高中数学必修1-5知识点归纳总结及公式大全

合集下载

高中数学必修1、3、4、5知识点归纳及公式大全

高中数学必修1、3、4、5知识点归纳及公式大全

必修 1 数学知识点第一章、会合与函数观点§、会合1、把研究的对象统称为元素,把一些元素构成的整体叫做会合。

会合三因素:确立性、互异性、无序性。

2、只需构成两个会合的元素是同样的,就称这两个会合相等。

3、常有会合:正整数会合:N *或 N ,整数会合: Z ,有理数会合:Q ,实数会合: R .4、会合的表示方法:列举法、描绘法.§、会合间的基本关系1、一般地,对于两个会合 A 、B ,假如会合 A 中随意一个元素都是会合 B 中的元素,则称会合A是会合 B的子集。

记作 A B .2、假如会合A B ,但存在元素x B ,且 x A ,则称会合A是会合B的真子集.记作:A B.3、把不含任何元素的会合叫做空集.记作:.并规定:空会合是任何会合的子集.4、假如会合 A 中含有 n 个元素,则会合 A有 2 n个子集.§、会合间的基本运算1、一般地,由所有属于会合 A 或会合 B 的元素构成的会合,称为会合 A 与 B 的并集 .记作:2、一般地,由属于会合 A 且属于会合 B 的所有元素构成的会合,称为 A 与 B 的交集 .记作:3、全集、补集C U A { x | x U , 且 x U }§、函数的观点A B .A B .1、设 A 、 B 是非空的数集,假如依据某种确立的对应关系 f ,使对于会合 A 中的随意一个数x ,在会合 B 中都有唯一确立的数 f x 和它对应,那么就称 f : A B 为会合A到会合 B 的一个函数,记作:y f x , x A .2 、一个函数的构成因素为:定义域、对应关系、值域.假如两个函数的定义域同样,并且对应关系完整一致,则称这两个函数相等.§、函数的表示法1、函数的三种表示方法:分析法、图象法、列表法.§、单一性与最大(小)值1、注意函数单一性证明的一般格式:解:设 x1 , x2a, b 且 x1x2,则: f x1 f x2=§、奇偶性1、一般地,假如对于函数f x的定义域内随意一个x ,都有f x f x,那么就称函数f x.为偶函数偶函数图象对于y 轴对称.2 、一般地,假如对于函数f x 的定义域内随意一个x ,都有 f x f x ,那么就称函数f x 为奇函数.奇函数图象对于原点对称.第二章、基本初等函数(Ⅰ)§、指数与指数幂的运算1、一般地,假如x n a ,那么 x 叫做 a 的 n 次方根。

高中数学必修知识点归纳及公式大全

高中数学必修知识点归纳及公式大全

按住C t r l 键单击鼠标左打开配套名师教学视频动画播放必修1数学知识点第一章、集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、 只要构成两个集合的元素是一样的,就称这两个集合相等。

3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。

记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n 2个子集. §1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A .3、全集、补集?{|,}U C A x x U x U =∈∉且 §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,. 2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=… §1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 第二章、基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。

高中数学必修1、2、3、4、5公式及知识点总结大全

高中数学必修1、2、3、4、5公式及知识点总结大全

1 2)(x 是偶函数; )(x f 是奇函数。

3).(0,1,0)a a N >≠>. 1a ≠,0m >,且1m ≠, 0N >).).).二、三角函数、三角变换、解三角形、平面向量4、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin . 5、正弦、余弦的诱导公式(奇变偶不变,符号看象限)απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。

()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-= ⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.6、和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.7、二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-.公式变形: ;22cos 1sin ,2cos 1sin 2;22cos 1cos ,2cos 1cos 22222αααααααα-=-=+=+=sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2xk k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴函 数性 质9、辅助角公式(化一公式))sin(cos sin 22ϕ++=+=x b a x b x a y 其中ab =ϕtan 10.正弦定理 :2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径). 2sin ,2sin ,2sin a R A b R B c R C ⇔===::sin :sin :sin a b c A B C ⇔=11.余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.12.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.13、三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+. 14、a 与b 的数量积(或内积)θcos ||||b a b a ⋅=⋅15、平面向量的坐标运算(1)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--. (2)设a =11(,)x y ,b =22(,)x y ,则b a ⋅=2121y y x x +. (3)设a =),(y x ,则22y x a +=16、两向量的夹角公式设a =11(,)x y ,b =22(,)x y ,且0≠b ,则121cos ||||x a ba b x θ⋅==⋅+a =11(,)x y ,b =22(,)x y ).17、向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0b a //⇔a b λ= 12210x y x y ⇔-=.)0(≠⊥a b a ⇔0=⋅b a 12120x x y y ⇔+=.*平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b =1212x x y y +.三、数列18、数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).19、等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;20、等差数列其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 21、等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 22、等比数列前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或 11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.四、不等式23、xy y x ≥+2。

高中数学复习全册知识总结,必修1-5重点归纳,赶快背

高中数学复习全册知识总结,必修1-5重点归纳,赶快背

高中数学复习全册知识总结,必修1-5重点
归纳,赶快背
高中数学必修1-5重点归纳如下:
一、必修一:函数与导数
1、定义域,值域;函数的分类以及函数的性质判断;
2、延拓函数定义及延拓函数的图象;
3、定义导数,求解一次函数的导数,包括指数函数和对数函数的导数;
4、求极限,利用极限的运算求导数;
5、求多变量函数的偏导数,梯度和方向导数;
二、必修二:应用类函数几何
1、单调函数,偶函数,周期函数及其变换;
2、指数函数,对数函数及其变换;
3、不定积分,定积分,面积函数及其在定义域上的性质;
4、反函数及其图象;
三、必修三:统计与概率
1、实践统计,频率表;
2、概率的定义及其分类,概率的计算;
3、随机事件的相互独立性,正、多项式分布,正态分布;
四、必修四:空间初步
1、定义空间中的点,直线,平面;
2、平行线,平行平面,非平行线,空间的顶点;
3、空间的距离,空间的弦长,空间的体积;
4、垂心线,平面斜率,直线斜率,平面及直线的相交;
五、必修五:曲面与向量
1、曲线求法,勒让德定理;
2、向量的定义,向量的运算;
3、平行四边形,平行四边形内角和;
4、向量积,叉积及其共面与垂直;。

公式大全【范本模板】

公式大全【范本模板】

数学必修1-5常用公式必修1:一、集合1、集合中元素的特征:确定性,互异性,无序性 集合的表示法:列举法,描述法,图示法2、集合间的关系(1)子集:对任意x A ∈,都有x B ∈,则称A 是B 的子集。

记作A B ⊆(2)真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集。

记作A ≠⊂B(3)集合相等:若:,A B B A ⊆⊆,则A B = 3、元素与集合的关系:属于∈;不属于:∉;空集:φ 4、集合的运算并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为AB交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A∩B 补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A 5、常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R 二、函数的奇偶性1、定义:奇函数〈=〉f (– x) = – f ( x ) ,偶函数<=>f (–x ) = f ( x )(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形;(2)偶函数的图象关于y 轴成轴对称图形;三、函数的单调性1、定义:对于定义域为D 的函数f ( x ),若任意的x 1, x 2∈D ,且x 1 < x 2①f ( x 1 ) < f ( x 2 ) <=〉 f ( x 1 ) – f ( x 2 ) 〈 0 <=>f ( x )是增函数(符号不变) ②f ( x 1 ) > f ( x 2 ) 〈=〉 f ( x 1 ) – f ( x 2 ) > 0 <=>f ( x )是减函数(符号变) 2、复合函数的单调性:同增异减四、二次函数y = ax 2 +bx + c (0a ≠)的性质:顶点坐标公式:⎪⎪⎭⎫ ⎝⎛--a bac a b 44,22, 对称轴:abx 2-=,最大(小)值:a b ac 442-五、指数与指数函数 1、幂的运算法则(1)a m • a n = a m + n (2)nm nma a a -=÷(3)( a m ) n = a m n (4)( ab ) n = a n • b n (5)nnnb a b a =⎪⎭⎫⎝⎛(6)a 0 = 1 ( a≠0)(7)n na a1=-(8)m n m n a a =(9)m n m naa 1=- 2、根式的性质(1)na =(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩3、指数函数y = a x (a 〉 0且a ≠1)的性质:(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)4、指数式与对数式的互化:log b a N b a N =⇔=(0,1,0)a a N >≠> 五、对数与对数函数 1、对数的运算法则(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b(5)a log a N= N(6)log a (MN) = log a M + log a N (7)log a (NM) = log a M -— log a N (8)log aN b = b loga N (9)换底公式:log a N =aNb b log log (10)推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). (11)log a N =aN log 1(12)常用对数:lg N = log 10 N (13)自然对数:ln A = log e A (其中 e = 2。

数学必修1、2、4、5知识点总结

数学必修1、2、4、5知识点总结

必修1数学基础知识 第一章、集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、 只要构成两个集合的元素是一样的,就称这两个集合相等。

3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R.4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。

记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n2个子集. §1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A .3、全集、补集? §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式: 解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…§1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称.第二章、基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。

最新高中数学知识点总结(最全版)

最新高中数学知识点总结(最全版)

高中数学 必修1知识点1 第一章 函数概念2 (1)函数的概念3 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在4 集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对5 应法则f )叫做集合A 到B 的一个函数,记作:f A B →.6 ②函数的三要素:定义域、值域和对应法则.7 ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. 8 (2)区间的概念及表示法9 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足10 a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合11 叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记12 做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.13注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须14 a b <,(前者可以不成立,为空集;而后者必须成立). 15 (3)求函数的定义域时,一般遵循以下原则:16 ①()f x 是整式时,定义域是全体实数.17②()f x 是分式函数时,定义域是使分母不为零的一切实数.18 ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.19 ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. 20 ⑤tan y x =中,()π⑥零(负)指数幂的底数不能为零.22 ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初23 等函数的定义域的交集.24 ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数25 [()]f g x 的定义域应由不等式()a g x b ≤≤解出.26 ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. 27 ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. 28 (4)求函数的值域或最值29 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中30 存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质31 是相同的,只是提问的角度不同.求函数值域与最值的常用方法:32 ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.33 ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围34 确定函数的值域或最值.35 ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程36 2()()()0a y x b y x c y ++=37则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值38 域或最值.39 ④不等式法:利用基本不等式确定函数的值域或最值.40 ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问41 题转化为三角函数的最值问题.42 ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. 43 ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. 44 ⑧函数的单调性法.45(5)函数的表示方法4647表示函数的方法,常用的有解析法、列表法、图象法三种.48解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两49个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.50(6)映射的概念51①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B52中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫53做集合A到B的映射,记作:f A B→.54②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元素b对应,那么我们把a Ab B55元素b叫做元素a的象,元素a叫做元素b的原象.56(6)函数的单调性57①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一58 个减函数为增函数,减函数减去一个增函数为减函数.59 ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =60 为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,61则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.62 (7)打“√”函数()(0)af xx a x=+>的图象与性质63()f x 分别在(,]a -∞-、[,)a +∞上为增函数,64 分别在[,0)a -、(0,]a 上为减函数. 65 (8)最大(小)值定义66 ①一般地,设函数()y f x =的定义域为I ,如果存67在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;68 (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.69②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都70 有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作71 max ()f x m =.72 (9)函数的奇偶性73 ①定义及判定方法74函数的性 质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇.函数...(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=f(x).......,那么函数f(x)叫做偶函..数.. (1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.75 ③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相76 反.77 ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个78 偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数. 79 第二章 基本初等函数(Ⅰ) 80 〖2.1〗指数函数81 【2.1.1】指数与指数幂的运算 82 (1)根式的概念83 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次84 n a n 是偶数时,正数a 的正的n n a 负的n 次方根用符85号0的n 次方根是0;负数a 没有n 次方根.86 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;87 当n 为偶数时,0a ≥.88 ③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,89 (0)|| (0) a a a a a ≥⎧==⎨-<⎩. 90(2)分数指数幂的概念91 ①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于92 0.93②正数的负分数指数幂的意义是: 1()0,,,mm n n aa m n N a -+==>∈且1)n >.0的负分数94 指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 95 (3)分数指数幂的运算性质96 ①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ 97③()(0,0,)r r r ab a b a b r R =>>∈ 98 【2.1.2】指数函数及其性质 99 (4)指数函数100101 〖2.2〗对数函数102 【2.2.1】对数与对数运算 103 (1)对数的定义104 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N105叫做真数. 106 ②负数和零没有对数.107 ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. 108 (2)几个重要的对数恒等式109 log 10a =,log 1a a =,log b a a b =.110 (3)常用对数与自然对数111 常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 112(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么113①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-= 114③数乘:log log ()n a a n M M n R =∈ ④log a N a N =115⑤log log (0,)b n a a nM M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a bN N b b a =>≠且 116【2.2.2】对数函数及其性质 117 (5)对数函数118(6)反函数的概念119 设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果120 对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式121 子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯122 上改写成1()y f x -=. 123 (7)反函数的求法124 ①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=; 125③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. 126 (8)反函数的性质127 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.128②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域. 129③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上. 130 ④一般地,函数()y f x =要有反函数则它必须为单调函数. 131 〖2.3〗幂函数 132 (1)幂函数的定义133一般地,函数y xα134=叫做幂函数,其中x为自变量,α是常数.135136137138139140141142143144145146147148149150151152153154155156(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象157 分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点158 对称);是非奇非偶函数时,图象只分布在第一象限.159 ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).160③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函161 数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.162④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中163 ,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则164 qpy x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.165 ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,166 其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直167 线y x =下方.168 〖补充知识〗二次函数 169 (1)二次函数解析式的三种形式170 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:171 12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法172 ①已知三个点坐标时,宜用一般式.173 ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. 174 ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. 175 (3)二次函数图象的性质176①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是177 24(,)24b ac b a a--. 178②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,179 2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,180当2bx a=-时,2max 4()4ac b f x a -=.181③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点182 ********(,0),(,0),||||||M x M x M M x x a =-=. 183(4)一元二次方程20(0)ax bx c a ++=≠根的分布184 一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但185 尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)186 的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.187 设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从188以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函189 数值符号. 190 ①k <x 1≤x 2 ⇔191192 ②x 1≤x 2<k ⇔193194 ③x 1<k <x 2 ⇔ af (k )<0195196 ④k 1<x 1≤x 2<k 2 ⇔ 197198199 ⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔f (k 1)f (k 2)<0,并同时考虑200 f (k 1)=0或f (k 2)=0这两种情况是否也符合201202203⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 204 此结论可直接由⑤推出.205 (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值206 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.207 (Ⅰ)当0a >时(开口向上) 208 ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2b q a ->,则()m f q = 209210 211 212 213 214 215 216 217 ①若02b x a -≤,则()M f q =b ()f p 218 219 220 221 2222230x 0x225226 (Ⅱ)当0a <时(开口向下) 227 ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2bq a ->,则()M f q = 228229 230 231 232 233 234235 236 237 ①若02b x a -≤,则()m f q = ②02b xa->,则()m f p =.238 239 240 241 242 243244ff fx246 第三章 函数的应用247 一、方程的根与函数的零点248 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数249 ))((D x x f y ∈=的零点。

高中数学必修1-5知识点归纳及公式大全

高中数学必修1-5知识点归纳及公式大全

必修 1 数学知识点会合间的基本运算1 、 一般地,由全部属于会合 A 或会合 B 的元素构成的会合,称为会合 A 与B 的并集.记作: A B .2 、 一般地,由属于会合 A且属于会合 B 的全部元素构成的会合,称为A 与B 的交集 .记作: AB子集:对随意 x A ,都有 xB ,则称 A 是 B 的子集。

记作 A B 真子集:若 A 是 B 的子集,且在 B 中起码存在一个元素不属于 A ,则 A 是 B 的真子集,记作 AB 会合相等:若:AB, BA ,则A B自然数集: N 正整数集: N *整数集: Z 有理数集: Q 实数集: R奇偶性1 、 f x f x ,那么就称函数 fx 为偶函数 .偶函数图象对于 y 轴对称 .2 、 fxf x ,那么就称函数f x 为奇函数 .奇函数图象对于原点对称 .第二章、基本初等函数(Ⅰ) §、指数与指数幂的运算1、 一般地,假如 x na ,那么 x 叫做 a 的 n 次方根。

此中 n 1,n N .2、 当 n 为奇数时, n a na ;当 n 为偶数时, n a n a .n1⑴ a mma n am n N *m;⑵n0 ;0, ,,1aan n⑴ arasar sa 0, r , s Q ;⑵ a rsarsa 0, r , s Q ⑶ ab ra rb ra 0,b 0, r Q .§、指数函数及其性质1、 记着图象: ya x a 0, a1复合函数的单一性 : 同增异减三、二次函数 y = ax 2 +bx + c ( a0 )的性质1、极点坐标公式:b , 4ac b 2 , 对称轴:xb ,最大(小)值: 4ac b 22a 4a2a 4a2.二次函数的分析式的三种形式 (1)一般式 (3)两根式f ( x) ax 2 bx c(a 0) ; (2)极点式 f ( x) a( x h)2 k (a 0) ; f ( x) a( x x 1 )( x x 2 )(a 0) .§、对数与对数运算1、 a xN log a N x ;2、 a log a Na .3、 log a 1 0 ,log a a 1.4、当 a0, a 1, M0, N0 时:⑴log a MNlog a M log a N ;⑵ log a M log a M log a N ;⑶ log a M n nlog a M .N换底公式:log c b1log a b a 0, a 1, c 0, c 1, b 0 .;log a b a 0, a 1, b 0, b 1 .log c a log b a记着图象:y log a x a 0, a1§、幂函数1、几种幂函数的图象:1、幂的运算法例:( 1) a m a n = a m + n,( 2)a m a n a m n,(3)( a m)n= a m n(4)( ab )n= a n b nna n n n1( 5)a(6) a 0= 1 ( a ≠0)()an1() a m m a n()amb b n7a n89m a n必修 2 数学知识点⑴圆柱侧面积;S侧面 2 r l⑵圆锥侧面积:S侧面r l⑶圆台侧面积: S侧面r l R l⑷体积公式:V柱体S h; V锥体1S h ;V台体1S上S上S下S下 h 33⑸球的表面积和体积:S球 4 R2,V球4R3. 3第三章:直线与方程y2y1 1、倾斜角与斜率:k tanx2x12、直线方程:⑴点斜式:y y0k x x0⑵斜截式:y kx b⑶两点式:y y1x x1 y2y1x2x1⑷一般式:Ax By C0⑴ l 1 // l 2A1B2A2B1 ;B1C2B2 C1⑵ l1和 l 2订交A1B2A2B1;⑶ l1和 l 2重合A1 B2A2B1 ;B1C2B2 C1⑷ l 1l 2A1 A2B1B20 .5、两点间距离公式:P1 P2x2x12y2y12 6、点到直线距离公式:3、对于直线:d Ax0By0CA2B2l1 : y k1x b1 , l 2 : y k2 x b2有:⑴ l 1 // l 2k1k 2 ;b1b2⑵ l 1和 l 2订交k1k2⑶ l 1和 l 2重合k1k 2 ;b1b2⑷ l 1 l 2k1 k21.4、对于直线:l1 : A1x B1 y C10,有:l 2 : A2 x B2 y C20第四章:圆与方程1、圆的方程:⑴标准方程:x a 2y b 2r 2⑵一般方程: x 2y 2Dx Ey F0.2、两圆地点关系: d O1O2⑴外离: d R r ;⑵外切: d R r ;⑶订交: R r d R r ;⑷内切: d R r ;⑸内含: d R r .3、空间中两点间距离公式:P1 P2x2x12y2y12z2z12必修 4 数学知识点第一章、三角函数2、l.§、随意角r1、正角、负角、零角、象限角的观点.3、弧长公式:l n RR .2、与角终边同样的角的会合:1802k , k Z .n R 21 lR .4、扇形面积公式:S§、弧度制3602 1、把长度等于半径长的弧所对的圆心角叫做 1 弧度§、随意角的三角函数1、设是一个随意角,它的终边与单位圆交于点P x, y,那么:2、设点A x0, y0为角终边上随意一点,那么:(设 r x02y02)siny 0, cosx 0 , tan y0 .rrx 03、 sin , cos , tan在四个象限的符号和三角函数线的画法.4、 引诱公式一:sin 2k sin ,§、同角三角函数的基本关系式cos 2k cos , (此中: k Z )、 平方关系: sin 22tan2ktan .1cos1.sin2 、 商数关系: tan.cos§、三角函数的引诱公式 1 、 引诱公式二:sin sin , coscos ,tantan .2 、引诱公式三:§、两角和与差的正弦、余弦、正切公式1 、 coscos cos sin sin2 、 sinsin cos cos sin3 、 sin sin coscos sin4 、 tan tan tan .1 tan tan5 、 tantan tan .1 tan tan§、二倍角的正弦、余弦、正切公式1 、 sin 22 sin cos,变形: sincos 12 sin 2 .2 、 cos2cos 2 sin 22 cos 211 2sin 2,变形 1: cos 21 cos2 ,2 变形 2: sin21 cos2 .2 3 、 tan 22 tan.1 tan2sin sin ,cos cos ,tantan .3、引诱公式四:sin sin ,cos cos ,tantan .4、引诱公式五:sincos ,2cossin .25、引诱公式六:sincos ,2cossin .2必修 5 数学知识点函数正弦函数余弦函数正切函数图象定义域R R{x| x ≠ +k π,k∈ Z}2值域[-1,1][-1,1]R周期性2π2ππ奇偶性奇函数偶函数奇函数增区间 [- π +2kπ , 2k π]减区间 [2k π ,π+2k π ]增区间 [-+2kπ ,( k ∈Z )增区间+2kπ ]单一性22(-+k π , +k π) 3减区间 [+2kπ ]22 +2kπ ,( k∈ Z ) 22对称轴x =+ k π( k∈ Z )x = k π ( k ∈ Z )无2对称中( kπ ,0 ) ( k ∈ Z )(+ k π ,0 )( k ∈ Z )( k ,0 ) ( k ∈ Z )心22二、平面向量1、向量的模计算公式:( 1)向量法: | a | =a a2 a;( 2)坐标法:设a =( x,y),则 |a | =x 2y 2 2、单位向量的计算公式:( 1)与向量a =( x,y)同向的单位向量是x,y;x2x2y 2y 2( 2)与向量a =( x,y)反向的单位向量是x,y;x2y 2x 2y 23、平行向量规定:零向量与任一直量平行。

高中数学必修1-5知识点总结

高中数学必修1-5知识点总结

高一数学必修1知识网络 集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。

、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。

、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。

真子集:若且(即至少存在但),则是的真子集。

集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。

高一数学必修一全册知识点(定义公式定理)

高一数学必修一全册知识点(定义公式定理)

高一数学必修一全册知识点(定义、公式、定理)第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

◆注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是同注意:B一集合。

⊆/B反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊇/A或B2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A A②真子集:如果A B,且A B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A B, B C ,那么 A C④如果A B 同时 B A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

◆有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交 集 并 集 补 集 定 义由所有属于A 且属于B 的元素所组成的集合,叫做A,B 的交集.记作A B (读作‘A 交B ’),即A B={x|x ∈A ,且x ∈B }. 由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A,B 的并集.记作:A B (读作‘A 并B ’),即A B ={x|x ∈A ,或x ∈B}).设S 是一个集合,A 是S 的一个子集,由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集) 记作A C S ,即 C S A=},|{A x S x x ∉∈且韦 恩 图 示A B图1AB图2性质 A A=A A Φ=Φ A B=B A A B ⊆A A B ⊆B A A=A A Φ=A A B=B A A B ⊇A A B ⊇B(C u A) (C u B)= C u (A B) (C u A) (C u B)= C u (A B) A (C u A)=U A (C u A)= Φ.例题:1.下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。

高中数学必修知识点归纳及公式大全

高中数学必修知识点归纳及公式大全

按住C t r l键单击鼠标左打开配套名师教学视频动画播放必修1数学知识点第一章、集合与函数概念§1.1.1、集合1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、只要构成两个集合的元素是一样的,就称这两个集合相等。

3、常见集合:正整数集合:*N或+N,整数集合:Z,有理数集合:Q,实数集合:R.4、集合的表示方法:列举法、描述法.§1.1.2、集合间的基本关系1、一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集。

记作BA⊆.2、如果集合BA⊆,但存在元素Bx∉,则称集合A是集合B的真子集.x∈,且A记作:A B.3、把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、如果集合A中含有n个元素,则集合A有n2个子集.§1.1.3、集合间的基本运算1、一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A与B的并集.记作:BA Y.2、一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.记作:BA I.3、全集、补集?{|,}U C A x x U x U =∈∉且§1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.§1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法.§1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…§1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称.第二章、基本初等函数(Ⅰ)§2.1.1、指数与指数幂的运算1、 一般地,如果a x n =,那么x 叫做a 的n 次方根。

高中数学必修 知识点归纳及公式大全

高中数学必修 知识点归纳及公式大全

按住C t r l 键单击鼠标左打开配套名师教学视频动画播放必修1数学知识点第一章、集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、 只要构成两个集合的元素是一样的,就称这两个集合相等。

3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。

记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n2个子集. §1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A Y .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A I .3、全集、补集?{|,}U C A x x U x U =∈∉且 §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,. 2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…§1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 第二章、基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。

高中数学必修1-5知识点总汇+公式大全,强列推荐

高中数学必修1-5知识点总汇+公式大全,强列推荐
数学必修 1-5 常用公式及结论
必修 1:
一、集合 1 、含义与表示: ( 1 )集合中元素的特征:确定性,互异性,无序性 ( 3 )集合的表示法:列举法,描述法,图示法
( 2 )集合的分类;有限集,无限集 2、集合间的关系:子集:对任意 真子集:若 A 是 B 的子集,且在 记作 A B
x
A ,都有
2
bx c( a x1 )( x
0) ; (2) 0) .
顶点式
f (x)
a( x h)
2
k(a
0) ;
a( x
x2 )( a
四、指数与指数函数 1、幂的运算法则: ( 1) a
m
? a = a
n
m+n
, ( 2) a
m
a
n
a
m n
, ( 3) ( a
m
)
n
=a
n
mn
( 4 ) ( ab ) = a
x
B ,则称 A 是 B 的子集。记作 A
B
B 中至少存在一个元素不属于
A ,则 A 是 B 的真子集,
集合相等:若: 不属于:AΒιβλιοθήκη B, BA ,则 A
空集:
B
3. 元素与集合的关系:属于 4、集合的运算:并集:由属于集合 交集:由集合 补集:在全集 记为 5.集合
A 或属于集合 B 的元素组成的集合叫并集,记为
x
(a > 0 且 a ≠ 1) 的性质: 值域: ( 0 , + ∞ ) ( 2)图象过定点( 0, 1 )
( 1 )定义域: R ;
Y a>1 1 X 0
Y 0< a<1 1 0 X

高中数学必修1-5知识点归纳及公式大全(K12教育文档)

高中数学必修1-5知识点归纳及公式大全(K12教育文档)

高中数学必修1-5知识点归纳及公式大全(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修1-5知识点归纳及公式大全(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修1-5知识点归纳及公式大全(word版可编辑修改)的全部内容。

按住Ctrl 键单击鼠标左打开配套名师教学视频动画播放 必修1数学知识点 第一章、集合与函数概念§1.1。

1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、 只要构成两个集合的元素是一样的,就称这两个集合相等。

3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法.§1。

1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。

记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集。

记作:A B 。

3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集。

4、 如果集合A 中含有n 个元素,则集合A 有n 2个子集.§1.1。

3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A 。

2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修1数学知识点第一章、集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、 只要构成两个集合的元素是一样的,就称这两个集合相等。

3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。

记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n2个子集.§1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A .3、全集、补集?{|,}U C A x x U x U =∈∉且 §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,. 2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=… §1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 第二章、基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。

其中+∈>N n n ,1. 2、 当n 为奇数时,a a n n =;当n 为偶数时,a a nn =.3、 我们规定: ⑴m n mn a a=()1,,,0*>∈>m Nn m a ;⑵()01>=-n aan n; 4、 运算性质: ⑴()Q s r a aa a sr sr∈>=+,,0;⑵()()Q s r a a a rs sr∈>=,,0;⑶()()Q r b a b a ab rr r∈>>=,0,0.§2.1.2、指数函数及其性质 1、 记住图象:()1,0≠>=a a a y x§2.2.1、对数与对数运算1、x N N a a x=⇔=log ;2、a aNa =log .3、01log =a ,1log =a a .4、当0,0,1,0>>≠>N M a a 时: ⑴()N M MN a a a log log log +=; ⑵N M N M a a a log log log -=⎪⎭⎫⎝⎛; ⑶M n M a na log log =.5、换底公式:abb c c a log log log =()0,1,0,1,0>≠>≠>b c c a a .6、ab b a log 1log =()1,0,1,0≠>≠>b b a a .§2..2.2、对数函数及其性质1、 记住图象:()1,0log ≠>=a a x y a§2.3、幂函数1、几种幂函数的图象:第三章、函数的应用§3.1.1、方程的根与函数的零点 1、方程()0=x f 有实根⇔函数()x f y =的图象与x 轴有交点 ⇔函数()x f y =有零点.2、 性质:如果函数()x f y =在区间[]b a , 上的图象是连续不断的一条曲线,并且有()()0<⋅b f a f ,那么,函数()x f y =在区间()b a ,内有零点,即存在()b a c ,∈,使得()0=c f ,这个c 也就是方程()0=x f 的根. §3.1.2、用二分法求方程的近似解 1、掌握二分法.§3.2.1、几类不同增长的函数模型 §3.2.2、函数模型的应用举例1、解决问题的常规方法:先画散点图,再用适当的函数拟合,最后检验.必修2数学知识点1、空间几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。

⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。

2、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。

3、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l R l r S ⋅⋅+⋅⋅=ππ侧面 ⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体; ()h S S S S V 下下上上台体+⋅+=31⑸球的表面积和体积:32344R V R S ππ==球球,.第二章:点、直线、平面之间的位置关系1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。

2、公理2:过不在一条直线上的三点,有且只有一个平面。

3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

4、公理4:平行于同一条直线的两条直线平行.5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

6、线线位置关系:平行、相交、异面。

7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。

8、面面位置关系:平行、相交。

9、线面平行:⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

10、面面平行:⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

11、线面垂直:⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。

⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

⑶性质:垂直于同一个平面的两条直线平行。

12、面面垂直:⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。

⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直。

⑶性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。

第三章:直线与方程1、倾斜角与斜率:1212tan x x y y k --==α2、直线方程:⑴点斜式:()00x x k y y -=- ⑵斜截式:b kx y +=⑶两点式:121121x x x x y y y y --=-- ⑷一般式:0=++C By Ax 3、对于直线:222111:,:b x k y l b x k y l +=+=有:⑴⎩⎨⎧≠=⇔212121//b b k k l l ;⑵1l 和2l 相交12k k ⇔≠; ⑶1l 和2l 重合⎩⎨⎧==⇔2121b b k k ;⑷12121-=⇔⊥k k l l . 4、对于直线::,0:22221111=++=++C y B x A l C y B x A l 有:⑴⎩⎨⎧≠=⇔1221122121//C B C B B A B A l l ;⑵1l 和2l 相交1221B A B A ≠⇔; ⑶1l 和2l 重合⎩⎨⎧==⇔12211221C B C B B A B A ;⑷0212121=+⇔⊥B B A A l l . 5、两点间距离公式:()()21221221y y x x P P -+-=6、点到直线距离公式:2200BA CBy Ax d +++=第四章:圆与方程 1、圆的方程:⑴标准方程:()()222r b y a x =-+-⑵一般方程:022=++++F Ey Dx y x . 2、两圆位置关系:21O O d = ⑴外离:r R d +>; ⑵外切:r R d +=;⑶相交:r R d r R +<<-; ⑷内切:r R d -=; ⑸内含:r R d -<.3、空间中两点间距离公式:()()()21221221221z z y y x x P P -+-+-=必修3数学知识点第一章:算法1、算法三种语言:自然语言、流程图、程序语言; 2、算法的三种基本结构:顺序结构、选择结构、循环结构 3、流程图中的图框:起止框、输入输出框、处理框、判断框、流程线等规范表示方法; 4、循环结构中常见的两种结构: 当型循环结构、直到型循环结构 5、基本算法语句: ①赋值语句:“=”(有时也用“←”) ②输入输出语句:“INPUT ” “PRINT ” ③条件语句: If … Then …Else … End If④循环语句: “Do ”语句 Do … Until … End“While ”语句 While … … WEnd⑹算法案例:辗转相除法—同余思想 第二章:统计 1、抽样方法:①简单随机抽样(总体个数较少) ②系统抽样(总体个数较多) ③分层抽样(总体中差异明显)注意:在N 个个体的总体中抽取出n 个个体组成样本,每个个体被抽到的机会(概率)均为Nn 。

2、总体分布的估计: ⑴一表二图:①频率分布表——数据详实 ②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势 注:总体分布的密度曲线与横轴围成的面积为1。

相关文档
最新文档