(完整版)北师大版七年级有理数教案

合集下载

2.1《有理数》教学设计北师大版七年级数学上册

2.1《有理数》教学设计北师大版七年级数学上册

北师大版七年级上册数学《有理数》教学设计一、学习目标1. 理解有理数的意义,掌握有理数的运算法则。

2. 学会使用相反数、绝对值、有理数乘方等概念,解决生活中的实际问题。

3. 培养良好的学习习惯和数学素养,发展创新思维。

二、教材分析本节课主要学习有理数的意义、分类、运算以及应用。

教材通过具体实例引入概念,帮助学生理解有理数的意义,并在此基础上介绍有理数的分类和运算方法。

同时,教材还设置了一些练习和例题,帮助学生巩固所学知识,提高解决问题的能力。

三、学情分析学生在小学阶段已经接触过一些整数和分数,但是对于有理数的概念和运算法则还不够熟悉。

因此,本节课通过实例和问题引导学生逐步掌握有理数的概念和运算法则,并通过练习和例题加深学生对知识的理解和应用。

同时,针对学生在学习中可能出现的困惑和问题,教师可以通过组织小组合作、讲解示范等方式进行指导。

四、重难点1. 有理数的意义和分类是本节课的重点,学生需要掌握有理数的概念、分类方法和运算规则。

2. 有理数的混合运算是本节课的难点,学生需要掌握运算顺序和法则,能够正确进行计算。

五、教学过程(一)、复习旧知回顾小学阶段所学的数的分类,包括整数、小数、分数等,并举出一些实例。

同时,复习数的加法、减法、乘法、除法等基本运算。

设计意图:通过复习旧知识,帮助学生回忆数的概念和基本运算,为引入有理数的概念和运算打下基础。

(二)、创设情境,导入新课展示一些生活中的数字信息,如温度计上的读数、速度表上的数值等,引导学生发现这些数字都有一定的规律和意义。

然后提出有理数的概念,并让学生列举一些有理数的例子。

设计意图:通过具体的生活实例,让学生感受到有理数在现实生活中的应用,激发学习兴趣,引导他们进入有理数的学习。

(三)、自主探究,解决问题1. 学习任务一:理解有理数的意义。

提供一些具体的数字,让学生判断是有理数还是无理数,并说明理由。

通过这个活动,让学生理解有理数的概念和分类。

2. 学习任务二:掌握有理数的运算规则。

北师大版数学七年级上册2.1《有理数》教案

北师大版数学七年级上册2.1《有理数》教案

北师大版数学七年级上册2.1《有理数》教案一. 教材分析《有理数》是北师大版数学七年级上册第二章第一节的内容,本节课主要介绍了有理数的定义、分类以及有理数的运算。

有理数是中学数学中的基础概念,对于学生理解数学的本质和后续学习其他数学知识具有重要意义。

本节课的内容是学生进一步学习实数、方程、函数等知识的基础。

二. 学情分析七年级的学生已经掌握了整数和分数的基本知识,对运算也有一定的了解。

但学生在理解有理数的定义和分类方面可能会存在一定的困难。

因此,在教学过程中,教师需要引导学生从实际问题出发,理解有理数的概念,并通过具体的例子让学生掌握有理数的分类。

三. 教学目标1.了解有理数的定义,掌握有理数的分类。

2.能够进行有理数的运算。

3.培养学生的逻辑思维能力和数学素养。

四. 教学重难点1.有理数的定义和分类。

2.有理数的运算。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索;通过具体的案例,让学生理解和掌握有理数的概念和运算;通过小组合作学习,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备相关的问题和案例。

2.准备教学PPT。

3.准备黑板和粉笔。

七. 教学过程1.导入(5分钟)通过设置问题,引导学生思考:什么是整数?什么是分数?整数和分数有什么关系?从而引出有理数的概念。

2.呈现(15分钟)呈现有理数的定义和分类,让学生了解有理数的四种类型:正整数、负整数、正分数、负分数。

并通过具体的例子让学生理解和掌握有理数的分类。

3.操练(15分钟)让学生进行有理数的运算练习,包括加、减、乘、除等。

教师可以设置一些具有代表性的题目,让学生在课堂上进行讲解和讨论,从而加深对有理数运算的理解。

4.巩固(10分钟)通过一些填空题和选择题,让学生巩固所学的内容。

教师可以设置一些易错题,让学生在解答过程中发现问题,从而加深对有理数概念和运算的理解。

5.拓展(5分钟)引导学生思考:有理数和无理数有什么关系?从而引出实数的概念。

北师大版七年级数学上册《有理数》精品教案

北师大版七年级数学上册《有理数》精品教案

《有理数》精品教案●教学目标:一、知识与技能目标:1.知道什么是负数,并能用正、负数表示实际问题中的数量.2.能说出负数表示的意义.3.能说出有理数的概念,能将有理数正确分类.二、过程与方法目标:1.体验对有理数分类的探索过程,初步感受分类讨论的思想.2.通过教师引导,学生自主探究,体验从实际问题中抽象出数学问题的过程,初步学会数学的类比方法思想方法.三、情感态度与价值观目标:通过对负数和有理数的学习,体会到数学和现实的密切联系,能用所学解决实际问题.●重点:掌握有理数的分类●难点负数表示的意义、有理数的分类及分类标准●教学流程:一、回顾旧知,情景导入通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“数”够用了吗?师:同学们,今天老师在来学校的路上,行驶了14.7km,遇到0只小狗、5个老人,其中一个高1.76m.那么同学们想一下,老师刚才说的一句话中,出现了哪些数,分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).那在生活中,仅有整数和分数够用了吗?请同学们完成课本第23页的表格,并思考老师刚才的问题.师:(一起分析完表格之后)以前学过的数已经不够用了,我们需要一种前面带有“-”的新数来解决生活中的问题.那大家相互讨论一下生活中还有哪些用负数表示的量.学生活动:讨论二、解答困惑,讲授新知学生回答,老师补充.那么我们在生活中在表示温度、方向、价格时会有“零上摄氏度和零下摄氏度”、“向东和向西”“上涨和下降”等词,这些都是表示相反意义的量,在数学中表示相反意义的量,可以规定其中一个为正,用正数表示;相反意义的量规定为负,用负数表示.强调:用正、负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收入与支出;二是它们都是数量,而且是同类的量.三、实例演练深化认识判断下列说法是否正确1.零上5℃与零下5℃意思一样,都是5℃.(×)2.正整数集合与负整数集合并在一起是整数集合. (×)3.若-a是负数,则a是正数.(√)4.若+a是正数,则-a是负数. (√)5.收入-2000元表示支出2000元.(√)1.某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?沿顺时针转了12圈记作-12圈.2.在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02g记作+0.02g,那么-0.03g 表示什么?-0.03g表示乒乓球的质量低于标准质量0.03g.3.某大米包装袋上标注着“净含量:10kg±150kg”这里的“10kg±150kg”表示什么?每袋大米的标准质量应为10kg,但实际每袋大米可能有150g的误差,即最多超出标准质量150g,最少少于标准质量150g.四、提出问题,启发引导现在我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.问题:那么,有没有一种既不是正数又不是负数的数呢?学生思考并讨论.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数.五、延伸知识,分类思想我们现在对学过的数进行分类,在上课开始的时候,大家说学过的数有整数和分数,那么在学习了正数和负数之后,整数可以分为什么?分数可以分为什么?正整数正分数整数 0 分数负整数负分数整数和分数统称为有理数思考:有理数还可以怎么分类呢?可以按照定义和符号性质分。

北师大版七年级数学上册《有理数》教案及教学反思

北师大版七年级数学上册《有理数》教案及教学反思

北师大版七年级数学上册《有理数》教案及教学反思一、教学目标本课的教学目标是:通过引导学生掌握有理数的概念、有理数的比较大小和运算法则,培养学生的思维逻辑能力,在解决实际问题的过程中提高学生分析和解决问题的能力。

二、教学重点本课的教学重点在以下三个方面:1.掌握有理数的概念和符号表示法。

2.掌握有理数的比较大小的方法和技巧。

3.掌握有理数的加减乘除运算法则。

三、教学难点本课的教学难点在以下两个方面:1.学生对有理数的概念理解存在偏差,需要引导学生进行正确的认知。

2.有理数的运算法则较为复杂,需要通过案例进行更加深入的理解和掌握。

四、教学内容1. 有理数的概念有理数是指可以表示为两个整数比值的数,其中分母不为零,分数的表示形式为a/b,a,b为整数。

其符号可以为正(+),也可以为负(-),0也是有理数的一种。

2. 有理数的比较大小有理数的比较大小需要根据数轴的概念进行理解,即把有理数表示在数轴上,根据它们在数轴上对应的点的位置来进行比较大小。

若两个有理数在数轴上位置有重叠的部分,可以通过交叉点的位置和符号来判断大小。

3. 有理数的加减乘除运算法则有理数的加减乘除运算法则需要掌握四则运算的规则才能进行推演,实际掌握方法需要基于案例进行详解。

加减法中,需要先按照符号进行分类,然后根据分数加减的规则进行计算;乘除法中,需要按照数的分子、分母进行分别乘除,然后再进行化简。

五、教学方法本讲授内容依据学生的年龄、认知能力和课程的要求,采用导引式讲解、情境导入、案例演练等多种教学方法,旨在提高学生的自主学习和探究能力,加强学习目标的达成。

六、教学过程1. 导入环节引导学生回顾或掌握小学数学中的数的知识,包括正数、负数、绝对值等,引导学生进入有理数的学习。

2. 概念讲解先对有理数的概念进行讲解,通过举例等方式让学生更好地理解有理数概念,引导学生明确有理数的符号表示法,开始探究有理数的大小关系。

3. 比较大小的方法引导学生利用数轴的概念将有理数表示出来,并在数轴上比较大小,以此说明有理数的大小关系。

初中数学北师大版七年级上册第二章《有理数》教案

初中数学北师大版七年级上册第二章《有理数》教案

初中数学北师大版七年级上册第二章《有理数》教案本节课的目标是让学生理解正负数的概念,能够判断一个数是正数还是负数,并会用正负数表示具有相反意义的量。

同时,培养学生树立分类讨论的思想。

在情景导入中,教师引导学生回忆小学学过的数的类型,包括整数、分数和零。

然后通过实际例子,引导学生认识到正负数是表示相反意义的量。

接下来,学生进行自主研究合作探究。

在探究活动1中,学生需要用正负数表示具有相反意义的量。

这个活动可以让学生通过实际例子来理解正负数的概念,并能够灵活运用正负数表示具有相反意义的量。

探究活动2中,学生需要分类讨论有理数的分类及其分类标准。

这个活动可以培养学生的分类讨论思想,让他们能够更加深入地理解有理数的分类及其分类标准。

在教学过程中,教师采用“启迪诱导-自主探究”教学模式,引导学生观察、思考、分析、讨论,并让学生在应用中体会所得知识,学会应用所学知识解决问题的方法。

在探究活动中,学生积极参与,能够独立思考和合作探究,有效地提高了知识的可接受程度。

总之,本节课通过情景导入和自主研究合作探究的方式,让学生更加深入地理解了正负数的概念和有理数的分类及其分类标准,同时培养了学生的分类讨论思想。

以及零分数.活动的实际效果:通过引入负数的概念,学生的数的范围得到了扩大,从而理解了整数包括正整数、负整数和零,分数包括正分数、负分数以及零分数的概念.教师可以通过实际生活中的例子,如温度、海拔等来帮助学生理解这些概念.探究活动3:正负数的加减法引导学生通过实际生活中的例子,如温度变化、海拔高度等,理解正负数的加减法.例如:温度从-5℃上升到3℃,变化了多少度?海拔从-100米上升到50米,上升了多少米?通过这些例子,学生可以理解正负数加减法的规律,即同号相加,异号相减,绝对值大的数减去绝对值小的数.活动的实际效果:通过实际生活中的例子,学生理解了正负数的加减法,并掌握了同号相加、异号相减、绝对值大的数减去绝对值小的数的规律.同时,学生也能够将这些规律应用到实际生活中,解决实际问题.探究活动3:有理数概念及分类1.有理数概念有理数指整数和分数的集合。

最新北师大版七年级数学上册《有理数》教学设计(精品教案)

最新北师大版七年级数学上册《有理数》教学设计(精品教案)

最新北师大版七年级数学上册《有理数》教学设计(精品教案)第二章有理数及其运算一、学生起点分析学生在小学已经研究过整数、分数、小数的概念及运算;对负数的概念有所了解,知道正数、负数和零的区别。

但是,刚进入初中的学生掌握正数、负数的概念程度参差不齐,建立有理数的概念是研究的难点。

二、研究任务分析有理数”是初中数学研究的重要基础。

本节课的内容是正、负数的概念和有理数的分类。

通过和学生生活贴近的实例引入负数激发学生对数学研究的兴趣;通过让学生了解“中国是世界上最早使用负数的国家”,培养学生爱国主义情操,增强民族自豪感。

为此,本节课的研究任务是:1.在具体情境中,进一步认识负数,理解有理数的意义。

2.经历用正负数表示具有相反意义的量的过程,体会负数是实际生活的需要。

3.会判断一个数是正数还是负数,能按一定的标准对有理数进行分类。

三、教学过程设计本节课设计了五个教学环节:第一环节:复回顾,引入新课活动内容:观察中国地图,珠穆朗玛峰高出海平面8844.43米,记作:+8844.43米;吐鲁番盆地地狱海平面155米,记作-155米。

教师出示上图,提出问题:1.生活中我们会遇到用负数表示的量,你能说出一些例子吗?2.你对负数有什么样的认识?3.有了负数,数的运算与过去相比有什么区别和联系?有了负数,能解决哪些实际问题?本章将在小学研究的基础上,进一步研究负数,研究有理数的有关概念及其运算,并利用有理数的知识解决实际问题。

活动目的:通过提供学生熟悉的情景引导学生回顾小学有关负数的知识,三个问题不仅为本节课温故引入,也为本章的研究做了铺垫。

活动效果:学生在对问题的思考与交流中体会负数在生活中的广泛应用,激发了研究本章内容的兴趣。

第二环节:创设情境,探索新知活动内容:某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得分;每个队的基本分均为0分。

两个代表队答题情况如下表:活动目的:通过分类讨论,让学生更加深入地理解数的概念,巩固知识点,提高数学思维能力。

七年级数学上册第2章《有理数》教学设计(北师大版)

七年级数学上册第2章《有理数》教学设计(北师大版)

第二章有理数及其运算1.有理数一、学生起点分析学生的知识技能基础:学生在小学已经学习过整数、分数、小数的概念及运算;对负数的概念有所了解,知道正数、负数和零的区别。

学生活动经验基础:学生在小学通过对温度计的认识活动,学习了用负数解决一些简单的比较大小的问题。

刚进入初中的学生掌握正数、负数的概念程度参差不齐,结合实际正确的表示具有相反意义的量,建立有理数的概念是学习的难点。

二、学习任务分析“有理数”是初中数学学习的重要基础。

本节课的内容是正、负数的概念和有理数的分类。

通过和学生生活贴近的实例引入负数激发学生对数学学习的兴趣;通过让学生了解“中国是世界上最早使用负数的国家”,培养学生爱国主义情操,增强民族自豪感。

为此,本节课的学习任务是:1.在具体情境中,进一步认识负数,理解有理数的意义。

2.经历用正负数表示具有相反意义的量的过程,体会负数是实际生活的需要。

3.会判断一个数是正数还是负数,能按一定的标准对有理数进行分类。

三、教学过程设计本节课设计了五个教学环节:第一环节:复习回顾,引入新课,第二环节:创设情境,探索新知,第三环节:实际应用,巩固提高,第四环节:合作交流,能力提升,第五环节:小结反思,布置作业。

第一环节:复习回顾,引入新课活动内容观察中国地图,珠穆朗玛峰高出海平面8844.43米,记作:+8844.43米;吐鲁番盆地地狱海平面155米,记作-155米.(登录优教同步学习网,搜索“新课导入:认识正数与负数”)教师出示上图,提出问题:(1)生活中我们会遇到用负数表示的量,你能说出一些例子吗?(2)你对负数有什么样的认识?(3)有了负数,数的运算与过去相比有什么区别和联系?有了负数,能解决哪些实际问题?本章将在小学学习的基础上,进一步学习负数,研究有理数的有关概念及其运算,并利用有理数的知识解决实际问题。

活动目的:通过提供学生熟悉的情景引导学生回顾小学有关负数的知识,三个问题不仅为本节课温故引入,也为本章的学习做了铺垫。

(完整版)北师大版七年级有理数教案

(完整版)北师大版七年级有理数教案

森学教育个性化教学辅导教案学科:数学授课教师:授课时间:_____年_月日 (星期 )学生姓名性别年级七年级总课时第_____次___课时课题有理数及其运算有理数的分类教学绝对值,相反数目标有理数的加减重点难点加减混合运算课前检测作业完成情况:优□良□中□差□建议_________________________________学生活动一.负数的进一步理解:生活中负数的案例。

1.给出新的整数、分数概念引进负数后,数的范围扩大了.过去我们说整数只是0,1,2,3,4…引进负数后,我们把大于0的自然数叫做正整数,正整数前加上负号的数叫做负整数,因而整数包括正整数、负整数和零,同样分数包括正分数、负分数2.给出有理数概念主题提出当堂练习:(1)在以下说法中,正确的是 [ ]A.非负有理数就是正有理数B.零表示没有,不是有理数C.正整数和负整数统称为整数环节教师活动整数和分数统称为有理数3.有理数的分类D.整数和分数统称为有理数二.有理数都能在数轴上表示出来初步理解数形结合的思想方法.数轴:画一条水平直线,在直线上取一点表示0(叫做原点)选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到下面的数轴(三要素:原点,单位长度,正方向)数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法三.利用数轴比较有理数的大小;使学生进一步理解数形结合的思想方法难点:如何比较两个负数(尤其是两个负分数)的大小.正数都大于0,负数都小于0,正数大于一切负数”的规律.要提醒学生,用“<”连接两个以上数时,小数在前,大数在后,不能出现5>0<4这样的式子.2.把下列各组数从小到大用“<”号连接起来:(1)3,-5,-4; (2)-9,16,-11;1、下列各数中:+7,-2,,-8是非负数?2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数:-3,4,0,3,-1有什么特点?数轴两边到原点相等的点互为相反数绝对值概念:一般地,一个数a 的绝对值就是数轴上表示a 的点到原点的距离如果a>0,那么 |a|=a;如果a<0,那么|a|=-a;如果a=0,那么|a|=03,0,+01,2,1,哪些是正数?哪些是负数?哪些5,-4,,23、问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数例:求π-5的绝对值2、在括号里填写适当的数:-3.5=( );+1=( ); --5=( ); -+3=( );2()=0;()=1,()=-2-3、计算下列各题:|-3|+|+5|;|-3|+|-5|;|+2|-|-2|;|-3|-|-2|;11111|-|×|-|;|-|÷|-2|;÷|-|23222(3)有没有绝对值是-2的数?5、填空:(1)当a>0时,|2a|=________;(2)当a>1时,|a-1|=________;(3)当a<1时,|a-1|=________利用绝对值比较两个负数的大小;说明:“| |”有两重作用,即绝对值和括号绝对值小于3的数是从-3到3中间的所有的有理数,有无数多个;但绝对值小于3的整数只有五个:-2,-1,0,1,2数轴上a<0,b>0,且|a|<|b|,求la+bl,lb-al,|a|=-a,|b|=b,|a+b|=a+b,|b-a|=b-a两个负数,绝对值大的反而小1例1比较-4与-|—3|的大小2例2已知a>b>0,比较a,-a,b,-b的大小23例3比较-与-的大小342、比较下列每对数的大小:53343(1)-与-;(2)-与-0273;(3)-与-;8811795102379(4)-与-;(5)-与-;(6)-与-611359113、(1)|a|=a; (2)|a|=-a; (4)a>-a;(5)|a|≥a; (6)-y>0; (7)-a<0; (8)a+b=0教师活动四.有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数.进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.当堂联系:1.教材课后练习题:2.(1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);附加题:1*.用“>”或“<”号填空:(1)如果a>0,b>0,那么a+b ______0;(2)如果a<0,b<0,那么a+b ______0;(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.2*.分别根据下列条件,利用|a|与|b|表示a 与b 的和:(1)a>0,b>0; (2) a<0,b<0;(3)a>0,b<0,|a|>|b|; (4)a>0,b<0,|a|<|b|.交换律a+b=b+a写出绝对值大于3而小于8的所有整数学生活动(a+b)+c=a+(b+c)结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.解:7+5+(-4)+6+4+3+(-3)+(-2)+8+1=[(-4)+4]+[5+(-3)+(-2)]+(7+6+3+8+1)=0+0+25=25.1.计算:(要求注理由)(1)23+(-17)+6+(-22); (2)(-2)+3+1+(-3)+2+(-4);(3)(-7)+(-6.5)+(-3)+6.5.五.有理数减法法则:减去一个数,等于加上这个数的相反数运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数当堂练习:1.计算(口答):(1)6-9; (2)(+4)-(-7); (3)(-5)-(-8);(4)(-4)-9; (5)0-(-5);2.计算:(1) 15-21; (2)(-17)-(-12); (3)(-2.5)-5.91.由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的六.加减法混合运算1.有理数的加减法可统一成加法.2.因为有理数加减法可统一成加法,所以在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便.但要注意交换加数的位置时,要连同前面的符号一起交换2.计算:(1)-4.2+5.7-8.4+10; (2)6.1-3.7-4.9+1.8;3.计算:(1)-216-157+348+512-678; (2)81.26-293.8+8.74+111;4.计算:;(1)12-(-18)+(-7)-15(2)-40-28-(-19)+(-24)-(-32);5.计算:(1)(+12)-(-18)+(-7)-(+15);(2)(-40)-(+28)-(-19)+(-24)-(32);(3)(+4.7)-(-8.9)-(+7.5)+(-6);a-(b+c)=a-b-c;a-(b+c+d)=a-b-c-d;a-(b-d)=a-b+d;(a+b)-(c+d)=a+b-c-d;(a-c)-(b-d)=a-c-b+d.括号前是“-”号,去括号后括号里各项都改变了符号;括号前是“+”号(没标符号当然也是省略了“+”号)去括号后各项都不变.(1)两个数相加,和一定大于任一个加数.()(2)两个数相加,和小于任一个加数,那么这两个数一定都是负数.()(3)两数和大于一个加数而小于另一个加数,那么这两数一定是异号.()(4)当两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和.()(5)两数差一定小于被减数.(1)若|a|+|b|=|a+b|,那么a,b的关系是______.(2)若|a|+|b|=|a|-|b|,那么a,b的关系是______.(3)-[-(-3)]=______,-[-(+3)]=______.教师活动巩固练习教材课后习题学生活动学生活动教师活动小结反思课堂听课及知识掌握情况反馈: ______________________________。

2.1 有理数 北师大版数学七年级上册优秀教案

2.1 有理数 北师大版数学七年级上册优秀教案

第二章有理数及其运算2. 1 有理数1. 用生活中的实例引入负数,体会负数引入的必要性和有理数应用的广泛性.使学生了解负数产生的背景,理解正、负数及零的意义.2.会判断一个数是正数还是负数.3. 能用正、负数表示生活中具有相反意义的量.【教学重点】正、负数的意义.【教学难点】负数的意义及0的内涵.采取启发式教学法及情感教学,创设问题情境,引导学生主动思考,用大量的实例和生动的语言激发学生学习兴趣,并利用计算机辅助教学,增大教学密度.多媒体电教平台.1.创设一些引导问题,为新课做好准备:你在小学学过哪些数呢?请你分类写出你学过的几组数.2.阅读课本内容,并与同伴交流、讨论,发现以前学过的数怎么都不能表示第二队的得分,从而引出新课——有理数(板书).一、创设情境,引入新知1. 数的起古代猎人打了一只老鹰,用数如何表示一只老鹰——有了整数.二人一只西瓜,用数如何表示半只西瓜——有了分数.货币购物,用数如何表示2元3角4分——有了小数.二、合作交流,探究新知2. 负数来于生活例1 2月3日,深圳气温零上15°c,哈尔滨气温零下10°c,若零上15°c,用+15°c表示,那么零下10°c 如何表示?例2 我国有一座世界最高峰——珠穆朗玛峰,高度比海平面高8848米,在新疆境内,还有一个吐鲁番盆地,高度比海平面低155米,若海平面的高度为零度,则它们的高度分别如何表示?全国主要城市某一天的天气预报3. 正、负数的概念像+5,+1.2,等大于零的数,叫做正数.它们都比零大.像-5,-1.5,等在正数前面加上“—”号的数叫做负数,它们都比零小.“ 0 ”既不是正数,也不是负数. “ 0 ”具有中性特征.4. 用正负数表示生活中意义相反的量议一议:举一些生活中象增加与减少,升高与降低,盈利与亏损,零上与零下,收入与支出等实例.财富全球强中的主要零售企业5. 有理数的分类三、应用新知例1(1)在知识竞赛中,如果用 +10 分表示加 10 分,那么扣 20 分怎样表示?(2)某人转动转盘,如果用 +5 圈表示沿逆时针方向转了 5 圈,那么沿顺时针方向转了 12 圈怎样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量 0.02 克记作+0.02 克,那么 -0.03 克表示什么?四、巩固新知(1)如果零上5°C 记作+5°C ,那么零下3°C 记作什么?(2)东、西为两个相反方向,如果-4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么? (3)某仓库运进面粉7.5吨,那么运出3.8吨应记作什么?(4)把下列各数填入相应的图形中内-6.3,20,-8,8%,0,-1,3.4,,五、归纳小结通过本节课的学习,我们知道小学学过的数已经不够用了,要引入负数的学习.我们还学习了正、负数和如何用正负数来表示具有相反意义的量.略.。

七年级有理数教案北师大

七年级有理数教案北师大

七年级有理数教案北师大(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、文案策划、工作计划、作文大全、教案大全、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, copywriting planning, work plans, essay summaries, lesson plans, speeches, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!七年级有理数教案北师大大纲:课题:理解和运用有理数教材:北师大版七年级数学教材教学目标:1.理解有理数的定义和性质,能够正确读写有理数。

2024秋七年级数学上册第2章有理数及其运算2.1有理数教案(新版)北师大版

2024秋七年级数学上册第2章有理数及其运算2.1有理数教案(新版)北师大版
2.练习有理数的运算:设计一系列有理数的运算题目,要求学生熟练掌握加、减、乘、除等运算规则,并能够正确计算。
3.解决实际问题:提供几个涉及有理数的实际问题,要求学生运用所学知识解决这些问题。
4.有理数在生活中的应用:鼓励学生观察和思考日常生活中涉及有理数的问题,如购物时的打折、优惠等,尝试用所学的有理数知识解决实际问题。
-参与数学竞赛:鼓励学生参加数学竞赛,提高学生的数学水平和竞赛能力,培养学生的团队合作精神。
教学反思与改进
回过头来看,今天的内容感觉学生掌握得怎么样?我在讲解有理数运算规则时,是否讲解得足够清晰?学生在课堂上的参与度如何?这些问题都需要我在课后进行反思。
首先,我意识到在讲解有理数的概念时,有些学生似乎还是有些模糊。下次我在讲解时,可以结合更多的实际例子,让学生更好地理解有理数在日常生活中的应用。此外,我也可以让学生在课堂上更多的互动,比如通过小组讨论,让学生互相解释有理数的定义,这样也许能帮助他们更清晰地理解。
作业反馈:
1.对于有理数的定义和分类的作业,我会检查学生是否能够准确识别各种类型的有理数,并针对存在的问题给出改进建议。
2.对于有理数的运算的作业,我会检查学生的计算是否正确,并指出存在的问题,如运算错误、计算粗心等,给出改进建议。
3.对于解决实际问题的作业,我会检查学生是否能够运用所学知识解决这些问题,并针对存在的问题给出改进建议。
-设计预习问题:围绕有理数的定义和分类,设计一系列具有启发性和探究性的问题,引导学生自主思考。
-监控预习进度:利用平台功能或学生反馈,监控学生的预习进度,确保预习效果。
学生活动:
-自主阅读预习资料:按照预习要求,自主阅读预习资料,理解有理数的基本概念。
-思考预习问题:针对预习问题,进行独立思考,记录自己的理解和疑问。

七年级有理数教案北师大

七年级有理数教案北师大

七年级有理数教案北师大教案标题:七年级有理数教案北师大教学目标:1. 理解有理数的概念和性质。

2. 掌握有理数的加法和减法运算规则。

3. 运用有理数进行实际问题的解决。

教学重点:1. 有理数的概念和性质。

2. 有理数的加法和减法运算规则。

教学难点:1. 运用有理数进行实际问题的解决。

教学准备:1. 教学课件或黑板、白板。

2. 学生练习册或作业本。

3. 教学素材:有理数的定义、加法和减法运算规则的示例等。

教学过程:一、导入(5分钟)1. 利用一些简单的问题或图片引发学生对有理数的认识和兴趣。

2. 提问:你们知道什么是有理数吗?有理数有哪些性质?二、概念讲解(15分钟)1. 通过教师讲解和示例演示,介绍有理数的定义和性质。

2. 引导学生思考:为什么有理数包括整数和分数?3. 教师可运用图示等方式,帮助学生更好地理解有理数的概念和性质。

三、加法和减法运算规则(20分钟)1. 教师通过具体的例子,讲解有理数的加法和减法运算规则。

2. 强调正数与正数相加、负数与负数相加等情况的运算规则。

3. 提醒学生注意正数与负数相加、相减的规则。

四、练习与巩固(15分钟)1. 学生进行课堂练习,巩固有理数的概念和加减法运算规则。

2. 教师可以在黑板上列出一些练习题,学生进行个人或小组完成。

五、拓展与应用(15分钟)1. 提供一些实际问题,要求学生利用有理数进行解答。

2. 引导学生思考如何将实际问题转化为有理数的运算表达式。

六、总结与反思(5分钟)1. 教师对本节课的重点内容进行总结,并强调学生需要进一步练习和巩固。

2. 学生进行自我反思,回答教师提出的问题或写下本节课的收获与困惑。

教学延伸:1. 学生可利用课后时间,继续进行有理数的乘法和除法运算规则的学习和练习。

2. 教师可安排小组活动,让学生共同解决一些有理数运算问题,提高合作与思考能力。

注:教案撰写仅供参考,具体教学过程和时间安排可根据实际教学情况进行调整。

七年级数学 有理数教案整章 北师大版

七年级数学 有理数教案整章 北师大版

第2章有理数一、教学目标:1.使学生体会具有相反意义的量,并能用有理数表示。

2.能在数轴上表示有理数,并借助数轴理解相反数和绝对值的意义。

3.会求有理数的相反数和绝对值(绝对值符号内不含字母)。

4.会比较有理数的大小。

5.了解乘方的意义,掌握有理数的加、减、乘、除法和乘方的运算法则,能进行有理数的加、减、乘、除法、乘方运算和简单的混合运算。

6.会用计算器进行有理数的简单运算。

7.理解有理数的运算律,并能用运算律简化运算。

8.能运用有理数的运算解决简单的问题。

9.了解近似数和有效数字的有关概念,能对较大的数字信息作合理的解释和推断。

二、教材的特点:1.本章教材注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。

教学中要注重让学生通过自己的活动来获取、理解和掌握这些知识。

2.与传统的教材相比,本章教材注意降低了对运算的要求,尤其是删去了繁难的运算。

本章教材注重使学生理解运算的意义,掌握必要的基本的运算技能。

同时引进了计算器来完成一些有理数的运算。

教学中要注意正确地把握。

3.数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。

4.本章的导图是天气预报图,是引入负数的实际情景。

应该结合教材内容,充分利用导图与导入语,使学生对相反意义的量,对负数有直观的认识。

三、课时安排:本章的教学时间大约需要23课时,建议分配如下:§2.1正数和负数---------------2课时§2.2数轴-------------------------2课时§2.3相反数------------------------1课时§2.4绝对值----------------------1课时§2.5 有理数的大小比较----------1课时§2.6 有理数的加法--------------2课时§2.7 有理数的减法----------------1课时§2.8 有理数的加减法混合运算--------2课时§2.9 有理数的乘法----------------2课时§2.10有理数的除法----------------1课时§2.11有理数的乘方----------------1课时§2.12科学记数法------------------1课时§2.13有理数的混合运算---------2课时§2.14近似数和有效数字----------1课时§ 2.15用计算器进行数的简单运算-----1课时复习-----------------------------------2课时四、教学建议①整体把握基本概念和运算法则的引入;②整体把握基本运算能力的培养;③处理好笔算与使用计算器的尺度,避免繁、难的笔算。

初中数学北师大版七年级上册第二章《有理数》教案

初中数学北师大版七年级上册第二章《有理数》教案

七年级第二章第一节有理数课型:新授课教学目标:1.理解正负数的概念,会判断一个数是正数还是负数.(重点)2.会用正负数表示具有相反意义的量;有理数的分类及其分类的标准.(难点)3.培养学生树立分类讨论的思想.教法和学法指导:本节应用“启迪诱导—自主探究”教学模式.教师在教学过程中起到引导释疑的作用:引导学生观察、思考、分析、讨论、形成结论,并让学生在应用中体会所得知识,学会应用所学知识解决问题的方法.课前准备:准备课件,学生课前进行相关预习工作.教学过程:一、情景导入明确目标:大家知道,数学与数是分不开的,它是一门研究数的学问.现在我们一起回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:整数、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、……,我们用到整数1,2,……为了表示“没有东西”、“没有羊”、……,我们要用到0.瓦罐没有东西了——有了0 二人分一只西瓜,用数如何表示半只西瓜——有了分数货币购物,用数如何表示10元5角3分——有了小数用小学学过的数能表示下列数吗?零上5ºC零下5ºC但在实际生活中,还有许多量不能用上述所说的整数,零或分数、小数表示.例如,加1分和扣1分,如果只用小学学过的数,都记作1分,就不能把它们区别清楚.它们是具有相反意义的两个量.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.活动的实际效果:本环节利用问题情境的设置,紧紧扣住了学生的心弦,学生带着需要解决的问题来进行学习,极大的调动了学生学习的自觉性和积极性,有效的提高了知识的可接受程度.同学们能举例子吗?活动的实际效果:学生从身边的生活中找带有“-”号的数,他们很感兴趣,积极发言,当他们举出一些例子以后就会发现:零上为正的话,零下就为负;盈利为正,亏损就为负;海平面以上为正,海平面以下就为负,从而意识到“正”“负”是表示相反意义的量,这样学生认识到可以用正负数表示生活中具有相反意义的量.学生回答后,教师提出:怎样区别相反意义的量才好呢?二.自主学习合作探究探究活动1.用正负数表示具有相反意义的量根据课本第23页计算某班两个代表队举行知识竞赛得分情况,创设一个便于学生动手、动脑、主动探索的求知情境,然后进行小组合作讨论.活动的实际效果:在学生的交流过程中,老师进行监控指导,确保每个小组讨论的质量并沿着正确的思考方向发展.每个小组的同学都能积极说出自己的想法,组内语言表达好的同学给语言表达稍差的同学作了良好的示范,这样起到了组内帮助的作用,各个小组的学生发表了他们的不同表达方法后,大家一致总结出:用带“-”号的数表示比0分低的得分,用带“+”号的数表示比0分高的得分是最方便简洁的方法.在此基础上给同学们讲授了“-1”和“+1”的读法.学生学习了“+”、“-”表示方法后,完成表格,虽然这里包含了有理数的运算,但学生根据生活经验可以完成,此处也为了以后的运算作了铺垫.让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;活动的实际效果:通过对生活实际中的一些量的表示,体会正负数是两个具有相反意义的量;教师讲解:强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号.例1(1) 某人转动转盘,如果用+5表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2) 在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02,那么-0.03克表示什么?即时练习1:⑴任意写出5个正数与5个负数,并分别把它们填入相应的大括号里:正数集合:{…},负数集合:{…}.(2)教材第25页随堂练习第1题.(3)教材第26页知识技能第2题.活动的实际效果:本环节教师和学生一起完成例1,对学生理解正负数是表示相反意义的量以及解题格式起到示范的作用.随后展开竞赛,完成随堂练习第1题、知识技能第2题,前一环节的学习是从实际上升到理论,这一次的练习是由理论到实际应用,后者比前者在理解上来的更为深刻些探究活动2: 新的整数、分数概念引进负数后,数的范围扩大了.过去我们说整数只包括正整数和零,引进负数后,.正整数前加上负号的数叫做负整数,因而整数包括正整数、负整数和零,同样分数包括正分数、负分数,探究活动3: 有理数概念有理数的分类1.有理数概念整数和分数统称为有理数,2.有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同,根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.活动的实际效果:将所学的数分类上,学生有很多不同的分法,意见分歧比较大,但只要是合理,教师都给予了肯定,因为学生不可能得出有理数这一概念,这时教师讲解有理数的概念,并进行有理数的分类,让学生领会数学的分类思想,对有理数有了整体的认识.学生独立完成随堂练习后两题,进一步巩固对有理数的掌握.即时练习2:1.教材第25页随堂练习第2题.2.教材第26页随堂练习第3题.三.总结知识拓展提高1.通过本节课的学习你获得了那些知识?教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?活动的实际效果:每位同学在组内都能积极发言,认真回顾本节课所学知识,学生独立总结回答,既提高了学生的归纳总结能力又提高了学生的语言表达能力.达标检测:1、在-2;+1/2;-3.5;11中,正数是;负数是.2、+1350米表示高于海平面1350米,低于海平面200米,记作.3、如果上升10米记作+10米,那么下降12米,记作.4、如果规定向西走30米记作+30米,那么-40米,表示.5.如果零上5记作+5,那么零下3 记作.6.某仓库运进面粉7.5吨记作+7.5,那么运出3.8吨,记作.7.教材第25页随堂练习第2题.8.教材第26页随堂练习第3题.实际效果:大部分学生能当堂达标,完成效果良好,教师当堂批阅一半的学生.板书设计:教学反思:在认真学习《数学课程标准》的基础上,本节课通过学生身边熟悉的事物,让学生感受到负数的引入确实是实际生活的需要,数学与我们的生活密不可分;这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此学生通过这节课只能对负数概念有初步的理解,使学生掌握正负数的记法和它的描述性定义,要求不能过高.对有理数的深入理解将在以后的学习中逐步加强.在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则,教师在课堂上要起好主导作用,并让学生有充分的活动机会,使得课堂气氛有新鲜感.所以这节课采取了在教师的启发引导下,师生共同探究解决的途径,以谈话法为主.同时,教师的语言要尽量儿童化.本课中,我们有意识地突出“分类讨论”这一数学思想方法,并在教学中注意渗透两点:1.分类的标准不同,分类的结果也不相同;2.分类的结果应是无遗漏、无重复,即每一个数必须属于某一类,又不能同时属于不同的两类.推荐理由:教案中问题的设计、学情预设、过渡语言、引导语言、激励评价语言等极有利于以学生为主体,有利于自主性、合作性、探究性的学习方法。

北师大版七上2.1《有理数》教案

北师大版七上2.1《有理数》教案

2.1有理数教学目标:1.借助生活中的实例,从扩充运算的角度引进负数,然后使用正负数表示现实生活中具有相反意义的量.2.经历从生活中发现数学问题,体会数学与现实生活的联系,培养自主探索能力并体验成功.教学重点和难点:理解正、负数及有理数的意义教学过程:一、引入:观察一组图片回答下列问题:某班举行知识竞赛,评分标准是:答对一题加10分,答错一题扣10分,不回答得0分;每个队的基本分均为0分。

四个代表队答题情况如下表:加10分得0分扣10分算一算:每个代表队的得分是多少?二、讲授新课:1.议一议:生活中你见过带有“–”号的数吗?比0大的数叫做正数,如,5,1.2, , …在正数前面加上“–”号的数叫做负数, 如–10,–3,…0既不是正数,也不是负数.为了突出数的符号,可以在正数前面加“+”号,如+5,+1.2,+ 9, …2. 讲解例题:例1 (1)在知识竞赛中,如果用+10分表示加10分,那么扣20分怎样表示?(2)某人转动转盘,如果用+5表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(3)在某次乒乓球的质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么– 0.03克表示什么?3. 做一做:将所有学过的数进行分类,并与同伴进行交流。

4. 正数、负数与零统称为有理数5. 说一说:通过这节课的学习,你学到了什么?感受到了什么?还想知道什么?比0大的数叫做正数,在正数前面加上“–”号的数叫做负数,0即不是正数,也不是负数.为了突出数的符号,可以在正数前面加“+”正数、负数与零统称为有理数.6. 课堂小结:根据课堂的实际情况作评价.并让小组成员叙述自己对有理数加减法的看法和掌握有困难的地方。

7. 布置作业 :P35 习题2.1 1. 2. 3. 4. 5. 7。

北师大版七年级数学上册【教案】 有理数

北师大版七年级数学上册【教案】 有理数

2.1 有理数【教学目标】知识与技能1.会用正、负数表示生活中常用的具有相反意义的量.2. 理解有理数的意义,会对有理数按照一定的标准进行分类.过程与方法1.了解负数产生的背景是由于实际需要产生的.2. 培养学生分类讨论的数学思想及对立统一的辩证唯物主义的观点.情感、态度与价值观1.体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣.2. 通过有理数的分类学习培养学生善于观察的习惯.【教学重难点】重点:会用正、负数表示生活中常用的具有相反意义的量并了解有理数包括哪些数。

难点:1.能结合生活实际举出具有相反意义的量的典型例子.2.明确有理数分类的标准.分类的标准不同,分类的结果也不同,分类的结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类.【教学过程】一、引入新课师:同学们,我们已经学习了哪些数?它们是怎样产生和发展起来的?教师引导学生说出:在生活中为了表示物体的个数或事物的顺序,产生了数1,2,3,…;为了表示“没有”,引入了数0;有时分配和测量的结果不是整数,需要用分数(小数)表示.总之,数是为了满足生产和生活的需要而产生并逐步发展起来的.二、讲授新课1.相反意义的量:师:同学们,在我们的日常生活中,常会遇到这样一些量(事情):例1:汽车向东行驶3千米和向西行驶2千米.例2:温度是零上10 ℃和零下5 ℃.例3:收入500元和支出237元.例4:水位升高1.2米和下降0.7米.例5:买进100辆自行车和卖出20辆自行车.(1)试着让学生考虑这些例子中出现的每一对量有什么共同特点.(具有相反意义.向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义.)(2)你能举出几对日常生活中的具有相反意义的量吗?2.正数和负数:师:同学们能用我们已学过的数表示这些具有相反意义的量吗?例如,零上5 ℃用5来表示,零下5 ℃呢?也能用5来表示吗?说明:在天气预报图中,零下5 ℃是用-5 ℃来表示的.一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正,用过去学过的数来表示;把与它意义相反的量规定为负,用过去学过的数(零除外)前面放一个“-”(读作“负”)号来表示.以温度为例,通常规定零上为正,零下为负,零上10 ℃就用10 ℃表示,零下5 ℃就用-5 ℃来表示.师:怎样表示具有相反意义的量呢?你们能否从天气预报出现的标记中得到一些启发呢?在例1中,我们如果规定向东为正,那么向西则为负.汽车向东行驶3千米记作3千米,向西行驶2千米应记作-2千米.后面的例子让学生来说(注意词的表达).在以上的讨论中,出现了哪些新数?为了表示具有相反意义的量,我们引进了-2,-5,-237,-0.7等数.像这样的一些新数,叫做负数(negative number).过去学过的那些数(零除外),如3,10,500,1.2等,叫做正数(positive number).正数前面有时也可放一个“+”(读作“正”),如5可以写成+5.注意:零既不是正数,也不是负数.3.数的扩充.师:我们都知道,数1,2,3,4,…叫做正整数;-1,-2,-3,-4,…叫做负整数;正整数、负整数和零统称为整数;数,,8,+5.6,…叫做正分数;-,-,-3.5,…叫做负分数;正分数和负分数统称为分数;整数和分数统称为有理数.4.师:同学们,请你们认真思考并回答下列问题:(1)“0”是整数吗?是正数吗?是有理数吗?生:是整数且是有理数,但不是正数.(2)“-2”是整数吗?是正数吗?是有理数吗?生:是整数,也是有理数,但不是正数.(3)自然数就是整数吗?是正数吗?是有理数吗?生:自然数是整数,也是有理数,但不一定是正数.要求学生区分“正”与“整”;知道小数可化为分数.5.有理数的分类.不同的分类标准可以将有理数进行不同的分类:(1)先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

森学教育个性化教学辅导教案
学科:数学授课教师:授课时间:_____年_月日 (星期 )
一.负数的进一步理解:生活中负数的案例。

1.给出新的整数、分数概念
引进负数后,数的范围扩大了.过去我们说整数只是0,1,2,3,4…引
进负数后,我们把大于0的自然数叫做正整数,正整数前加上负号的数叫
做负整数,因而整数包括正整数、负整数和零,同样分数包括正分数、负
分数
2.给出有理数概念
整数和分数统称为有理数
3.有理数的分类
当堂练习:
(1)在以下说法中,正确的是 [ ]
A.非负有理数就是正有理数
B.零表示没有,不是有理数
C.正整数和负整数统称为整数
D.整数和分数统称为有理数
二.有理数都能在数轴上表示出来初步理解数形结合的思想方法.
数轴:画一条水平直线,在直线上取一点表示0(叫做原点)选取某一长度作为单位
长度,规定直线上向右的方向为正方向,就得到下面的数轴(三要素:原点,单位长度,正方向)
数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法
三.利用数轴比较有理数的大小;使学生进一步理解数形结合的思想方法
难点:如何比较两个负数(尤其是两个负分数)的大小.
正数都大于0,负数都小于0,正数大于一切负数”的规律.要提醒学生,用“<”连接两个以上数时,小数在前,大数在后,不能出现5>0<4这样的式子.
2.把下列各组数从小到大用“<”号连接起来:
(1)3,-5,-4; (2)-9,16,-11;
1、下列各数中:
+7,-2,,-83,0,+01,2,1 ,哪些是正数?哪些是负数?哪些是非负数?
2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数:
-3,4,0,3,-15,-4,,2
3、问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点?
数轴两边到原点相等的点互为相反数
绝对值概念:
一般地,一个数a的绝对值就是数轴上表示a的点到原点的距离
如果a>0,那么 |a|=a;如果a<0,那么|a| =-a;如果a=0,那么|a| =0
例:求π-5的绝对值
2、在括号里填写适当的数:
5.3-=( ); 2
1
+
=( ); -5-=( ); -3+=( ); ()=1, ()=0;
-()=-2
3、计算下列各题:
|-3|+|+5|;|-3|+|-5|;|+2|-|-2|;|-3|-|-2|; |-21|×|-31|;|-21|÷|-2|;21÷|-21|
(3)有没有绝对值是-2的数?
5、填空:
(1)当a >0时,|2a|=________; (2)当a >1时,|a-1|=________; (3)当a <1时,|a-1|=________
利用绝对值比较两个负数的大小;说明:“| |”有两重作用,即绝对值和括号
绝对值小于3的数是从-3到3中间的所有的有理数,有无数多个;但绝对值小于3的整数只有五个:-2,-1,0,1,2
数轴上a <0,b >0,且|a|<|b|,求la+bl,lb-al,
|a|=-a ,|b|=b , |a+b|=a+b ,|b-a|=b-a
两个负数,绝对值大的反而小
例1 比较-42
1
与-|—3|的大小
例2 已知a >b >0,比较a ,-a ,b ,-b 的大小
例3 比较-32与-4
3
的大小
2、比较下列每对数的大小:
(1)-85与-83
;(2)-113与-0273;(3)-73与-94;
(4)- 65与-1110;(5)- 32与-53;(6)- 97与-11
9
3、写出绝对值大于3而小于8的所有整数
(1)|a|=a ; (2)|a|=-a ; (4)a >-a ;
(5)|a|≥a ; (6)-y >0; (7)-a <0; (8)a+b=0。

相关文档
最新文档