北师大版七年级有理数教案
2.1《有理数》教学设计北师大版七年级数学上册
北师大版七年级上册数学《有理数》教学设计一、学习目标1. 理解有理数的意义,掌握有理数的运算法则。
2. 学会使用相反数、绝对值、有理数乘方等概念,解决生活中的实际问题。
3. 培养良好的学习习惯和数学素养,发展创新思维。
二、教材分析本节课主要学习有理数的意义、分类、运算以及应用。
教材通过具体实例引入概念,帮助学生理解有理数的意义,并在此基础上介绍有理数的分类和运算方法。
同时,教材还设置了一些练习和例题,帮助学生巩固所学知识,提高解决问题的能力。
三、学情分析学生在小学阶段已经接触过一些整数和分数,但是对于有理数的概念和运算法则还不够熟悉。
因此,本节课通过实例和问题引导学生逐步掌握有理数的概念和运算法则,并通过练习和例题加深学生对知识的理解和应用。
同时,针对学生在学习中可能出现的困惑和问题,教师可以通过组织小组合作、讲解示范等方式进行指导。
四、重难点1. 有理数的意义和分类是本节课的重点,学生需要掌握有理数的概念、分类方法和运算规则。
2. 有理数的混合运算是本节课的难点,学生需要掌握运算顺序和法则,能够正确进行计算。
五、教学过程(一)、复习旧知回顾小学阶段所学的数的分类,包括整数、小数、分数等,并举出一些实例。
同时,复习数的加法、减法、乘法、除法等基本运算。
设计意图:通过复习旧知识,帮助学生回忆数的概念和基本运算,为引入有理数的概念和运算打下基础。
(二)、创设情境,导入新课展示一些生活中的数字信息,如温度计上的读数、速度表上的数值等,引导学生发现这些数字都有一定的规律和意义。
然后提出有理数的概念,并让学生列举一些有理数的例子。
设计意图:通过具体的生活实例,让学生感受到有理数在现实生活中的应用,激发学习兴趣,引导他们进入有理数的学习。
(三)、自主探究,解决问题1. 学习任务一:理解有理数的意义。
提供一些具体的数字,让学生判断是有理数还是无理数,并说明理由。
通过这个活动,让学生理解有理数的概念和分类。
2. 学习任务二:掌握有理数的运算规则。
北师大版数学七年级上册2.1《有理数》教案
北师大版数学七年级上册2.1《有理数》教案一. 教材分析《有理数》是北师大版数学七年级上册第二章第一节的内容,本节课主要介绍了有理数的定义、分类以及有理数的运算。
有理数是中学数学中的基础概念,对于学生理解数学的本质和后续学习其他数学知识具有重要意义。
本节课的内容是学生进一步学习实数、方程、函数等知识的基础。
二. 学情分析七年级的学生已经掌握了整数和分数的基本知识,对运算也有一定的了解。
但学生在理解有理数的定义和分类方面可能会存在一定的困难。
因此,在教学过程中,教师需要引导学生从实际问题出发,理解有理数的概念,并通过具体的例子让学生掌握有理数的分类。
三. 教学目标1.了解有理数的定义,掌握有理数的分类。
2.能够进行有理数的运算。
3.培养学生的逻辑思维能力和数学素养。
四. 教学重难点1.有理数的定义和分类。
2.有理数的运算。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索;通过具体的案例,让学生理解和掌握有理数的概念和运算;通过小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的问题和案例。
2.准备教学PPT。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过设置问题,引导学生思考:什么是整数?什么是分数?整数和分数有什么关系?从而引出有理数的概念。
2.呈现(15分钟)呈现有理数的定义和分类,让学生了解有理数的四种类型:正整数、负整数、正分数、负分数。
并通过具体的例子让学生理解和掌握有理数的分类。
3.操练(15分钟)让学生进行有理数的运算练习,包括加、减、乘、除等。
教师可以设置一些具有代表性的题目,让学生在课堂上进行讲解和讨论,从而加深对有理数运算的理解。
4.巩固(10分钟)通过一些填空题和选择题,让学生巩固所学的内容。
教师可以设置一些易错题,让学生在解答过程中发现问题,从而加深对有理数概念和运算的理解。
5.拓展(5分钟)引导学生思考:有理数和无理数有什么关系?从而引出实数的概念。
北师大版七年级数学上册《有理数》精品教案
《有理数》精品教案●教学目标:一、知识与技能目标:1.知道什么是负数,并能用正、负数表示实际问题中的数量.2.能说出负数表示的意义.3.能说出有理数的概念,能将有理数正确分类.二、过程与方法目标:1.体验对有理数分类的探索过程,初步感受分类讨论的思想.2.通过教师引导,学生自主探究,体验从实际问题中抽象出数学问题的过程,初步学会数学的类比方法思想方法.三、情感态度与价值观目标:通过对负数和有理数的学习,体会到数学和现实的密切联系,能用所学解决实际问题.●重点:掌握有理数的分类●难点负数表示的意义、有理数的分类及分类标准●教学流程:一、回顾旧知,情景导入通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“数”够用了吗?师:同学们,今天老师在来学校的路上,行驶了14.7km,遇到0只小狗、5个老人,其中一个高1.76m.那么同学们想一下,老师刚才说的一句话中,出现了哪些数,分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).那在生活中,仅有整数和分数够用了吗?请同学们完成课本第23页的表格,并思考老师刚才的问题.师:(一起分析完表格之后)以前学过的数已经不够用了,我们需要一种前面带有“-”的新数来解决生活中的问题.那大家相互讨论一下生活中还有哪些用负数表示的量.学生活动:讨论二、解答困惑,讲授新知学生回答,老师补充.那么我们在生活中在表示温度、方向、价格时会有“零上摄氏度和零下摄氏度”、“向东和向西”“上涨和下降”等词,这些都是表示相反意义的量,在数学中表示相反意义的量,可以规定其中一个为正,用正数表示;相反意义的量规定为负,用负数表示.强调:用正、负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收入与支出;二是它们都是数量,而且是同类的量.三、实例演练深化认识判断下列说法是否正确1.零上5℃与零下5℃意思一样,都是5℃.(×)2.正整数集合与负整数集合并在一起是整数集合. (×)3.若-a是负数,则a是正数.(√)4.若+a是正数,则-a是负数. (√)5.收入-2000元表示支出2000元.(√)1.某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?沿顺时针转了12圈记作-12圈.2.在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02g记作+0.02g,那么-0.03g 表示什么?-0.03g表示乒乓球的质量低于标准质量0.03g.3.某大米包装袋上标注着“净含量:10kg±150kg”这里的“10kg±150kg”表示什么?每袋大米的标准质量应为10kg,但实际每袋大米可能有150g的误差,即最多超出标准质量150g,最少少于标准质量150g.四、提出问题,启发引导现在我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.问题:那么,有没有一种既不是正数又不是负数的数呢?学生思考并讨论.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数.五、延伸知识,分类思想我们现在对学过的数进行分类,在上课开始的时候,大家说学过的数有整数和分数,那么在学习了正数和负数之后,整数可以分为什么?分数可以分为什么?正整数正分数整数 0 分数负整数负分数整数和分数统称为有理数思考:有理数还可以怎么分类呢?可以按照定义和符号性质分。
七年级数学上册 2.1 有理数教学设计 (新版)北师大版-(新版)北师大版初中七年级上册数学教案
有理数第1课时正数和负数【教学目标】知识与技能1.会判断一个数是正数还是负数.2.会用正、负数表示生活中常用的具有相反意义的量.过程与方法1.了解负数产生的背景是由于实际需要产生的.2.培养学生的数学应用意识,渗透对立统一的辩证思想.情感、态度与价值观体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣.【教学重难点】重点:了解正数与负数是由于实际需要产生的,并会用正、负数表示生活中常用的具有相反意义的量.难点:了解学习负数的必要性,能结合生活实际举出具有相反意义的量的典型例子. 【教学过程】一、引入新课师:同学们,我们已经学习了哪些数?它们是怎样产生和发展起来的?教师引导学生说出:在生活中为了表示物体的个数或事物的顺序,产生了数1,2,3,…;为了表示“没有”,引入了数0;有时分配和测量的结果不是整数,需要用分数(小数)表示.总之,数是为了满足生产和生活的需要而产生并逐步发展起来的.二、讲授新课1.相反意义的量:师:同学们,在我们的日常生活中,常会遇到这样一些量(事情):例1:汽车向东行驶3千米和向西行驶2千米.例2:温度是零上10 ℃和零下5 ℃.例3:收入500元和支出237元.例4:水位升高米和下降米.例5:买进100辆自行车和卖出20辆自行车.(1)试着让学生考虑这些例子中出现的每一对量有什么共同特点.(具有相反意义.向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义.)(2)你能举出几对日常生活中的具有相反意义的量吗?2.正数和负数:师:同学们能用我们已学过的数表示这些具有相反意义的量吗?例如,零上5 ℃用5来表示,零下5 ℃呢?也能用5来表示吗?说明:在天气预报图中,零下5 ℃是用-5 ℃来表示的.一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正,用过去学过的数来表示;把与它意义相反的量规定为负,用过去学过的数(零除外)前面放一个“-”(读作“负”)号来表示.以温度为例,通常规定零上为正,零下为负,零上10 ℃就用10 ℃表示,零下5 ℃就用-5 ℃来表示.师:怎样表示具有相反意义的量呢?你们能否从天气预报出现的标记中得到一些启发呢?在例1中,我们如果规定向东为正,那么向西则为负.汽车向东行驶3千米记作3千米,向西行驶2千米应记作-2千米.后面的例子让学生来说(注意词的表达).在以上的讨论中,出现了哪些新数?为了表示具有相反意义的量,我们引进了-2,-5,-237,等数.像这样的一些新数,叫做负数(negative number).过去学过的那些数(零除外),如3,10,500,等,叫做正数(positive number).正数前面有时也可放一个“+”(读作“正”),如5可以写成+5.注意:零既不是正数,也不是负数.3.课堂练习.教材第25页的“随堂练习”的第2题.三、例题讲解【例1】(1)一个月内,小明体重增加2 kg,小华体重减少1 kg,小强体重无变化,写出他们这个月的体重增加值;(2)某年,下列国家的商品进出口总额与上年相比,变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.【答案】(1)这个月小明体重增加2 kg,小华体重增加-1 kg,小强体重增加0 kg;(2)六个国家这一年商品进出口总额的增长率是:美国-6.4%,德国 1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.【例2】(1)某人转动转盘,如果用+5表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02 g,那么-0.03 g表示什么?(3)某大米包装袋上标注着“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示什么?【答案】(1)沿顺时针方向转了12圈记作-12圈;(2)-0.03 g表示乒乓球的质量低于标准质量0.03 g;(3)每袋大米的标准质量应为10 kg,但实际每袋大米可能有150 g的误差,即最多超出标准质量150 g,最少少于标准质量150 g.四、课堂小结正数和负数表示的是一对具有相反意义的量,哪种意义的量为正是可以任意规定的.如果把一种意义的量规定为正,则相反意义的量规定为负.常将“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负.第2课时有理数【教学目标】知识与技能理解有理数的意义,会对有理数按照一定的标准进行分类.过程与方法培养学生分类讨论的数学思想及对立统一的辩证唯物主义的观点.情感、态度与价值观通过有理数的分类学习培养学生善于观察的习惯.【教学重难点】重点:了解有理数包括哪些数.难点:明确有理数分类的标准.分类的标准不同,分类的结果也不同,分类的结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类.【教学过程】一、复习引入师:同学们已经掌握上节课学习的内容了吗?下面让大家一起来检测一下吧!1.填空:(1)正常水位为0 m,水位高于正常水位0.2 m记作,低于正常水位0.3 m记作;(2)有一个乒乓球比标准重量重0.039 g记作,比标准重量轻0.019 g记作,标准重量记作.【答案】(1)+0.2 m-0.3 m(2)+0.039 g-0.019 g0 g2.一个物体沿东西两个相反的方向运动时可以用正负数表示它们的运动,如果向东运动4 m记作4 m,向西运动8 m记作;如果-7 m表示物体向西运动7 m,那么6 m表示物体怎样运动?【答案】-8 m 向东运动6 m二、讲授新课1.数的扩充.师:我们都知道,数1,2,3,4,…叫做正整数;-1,-2,-3,-4,…叫做负整数;正整数、负整数和零统称为整数;数,,8,,…叫做正分数;-,-,,…叫做负分数;正分数和负分数统称为分数;整数和分数统称为有理数.2.师:同学们,请你们认真思考并回答下列问题:(1)“0”是整数吗?是正数吗?是有理数吗?生:是整数且是有理数,但不是正数.(2)“-2”是整数吗?是正数吗?是有理数吗?生:是整数,也是有理数,但不是正数.(3)自然数就是整数吗?是正数吗?是有理数吗?生:自然数是整数,也是有理数,但不一定是正数.要求学生区分“正”与“整”;知道小数可化为分数.3.有理数的分类.不同的分类标准可以将有理数进行不同的分类:(1)先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分,即得如下分类图:有理数(2)先将有理数按“正”和“负”的属性分,再按每类数的“整”“分”分,即得如下分类图:有理数注:①“0”也是自然数;②“0”的特殊性.三、例题讲解师:同学们,下面我们来看几个例题.【例1】把下列各数填入表示它所在的数集的圈里:-18,,,0,2001,-,,95%解:正数集:,,2001,95%;负数集:-18,-,;整数集:-18,0,2001;有理数集:-18,,,0,2001,-,,95%【例2】把下列各数填入相应集合的括号内:29,,2002,,-1,90%,,0,-2,,-2,1.整数集合:{}分数集合:{}正数集合:{}负数集合:{}正整数集合:{}负整数集合:{}正分数集合:{}负分数集合:{}正有理数集合:{}负有理数集合:{}解:整数集合:{29,2002,-1,0,-2,1}分数集合:{,,90%,,-2,}正数集合:{29,2002,,90%,,1}负数集合:{,-1,-2,,-2}正整数集合:{29,2002,1}负整数集合:{-1,-2}正分数集合:{,90%,}负分数集合:{,-2,}正有理数集合:{29,2002,,90%,,1}负有理数集合:{,-1,-2,,-2}注:要正确判断一个数属于哪一类,首先要弄清分类的标准.要特别注意“0”不是正数,但是整数.在数学里,“正”和“整”不能通用,是有区别的,“正”是相对于“负”来说的,“整”是相对于分数而言的.四、课堂小结师:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题? 由学生小结有理数的定义和两种分类方法,教师予以点评.。
北师大版七年级数学上册《有理数》教案及教学反思
北师大版七年级数学上册《有理数》教案及教学反思一、教学目标本课的教学目标是:通过引导学生掌握有理数的概念、有理数的比较大小和运算法则,培养学生的思维逻辑能力,在解决实际问题的过程中提高学生分析和解决问题的能力。
二、教学重点本课的教学重点在以下三个方面:1.掌握有理数的概念和符号表示法。
2.掌握有理数的比较大小的方法和技巧。
3.掌握有理数的加减乘除运算法则。
三、教学难点本课的教学难点在以下两个方面:1.学生对有理数的概念理解存在偏差,需要引导学生进行正确的认知。
2.有理数的运算法则较为复杂,需要通过案例进行更加深入的理解和掌握。
四、教学内容1. 有理数的概念有理数是指可以表示为两个整数比值的数,其中分母不为零,分数的表示形式为a/b,a,b为整数。
其符号可以为正(+),也可以为负(-),0也是有理数的一种。
2. 有理数的比较大小有理数的比较大小需要根据数轴的概念进行理解,即把有理数表示在数轴上,根据它们在数轴上对应的点的位置来进行比较大小。
若两个有理数在数轴上位置有重叠的部分,可以通过交叉点的位置和符号来判断大小。
3. 有理数的加减乘除运算法则有理数的加减乘除运算法则需要掌握四则运算的规则才能进行推演,实际掌握方法需要基于案例进行详解。
加减法中,需要先按照符号进行分类,然后根据分数加减的规则进行计算;乘除法中,需要按照数的分子、分母进行分别乘除,然后再进行化简。
五、教学方法本讲授内容依据学生的年龄、认知能力和课程的要求,采用导引式讲解、情境导入、案例演练等多种教学方法,旨在提高学生的自主学习和探究能力,加强学习目标的达成。
六、教学过程1. 导入环节引导学生回顾或掌握小学数学中的数的知识,包括正数、负数、绝对值等,引导学生进入有理数的学习。
2. 概念讲解先对有理数的概念进行讲解,通过举例等方式让学生更好地理解有理数概念,引导学生明确有理数的符号表示法,开始探究有理数的大小关系。
3. 比较大小的方法引导学生利用数轴的概念将有理数表示出来,并在数轴上比较大小,以此说明有理数的大小关系。
北师大版数学七年级上册《 第二章 有理数及其运算 》教案
北师大版数学七年级上册《第二章有理数及其运算》教案一. 教材分析《第二章有理数及其运算》这一章主要介绍了有理数的概念、分类及有理数的运算规则。
内容涵盖了有理数的概念、分类、加减乘除运算、乘方运算等。
这部分内容是整个初中数学的基础,对于学生理解和掌握后续知识具有重要意义。
二. 学情分析学生在学习这一章内容时,已经具备了初步的数学运算能力,对数学概念有一定的理解。
但部分学生可能对有理数的概念和分类理解不深,对于有理数的运算规则容易混淆。
因此,在教学过程中,需要注重对学生概念的理解和运算规则的训练。
三. 教学目标1.理解有理数的概念,掌握有理数的分类。
2.掌握有理数的加减乘除运算规则,能够熟练进行计算。
3.理解有理数的乘方运算规则,能够进行相应的计算。
4.培养学生的运算能力和逻辑思维能力。
四. 教学重难点1.有理数的概念和分类。
2.有理数的运算规则,特别是乘方运算。
五. 教学方法采用讲解、示例、练习、讨论等教学方法,通过引导学生自主探究、合作交流,让学生在实践中掌握知识,提高能力。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备练习题,包括基础题和拓展题。
七. 教学过程1.导入(5分钟)通过复习小学学过的加减乘除运算,引出有理数的概念和分类。
2.呈现(15分钟)讲解有理数的概念和分类,示例说明有理数的运算规则。
3.操练(15分钟)让学生进行有理数的加减乘除运算,引导学生掌握运算规则。
4.巩固(10分钟)让学生进行一些有关有理数的运算题目,巩固所学知识。
5.拓展(10分钟)讲解有理数的乘方运算规则,让学生进行相关的计算。
6.小结(5分钟)对本节课的主要内容进行总结,强调重点和难点。
7.家庭作业(5分钟)布置一些有关有理数运算的题目,让学生课后巩固。
8.板书(课后整理)整理本节课的主要板书内容,方便学生复习。
教学过程每个环节所用时间共计50分钟,剩余10分钟用于学生自主学习和教师解答疑问。
针对以上教案对教学情境和教学活动的分析如下:一、教学情境本节课的主题是有理数及其运算,我通过创设生动有趣的教学情境,激发学生的学习兴趣。
最新北师大版七年级数学上册《有理数》教学设计(精品教案)
最新北师大版七年级数学上册《有理数》教学设计(精品教案)第二章有理数及其运算一、学生起点分析学生在小学已经研究过整数、分数、小数的概念及运算;对负数的概念有所了解,知道正数、负数和零的区别。
但是,刚进入初中的学生掌握正数、负数的概念程度参差不齐,建立有理数的概念是研究的难点。
二、研究任务分析有理数”是初中数学研究的重要基础。
本节课的内容是正、负数的概念和有理数的分类。
通过和学生生活贴近的实例引入负数激发学生对数学研究的兴趣;通过让学生了解“中国是世界上最早使用负数的国家”,培养学生爱国主义情操,增强民族自豪感。
为此,本节课的研究任务是:1.在具体情境中,进一步认识负数,理解有理数的意义。
2.经历用正负数表示具有相反意义的量的过程,体会负数是实际生活的需要。
3.会判断一个数是正数还是负数,能按一定的标准对有理数进行分类。
三、教学过程设计本节课设计了五个教学环节:第一环节:复回顾,引入新课活动内容:观察中国地图,珠穆朗玛峰高出海平面8844.43米,记作:+8844.43米;吐鲁番盆地地狱海平面155米,记作-155米。
教师出示上图,提出问题:1.生活中我们会遇到用负数表示的量,你能说出一些例子吗?2.你对负数有什么样的认识?3.有了负数,数的运算与过去相比有什么区别和联系?有了负数,能解决哪些实际问题?本章将在小学研究的基础上,进一步研究负数,研究有理数的有关概念及其运算,并利用有理数的知识解决实际问题。
活动目的:通过提供学生熟悉的情景引导学生回顾小学有关负数的知识,三个问题不仅为本节课温故引入,也为本章的研究做了铺垫。
活动效果:学生在对问题的思考与交流中体会负数在生活中的广泛应用,激发了研究本章内容的兴趣。
第二环节:创设情境,探索新知活动内容:某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得分;每个队的基本分均为0分。
两个代表队答题情况如下表:活动目的:通过分类讨论,让学生更加深入地理解数的概念,巩固知识点,提高数学思维能力。
有理数教案北师大版
有理数教案北师大版教案主题:有理数教学目标:1. 理解有理数的概念,掌握有理数的性质;2. 能够对有理数进行比较大小;3. 能够进行有理数的加减运算。
教学重点:1. 有理数的概念及性质;2. 有理数的比较大小;3. 有理数的加减运算。
教学步骤:Step 1:导入新知识(5分钟)通过一个问题导入新知识:“小明买了一个苹果,小红买了两个苹果,他们一共买了多少个苹果?”引导学生思考有理数的概念,并概括有理数的定义。
Step 2:引入有理数的性质(10分钟)激发学生对有理数性质的兴趣,通过多个例子,让学生发现有理数的加法、减法、乘法、除法都能保持有理数的性质,即有理数加、减、乘、除仍然是有理数。
Step 3:讲解有理数的比较大小(15分钟)通过多个例子,讲解有理数的比较大小的方法:1. 对于两个正数,数值越大,数越小;2. 对于两个负数,数值越小,数越大;3. 对于一个正数和一个负数,正数大于负数。
Step 4:做练习题(10分钟)设计一些练习题,要求学生根据所学的有理数的大小比较方法,对不同的有理数进行比较大小。
Step 5:引入有理数的加减运算(10分钟)通过具体的例子,引导学生学习有理数的加减运算:1. 同号相加,异号相减;2. 先把整数化为同号,再运算。
Step 6:做练习题(10分钟)设计一些练习题,要求学生根据所学的有理数的加减运算法则,进行有理数的加减运算。
Step 7:小结与评价(5分钟)对本节课的内容进行小结,并对学生的学习情况进行评价。
Step 8:作业布置(5分钟)布置相应的课后作业,巩固所学的知识。
教学反思:本节课通过问题导入新知识,激发学生的学习兴趣;通过多个例子引入有理数的性质,让学生了解有理数的基本性质;通过比较大小和加减运算的讲解和练习,巩固了学生对有理数的掌握程度。
然而,在练习环节中,可以增加交互性,让学生积极参与,提高课堂活跃度。
七年级有理数教案北师大
七年级有理数教案北师大七年级有理数教案北师大1一、有理数的意义1.有理数的分类知识点:大于零的数叫正数,在正数前面加上“﹣”(读作负)号的数叫负数;如果一个正数表示一个事物的量,那么加上“﹣”号后这个量就有了完全相反的意义;3,,5.2也可写作+3,+ ,+5.2;零既不是正数,也不是负数。
2.数轴知识点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线;数轴的三元素:原点、正方向、单位长度,这三元素缺一不可,是判断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(因为所有的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地解释相反数,帮助理解绝对值的意义,3)比较有理数的大小:a)右边的数总比左边的数大,b)正数都大于零,c)负数都小于零,d)正数大于一切负数3. 相反数知识点: 只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。
4. 绝对值知识点:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作∣a∣;绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,即若a>0,则∣a∣=a.若a=0,则∣a∣=0. 若a”或“b>0>c B.b>0>a>cC.b6.两个有理数的和是正数,积是负数,则这两个有理数( )A.都是正数;B.都是负数;C.一正一负,且正数的绝对值较大;D.一正一负,且负数的绝对值较大。
7.若│a│=8,│b│=5,且a + b>0,那么a-b的值是( )A.3或13B.13或-13C.3或-3D.-3或-138. 大于-1999而小于2000的所有整数的和是()A.-1999B.-1998C.1999D.20009. 当n为正整数时,的值是()A.0B.2C.D.2或10. 补充下列表格:31 32 33 34 35 36 373 9 27 81 243 ……根据表格中个位数的规律可知,325的个位数是( )A.1B.3C.7D.9二、填空题(8小题,每小题2分,共16分)11. 的相反数是 .12.若水位上升20cm记作+20cm,则-15cm表示__________________.13.4个-3相乘写成乘方的形式是__________________.14.比较大小: .15. 在数轴上距2.5有3.5个单位长度的点所表示的数是.16. 用“偶数”或“奇数”填:当为_________时,17. 一根2米长的小棒,小明第一次截去一半,第二次截去剩下的一半,如此截下去,第五次后剩下的长度为______米.18. 观察下列图形:它们是按一定规律排列的,依照此规律,第10个图形共有个.三、解答题(6小题,每小题5分,共30分)19. (+4.3) -(-4) + (-2.3) -(+4) 20. (-48)÷6- ×(-4)21. (- + - )×(-12) 22. 16÷(-2)3-(- )×(-4)223. (用简便方法) 24. - -【-5 + (0.2× -1)÷(-1 )】25. 若│a│=2,b=-3,c是的负整数,求a + b-c的值.(6分)26.某牛奶厂在一条南北走向的大街上设有O,A,B,C四家特约经销店. A店位于O店的南面3千米处;B店位于O店的北面1千米处,C店在O店的北面2千米处.(1)请以O为原点,向北的方向为正方向,1个单位长度表示1千米,画一条数轴.在数轴上分别表示出O,A,B,C的位置吗?(4分)(2)牛奶厂的送货车从O店出发,要把一车牛奶分别送到A,B,C三家经销店,最后回到O店,那么走的最短路程是多少千米?(4分)27.股民小杨上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:星期一二三四五每股涨跌 +2.20 +1.42 -0.80 -2.52 +1.30(1)星期三收盘时,该股票涨或跌了多少元?(4分)(2)本周内该股票的价是每股多少元?最底价是每股多少元?(2分)(3)已知小杨买进股票时付了1.5‰的手续费,卖出时还需要付成交额的1.5‰的手续费和1‰的交易税,如果小杨在星期五收盘前将全部股票卖出,则他的收益情况如何? (4分)七年级有理数教案北师大2一、素质教育目标(一)知识教学点1.理解有理数乘方的意义.2.掌握有理数乘方的运算.(二)能力训练点1.培养学生观察、分析、比较、归纳、概括的能力.2.渗透转化思想.(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.(四)美育渗透点把记成,显示了乘方符号的简洁美.二、学法引导1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.2.学生学法:探索的性质→练习巩固三、重点、难点、疑点及解决办法1.重点:运算.2.难点:运算的符号法则.3.疑点:①乘方和幂的区别.②与的区别.四、课时安排1课时五、教具学具准备投影仪、自制胶片.六、师生互动活动设计教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.七、教学步骤(一)创设情境,导入新课师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?生:可以记作,读作的四次方.师:呢?生:可以记作,读作的五次方.师:(为正整数)呢?生:可以记作,读作的次方.师:很好!把个相乘,记作,既简单又明确.【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.(二)探索新知,讲授新课1.求个相同因数的积的运算,叫做乘方.乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.巩固练习(出示投影1)(1)在中,底数是__________,指数是___________,读作__________或读作___________;(2)在中,-2是__________,4是__________,读作__________或读作__________;(3)在中,底数是_________,指数是__________,读作__________;(4)5,底数是___________,指数是_____________.【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.生:到目前为止,已经学习过五种运算,它们是:运算:加、减、乘、除、乘方;运算结果:和、差、积、商、幂;教师对学生的回答给予评价并鼓励.【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.2.练习:(出示投影2)计算:1.(1)2, (2), (3), (4).2.(1),,,.(2)-2,,.3.(1)0, (2), (3), (4).学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.师:请同学思考一个问题,任何一个数的偶次幂是什么数?生:任何一个数的偶次幂是非负数.师:你能把上述结论用数学符号表示吗?生:(1)当时,(为正整数);(2)当(3)当时,(为正整数);(4)(为正整数);(为正整数);(为正整数,为有理数).【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.七年级有理数教案北师大3教学目标:1、在熟悉的生活情境中,进一步体会负数的意义。
2.1 有理数 北师大版数学七年级上册优秀教案
第二章有理数及其运算2. 1 有理数1. 用生活中的实例引入负数,体会负数引入的必要性和有理数应用的广泛性.使学生了解负数产生的背景,理解正、负数及零的意义.2.会判断一个数是正数还是负数.3. 能用正、负数表示生活中具有相反意义的量.【教学重点】正、负数的意义.【教学难点】负数的意义及0的内涵.采取启发式教学法及情感教学,创设问题情境,引导学生主动思考,用大量的实例和生动的语言激发学生学习兴趣,并利用计算机辅助教学,增大教学密度.多媒体电教平台.1.创设一些引导问题,为新课做好准备:你在小学学过哪些数呢?请你分类写出你学过的几组数.2.阅读课本内容,并与同伴交流、讨论,发现以前学过的数怎么都不能表示第二队的得分,从而引出新课——有理数(板书).一、创设情境,引入新知1. 数的起古代猎人打了一只老鹰,用数如何表示一只老鹰——有了整数.二人一只西瓜,用数如何表示半只西瓜——有了分数.货币购物,用数如何表示2元3角4分——有了小数.二、合作交流,探究新知2. 负数来于生活例1 2月3日,深圳气温零上15°c,哈尔滨气温零下10°c,若零上15°c,用+15°c表示,那么零下10°c 如何表示?例2 我国有一座世界最高峰——珠穆朗玛峰,高度比海平面高8848米,在新疆境内,还有一个吐鲁番盆地,高度比海平面低155米,若海平面的高度为零度,则它们的高度分别如何表示?全国主要城市某一天的天气预报3. 正、负数的概念像+5,+1.2,等大于零的数,叫做正数.它们都比零大.像-5,-1.5,等在正数前面加上“—”号的数叫做负数,它们都比零小.“ 0 ”既不是正数,也不是负数. “ 0 ”具有中性特征.4. 用正负数表示生活中意义相反的量议一议:举一些生活中象增加与减少,升高与降低,盈利与亏损,零上与零下,收入与支出等实例.财富全球强中的主要零售企业5. 有理数的分类三、应用新知例1(1)在知识竞赛中,如果用 +10 分表示加 10 分,那么扣 20 分怎样表示?(2)某人转动转盘,如果用 +5 圈表示沿逆时针方向转了 5 圈,那么沿顺时针方向转了 12 圈怎样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量 0.02 克记作+0.02 克,那么 -0.03 克表示什么?四、巩固新知(1)如果零上5°C 记作+5°C ,那么零下3°C 记作什么?(2)东、西为两个相反方向,如果-4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么? (3)某仓库运进面粉7.5吨,那么运出3.8吨应记作什么?(4)把下列各数填入相应的图形中内-6.3,20,-8,8%,0,-1,3.4,,五、归纳小结通过本节课的学习,我们知道小学学过的数已经不够用了,要引入负数的学习.我们还学习了正、负数和如何用正负数来表示具有相反意义的量.略.。
七年级有理数教案北师大
七年级有理数教案北师大(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、文案策划、工作计划、作文大全、教案大全、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, copywriting planning, work plans, essay summaries, lesson plans, speeches, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!七年级有理数教案北师大大纲:课题:理解和运用有理数教材:北师大版七年级数学教材教学目标:1.理解有理数的定义和性质,能够正确读写有理数。
2024秋七年级数学上册第2章有理数及其运算2.1有理数教案(新版)北师大版
3.解决实际问题:提供几个涉及有理数的实际问题,要求学生运用所学知识解决这些问题。
4.有理数在生活中的应用:鼓励学生观察和思考日常生活中涉及有理数的问题,如购物时的打折、优惠等,尝试用所学的有理数知识解决实际问题。
-参与数学竞赛:鼓励学生参加数学竞赛,提高学生的数学水平和竞赛能力,培养学生的团队合作精神。
教学反思与改进
回过头来看,今天的内容感觉学生掌握得怎么样?我在讲解有理数运算规则时,是否讲解得足够清晰?学生在课堂上的参与度如何?这些问题都需要我在课后进行反思。
首先,我意识到在讲解有理数的概念时,有些学生似乎还是有些模糊。下次我在讲解时,可以结合更多的实际例子,让学生更好地理解有理数在日常生活中的应用。此外,我也可以让学生在课堂上更多的互动,比如通过小组讨论,让学生互相解释有理数的定义,这样也许能帮助他们更清晰地理解。
作业反馈:
1.对于有理数的定义和分类的作业,我会检查学生是否能够准确识别各种类型的有理数,并针对存在的问题给出改进建议。
2.对于有理数的运算的作业,我会检查学生的计算是否正确,并指出存在的问题,如运算错误、计算粗心等,给出改进建议。
3.对于解决实际问题的作业,我会检查学生是否能够运用所学知识解决这些问题,并针对存在的问题给出改进建议。
-设计预习问题:围绕有理数的定义和分类,设计一系列具有启发性和探究性的问题,引导学生自主思考。
-监控预习进度:利用平台功能或学生反馈,监控学生的预习进度,确保预习效果。
学生活动:
-自主阅读预习资料:按照预习要求,自主阅读预习资料,理解有理数的基本概念。
-思考预习问题:针对预习问题,进行独立思考,记录自己的理解和疑问。
北师大版七年级数学上册教学设计《第二章有理数及其运算2.1有理数》
北师大版七年级数学上册教学设计《第二章有理数及其运算2.1有理数》一. 教材分析《北师大版七年级数学上册》第二章“有理数及其运算”是整个初中数学的基础,而2.1节“有理数”更是这一基础中的基础。
本节内容主要介绍了有理数的定义、分类和基本性质,为后续的数的运算、方程的求解等知识点奠定了基础。
本节课的内容对于学生来说,不仅需要理解和掌握有理数的概念,还需要培养他们的逻辑思维能力和数学语言表达能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对实数的概念有一定的了解。
但是,对于有理数的定义、分类和性质,他们可能还比较陌生。
因此,在教学过程中,需要从学生的实际出发,循序渐进地引导他们理解和掌握有理数的概念,并能够运用有理数解决实际问题。
三. 教学目标1.理解有理数的定义,掌握有理数的分类和基本性质。
2.能够运用有理数解决实际问题,培养学生的数学应用能力。
3.培养学生逻辑思维能力和数学语言表达能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的基本性质。
3.有理数的运算。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究有理数的定义和性质。
2.利用实例和实际问题,让学生感受有理数在生活中的应用。
3.采用小组合作学习的方式,培养学生的团队协作能力。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备一些实际问题,用于引导学生运用有理数解决。
七. 教学过程1.导入(5分钟)利用问题驱动的方式,引导学生回顾实数的概念,进而引出有理数的定义。
例如:“你们知道实数包括哪些类型吗?那么有理数是实数的一部分,它又是怎样的数呢?”2.呈现(15分钟)通过讲解和示例,呈现有理数的定义、分类和基本性质。
在此过程中,引导学生积极参与,主动提问,以理解有理数的概念。
3.操练(15分钟)让学生通过解决实际问题,运用有理数进行计算。
例如:“小明有2.5个苹果,小华给了小明1个苹果,请问小明现在有几个苹果?”4.巩固(10分钟)通过小组合作学习,让学生进一步巩固有理数的定义和性质。
七年级有理数教案北师大
七年级有理数教案北师大教案标题:七年级有理数教案北师大教学目标:1. 理解有理数的概念和性质。
2. 掌握有理数的加法和减法运算规则。
3. 运用有理数进行实际问题的解决。
教学重点:1. 有理数的概念和性质。
2. 有理数的加法和减法运算规则。
教学难点:1. 运用有理数进行实际问题的解决。
教学准备:1. 教学课件或黑板、白板。
2. 学生练习册或作业本。
3. 教学素材:有理数的定义、加法和减法运算规则的示例等。
教学过程:一、导入(5分钟)1. 利用一些简单的问题或图片引发学生对有理数的认识和兴趣。
2. 提问:你们知道什么是有理数吗?有理数有哪些性质?二、概念讲解(15分钟)1. 通过教师讲解和示例演示,介绍有理数的定义和性质。
2. 引导学生思考:为什么有理数包括整数和分数?3. 教师可运用图示等方式,帮助学生更好地理解有理数的概念和性质。
三、加法和减法运算规则(20分钟)1. 教师通过具体的例子,讲解有理数的加法和减法运算规则。
2. 强调正数与正数相加、负数与负数相加等情况的运算规则。
3. 提醒学生注意正数与负数相加、相减的规则。
四、练习与巩固(15分钟)1. 学生进行课堂练习,巩固有理数的概念和加减法运算规则。
2. 教师可以在黑板上列出一些练习题,学生进行个人或小组完成。
五、拓展与应用(15分钟)1. 提供一些实际问题,要求学生利用有理数进行解答。
2. 引导学生思考如何将实际问题转化为有理数的运算表达式。
六、总结与反思(5分钟)1. 教师对本节课的重点内容进行总结,并强调学生需要进一步练习和巩固。
2. 学生进行自我反思,回答教师提出的问题或写下本节课的收获与困惑。
教学延伸:1. 学生可利用课后时间,继续进行有理数的乘法和除法运算规则的学习和练习。
2. 教师可安排小组活动,让学生共同解决一些有理数运算问题,提高合作与思考能力。
注:教案撰写仅供参考,具体教学过程和时间安排可根据实际教学情况进行调整。
七年级数学 有理数教案整章 北师大版
第2章有理数一、教学目标:1.使学生体会具有相反意义的量,并能用有理数表示。
2.能在数轴上表示有理数,并借助数轴理解相反数和绝对值的意义。
3.会求有理数的相反数和绝对值(绝对值符号内不含字母)。
4.会比较有理数的大小。
5.了解乘方的意义,掌握有理数的加、减、乘、除法和乘方的运算法则,能进行有理数的加、减、乘、除法、乘方运算和简单的混合运算。
6.会用计算器进行有理数的简单运算。
7.理解有理数的运算律,并能用运算律简化运算。
8.能运用有理数的运算解决简单的问题。
9.了解近似数和有效数字的有关概念,能对较大的数字信息作合理的解释和推断。
二、教材的特点:1.本章教材注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。
教学中要注重让学生通过自己的活动来获取、理解和掌握这些知识。
2.与传统的教材相比,本章教材注意降低了对运算的要求,尤其是删去了繁难的运算。
本章教材注重使学生理解运算的意义,掌握必要的基本的运算技能。
同时引进了计算器来完成一些有理数的运算。
教学中要注意正确地把握。
3.数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。
4.本章的导图是天气预报图,是引入负数的实际情景。
应该结合教材内容,充分利用导图与导入语,使学生对相反意义的量,对负数有直观的认识。
三、课时安排:本章的教学时间大约需要23课时,建议分配如下:§2.1正数和负数---------------2课时§2.2数轴-------------------------2课时§2.3相反数------------------------1课时§2.4绝对值----------------------1课时§2.5 有理数的大小比较----------1课时§2.6 有理数的加法--------------2课时§2.7 有理数的减法----------------1课时§2.8 有理数的加减法混合运算--------2课时§2.9 有理数的乘法----------------2课时§2.10有理数的除法----------------1课时§2.11有理数的乘方----------------1课时§2.12科学记数法------------------1课时§2.13有理数的混合运算---------2课时§2.14近似数和有效数字----------1课时§ 2.15用计算器进行数的简单运算-----1课时复习-----------------------------------2课时四、教学建议①整体把握基本概念和运算法则的引入;②整体把握基本运算能力的培养;③处理好笔算与使用计算器的尺度,避免繁、难的笔算。
2024有理数的除法北师大版数学初一上册教案
2024有理数的除法北师大版数学初一上册教案教学目标:1.知识与技能:理解有理数的除法法则,能够熟练地进行有理数的除法运算。
2.过程与方法:通过实例分析,掌握有理数除法的运算规律,提高解决问题的能力。
3.情感态度与价值观:培养认真、细心的学习态度,激发对数学学习的兴趣。
教学重点:1.有理数的除法法则。
2.有理数除法的运算技巧。
教学难点:1.有理数除法的符号法则。
2.复杂有理数除法的运算。
教学准备:1.教材:北师大版数学初一上册。
2.教学工具:黑板、粉笔、PPT。
教学过程:一、导入新课同学们,大家好!上一节课我们学习了有理数的乘法,那么大家知道有理数的除法吗?今天我们就来学习有理数的除法。
二、探究有理数的除法法则例题:计算:6÷2,-6÷2,6÷(-2),-6÷(-2)。
(1)同号相除,取绝对值相除,符号不变;(2)异号相除,取绝对值相除,符号为负。
3.教师通过PPT展示有理数除法法则的详细解释,让学生加深理解。
三、练习有理数的除法运算1.学生独立完成教材上的练习题,教师巡回指导。
2.教师挑选几道典型题目,让学生在黑板上演示解题过程,并引导学生进行讲解。
3.学生之间互相交流解题心得,分享运算技巧。
四、拓展延伸1.教师提出问题:有理数的除法和有理数的乘法有什么联系和区别?2.学生分组讨论,得出结论:(1)联系:有理数的除法可以看作是有理数乘法的逆运算;(2)区别:有理数乘法中,符号法则较为简单,而有理数除法中,符号法则较为复杂。
3.教师通过PPT展示一些拓展题目,让学生尝试解决。
五、课堂小结2.学生分享自己在课堂上的收获和疑问。
六、课后作业(课后自主完成)1.教材第x页第x-x题。
2.收集一些有理数除法的实际问题,下节课分享。
教学反思:本节课通过实例分析和学生自主探究,使学生掌握了有理数的除法法则,能够熟练地进行有理数的除法运算。
在教学过程中,要注意引导学生理解有理数除法的符号法则,以及有理数除法和有理数乘法的联系和区别。
初中数学北师大版七年级上册第二章《有理数》教案
七年级第二章第一节有理数课型:新授课教学目标:1.理解正负数的概念,会判断一个数是正数还是负数.(重点)2.会用正负数表示具有相反意义的量;有理数的分类及其分类的标准.(难点)3.培养学生树立分类讨论的思想.教法和学法指导:本节应用“启迪诱导—自主探究”教学模式.教师在教学过程中起到引导释疑的作用:引导学生观察、思考、分析、讨论、形成结论,并让学生在应用中体会所得知识,学会应用所学知识解决问题的方法.课前准备:准备课件,学生课前进行相关预习工作.教学过程:一、情景导入明确目标:大家知道,数学与数是分不开的,它是一门研究数的学问.现在我们一起回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:整数、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、……,我们用到整数1,2,……为了表示“没有东西”、“没有羊”、……,我们要用到0.瓦罐没有东西了——有了0 二人分一只西瓜,用数如何表示半只西瓜——有了分数货币购物,用数如何表示10元5角3分——有了小数用小学学过的数能表示下列数吗?零上5ºC零下5ºC但在实际生活中,还有许多量不能用上述所说的整数,零或分数、小数表示.例如,加1分和扣1分,如果只用小学学过的数,都记作1分,就不能把它们区别清楚.它们是具有相反意义的两个量.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.活动的实际效果:本环节利用问题情境的设置,紧紧扣住了学生的心弦,学生带着需要解决的问题来进行学习,极大的调动了学生学习的自觉性和积极性,有效的提高了知识的可接受程度.同学们能举例子吗?活动的实际效果:学生从身边的生活中找带有“-”号的数,他们很感兴趣,积极发言,当他们举出一些例子以后就会发现:零上为正的话,零下就为负;盈利为正,亏损就为负;海平面以上为正,海平面以下就为负,从而意识到“正”“负”是表示相反意义的量,这样学生认识到可以用正负数表示生活中具有相反意义的量.学生回答后,教师提出:怎样区别相反意义的量才好呢?二.自主学习合作探究探究活动1.用正负数表示具有相反意义的量根据课本第23页计算某班两个代表队举行知识竞赛得分情况,创设一个便于学生动手、动脑、主动探索的求知情境,然后进行小组合作讨论.活动的实际效果:在学生的交流过程中,老师进行监控指导,确保每个小组讨论的质量并沿着正确的思考方向发展.每个小组的同学都能积极说出自己的想法,组内语言表达好的同学给语言表达稍差的同学作了良好的示范,这样起到了组内帮助的作用,各个小组的学生发表了他们的不同表达方法后,大家一致总结出:用带“-”号的数表示比0分低的得分,用带“+”号的数表示比0分高的得分是最方便简洁的方法.在此基础上给同学们讲授了“-1”和“+1”的读法.学生学习了“+”、“-”表示方法后,完成表格,虽然这里包含了有理数的运算,但学生根据生活经验可以完成,此处也为了以后的运算作了铺垫.让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;活动的实际效果:通过对生活实际中的一些量的表示,体会正负数是两个具有相反意义的量;教师讲解:强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号.例1(1) 某人转动转盘,如果用+5表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2) 在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02,那么-0.03克表示什么?即时练习1:⑴任意写出5个正数与5个负数,并分别把它们填入相应的大括号里:正数集合:{…},负数集合:{…}.(2)教材第25页随堂练习第1题.(3)教材第26页知识技能第2题.活动的实际效果:本环节教师和学生一起完成例1,对学生理解正负数是表示相反意义的量以及解题格式起到示范的作用.随后展开竞赛,完成随堂练习第1题、知识技能第2题,前一环节的学习是从实际上升到理论,这一次的练习是由理论到实际应用,后者比前者在理解上来的更为深刻些探究活动2: 新的整数、分数概念引进负数后,数的范围扩大了.过去我们说整数只包括正整数和零,引进负数后,.正整数前加上负号的数叫做负整数,因而整数包括正整数、负整数和零,同样分数包括正分数、负分数,探究活动3: 有理数概念有理数的分类1.有理数概念整数和分数统称为有理数,2.有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同,根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.活动的实际效果:将所学的数分类上,学生有很多不同的分法,意见分歧比较大,但只要是合理,教师都给予了肯定,因为学生不可能得出有理数这一概念,这时教师讲解有理数的概念,并进行有理数的分类,让学生领会数学的分类思想,对有理数有了整体的认识.学生独立完成随堂练习后两题,进一步巩固对有理数的掌握.即时练习2:1.教材第25页随堂练习第2题.2.教材第26页随堂练习第3题.三.总结知识拓展提高1.通过本节课的学习你获得了那些知识?教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?活动的实际效果:每位同学在组内都能积极发言,认真回顾本节课所学知识,学生独立总结回答,既提高了学生的归纳总结能力又提高了学生的语言表达能力.达标检测:1、在-2;+1/2;-3.5;11中,正数是;负数是.2、+1350米表示高于海平面1350米,低于海平面200米,记作.3、如果上升10米记作+10米,那么下降12米,记作.4、如果规定向西走30米记作+30米,那么-40米,表示.5.如果零上5记作+5,那么零下3 记作.6.某仓库运进面粉7.5吨记作+7.5,那么运出3.8吨,记作.7.教材第25页随堂练习第2题.8.教材第26页随堂练习第3题.实际效果:大部分学生能当堂达标,完成效果良好,教师当堂批阅一半的学生.板书设计:教学反思:在认真学习《数学课程标准》的基础上,本节课通过学生身边熟悉的事物,让学生感受到负数的引入确实是实际生活的需要,数学与我们的生活密不可分;这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此学生通过这节课只能对负数概念有初步的理解,使学生掌握正负数的记法和它的描述性定义,要求不能过高.对有理数的深入理解将在以后的学习中逐步加强.在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则,教师在课堂上要起好主导作用,并让学生有充分的活动机会,使得课堂气氛有新鲜感.所以这节课采取了在教师的启发引导下,师生共同探究解决的途径,以谈话法为主.同时,教师的语言要尽量儿童化.本课中,我们有意识地突出“分类讨论”这一数学思想方法,并在教学中注意渗透两点:1.分类的标准不同,分类的结果也不相同;2.分类的结果应是无遗漏、无重复,即每一个数必须属于某一类,又不能同时属于不同的两类.推荐理由:教案中问题的设计、学情预设、过渡语言、引导语言、激励评价语言等极有利于以学生为主体,有利于自主性、合作性、探究性的学习方法。
北师大版七上2.1《有理数》教案
2.1有理数教学目标:1.借助生活中的实例,从扩充运算的角度引进负数,然后使用正负数表示现实生活中具有相反意义的量.2.经历从生活中发现数学问题,体会数学与现实生活的联系,培养自主探索能力并体验成功.教学重点和难点:理解正、负数及有理数的意义教学过程:一、引入:观察一组图片回答下列问题:某班举行知识竞赛,评分标准是:答对一题加10分,答错一题扣10分,不回答得0分;每个队的基本分均为0分。
四个代表队答题情况如下表:加10分得0分扣10分算一算:每个代表队的得分是多少?二、讲授新课:1.议一议:生活中你见过带有“–”号的数吗?比0大的数叫做正数,如,5,1.2, , …在正数前面加上“–”号的数叫做负数, 如–10,–3,…0既不是正数,也不是负数.为了突出数的符号,可以在正数前面加“+”号,如+5,+1.2,+ 9, …2. 讲解例题:例1 (1)在知识竞赛中,如果用+10分表示加10分,那么扣20分怎样表示?(2)某人转动转盘,如果用+5表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(3)在某次乒乓球的质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么– 0.03克表示什么?3. 做一做:将所有学过的数进行分类,并与同伴进行交流。
4. 正数、负数与零统称为有理数5. 说一说:通过这节课的学习,你学到了什么?感受到了什么?还想知道什么?比0大的数叫做正数,在正数前面加上“–”号的数叫做负数,0即不是正数,也不是负数.为了突出数的符号,可以在正数前面加“+”正数、负数与零统称为有理数.6. 课堂小结:根据课堂的实际情况作评价.并让小组成员叙述自己对有理数加减法的看法和掌握有困难的地方。
7. 布置作业 :P35 习题2.1 1. 2. 3. 4. 5. 7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
森学教育个性化教学辅导教案
2.把下列各组数从小到大用“<”号连接起来:
(1)3,-5,-4; (2)-9,16,-11;
1、下列各数中:
+7,-2, ,-8
3,0,+01,2,1 ,哪些是正数哪些是负数哪
些是非负数
2、什么叫做数轴画一条数轴,并在数轴上标出下列各数: -3,4,0,3,-15,-4, ,2
3、问题2中有哪些数互为相反数从数轴上看,互为相反数的一对有理数有什么特点
数轴两边到原点相等的点互为相反数
绝对值概念:
一般地,一个数a 的绝对值就是数轴上表示a 的点到原点的距离 如果a >0,那么 |a|=a ;如果a <0,那么|a| =-a ;如果a=0,那么|a| =0
例:求π-5的绝对值
2、在括号里填写适当的数:
5.3-=( ); 2
1+
=( ); -5-=( ); -3+=( ); ()=1, ()=0; -()=-2
3、计算下列各题:
|-3|+|+5|;|-3|+|-5|;|+2|-|-2|;|-3|-|-2|;
|-21|×|-31|;|-21|÷|-2|;21÷|-2
1|
(3)有没有绝对值是-2的数
5、填空:
(1)当a >0时,|2a|=________;
(2)当a >1时,|a-1|=________;
(3)当a <1时,|a-1|=________
利用绝对值比较两个负数的大小;说明:“| |”有两重作用,即绝对值和括号
绝对值小于3的数是从-3到3中间的所有的有理数,有无数多个;但绝对值小于3的整数只有五个:-2,-1,0,1,2
数轴上a <0,b >0,且|a|<|b|,求la+bl,lb-al,
|a|=-a ,|b|=b ,
|a+b|=a+b ,|b-a|=b-a 两个负数,绝对值大的反而小
例1 比较-421与-|—3|的大小
例2 已知a >b >0,比较a ,-a ,b ,-b 的大小
例3 比较-32与-43的大小
2、比较下列每对数的大小:
(1)-85
与-83;(2)-
113与-0273;(3)-73与-9
4; (4)- 65与-1110;(5)- 32与-53;(6)- 97与-119 3、写出绝对值大于3而小于8的所有整数
(1)|a|=a ; (2)|a|=-a ; (4)a >-a ;
(5)|a|≥a ; (6)-y >0; (7)-a <0; (8)a+b=0。