO,OA=OB,故B,C选项正确;∵OA=OB,∴∠OBA=∠OAB,由等腰三角形三线合一的性质,OP垂直平分AB,AB不一定垂直平分OP,故D选项错误;即不一定成立的是选项D,故选:D.11.≠5【详解】解:由分式有意义的条件可知:x-5≠0,∴x≠5,故答案为:≠5.12.()21a x -【详解】解:22ax ax a-+=()221a x x -+=()21a x -,故答案为:()21a x -.13.50°或65°【详解】解:当底角为50°时,根据等腰三角形两个底角相等,∴等腰三角形的另一个底角为50°;当顶角为50°时,根据等腰三角形两个底角相等,∴等腰三角形的底角为180501306522︒-︒︒==︒,故答案为:50°或65°.14.3a-2b【详解】解:(9a 2-6ab )÷3a=9a 2÷3a-6ab÷3a=3a-2b .故答案为:3a-2b15.9或7.5【详解】解:若9cm 为底时,腰长应该是12(24-9)=7.5cm ,故三角形的三边分别为7.5cm 、7.5cm 、9cm ,∵7.5+7.5=15>9,故能围成等腰三角形;若9cm 为腰时,底边长应该是24-9×2=6,故三角形的三边为9cm 、9cm 、6cm ,∵6+9=15>9,∴以9cm 、9cm 、6cm 为三边能围成三角形,综上所述,腰长是9cm 或7.5cm ,故答案为:9或7.5.16.13【详解】解:因为x-y=3,xy=2,则x 2+y 2=(x-y)2+2xy=9+4=13,故答案为:13.17.360︒【详解】∵//AE BC ,∴180A B ∠+∠=︒,∵五边形内角和=5218540(0)-⨯︒=︒,∴C D E ∠+∠+∠=540180︒-︒=360︒,故答案为:360︒.18.50°【详解】分别作M 关于,OA OB 的对称点12,M M ,连接12,OM OM ,当,E F 分别为12M M 与,OA OB 的交点时, MEF 周长最小,连接12,M M ,∴1OM OM =,2OM OM =,12OM OM ∴=,2112OM M OM M ∴∠=∠,对称,112,M OA MOA M OB M OB ∴∠=∠∠=∠,1212AOB M OM ∴∠=∠,∠OME =40°,140OM E ∴∠=︒,121221180100M OM OM M OM M ∴∠=︒-∠-∠=︒,50AOB ∴∠=︒.故答案为:50°19.4ab-5b 2.【详解】解:原式=a 2-b 2-(a 2-4ab+4b 2)=a 2-b 2-a 2+4ab-4b 2=4ab-5b 2.故答案为4ab-5b 2.20.∠B =77°,∠C =38.5︒【详解】解:∵AB =AD ,26BAD ∠=︒∴∠B =∠ADB =12×(180°﹣26°)=77°,∵AD =DC ,∴∠C=∠DAC ,∴∠C =12∠ADB =12×77°=38.5︒.21.【详解】证明:∵AB ⊥CB ,DC ⊥CB ,∴∠B=∠C=90°,∵BE=CF ,∴BF=CE ,且∠A=∠D ,∠B=∠C=90°,∴△ABF ≌△DCE (AAS ),∴AF=DE ,22.(1)见解析;(2)A′(1,5),B′(1,0),C′(4,3);(3)见解析【分析】(1)分别作出点A 、B 、C 关于y 轴的对称点,再收尾顺次连接即可得;(2)根据△A'B'C'各顶点的位置,写出其坐标即可;(3)连接PC ,则PC=PC′,根据两点之间线段最短,可得PA+PC 的值最小.【详解】解:(1)如图所示,△A′B′C′为所求作;(2)由图可得,A′(1,5),B′(1,0),C′(4,3);(3)如图所示,连接AC′,交y轴于点P,则点P即为所求作.23.26x+,3【分析】根据整式与分式的加减计算括号内的,进而根据分式的性质化简,再将32 x=-代入求解即可【详解】原式=362(3)(2)(2)2622x x xx x xx x+-+⋅+=⋅+=+ ++当32x=-时,原式=32()62⨯-+=3.24.(1)(1+2x-3y)2;(2)(a+b-2)2.【分析】(1)将(2x-3y)看作一个整体,利用完全平方公式进行因式分解.(2)令A=a+b,代入后因式分解,再代入即可将原式因式分解.【详解】解:(1)原式=(1+2x-3y)2.(2)令A=a+b,则原式变为A(A-4)+4=A2-4A+4=(A-2)2,故:(a+b)(a+b-4)+4=(a+b-2)2.故答案为(1)(1+2x-3y)2;(2)(a+b-2)2.25.(1)见解析;(2)见解析【分析】(1)利用△ABD、△AEC都是等边三角形,求证△DAC≌△BAE,根据全等三角形的性质解答即可;(2)过点A作AH⊥DC,AG⊥BE,垂足分别为H、G.首先证明△DAH≌△BAG,依据全等三角形的性质得到AH=AG,最后依据到角两边距离相等的点在角的平分线上.【详解】证明:(1)∵△ABD、△AEC都是等边三角形,∴AD=AB,AE=AC,∠DAB=∠CAE=60°,∴∠DAC=∠BAC+60°,∠BAE=∠BAC+60°,∴∠DAC=∠BAE ,在△DAC 和△BAE 中,AD AB DAC BAE AE AC =⎧⎪∠=∠⎨⎪=⎩,∴△DAC ≌△BAE (SAS ),∴∠ABE=∠ADC ,令AB 与DC 的交点为G ,∵∠BGD=∠ABE+∠BFG ,∠BGD=∠ADC+∠DAG ,∴∠ABE+∠BFG=∠ADC+∠DAG ,∴∠BFG=∠DAG=60°,∴∠BFC=180°-∠BFG=120°;(2)过点A 作AH ⊥DC ,AG ⊥BE ,垂足分别为H 、G.∵AH ⊥DC ,AG ⊥BE ,∴∠DHA=∠BGA=90°.∵△DAC ≌△BAE ,∴∠ADC=∠ABE .在△DAH 和△BAG 中ADC ABE DHA BGA AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DAH ≌△BAG .∴AH=AG .又∵AH ⊥DC ,AG ⊥BE ,∴FA 为∠DFE 的角平分线.【点睛】本题主要考查的是等边三角形的性质、全等三角形的性质和判定、角平分线的判定,掌握本题辅助线的做法是解题的关键.26.(1)见解析(2)见解析【分析】(1)根据BE 平分DBC ∠,可得DBE CBE ∠=∠,根据等腰三角形的定义可得BC AC =,根据SAS 即可证明DBE ≌CBE△(2)根据SSS 直接证明ACE ≌BCE ,可得∠BCE=∠ACE ,由(1)可得DBE ≌CBE △,∠BDE=∠BCE ,进而根据∠ACB=90°,(1)∵ABC 是等腰直角三角形,∴BC AC =,∠ACB=90°.∵BD AC =,∴BC BD =.∵BE 平分DBC ∠,∴DBE CBE ∠=∠.∴在△CBE 与△DBE 中,BC DBDBE CBE BE BE=⎧⎪∠=∠⎨⎪=⎩∴DBE ≌CBE △(SAS).(2)解:在△CBE 与△CAE 中,BC ACCE CE BE AE=⎧⎪=⎨⎪=⎩∴ACE ≌BCE (SSS).∴∠BCE=∠ACE.∵∠BCE+∠ACE=90°∴∠BCE=∠ACE=45°.∵DBE ≌CBE △,∴∠BDE=∠BCE.∴∠BDE=∠BCE=45°【点睛】本题考查了等腰三角形的定义,三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.27.(1)4ab ,()()22a b a b +--;(2)()()224a b a b ab +--=;(3)①2±;②1【分析】(1)根据阴影部分的面积=4个小长方形的面积=大正方形的面积-小正方形的面积即可解答;(2)根据(1)求得的结果,利用两种方法求得的阴影面积相等即可解答;(3)①根据()22()4m n m n mn +--=即可得到22()()4m n m n mn +=--,由此求解即可;②根据()22()4m n m n mn +--=可得()()22(2)2428m n m n m n mn +--=⋅=,由此求解即可.【详解】解:(1)方法1:阴影部分面积为4个相同的小长方形的面积之和,∴阴影部分面积=4ab ;方法2:阴影部分面积=大正方形的面积-小正方形面积∴阴影部分面积=()()22a b a b +--.故答案为:4ab ,()()22a b a b +--;(2)∵(1)中两种方法求得的阴影部分面积相等,∴()()224a b a b ab +--=;(3)①∵2()=16m n +,3mn =,()22()4m n m n mn +--=,∴224161()(24)m n m n mn =-=--=+,∴2m n -=±;②2(2)=13m n +,2=25()m n -,()()22(2)2428m n m n m n mn +--=⋅=,∴228(2)(2)8mn m n m n =+-=-,∴1mn =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄渡完小八年级(上)数学期末试题
(满分: 150分 时间: 150分钟)
班级___ ____ 姓名_ ______ 总分__ _____
一.选择题(每小题3分,共30分)
1.下列各式由左边到右边的变形中,是分解因式的为( )。

A 、a (x + y) =a x + a y
B 、x 2-4x+4=x(x -4)+4
C 、10x 2-5x=5x(2x -1)
D 、x 2-16+3x=(x -4)(x+4)+3x
2.下列运算中,正确的是( )。

A 、x 3·x 3=x 6
B 、3x 2÷2x=x
C 、(x 2)3=x 5
D 、(x+y 2)2=x 2+y 4
3.下列图形中,不是轴对称图形的是( )。

4.已知△ABC 的周长是24,且AB=AC ,又AD ⊥BC ,D 为垂足,若△ABD 的周长是20,则AD 的长为( )。

A 、6
B 、8
C 、10
D 、12 5.8.已知m 6x =,3n x =,则2m n x -的值为( )。

A 、9
B 、
43 C 、12 D 、34
6. 一次函数y =-3x +5的图象经过( )
A 、第一、三、四象限
B 、第二、三、四象限
C 、第一、二、三象限
D 、第一、二、四象限
7.已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为( )。

A 、14
B 、16
C 、10
D 、14或16 8.已知m
6x =,3n
x =,则2m n
x
-的值为( )。

A 、9
B 、43
C 、12
D 、
34
9.已知正比例函数y kx = (k ≠0)的函数值y 随x 的增大而减小,则一次函数
y=x +k 的图象大致是( ).
10.直线与1y x =-两坐标轴分别交于A 、B 两点,点C 在坐标轴上,若△ABC 为等腰三角形,
则满足条件的点C 最多有( )。

A 、4个
B 、5个
C 、7个
D 、8个
二.填空题 (每小题3分,共30分)
11.当m= _______时,函数y=(m -3)x 2+4x-3是一次函数。

12.一个汽车牌在水中的倒影为 ,则该车牌照号码____________。

13.设a 是9的平方根,b=(3)2,则a 与b 的关系是 。

14. 已知点A (l ,-2) ,若A 、B 两点关于x 轴对称,则B 点的坐标为________。

15.分解因式3
3
2
2
x 2y x y xy -+= 。

16.若函数y =4x +3-k 的图象经过原点,那么k = 。

17.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 。

18. 多项式142+a 加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以
是___________。

(填上一个你认为正确的即可) 19.已知x +y =1,则
2211
22
x xy y ++= 。

20.如图EB 交AC 于M ,交FC 于D ,AB 交FC 于N ,∠E =∠F =90°,
∠B =∠C ,AE =AF 。

给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ;④CD=DN 。

其中正确的结论有 (填序号) 三、简答题:(共6题,共90分) 21.化简(每题6分,共12分)
(1))22(4)25(22a a a +-+; (2))1)(1(52-+x x x
22. 分解因式(每题6分,共12分)
(1) 416a - (2) 2
2
29x xy y -+-
23.(6分)作图题(不写作图步骤,保留作图痕迹).
已知:如图,求作点P ,使点P 到A 、B 两点的距 离相等,且P 到∠MON 两边的距离也相等.
x
y
O A
x
y O
B
x
y
O
C x
y O
D
A B C D
M
N A
B
C
D E F
1 2
M .
· A
B
24.(10分)△ABC 为正三角形,点M 是射线BC 上任意一点,点N 是射线CA 上任意一点,且
BM=CN ,BN 与AM 相交于Q 点,∠AQN 等于多少度.
25.(10分)已知函数y=(m+1)x+m –1
若这个函数的图象经过原点,求m 的值;并画出函数的图像。

26.(10分) 一次函数y=k 1x -4与正比例函数y=k 2x 的图象经过点(2,-1),
(1) 分别求出这两个函数的表达式;
(2) 求这两个函数的图象与x 轴围成的三角形的面积。

27.(10分)先化简,再求值:
8m 2-5m(-m +3n) +4m(-4m -2
5
n),其中m =2,n =-1
28.(10分)如图,直线y=k x +6分别与x 轴、y 轴相交于点E 和点F ,点E 的坐标为 (-8,0),
点A 的坐标为(0,6)。

(1)求k 的值; (2)若点P (x ,y )是第二象限内的直线上的一个动点,当点P 运动过程中,试写出△OPA 的
面积S 与x 的函数关系式,并写出自变量x 的取值范围;
(3)探究:当P 运动到什么位置时,△OPA 的面积为8
27
,并说明理由。

29.(10分)已知a ,b,c 是△ABC 的三边,且满足关系式a 2+c 2=2a b+2bc -2b 2,试说明△ABC 是
等边三角形.
八年级期末试题参考答案
一、选择:
1、C
2、A
3、B
4、B
5、C
6、D
7、D
8、C
9、A 10、B 二、填空:
F
x
y O
A
E
11、y=x+8,(2<x<8).12、M17936.13、3,等边三角形14、(1,2)15、2
(1)xy xy -16、K=3.17、015或 075.18、答案不唯一。

19

1
2
20、①②③ 三、简答题: 21、解:(1) (2)
22222(52)4(22)5288328
a a a a a a a a +-+=+--=-+- 22
2
425(1)(1)
5(1)
55x x x x x x x +-=-=-
22、解:(1) (2)
4
2
2
216
(4)(4)(4)(2)(2)
a a a a a a -=+-=++-
2
222()3((39
)23)
x y x y x y x xy y =--=-+----+
24、解:∠AQN=60º,
如图,在△ABM 和△BCN 中,易证∠BCN=∠ABM=60º,CN=BM ,又∵AB=AC ,
∴△ABM ≌△BCN ,∴∠BAM=∠CBN ,
又∵∠AQN=∠BAQ+∠ABQ=∠NBC+∠ABQ=∠ABC=60º.
∴∠AQN =∠ABC=60º。

相关文档
最新文档