施工中基站天馈系统驻波比告警产生原因分析

合集下载

天馈系统驻波比变差的可能原因

天馈系统驻波比变差的可能原因

天馈系统驻波比变差的可能原因1.引言1.1 概述天馈系统(Feed System)是通信系统中至关重要的组成部分,它负责将信号从天线传输到收发设备或者从设备传输到天线。

驻波比(Standing Wave Ratio)是评估天馈系统性能的重要指标之一。

驻波比变差可能会导致信号传输质量下降,从而影响通信系统的正常运行。

本文将重点讨论天馈系统驻波比变差的可能原因。

明确这些原因有助于我们及时发现问题所在,并采取相应的措施来解决。

在深入分析之前,我们需要了解驻波比的概念及其重要性。

驻波比是指天馈系统中反射和传输波之间的功率比值。

理想情况下,我们希望天馈系统中的驻波比尽可能接近1:1,这意味着所有的能量都能够完全传输到目标设备。

然而,由于各种原因,天馈系统中的驻波比可能会变差。

驻波比变差可能是由多种因素引起的。

一种可能的原因是天馈系统中存在质量不佳或损坏的连接器。

连接器的松动、氧化或损坏都会导致信号的反射和散射,从而影响传输效果并导致驻波比的变差。

另外,天馈系统中的电缆也可能是驻波比变差的原因之一。

电缆的长度、质量以及绝缘性能等因素都会对驻波比产生影响。

例如,电缆长度与信号波长的不匹配可能导致信号的反射,从而影响驻波比。

此外,过多的天馈分支也可能是驻波比变差的原因之一。

多个分支的存在会导致信号的反射和耦合,增加信号的干扰和损耗,最终导致驻波比变差。

最后,天馈系统中的天线也可能对驻波比产生影响。

天线的安装位置、方向和天线本身的特性都会影响天馈系统的驻波比。

不正确的天线安装和调整可能会导致信号的反射和散射,从而引起驻波比变差。

综上所述,天馈系统驻波比变差的可能原因包括连接器质量问题、电缆质量和长度不匹配、过多的天馈分支以及不正确的天线安装等因素。

在实际应用中,我们应该注意这些潜在原因,并采取相应的措施来确保天馈系统的正常运行。

1.2文章结构文章结构部分的内容如下:本文将围绕"天馈系统驻波比变差的可能原因"展开讨论,并以以下三个部分组成文章。

卫星通信地球站天馈系统驻波比

卫星通信地球站天馈系统驻波比

卫星通信地球站天馈系统驻波比
一、驻波比相关概念
一般情况下,传输线上存在入*波和反*波,它们互相干涉形成驻行波。

入*波与反*波同相叠加达最大值,反相叠加达最小值。

传输线上电压最大值与电压最小值之比,称为电压驻波比,简称驻波比,用S 表示,即:
二、驻波比偏高的原因及其影响
1.驻波比偏高的原因。

(1)天线受潮,天线本身的质量问题或施工过程对天线造成损坏,从而导致天线的阻抗和馈线的阻抗不匹配。

(2)馈线受潮,馈线本身质量问题,馈线弯曲过大或者有异物进入馈线。

(3)馈线接头受潮,馈线接头制作工艺问题,馈线与天线之间的连接问题。

2.驻波比偏高的影响。

(1)在驻波比偏高时,一部分能量被反*回来,馈入天线并辐*出去的能量减少,降低通信质量。

(2)所有的馈线都会消耗一部分通过的功率而转化为热能,使馈线升温。

所以,发*机所产生的能量不是被天线辐*出去,就是被馈线以热量的方式散发出去了。

当驻波比偏高时,馈线的热量散发就更高了。

(3)当驻波比过高时,大量的能量被反*回来,造成馈线和发*机高频打火,严重时可能烧坏馈线或损坏发*机。

三、结论
在单位没有配备矢量网络分析仪的情况下,本文提出了采用双定向耦合器和功率计对天馈系统驻波比进行测量的方法。

与昂贵的矢量网络分析仪相比,双定向耦合器价格便宜,体积小,重量轻,不易损坏,使用方便,且此测量方法简单适用,实际*作可行。

因此,该测量方法具有重要的现实意义。

最后分析的驻波比偏高的原因及其影响,极大地突出了天馈系统定期维护的重要*,并为技术人员解决驻波比过
高的问题指出了方向。

基站建设与维护:天馈系统故障处理

基站建设与维护:天馈系统故障处理

天馈系统故障见原因
(1)接头无防护导致天馈系统驻波不稳定,TD-LTE站点出现“射频单元驻波 告警”,通过DSP VSWR测试驻波比偏大。
原因分析:▲工程安装不规范,导致馈线接头连接不可靠 ▲馈线不同程度折弯破损。 ▲馈线和接头等阻抗不匹配。 ▲其他环境因素(例如湿度过大)造成馈线头或室分器件进水
具体方法 ▲将有故障嫌疑的更换成工作正常的模块;若告警未消失,则说明天馈系
统有故障,否则,为模块故障。
驻波比故障的一般处理方法
步步为营法 ▲定位天馈系统故障时,进行分段测试定位是否需要更换天馈部件。
具体方法 ▲测试从跳线至天线之间各段电缆驻波比,逐步缩小驻波比大于1.5的电缆
范围,直至确定某段电缆或接头有问题。
天馈系统故障的主要表现
查询驻波测试结果(DSP VSWR)命令可查询当前 RRU发射通道自动检 测到的驻波比。
检查驻波比的仪表是天馈测试仪,用于 测试天线和馈线的驻波比和匹配性及电缆 损耗和长距离故障定位。
驻波比故障的一般处理方法
置换法 ▲用工作正常的模块置换发生告警的模块,检验天馈系统是否正常
掌握天馈系统故障常见原因: 馈线、接头、环境因素、光纤链路等等。
学而知不足, 不足而知学
天馈系统故障常见原因
(2)光纤插损过大导致“射频单元维护链路异常告警”。 故障处理:▲采用替换法更换BBU和RRU侧光模块 ▲更换BBU和RRU侧光纤链路。 ▲更换ODF间光纤链路。
学习小结
了解天馈系统故障的主要表现 了解驻波比过大的危害、测试命令及常用仪表。
驻波比故障的一般处理方法 掌握置换法、步步为营法的使用。
天馈系统故障处理
学习目标
了解天馈系统故障主要表现 掌握天馈系统故障的一般处理方法 熟悉天馈系统故障常见原因

驻波比告警及分级接收告警的原因及常规处理办法

驻波比告警及分级接收告警的原因及常规处理办法

驻波比告警及分级接收告警的原因及常规处理办法外接天馈设备的驻波比升高,会造成基站的告警。

检查时可查看以下几个方面:1.天线与馈线的接头处是否密封好,有无进水现象。

2.可检查馈线是否有损伤及扭曲。

3.测试天线的驻波看是否正常。

驻波告警定位方法1、驻波告警1(VSWR1)1)检查CDU有故障利用测试手机测试基站收发信号功能是否正常。

若收发信信号功能正常,利用CDU强制复位功能来确定CDU是否误告警。

如果CDU复位后故障不重现,那么说明CDU有误告警,更换CDU。

否则,CDU没有误告警,此时可通过“置换”等方法来确定是否CDU 有故障。

若CDU没有故障,说明天馈系统有故障,转第(2)步。

若如果收发信号不正常或信号不通,那么说明天馈系统+CDU的上下行通道可能有问题,在第一步中通过“置换”法确认CDU没有问题后转第(2)步。

2)检查天馈系统是否故障。

可以通过测试(室外)天馈系统的驻波比来检查(室外)天馈系统有无故障。

在与CDU 模块TX/RX ANT 端口相连接的1/4"跳线接头处,测试天馈系统的驻波比,同时晃动1/4"跳线和机柜顶1/2"跳线,观察仪器显示的驻波比数值是否变化很大。

如果驻波比数值变化很大,那么说明电缆接触不良。

如果驻波比大于1.5,那么可判断天馈系统有故障,按“步步为营”等方法处理。

!!当有塔放时,必须先切断塔放馈电,防止短路现象和其它损坏测试仪表的现象发生,再测试CDU TX/RX ANT端口驻波是否严重超标。

3)上述步骤一般能定位CDU 过驻波告警1(VSWR1)故障原因;当上述步骤不能定位CDU 过驻波告警1(VSWR1)故障原因时,按CDU驻波告警处理功能不稳定或CDU TX/RX ANT接头与1/4"跳线接头匹配不良处理。

前者更换CDU,后者更换CDU和1/4"跳线。

4)若TRX上报驻波比告警,则需要首先检查TRX发射端口(TX)到CDU的连线是否正常及接头是否拧紧,同时可以通过更换TRX来检查是否是TRX误告警。

基站典型告警分析报告7607

基站典型告警分析报告7607

告警编号:7607告警内容:TRX OPERATION DEGRADED载波性能下降告警描述:(一)天馈类告警触发原因:1、馈线连接错误、连接处松动或者连接头制作工艺差;2、载波跟插槽连接不到位;3、射频电缆连接错误或者连接不到位、射频电缆损坏;4、天馈线连接鸳鸯;影响KPI:小区掉话率,切换失败率。

用户感知:用户通话过程中,从故障站点移向周边站点时,通话中断,通话质量差。

派单情况:基站告警监控部门一旦驻波类告警,需及时派发工单给代维公司上站排查处理流程:1、检查射频电缆连接头是否连接到位或者电缆是否损坏;2、检查射频模块是否安插到位,射频电缆是否连接错误;3、用天馈测试仪测试是否在正常值范围内;4、检查馈线是否鸳鸯;(二)LAN类告警触发原因:1、模块内部低噪声放大器本身故障所致;2、外部干扰大引起低噪声放大器告警;影响KPI:导致指标差乃至小区退服,影响可以率。

用户感知:通话过程中,通话质量较差。

派单情况:基站告警监控部门监控到LAN类告警,需及时派发工单给代维公司上站排查。

处理流程:1、检查对应的小区合路器情况,和其他正常小区的合路器对调观察是否依然存在;2、确认是否存在外部干扰源,如果有则确认后协调消除外部干扰源。

(三)EDGE类告警触发原因:1、基带单元不支持EDGE;2、载频不支持EDGE;影响KPI:开通EDGE的栽频无法工作,影响可用率。

用户感知:用户在所对应的小区覆盖范围内无法使用EDGE业务;派单情况:基站告警监控部门监控到EDGE类告警,需及时派发工单给代维公司上站更换模块;处理流程:1、需要开EDGE的硬件更换成支持EDGE个模块;2、修改硬件数据库、时隙表,重新集成;(四)硬件数据库类告警触发原因:1、未闭锁载频就把载频拔出;2、修改硬件配置后未对硬件数据库做相应修改;影响KPI:不影响KPI。

用户感知:只有实际连线正确,不会对用户有大的影响。

派单情况:基站告警监控部门监控到天馈类告警,需及时派发工单给代维公司上站修改;处理流程:上站检查实际的硬件设备、连线情况,并对硬件数据库按照实际修改;(五)调谐类告警触发原因:1、射频连线不规范;2、载频端口故障造成;3、合路器腔口或者调谐腔故障造成;影响KPI:载频退服,或者影响整个小区退服,引起拥塞。

LTE站点天馈故障分析

LTE站点天馈故障分析
通信技术专业教学资源库 武汉职业技术学院
《4G-LTE基站建设》课程
LTE站点天馈故障分析
主讲: 李雪
LTE站点天馈故障分析
案例1:接头无防护导致天馈系统驻波不稳定 现象描述:
几个TD-LTE站点,分别出现“射频单元驻波告警”, 通过DSP VSWR测试驻波比为1.9,不符合客户要求的驻波比小于1.5的范围。
故障定位:光纤链路插损过大所致 故障处理: 先更换BBU和RRU侧光纤链路,告警未消除 更换ODF间光纤链路,告警消除
通信技术专业教学资源库 武汉职业技术学院
谢谢
主讲: 李雪
LTE站点天馈故障分析
案例2:光纤插损过大致“射频单元维护路异常告警” 现象描述:某LTE试验网站点4天内出现10次“射频单元维护链路异常告警”, 告警恢复时间自2分钟至4分钟左右。 故障原因分析: 光模块故障或不匹配 光纤链路故障、插损过大或光纤不洁净 射频单元故障 光口故障、单板故障 其他原因
LTE站点天馈故障分析
错误安装案例图
LTE站点天馈故障分析
故障原因分析: 更换已损坏的馈线和锈蚀的连接器 对每个馈线连接器按照规范做“1层PVC+3层防水胶带+3层PVC胶带”标准防水 密封处理 对馈线与馈线连接器、跳线与跳线连接器、馈线连接器与跳线连接器等连接处进 行规范操作 布防馈线并且避免损伤馈线,重新进行仪器校准,测试天馈系统VSWR和DTF达到 标准要求
LTE站点天馈故障分析
故障原因分析: 工程安装不规范或者安装工艺粗糙,导致馈线接头连接不可靠或者松动出现的驻波 比过高。 馈线不同程度的折弯破损造成系统驻波比过高。 馈线接头制作不规范、制作工艺没有达到要求。 馈线和接头,其他室分器件等阻抗不匹配造成驻波比过高。 其他环境因素(例如湿度过大)造成馈线接头处或者室分器件内部进水。

天馈线在基站系统中所引起的故障及解决

天馈线在基站系统中所引起的故障及解决

天馈线在基站系统中所引起的故障及解决摘要:天馈线系统是由天线和传输连线(也称馈线)组成。

它的技术性能、质量指标直接影响到共用天馈线系统的各微波波道的通信质量。

本文是针对天馈线的使用和安装过程中经常会出现一些故障现象给予分析和预防。

关键字:天馈线天线馈线故障天馈线系统是微波中继通信的重要组成部分之一。

天馈线系统是由天线和传输连线(也称馈线)组成。

天线一般在塔顶,天线的作用是把BTS从馈线传来的电信号转化为无线电波发射到空间、收集无线信号并产生相应的电信号传到BTS上。

馈线是从天线到发射机的链接电缆,主要任务是有效地传输信号能量,把发射的信号传送到天线。

因此它能将天线接收的信号以最小的损耗传输到接收机输入端,或者将发射机发出的信号以最小的损耗传送到发射天线的输入端,同时它本身不应拾取或产生杂散干扰信号。

在多波道共用天馈线系统的微波中继通信电路中,天馈线系统的技术性能、质量指标直接影响到共用天馈线系统的各微波波道的通信质量。

天馈线的指标一般是驻波比VSWR维护规程要求低于1.5为正常值,若高于1.5会造成发射的信号衰减比较大,也就是说手机接收的信号强度不够。

在多波道共用天馈线系统的微波中继通信电路中天馈线系统故障主要有两个特征。

一是故障时共用天馈线系统的各个波道同时出现相同的故障现象。

二是,天馈线系统故障在电路中表现为收信电平下降和电路噪声升高。

常见故障有:天线方位偏移;馈线碰撞变形;密封不严进水;极化去藕度下降等。

在维护中可根据故障特征判断是何种故障,再辅以必要的仪表测试,分析判断出故障原因和部位。

因为天馈线系统的安装过程存在着隐蔽工程,隐蔽工程一旦出现质量隐患,就会为以后的维护留下后患。

新建站在施工中经常出现问题的部分。

主要存在以下三个方面:馈线接反,从BTS到天线的馈线安装错误,在新建基站、替换基站时容易发生。

天线倾角、方位角不按设计施工;方位角不按设计施工,发生偏移导致覆盖对象改变;下倾角出现的问题一般是设置过小,造成塔下黑问题,越区覆盖、导频污染等严重网络问题。

导致天线驻波比的原因

导致天线驻波比的原因

导致天线驻波比的原因
导致天线驻波比的原因主要有以下几点:
驻波比高:这是由于入射波能量传输到天线输入端并未被全部吸收(辐射)产生的反射波迭加而形成的。

驻波比的产生,是由于入射波能量传输到天线输入端并未被全部吸收(辐射)产生的反射波迭加而形成的。

2. 天线长度引起驻波:对于一根天线,在频率不变的情况下,其长度是固定的。

如果天线长度和频率不匹配,就会出现驻波现象。

天线长度不匹配主要是由于布局或设计不当造成的。

3. 阻抗匹配不良:天线的阻抗是和负载间的匹配情况密切相关的,阻抗不匹配会产生反射,引起天线的驻波现象。

在实际应用中,负载的阻抗通常是一定的,因此,需要设计天线使其阻抗和负载匹配。

在实际应用中,通常要求驻波比小于1.5。

如果SWR值大于1,则表示有一部分电波被反射回来,最终变成热量,使得馈线升温。

被反射的电波在发射台输出口也可产生相当高的电压,有可能损坏发射机。

驻波比告警和幅相一致性告警处理方案

驻波比告警和幅相一致性告警处理方案

驻波比告警和幅相一致性告警处理方案1.1 驻波比告警问题故障现象说明:通过基站网管系统OMCR,出现通道驻波比告警,定位驻波比告警支路。

具体如下:故障原因分析:●原因一:支路天馈连接异常引起支路驻波比较大,上报驻波比告警;●原因二:RRU本身支路异常,外螺纹损坏或内部天线输出口挤压变形,无法与外接馈线正常连接,上报驻波比告警;☑解决办法:故障处理步骤:步骤一:通过基站网管系统OMCR确认告警支路,具体如下图:说明:该图中说明为RRU第1天线支路上报驻波比告警;步骤二:通过RRU本地查询,进一步确定故障支路重新手动打开告警支路,查询开支路情况下该支路驻波比是否正常,有如下两种方案:①在RRU底层9C5W下输入如下命令:其中90001为驻波比告警码;1表示第一支路天线;1,4,1,“”为命令函数;输入该命令后在一个告警周期内(5分钟)查询驻波比告警是否清除,如清除则查询驻波比检测值,未清除则转②;②复位RRU,在RRU正常启动建立小区后,马上查询驻波比检测值;查询驻波比检测值,分析如下所示:该8支路驻波比显示值小于25,最大值21也不是很接近25,为正常状态,如出现大于25或者23以上情况,则该支路驻波比异常,继续步骤三;如下图所示为异常支路:注:驻波比告警门限由bbu设定,下行功率小于25dbm时不会触发驻波比告警步骤三:工程更换馈线头,判定RRU故障或天馈故障更换告警支路与相邻正常支路馈线头,重复步骤二;1)若告警随着馈线转移,即为天馈系统问题,通过倒换天线端相应端口支路馈线头判定馈线问题或者天线问题,并更换相应设备;2)若告警不随着馈线转移,即RRU支路问题,更换RRU;1.2 幅相一致性告警问题故障现象说明:通过基站网管系统OMCR,查询出现幅相一致性告警,告警类型有接收通道天线通道幅相一致性告警和发射通道天线通道幅相一致性告警两种类型,具体如下:故障原因分析:●原因一:馈线支路异常,导致支路AC环回校准异常,产生幅相一致性告警;●原因二:RRU支路异常,产生幅相一致性告警;☑解决办法:故障处理步骤:步骤一:通过基站网管系统OMCR确定告警支路,如下图:OMCR中显示活动告警栏:说明:该图中显示为RRU第2天线支路出现接收发射通道幅相一致性告警步骤二:通过机房远端RRU底层查询,初步分析故障支路通过RRU底层命令进行信息查询,查取各支路AC校准值,确定故障支路。

驻波比[1]

驻波比[1]

施工中基站天馈系统驻波比告警产生原因分析[提要]:不论是对建设单位还是施工单位,驻波比告警是一个影响通信质量及考核的问题,作为施工单位在基站设备施工中却不可避免的会碰到驻波比告警等问题,如何避免此类问题的发生就是本文的目的所在。

[关键词]:驻波比告警1、引言作为施工单位在设备施工中不可避免的碰到如驻波比告警等基站告警,本文不牵涉因设备引起的驻波比告警,就由于天馈施工方面而产生的驻波比告警加以分析,并引以为戒,从根本上杜绝此类问题的产生。

2、正文2.1、什么是驻波比驻波比全称为电压驻波比,又名VSWR和SWR,为英文Voltage Standing Wave Ratio的简写。

在无线电通信中,天线与馈线的阻抗不匹配或天线与发信机的阻抗不匹配,高频能量就会产生反射折回,并与前进的部分干扰汇合发生驻波,其相邻电压最大值和最小值之比就是电压驻波比。

为了表征和测量天线系统中的驻波特性,也就是天线中正向波与反射波的情况,人们建立了“驻波比”这一概念:SWR=R/r=(1+K)/(1-K)反射系数K=(R-r)/(R+r)(K为负值时表明相位相反)式中R和r分别是输出阻抗和输入阻抗。

当两个阻抗数值一样时,即达到完全匹配,反射系数K等于0,驻波比为1。

这是一种理想的状况,实际上总存在反射,所以驻波比总是大于1的。

2.2、为什么产生驻波比告警?驻波比值反应了无线电波在空中损耗大小,同时也反应了无线电波被接收机所接收电波好坏程度。

由于驻波比高会直接影响天线的有效发射功率,降低了覆盖区域,必然会降低了接通率,调话率,切换成功率,而且电压驻波比过大,将缩短通信距离,而且反射功率将返回发射机功放部分,容易烧坏功放管,影响通信系统正常工作。

为了保证设备及系统的正常运行和安全性,需要对驻波比设置一个允许范围,超过这个范围就产生驻波比告警。

驻波比的国标是小于1.5,一般运营商要求都是1.4或1.3以下,设备厂家的要求基本都是1.4以下。

驻波告警产生的原因及处理方法总汇

驻波告警产生的原因及处理方法总汇

驻波告警是驻波比过高导致,驻波比高的原因:
1、连接松动:塔顶跳线和天线之间,塔顶跳线和馈线之间,机房跳线和馈线之间,机房跳线和设备之间;
2、线缆问题:查看馈线是否有压扁的地方,更换跳线验证是否是跳线问题;
3、天线问题:可能是天线的驻波比过高导致;
4、跳线或馈线接头做的不好,导致接触不良;
5、如果室外的接头防水做的不好,导致馈线进水,产生高驻波比;
处理驻波告警的步骤:
1、测试有驻波告警小区的天馈线,确定是天馈存在驻波驻波大于视为存在驻波;
2、对存在驻波的馈线进行驻波定位可以确定在几米处有多大的驻波;
3、估算馈线上到各接头的距离,先处理接头处的驻波问题,直到接头处驻波小于;
4、检查出现驻波的一段馈线,若此段馈线有明显损伤,则需要更换馈线;
5、天馈系统驻波处理完成后,掉电重启基站设备;。

包西线基站天馈线驻波比故障分析与解决方案

包西线基站天馈线驻波比故障分析与解决方案

科技论坛包西线基站天馈线驻波比故障分析与解决方案田学雷(中铁电气化铁路运营管理有限公司,陕西榆林719000)BTS(BaseTransceiverStation)全称:基地收发信机站,简称基站,是基站的主设备,介于用户端和BSC(基站控制器中心)之间,它通过馈线将信号送到铁塔顶部的天线(含塔上功放),通过空中接口(无线信号)发送至用户端,是铁路机车联控、区间通信的重要基础设备,天馈线驻波比性能直接关系到信号收发的稳定性及信号覆盖范围。

1现状分析及目标1.1总体现状。

BTS作为最基础的设备至关重要,板件失效、驻波比故障较多,延时现象存在,最主要的原因还是维修不良、对设备、天馈线连接方式不熟悉(特别是45米铁塔顶部走线接头不熟悉)、仪表使用不熟练,导致故障时有发生,且发生后不能第一时间处理恢复,故障延时较多,因而影响铁路移动通信的稳定性。

1.2目标。

通过对BTS设备、天馈线连接的原理分析,制定合理有效的维修方案,主抓基础设备、天馈线、铁塔天线关键点,以及仪表数据学习,全面熟悉驻波比故障发生的源头,并掌握故障处理方法,确保铁路移动通信畅通。

2BTS设备及连接、仪表数据、故障处理分析、方案制定、预期效果及结论总结2.1BTS设备及连接。

2.1.1BTS:主控板、合路器、载频、馈缆、连接线、铁塔、天线等(图1)。

2.1.2天馈线缆连接:这里主要说下天馈线缆出机房到铁塔顶部天线连接,其他不在赘述。

铁塔顶部0、1路共10个接头(包括天线接头),如图2。

2.2仪表数据。

2.2.1驻波比:反映天馈线匹配程度的参数,显示了入射波和反射波之间的比例关系。

驻波比参数要求不大于1.5,理想状态1.0。

2.2.2天线:⑴辐射和接收电磁波;⑵能量转换;2.2.3仪表使用:目前测试驻波比使用的是天馈线驻波比测试仪。

简单步骤:测试之前校准并保存校准模式方便下次使用(频段选取850-950),一般选用断点距离驻波比测试模式,测试完毕一是看图形、二是调出2至4个峰值,查看驻波比数值;测试完毕记得保存,方便下次分析处理。

驻波比告警处理方法

驻波比告警处理方法

驻波比告警处理方法
技术案例标题:
关于驻波比过高告警处理方法
故障现象描述:
载频板或者RRU连接到天线的时候,会出现的一种告警,假如有驻波比告警的话,载频板或者RRU的的驻波比告警灯会亮红灯,这就说明是有驻波比告警了。

告警采集描述
驻波比是一个比例,通常苏州这边是要求在1.5以下是正常的,优秀的一般在1.3以下,假如高于1.5的时候载频板或者RRU的驻波比告警灯是会亮起来的;假如在1.3以上1.5以下灯一般不会亮,但是在BSC侧能看看到具体的值,也是需要整改一下的
故障原因分析:
1.可能问题出在跳线的头子上的,连接载频板或者RRU与天线的时候,每一个载频板总共2根线有四个跳线头子,一般来说问题出现在跳线头子上的概率很大
2.可能出现在跳线两头的设备,一头是载频板,一头是天线,都有可能。

3.可能出现在跳线上面,中间可能有些弯折的地方,会有所影响处理过程:
1.先检查跳线头子,看是否是头子的松动或者头子的连接处是否良好来解决故障
2.可以更换载频板(RRU)或者天线
3.更换跳线
建议与总结
1.对于这样的故障,我们要理清楚这个故障所在设备的位置,具体到点,然后根据这个位置的组成部分,一一排查,肯定能解决问题。

天馈线常见故障处理

天馈线常见故障处理

天馈线常见故障处理1、天馈线安装问题天馈线在安装过程中,由于安装人员疏忽,造成天馈线短路和馈线接头有灰尘、污垢,以及天馈线接头密封处老化断裂等。

这些造成的天馈线故障,往往比较难于查找,特别是由于密封处断裂造成的活动障碍更难查找。

GSM二期工程芦岭基站安装完毕后,基站调试不通,西门子公司的人员去了几次也查不出问题,是基站硬件问题,还是电缆连接问题,还是天馈线问题呢?经多方查找,才发现是由于安装人员疏忽,在制作馈线接头时,把一个头发丝般的铜皮做在馈线的芯皮之间,致使馈线短路。

重新制作馈线接头后,基站运行正常,但是为此各方面花费了多么大的精力,给移动局带来多么大的利益损失。

同样的,有些天馈线安装完毕后虽测试指标达到要求,但由于馈线尾巴线绑扎不牢,久经风吹雨打,造成封密处断裂,致使基站出现故障。

宿州朱仙庄基站的馈线尾巴线绑扎不牢,正常使用八个月后,经常由于驻波比告警,造成基站Disable,我们认真分析原因,确定为馈线接头密封处由于风吹摇摆开裂。

我们对接头处重新处理,加固馈线尾巴线,驻波比告警消失。

覆盖距离由原先的1公里扩大到4--5公里,提高了基站的利用效率。

象这一类情况非常多,如不及时处理,出现的问题会更多。

2、天馈线进水的问题天馈线进水问题的出现,既有人为的因素,也有自然的因素。

自然的因素是由于馈线本身进水。

GSM二期工程时,适逢宿州发大水,有些馈线浸泡在水里。

由于馈线长期在水中浸泡,造成馈线外皮老化,雨水渗透到馈线内。

天馈线安装好以后,又没有按照要求进行驻波比测试,以致晴天时天馈线没有驻波比告警,阴天或下雨时,天馈线系统即有驻波比告警,造成基站Disable。

为此,工程局和我方人员去了十几次也没有解决,后来用驻波比测试仪对馈线进行测试,发现造成该基站频繁退出的原因为:发射馈线进水。

更换天馈线以后,故障排除。

人为造成天馈线进水的情况就更多,主要包括馈线接地处没有密封好、安装时划伤馈线、馈线和软跳线接头没有密封好等。

天馈系统故障处理案例总结

天馈系统故障处理案例总结

天馈系统故障处理案例分析摘要:天馈系统的主要功能是作为射频信号发射和接收的通道,将基站调制好的射频信号有效地发射出去,并接收UE发射的信号。

天馈子系统主要包括天线、馈线、跳线和塔放等,天线的类型、增益、覆盖方向、前后比都会影响系统性能;馈线、跳线与天线间的传输损耗也都影响信号的发射和接收,所以天馈系统性能的好坏直接影响了网络的性能和质量。

本文将详细介绍常见的天馈系统故障案例的处理和分析。

关键字:天馈;天线;塔放;跳线;驻波;干扰。

一、案例1.故障现象描述发现某W基站第2小区出现驻波告警,派代维去处理,到现场测得驻波值1.8,已超过门限值,所以上报射频驻波告警,处理后,测得驻波最大值为1.2,告警消失。

但几小时后,该小区射频驻波告警再次出现,用DSP VSWR查得其驻波值,结果VSWR=10。

再回到现场检查,天线系统完好,用sitemaster测得驻波值1.2,告警信息与实际测量值不相符。

DSP VSWR:;勒流扶闾+++ 勒流扶闾 2009-11-20 14:24:06O&M #13745%%/*35504*/DSP VSWR:;%%RETCODE = 0 执行成功。

天线口驻波比------------机柜编号机框编号槽位编号发射单元编号驻波比(0.1)主柜 4 0 0 100(结果个数 = 1)--- END2.告警信息在MML上执行LST ALMAF查看该站的告警,如下所示,出现告警的小区和之前一样,在第一小。

LST ALMAF:;勒流扶闾+++ 勒流扶闾 2009-11-20 14:26:14O&M #13748%%/*36990*/LST ALMAF:;%%RETCODE = 0 执行成功。

ALARM 334062 故障重要告警 NodeB 1317 硬件系统告警同步号 = 637000告警名称 = 射频模块驻波告警告警发生时间 = 2009-11-13 02:14:15定位信息 = 柜号=0, 框号=4, 槽号=0, 板类型=WRFU板, 故障码=NULL, 驻波告警门限(单位:0.1)=15, 驻波值(单位:0.1)=100, 平均前向功率(单位:0.1dBm)=355, 平均反向功率(单位:0.1dBm)=343(结果个数 = 1)--- END3.原因分析当基站产生射频驻波告警时,表征从WRFU的输出端口一直到天线的整个天馈系统处于匹配不良状态,与正常状态相比,上下行的信号功率都会受到额外的衰减,甚至导致上下行链路的中断。

天馈障碍(驻波告警)原因分析与解决办法--赵宝仁

天馈障碍(驻波告警)原因分析与解决办法--赵宝仁

严格维护操作的 规范性、杜绝二 次障碍的发生 (建立处理天馈 障碍考核机制)

天馈障 碍成功 解决
谢谢大家!
无主动预防:网络维护中经 常忽略了对塔上天馈的实际 维护,只是出现告警后才去 抢修处理。
产生上下 行电平差
信号在天 馈系统中 反射、影 响覆盖和 通话
导致信号无法 发射、用户呼 叫不成功通话 失败。
定期进行塔上天 馈线维护(重新 包封馈线接头、 做到先期预防) 规范基站天馈施 工工艺与加大验 收力度(采用隔 年结算的方法)
常见的天馈障碍(驻波告警) 原因分析与解决方案
-----2014年鸡西公司 网络管理与实践创新活动
• 随着移动通信事业的迅猛发展,移动用户对 通信网络质量的要求也越来越高。基站信 号作为网络最直接的载体,它的质量将直接 影响到移动用户和通信商的利益,而通信网 络质量的优劣,又以基站天馈系统障碍最为 突出。
工程施工
季节因数:大多基站天馈安 装均在冬季完成、季节因数 约束了施工的良好性。(胶 泥胶带等不适合冬季操作)
工艺因数:由于是塔上施工、 验收存在困难等客观因数导 致施工监管不到位,故障隐 患无法在短期内表现出来。
操作维护
操作不规范:在几年的工作 实践经验中发现,有些驻波障 碍并不是由于天馈系统本身 造成的,而是人为原因所导致。

驻波比故障的排查处理

驻波比故障的排查处理

驻波比故障的排查处理驻波比过高排查陈碧明1. 故障现象驻波比是表征反射信号大小的参数,或者说是衡量系统匹配情况的参数。

驻波比越大,说明反射回来的信号越多,有用信号的电平值就越低,如果设备之间或者设备与接头、线缆之间匹配的越好,驻波比就越低,反之,驻波比就高。

2.故障排查过程归结故障原因,主要是工程问题,少数是由于线缆故障导致,极少是设备本身某个通道故障:在实际工程中,由于施工队施工水平原因,接头制作质量不高,造成RRU驻波比异常;其次在射频线缆布放过程中弯曲半径过小,或者布放好的线缆受到外界损坏导致驻波比异常(比如线缆外皮破裂导致线缆介电常数改变等)。

1、对于驻波比故障,可以通过驻波测试仪Sitemaster来测量,正常情况下驻波比应该在1.3^1.5之间,如果高于这个值,可使用Sitemaster里的故障定位来确定驻波异常的位置,定位结果会显示为故障点到测试点的距离,单位一般是米,根据定位结果可以确定问题所在,可能会是线缆接头处,或者器件汇接处,也可能是线缆中间的某个部分(线缆受损)。

2、使用频谱仪测试每一个节点的输出功率,例如:RRU输出口功率为25dBm,那么经过0.5米跳线后至少应该在24左右,如果衰耗过大,说明跳线或接头有问题,同理,如果经过跳线输出的功率为24,那么天线侧接头或天线有问题,以此类推,即可定位到故障点。

3、现场也可在检查完故障通道接头的基础上采用“交叉法”定位到故障。

3.相关原理知识1)驻波的概念。

当馈线和器件、天线等匹配时(线缆的特性阻抗、器件的工作频段等参数的匹配),高频能量全部被负载(如天线)吸收,馈线上只有入射波,没有反射波,此时馈线上传输的是行波,馈线上各处的电压幅度相等,馈线上任意一点的阻抗都等于它的特性阻抗。

而当馈线与器件、天线等不匹配时,负载就不能全部将馈线上传输的高频能量吸收,而只能吸收部分能量,入射波的一部分能量反射回来形成反射波。

在不匹配的情况下,馈线上同时存在入射波和反射波,两者叠加,在入射波和反射波相位相同的地方振幅相加最大,形成波腹;而在二者相位相反的地方振幅相减为最小,形成波节,其它各点的振幅则介于波腹与波节之间,这种合成波称为驻波。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[提要]:不论是对建设单位还是施工单位,驻波比告警是一个影响通信质量及考核的问题,作为施工单位在基站设备施工中却不可避免的会碰到驻波比告警等问题,如何避免此类问题的发生就是本文的目的所在。

[关键词]:驻波比告警1、引言作为施工单位在设备施工中不可避免的碰到如驻波比告警等基站告警,本文不牵涉因设备引起的驻波比告警,就由于天馈施工方面而产生的驻波比告警加以分析,并引以为戒,从根本上杜绝此类问题的产生。

2、正文2.1、什么是驻波比驻波比全称为电压驻波比,又名VSWR和SWR,为英文V oltage Standing Wave Ratio的简写。

在无线电通信中,天线与馈线的阻抗不匹配或天线与发信机的阻抗不匹配,高频能量就会产生反射折回,并与前进的部分干扰汇合发生驻波,其相邻电压最大值和最小值之比就是电压驻波比。

为了表征和测量天线系统中的驻波特性,也就是天线中正向波与反射波的情况,人们建立了“驻波比”这一概念:SWR=R/r=(1+K)/(1-K)反射系数K=(R-r)/(R+r)(K为负值时表明相位相反)式中R和r分别是输出阻抗和输入阻抗。

当两个阻抗数值一样时,即达到完全匹配,反射系数K等于0,驻波比为1。

这是一种理想的状况,实际上总存在反射,所以驻波比总是大于1的。

2.2、为什么产生驻波比告警?驻波比值反应了无线电波在空中损耗大小,同时也反应了无线电波被接收机所接收电波好坏程度。

由于驻波比高会直接影响天线的有效发射功率,降低了覆盖区域,必然会降低了接通率,调话率,切换成功率,而且电压驻波比过大,将缩短通信距离,而且反射功率将返回发射机功放部分,容易烧坏功放管,影响通信系统正常工作。

为了保证设备及系统的正常运行和安全性,需要对驻波比设置一个允许范围,超过这个范围就产生驻波比告警。

驻波比的国标是小于1.5,一般运营商要求都是1.4或1.3以下,设备厂家的要求基本都是1.4以下。

驻波比告警是在BTS主设备里设置的,通过中心机房进行监控,如BTS中的一个小区你设置驻波比是1.3,该小区的TRx的驻波比超过1.3就会产生告警。

2.3、天馈系统组成部分一个基站天馈系统主要包含天线、馈线(主要包括主馈线和跳线)、接头密封件、以及其它一些天馈配件,具体如下:2.3.1、天线用于接收和发送基站信号,有三种最常见的单极化天线、双极化天线和全向天线,象一些室内覆盖的美化天线也不外乎以上三种。

2.3.2、馈线,分为主馈线和跳线;主馈线现在基站上使用7/8″馈线的居多,但有5/4″馈线、1 5/8″馈线;跳线,又称1/2″馈线,常用的有标准1/2″馈线和超柔1/2″馈线,在实际应用中分为两种,一种为室外天线与主馈线之间的连接,长度一般要求在3m以内;另一种为主馈线和基站主设备的连接,长度要求在2m-3m以内。

2.3.3、接头密封件,包含胶泥和胶带(个别设备还要求接头外部使用防水树脂密封,防止水蒸气侵入),主要用于天线和室外跳线接头、室外跳线和馈线接头之间的密封。

对于馈线头包扎要求:在各处接头处先裹上3层电气绝缘胶带,再缠上3层防水胶带(裹时拉升宽度至原来的3/4~1/2),再裹上3层电气绝缘胶带。

要求第一层电气绝缘胶带必须超过抱环接头50mm;电气绝缘胶带缠绕时要求每圈电气绝缘胶带覆盖前圈电气绝缘胶带的1/2;要求接头包裹完毕后看上去丰满圆滑,外形美观,呈纺锤状。

2.3.4、其他配件,主要包含:馈线接地卡,常见有7/8〞馈线接地卡和1/2〞馈线接地卡,用于馈线接地(对于接地线引向应由上往下为垂直方向时,与馈线的夹角以不大于15°为宜;而在水平方向,馈线接地线与信号上行方向一致,室外馈线接地线引向略微向下倾斜使雨水不渗入接头处为宜);馈线卡,常见有7/8〞馈线卡和1/2〞馈线卡,用于固定馈线;走线架,分室内和室外两种,室外走线架要求为热度锌,个别室外条件不允许的地方还使用热度锌角铁“L”型支架,室内走线架要求为喷塑走线架(福建移动有些地区要求为铝合金走线架);馈线窗,一般为9孔馈线窗和12孔馈线窗;避雷器,主馈线和室内跳线连接必须经过避雷器,这是保证主设备防止被雷击而导致损坏的关键。

2.4、天馈系统各关键部位产生驻波比原因分析2.4.1、天线驻波。

天线驻波是天线质量必须检测的一项天线电气性能指标,天线驻波高低直接影响天馈系统整体性能,以前天线出厂驻波比要求小于1.5,随着天线厂家技术水平不断提高,加上通信运营商对各项质量指标要求越来越高,天线出厂驻波比一般要求小于1.3。

但在实际施工中,会碰到一些天线由于天线厂家出厂时把关不严,或运输途中天线挤压的各种原因,导致天线的驻波比异常;这要求作为施工单位在领货或收货时,首先使用仪表对天线的驻波比进行测试,发现不合格的产品坚决不予使用,并退还厂家更换,从产品质量源头把关。

如:近期福建移动某地市集采的一批全向天线70%以上,经测试全部存在驻波比异常的现象,我单位经和建设单位协调,由建设单位把存在质量不合格的天线全部退回厂家。

2.4.2、馈线驻波,分为主馈线驻波和跳线驻波,馈线质量好坏对驻波影响较大;对于主馈线和跳线,一般7/8〞主馈线损耗要求小于0.4dB/10m,驻波比都要求小于1.1,目前施工中,很少碰到由于馈线本身质量原因产生驻波比告警。

2.4.3、馈线布放工艺要求:对常用的7/8〞馈线的长度及布放工艺,馈线的允许余量为3%,不宜过长,减小馈线带来的功率损耗;馈线的单次弯曲半径应>30cm,馈线多次弯曲半径>45cm;馈线在布放、拐弯时,弯曲度应圆滑、无硬弯,并避免接触到尖锐物体,防止划伤进水,造成故障;室外必须用黑扎带,室内用白扎带(福建移动部分市公司要求用黑扎带),绑扎时应整齐美观、工艺良好。

跳线(1/2〞馈线)布放时,单次弯曲半径应≥20cm;多次弯曲半径应≥30cm;跳线与馈线的接头处应固定牢靠,防止晃动;跳线与天线、馈线的接头应连接可靠,密封良好;跳线应用扎带绑扎牢固,松紧适宜,严禁打硬折、死弯,以免损伤跳线。

在实际施工中,施工单位应避免由于布放馈线时,接触到尖锐物体造成馈线损伤进水,导致驻波比告警(象这种驻波比告警的事情,在施工完毕,使用仪表很难检测出来,往往出现在连日大雨后,基站才出现驻波比告警)。

2.4.4、馈线头的制作。

馈线头的制作非常关键,馈线头安装应严格按照规范来制作,制作馈线接头时,馈线的内芯不得留有任何遗留物。

接头必须紧固无松动、无划伤、无露铜、无变型。

严格控制安装工艺,做好各种接头;在做馈线接头时,控制好连接接头的力量和连接接头的扭矩(一般扭矩为25~30N.m),最好选用扭矩扳手。

如果扭矩过大,会造成接头损伤,致使接头严重不匹配;如果扭矩过小,接头松动,会产生三阶交调干扰,影响通信质量。

而基站天馈系统驻波比告警大多就是由于在馈线头制作或安装时造成的问题,导致基站驻波比过大而告警,严重影响天馈系统质量。

2.4.5、避雷器驻波。

避雷器的驻波比应小于1.1的行业标准。

室内避雷器安装时,避雷器要与跳线、馈线接口、阻抗匹配,且避雷器安装的方向不能弄反,如果机房有避雷器安装架时,必须要把避雷器固定在安装架上,避雷器接地线按照厂家要求是否制作(部分华为设备BTS3012的避雷器地线,华为督导不允许做接地线)。

2.4.6、测试时所用的仪表精度或误差、测试方法、测试环境等。

在现场测试天馈系统时一般选用SiteMaster仪器,测试时必须进行测试前仪表校准,避免产生测试误差。

为了保证仪表测试准确,应定期将仪表送到国家相关部门检测。

3、结论作为我们施工单位在无线施工中,尤其天馈部分施工,要首先要从产品质量上严格把关,对于因产品自身质量不合格的坚决退回厂家,不予接收,从源头把关;对于馈线布放工艺以及馈线头(7/8〞、1/2〞)制作一定要熟练和有责任心的技术人员严格按照规程操作,从而避免因制作工艺而引起的驻波比告警;由于天线及馈线长期暴露在外,雨雪等天气可会造成其接口处的受潮,甚至在跳线和天线、馈线和跳线的接口处聚集冷凝水,使整个天馈系统驻波比升高,引起功率损失,使基站覆盖范围缩小,甚至导致载频退服,而馈线接头处的防水处理时一个容易疏忽的地方;天馈系统施工完毕后,技术人员应从上到下对整个天馈系统检查(主要检查天线与馈线的接头处是否密封好、馈线是否有损伤及扭曲、制作馈线地线时,导致密封不严、馈线地线时,是否割伤馈线外层)再使用仪表对整个天馈系统完整的测试一遍,发现问题及时处理。

不论是对建设单位还是施工单位,驻波比告警是一个影响通信质量及考核的问题,作为施工单位在设备施工中却不可避免的会碰到驻波比告警等问题,如何避免此类的发生就是本文的目的所在,而且有些问题很难讲是由于设备不合格引起的驻波比告警还是系统误报,但我们施工单位应该从自身来把关,从根本上杜绝基站安装上出现的问题,尤其天馈系统的驻波比告警问题,对每个基站出现问题应该加以分析,避免连续出现同类问题,更深层次原因分析,天馈系统产生驻波比告警(除去设备自身的原因),施工单位自身现场管理缺陷,技术人员技术力量不强,责任心不强也是一个方面;只有加强现场人员的管理,强化人员技术培训,做好人才储备工作才是解决问题的关键。

外接天馈设备的驻波比升高,会造成基站的告警。

检查时可查看以下几个方面:1.天线与馈线的接头处是否密封好,有无进水现象。

2.可检查馈线是否有损伤及扭曲。

3.测试天线的驻波看是否正常。

驻波告警定位方法1、驻波告警1(VSWR1)1)检查CDU有故障利用测试手机测试基站收发信号功能是否正常。

若收发信信号功能正常,利用CDU强制复位功能来确定CDU是否误告警。

如果CDU 复位后故障不重现,那么说明CDU有误告警,更换CDU。

否则,CDU没有误告警,此时可通过“置换”等方法来确定是否CDU有故障。

若CDU没有故障,说明天馈系统有故障,转第(2)步。

若如果收发信号不正常或信号不通,那么说明天馈系统+CDU的上下行通道可能有问题,在第一步中通过“置换”法确认CDU没有问题后转第(2)步。

2)检查天馈系统是否故障。

可以通过测试(室外)天馈系统的驻波比来检查(室外)天馈系统有无故障。

在与CDU 模块TX/RXANT 端口相连接的1/4"跳线接头处,测试天馈系统的驻波比,同时晃动1/4"跳线和机柜顶1/2"跳线,观察仪器显示的驻波比数值是否变化很大。

如果驻波比数值变化很大,那么说明电缆接触不良。

如果驻波比大于1.5,那么可判断天馈系统有故障,按“步步为营”等方法处理。

!!当有塔放时,必须先切断塔放馈电,防止短路现象和其它损坏测试仪表的现象发生,再测试CDUTX/RX ANT端口驻波是否严重超标。

3)上述步骤一般能定位CDU 过驻波告警1(VSWR1)故障原因;当上述步骤不能定位CDU 过驻波告警1(VSWR1)故障原因时,按CDU驻波告警处理功能不稳定或CDU TX/RX ANT接头与1/4"跳线接头匹配不良处理。

相关文档
最新文档