互感和自感、涡流

合集下载

互感和自感、涡流

互感和自感、涡流

互感和自感 涡流知识要点:一、互感现象两个相邻的线圈,当一个线圈中的电流变化时在另一个线圈中产生感应电动势,这种现象叫做互感。

这种感应电动势叫做互感电动势。

变压器就是利用互感现象制成的。

二、自感现象1.自感:当一个线圈中的电流变化时,它所产生的变化的磁场在它本身激发出感应电动势,这种现象叫做自感,相应的电动势叫做自感电动势.2.典型电路:3.规律:自感电动势大小 tI L E ∆∆= 自感电动势方向服从楞次定律,即感应电流总是阻碍原电流的变化。

4.自感系数:公式tI L E ∆∆=中的L 叫做自感系数,简称自感或电感。

自感系数与线圈的大小、形状、匝数以及是否有铁芯等因素有关。

三、涡流1.定义:块状金属在磁场中运动,或者处在变化的磁场中,金属块内部会产生感应电流,这种电流在整块金属内部自成闭合回路,叫做涡流.2.热效应:金属块中的涡流要产生热量。

如果磁通量变化率大,金属的电阻率小,则涡流很强,产生的热量很多。

利用涡流的热效应可以制成高频感应炉、高频焊接、电磁炉等感应加热设备。

变压器、电机铁芯中的涡流热效应不仅损耗能量,严重时还会使设备烧毁.为减少涡流,变压器、电机中的铁芯都是用很薄的硅钢片叠压而成。

3.磁效应:块状导体在磁场中运动时,产生的涡流使导体受到安培力,安培力的方向总是阻碍导体的运动,这种现象称为电磁阻尼。

电磁仪表中的电磁阻尼器就是根据涡流磁效应制成的4.机械效应:磁场相对于导体转动,导体中的感应电流使导体受到安培力作用,安培力使导体运动起来,这种作用称为电磁驱动。

交流感应电动机、磁性式转速表就是利用电磁驱动的原理工作的。

课堂练习1.(海南)在如图所示的电路中,a 、b 为两个完全相同的灯泡,L 为自感线圈,E 为电源,S为开关。

关于两灯泡点亮和熄灭的先后次序,下列说法正确的是( ) A .合上开关,a 先亮,b 后亮;断开开关,a 、b 同时熄灭 B .合上开关,b 先亮,a 后亮;断开开关,a 先熄灭,b 后熄灭C .合上开关,b 先亮,a 后亮;断开开关,a 、b 同时熄灭D .合上开关,a 、b 同时亮;断开开关,b 熄灭,a 后熄灭2.(徐州三测)在如图所示电路中.A 、B 是两个完全相同的灯泡,L 是一个自感系数很大、直流电阻为零 的电感线圈,C 是电容很大的电容器.当S 闭合与断开时,对A 、B 的发光情况判断正确的是 ( )A .S 闭合时,A 立即亮,然后逐渐熄灭B .S 闭合时,B 立即亮,然后逐渐熄灭C .S 闭合足够长时间后,B 发光,而A 不发光D .S 闭合足够长时间后再断开S ,B 立即熄灭,而A 逐渐熄3.如图所示,A 和B 是电阻为R 的电灯,L 是自感系数较大的线圈,当S 1闭合、S 2断开且电路稳定时,A 、B 亮度相同,再闭合S 2,待电路稳定后将S 1断开,下列说法中,正确的是 ( )A .B 灯立即熄灭B .A 灯将比原来更亮一些后再熄灭C .有电流通过B 灯,方向为c →dD .有电流通过A 灯,方向为b →a4.如图所示,abcd 是一闭合的小金属线框,用一根绝缘的细杆挂在固定点O ,使金属线框在竖直平面内来回摆动的过程穿过水平方向的匀强磁场区域,磁感线方向跟线框平面垂直,若悬点摩擦和空气阻力不计,则 ( )A .线框进入或离开磁场区域时,都产生感应电流,而且电流的方向相反B .线框进入磁场区域后,越靠近OO ′线时速度越大,因而产生的感应电流也越大C .线框开始摆动后,摆角会越来越小,摆角小到某一值后将不再减小D .线框摆动过程中,机械能完全转化为线框电路中的电能5.(上海)如图所示,A 、B 为大小、形状均相同且内壁光滑,但用不同材料制成的圆管,竖直固定在相同高度。

人教版高中物理选修3-2知识点整理及重点题型梳理] 互感和自感、涡流

人教版高中物理选修3-2知识点整理及重点题型梳理] 互感和自感、涡流

人教版高中物理选修3-2知识点梳理重点题型(常考知识点)巩固练习互感和自感、涡流【学习目标】1、知道什么是互感现象和自感现象。

2、知道自感系数是表示线圈本身特征的物理量,知道它的单位及其大小的决定因素。

3、能够通过电磁感应部分知识分析通电、断电自感现象的原因。

4、知道涡流是如何产生的,知道涡流对人类有利和有害的两方面,以及如何利用涡流和防止涡流。

【要点梳理】要点一、互感现象两个线圈之间没有导线相连,但当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象称为互感,产生的感应电动势叫互感电动势。

要点诠释:(1)互感现象是一种常见的电磁感应现象,它不仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何相互靠近的电路之间。

(2)互感现象可以把能量从一个电路传到另一个电路。

变压器就是利用互感现象制成的。

(3)在电子电路中,互感现象有时会影响电路的正常工作,应设法减小电路间的互感。

要点二、自感现象1.实验如图甲所示,首先闭合S 后调节R ,使12A A 、亮度相同,然后断开开关。

再次闭合S ,灯泡2A 立刻发光,而跟线圈L 串联的灯泡1A 却是逐渐亮起来的。

如图乙所示电路中,选择适当的灯泡A 和线圈L ,使灯泡A 的电阻大于线圈L 的直流电阻。

断开S 时,灯A 并非立即熄灭,而是闪亮一下再逐渐熄灭。

图甲实验叫通电自感。

在闭合开关S 的瞬间,通过线圈L 的电流发生变化而引起穿过线圈L 的磁通量发生变化,线圈L 中产生感应电动势,这个感应电动势阻碍线圈中电流的增大,通过灯泡1A 的电流只能逐渐增大,所以1A 只能逐渐变亮。

图乙实验叫断电自感。

断开S 的瞬间,通过线圈L 的电流减弱,穿过线圈的磁通量很快减小,线圈L 中出现感应电动势。

虽然电源断开,但由于线圈L 中有感应电动势,且和A 组成闭合电路,使线圈中的电流反向流过灯A ,并逐渐减弱由于L 的直流电阻小于灯A 的电阻,其原电流大于通过灯A 的原电流,故灯闪亮一下后才逐渐熄灭。

高二物理知识点总结

高二物理知识点总结

高二物理知识点总结第四章电磁感应第1节划时代的发现第2节探究电磁感应的产生条件一、学习要求:1、通过学习,使学生了解自然界的普遍联系的规律,科学的态度、科学的方法,是研究科学的前提,对科学的执着追求是获得成功的保证。

从而培养学生学习物理兴趣,激发学习热情。

2、通过学习使学生知道科学的道路不平坦,伟人的足迹是失败、挫折+成功。

3、知道电磁感应及产生电磁感应的条件。

4、理解磁通量及其变化。

二、教材重点:1、揭示“电生磁”与“磁生电”发现过程的哲学内涵。

正确的理论指导和科学的思想方法是探究自然规律的重要前提。

2、磁通量的概念及磁通量与磁感应强度的关系。

3、通过对产生感应电流的条件和磁通量变化的分析,养成良好的过程分析习惯。

4、磁通量变化的各种形式。

三、教材难点:1、以实验为基础,探究产生感应电流的条件。

2、控制实验条件,通过由感性到理性,由具体到抽象的认识方法分析归纳出产生感应电流的规律。

3、电磁感应中的能量守恒。

四、教材疑点:1、移动磁铁的磁场引起感应电流时,磁铁内部的磁感线和外部的磁感线方向相反,形成闭合的曲线,教材中没有显示内部磁感应线。

2、磁通量是双向标量,教材中虽然没有提出,但在应用中不可避免地涉及到。

五、学生易错点:1、对产生感应电流的条件的理解①闭合电路中的“闭合”在应用中易忽视。

②磁通量发生变化,而不是磁场的变化。

2、磁铁内部的磁感线条数跟外部所有磁感线的条数相等3、各种磁感线的分布规律及形状4、磁通量增减的判断六、教材资源:1、自然现象之间的相互联系和相互转化的哲学思想,指导科学探究是奥斯特和法拉第获得成功的前提。

2、科学的规律在实验中总结出来的,实验是物理学科的基础。

同时由具体到抽象,由感性到理性的高度概括是得到正确结论的关键。

3、教材中值得重视的题目是:P9第6题、P10第7题。

第3节愣次定律一、学习要求1.经历实验探究过程,理解楞次定律。

2.会用楞次定律判断感应电流的方向。

在电磁感应现象里不要求判断内电路中各点电势的高低。

1.6__涡__流

1.6__涡__流

例与练3 例与练
铁块会被磁化, 铁块会被磁化, 与磁铁相互吸引
在水平放置的光滑导轨上, 在水平放置的光滑导轨上,沿导轨固定一个 条形磁铁,如图。现有铁、 条形磁铁,如图。现有铁、铝和有机玻璃 制成的滑块甲、 制成的滑块甲、乙、丙,使它们从导轨上 点以某一初速度向磁铁滑去。 的A点以某一初速度向磁铁滑去。各物块在 点以某一初速度向磁铁滑去 碰上磁铁前的运动情况是( BD ) 碰上磁铁前的运动情况是 A、都做匀速运动 、 B、甲做加速运动 、 C、乙做匀速运动 、 D、丙做匀速运动 、
1.6


互感和自感是两种特殊的电 磁感应现象,现在学习另一种特 磁感应现象 现在学习另一种特 涡流。 殊的电磁感应现象—涡流 殊的电磁感应现象 涡流。涡 流在实际生活中有许多应用, 流在实际生活中有许多应用, 发电机、 如:发电机、电动机和变压器 等。当然涡流也有利和弊两个 方面,我们如何去加以利用? 方面,我们如何去加以利用? 如何去防止呢? 如何去防止呢?
a.增大铁芯材料的电阻率,常用的材料是硅钢。 a.增大铁芯材料的电阻率,常用的材料是硅钢。 增大铁芯材料的电阻率 b.用互相绝缘的硅钢片叠成的铁芯来代替整块硅钢铁芯 用互相绝缘的硅钢片叠成的铁芯来代替整块硅钢铁芯。 b.用互相绝缘的硅钢片叠成的铁芯来代替整块硅钢铁芯。
二、电磁阻尼
为什么用铝框做线圈骨架? 为什么用铝框做线圈骨架?
一、涡流 2.金属块中的涡流也要产生热量. 2.金属块中的涡流也要产生热量. 金属块中的涡流也要产生热量 3.应用 3.应用 (1)利用 热效应) 利用( (1)利用(热效应) a.真空冶炼炉 a.真空冶炼炉
b.电磁灶 b.电磁灶
探雷器
金属探测器
(2)利用(磁效应) (2)利用(磁效应)利用

高考物理选修知识点知识讲解 互感和自感、涡流

高考物理选修知识点知识讲解 互感和自感、涡流

高考物理选修知识点知识讲解互感和自感、涡流一、互感和自感互感,也称感性耦合,是指当一个电路中的电压或者电流发生变化时,另一个电路受到影响,从而产生另一个电路中的某种电压和电流,即连接电路之间自然耦合发生的电磁感应现象。

在实践中,人们经常使用两个或多个相邻的物理电路之间的某种形式的互感作用,比如应用对数变换、正交变换、变压器等。

可以把它看做一个小型的变压器,它实现了两个回路间不接触及无需任何电路就能把电能传递到其他回路中去。

自感,又称自感耦合,是指一个电路中的变化active power会在其中产生磁场,从而使它自身受到感应,从而影响其他的电路,从而形成一种电磁反作用而产生的现象,也就是自感耦合作用。

例如在发电厂中的同步发电机,它的转子受到外部的磁场的感应,它的绕组的变化会产生电流,这就是自感耦合作用。

同样可以把一个电磁铁和一个电路形成一个简单的自感耦合作用,当电路中电流变化时,产生电磁场影响磁铁,从而对磁铁产生感应,这就是自感耦合作用。

互感和自感都有自身特点,互感可以变换频率和电压,而自感则可以不受外界影响,容易产生短路。

此外还可以用和变容量器、变电容器等来产生自感耦合。

另外,互感和自感的效果有区别。

互感的效果受噪声影响较小,而自感的效果则受外来噪声的影响较大。

这也说明了,当我们制定电路时,有时需要使用互感来消除噪声,以便获得更加稳定的电路结果。

二、涡流涡流,即涡旋电流,是一种频率频率为中频、低频、超低频(ELF)、超高频(UHF)/超声波(UltraSound)等波形的时变电流。

它主要是由电路中的导体,即架(铁芯)激励器(coil)和介质(介质)发生的电磁场产生的,它由它的产生原理和波形的特性分为绝缘空气中时变涡流和介质中时变涡流两种。

电涡流的应用可以说遍及电子、电器、电力行业,它能够检测、检查、测量及控制,当然也可以用来实现高精度和特殊功能的部件制造,比如电磁阀、涡轮机、控制电路等。

电路中通常有普通线圈(coil)、谐振线圈(Resonating coil)和谐振式组合(combined resonating coil)等用来储存和发射涡流或涡旋电流。

第4章 电感式传感器

第4章 电感式传感器
(c) 四节式
3
(d) 五节式
图4.12 差动变压器线圈各种排列形式 1 一次线圈;2 二次线圈;3 衔铁
三节式的零点电位较小,二节式比三节式灵敏度高、线性范 围大,四节式和五节式改善了传感器线性度。
2.2 工作原理
以三节式差动变压器为例,将两个匝数相等的次级绕组的 同名端反向串联,当初级绕组W1加以激磁电压时,根据变压器 的作用原理在两个次级绕组W2a和W2b中就会产生感应电势,如 果工艺上保证变压器结构完全对称,则当活动衔铁处于初始平 衡位置时,输出电压为零。
U1 U 2 j ( M 1 M 2 ) R1 jL1 其有效值为: (M1 M 2 )U1 U2 R12 (L1 ) 2
.
E 21 jM 1 I.1 . E 22 jM 2 I1
.
.
R1
M1
.
. U1 ~ M2
L21 L22 R22
U2
. ~ E22
(c)、(d) 螺线管式差动变压器
(e)、(f) 变面积式差动变压器
二次绕组
二次绕组 衔铁
一次绕组
图4.11 螺线管式差动变压器的结构示意图
螺管型差动变压器根据初、次级排列不同有二节式、三节 式、四节式和五节式等形式。 1 1 1 1 2 1 2 1 2 1 2
2
(a) 二节式
3
(b) 三节式
2
II. 变面积型灵敏度较小,但线性较好,量程较大; III.螺管型灵敏度较低,但量程大且结构简单。
1.4 差动式自感传感器
由于线圈中通有交流励磁电流,因而衔铁始终承受电 池吸力,会引起振动和附加误差,而且非线性误差较大。 外界的干扰、电源电压频率的变化、温度的变化都会 使输出产生误差。

电感式传感器

电感式传感器

2
3
......
L0 0 0 0
忽略高次项:
L 1
L 0
0
K
L
L 0
0
衔铁上移 , 0
L 2
L2
L 0
AN 2 0
2
0
0
AN
2
2
0
L0 0
当 1 时, 0
2
3
L2 L0
0
0
0
......
忽略高次项: L2
L0
0
4.1.3 差动式自感传感器
变气隙型差动式自感传感器
衔铁下移:
AN 2
L 0
1 2( )
0
AN 2
L 0
2 2( ) 0
L 1
L 1
0
0
0
2
0
3
......
L 2
L 1
0
0
0
2
0
3
......
L
L 2
L 1
2L
0 0
0
3
0
5
......
L L0
L L
的特性曲线。说明:电桥 25
输出电压的大小与衔铁的 0
位移量Δδ有关,相位与 25
衔铁的移动方向有关。若 50
设衔铁向上移动Δδ为负,
75
则U0为负;衔铁向下移 动Δδ为正,则U0为正,
100
相位差180°。


1
2
4
-Δ lδ Δ lδ 3
1 2 3 4 lδ/mm
2、变压器式交流电桥
电桥两臂Z1、Z2为传感器线圈阻抗 I

自感、互感、涡流

自感、互感、涡流

图13
A.电流变化的频率越高,焊缝处的温度升高得越快 B.电流变化的频率越低,焊缝处的温度升高得越快 C.工件上只有焊缝处温度升得很高是因为焊缝处的电阻小 D.工件上只有焊缝处温度升得很高是因为焊缝处的电阻大
E R
5.完全相同的两个磁电式灵敏电流表 a和b、零点在中央, 指针可两侧偏转.现将两表如图所示的方式连接起来,当将a 表指针向逆时针方向拨动时,b表指针将会 A.向逆时针方向转动 B.不动 C.向顺时针方向转动 D.指针会转动,但转动方向无法判定
题型 自感现象 【例】 如图8所示,a、b灯分别标 有“36 V,40 W”和“36 V,25 W”, 闭合电键,调节R,能使a、b都正常 发光.断开电键后重做实验,电键闭
流方向相同
D、断开S时,A灯会突然闪亮一下后,再熄灭
2、如图9-2-5所示, 若器材满足R灯>RL(RL 为线圈的直流电阻), 线圈自感系数足够大, 在断开开关的瞬间会出 现什么现象?试解释原 因.
3 .如图所示的电路,多匝线圈的电阻和电池的内电 阻可以忽略,两个电阻器的阻值都是R,电键K原来是断 开的,电流为I0,现合上电键K,将一电阻器短路,于是 线圈中产生自感电动势.这个自感电动势
1、自感电动势的大小:
自感电动势的大小跟其它感应电动势的大小一样,跟穿 过线圈的磁通量的变化快慢有关。 而在自感现象中,穿过线圈的磁通量是由电流引起的, 故自感电动势的大小跟导体中电流变化的快慢有关。
Δφ ΔI E L Δt Δt
2、自感系数:L称为线圈的自感系数,简称自感或 电感。L的大小跟线圈的形状、长短、匝数、有无铁 芯有关。 单位:亨利(H) 1H=103mH=106μH
通电导线周围产生磁 场,那么当线圈自身中电 流发生变 化时,线圈中会 有感应电动势吗? 当一个线圈中的电流变化时,它产生的变化的磁 场不仅在邻近的电路中激发出感应电动势,同样也在 它本身激发出感应电动势。这种现象称为自感。由于 自感而产生的感应电动势叫自感电动势

《涡流》 讲义

《涡流》 讲义

《涡流》讲义一、什么是涡流当导体处在变化的磁场中,或者导体在磁场中运动时,导体内部会产生感应电流。

这种由于电磁感应在导体内部形成的闭合电流,就叫做涡流。

为了更直观地理解涡流,我们可以想象一个金属圆盘在磁场中旋转。

当磁场发生变化时,磁力线会不断切割金属圆盘,从而在圆盘内部产生一圈圈的电流。

这些电流就像水中的漩涡一样,因此被形象地称为涡流。

二、涡流的产生条件涡流的产生需要两个关键条件:一是存在变化的磁场;二是导体要处于这个变化的磁场中或者在磁场中运动。

变化的磁场可以由多种方式产生。

例如,交流电源产生的交变磁场,或者磁场强度随时间发生改变。

导体在磁场中的运动方式也多种多样,比如平动、转动等。

三、涡流的特点1、环形电流涡流在导体内部呈现为环形电流,其方向遵循电磁感应定律。

2、热效应涡流会使导体发热,这是因为电流在导体中流动时会遇到电阻,从而产生焦耳热。

这种热效应在一些情况下是有益的,比如利用涡流进行金属熔炼和加热处理;但在另一些情况下则是有害的,比如变压器和电机中的铁芯会因为涡流而发热,导致能量损耗和效率降低。

3、趋肤效应涡流在导体中的分布并不是均匀的,而是集中在导体的表面,这种现象被称为趋肤效应。

导体的电阻会随着频率的增加而增大,导致涡流更多地集中在表面。

四、涡流的应用1、涡流加热利用涡流的热效应,可以对金属进行加热处理。

例如,在工业生产中,通过涡流加热可以快速、均匀地加热金属材料,用于锻造、熔炼等工艺。

2、涡流探伤通过检测涡流的变化,可以发现金属材料内部的缺陷。

当金属材料存在裂缝、气孔等缺陷时,涡流的分布会发生改变,从而可以检测出这些缺陷。

3、电磁阻尼在一些需要快速制动或稳定运动的装置中,涡流可以起到电磁阻尼的作用。

例如,在电表的指针中,通过利用涡流产生的阻尼力,可以使指针快速稳定地指示读数。

4、感应加热炊具我们日常生活中的电磁炉就是利用涡流原理进行加热的。

在电磁炉内部产生的交变磁场作用下,锅底产生涡流,从而使锅具迅速发热。

高中物理 互感和自感、涡流 (提纲、例题、练习、解析)

高中物理  互感和自感、涡流 (提纲、例题、练习、解析)

互感和自感、涡流【学习目标】1、知道什么是互感现象和自感现象。

2、知道自感系数是表示线圈本身特征的物理量,知道它的单位及其大小的决定因素。

3、能够通过电磁感应部分知识分析通电、断电自感现象的原因。

4、知道涡流是如何产生的,知道涡流对人类有利和有害的两方面,以及如何利用涡流和防止涡流。

【要点梳理】要点一、互感现象两个线圈之间没有导线相连,但当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象称为互感,产生的感应电动势叫互感电动势。

要点诠释:(1)互感现象是一种常见的电磁感应现象,它不仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何相互靠近的电路之间。

(2)互感现象可以把能量从一个电路传到另一个电路。

变压器就是利用互感现象制成的。

(3)在电子电路中,互感现象有时会影响电路的正常工作,应设法减小电路间的互感。

要点二、自感现象1.实验如图甲所示,首先闭合S 后调节R ,使12A A 、亮度相同,然后断开开关。

再次闭合S ,灯泡2A 立刻发光,而跟线圈L 串联的灯泡1A 却是逐渐亮起来的。

如图乙所示电路中,选择适当的灯泡A 和线圈L ,使灯泡A 的电阻大于线圈L 的直流电阻。

断开S 时,灯A 并非立即熄灭,而是闪亮一下再逐渐熄灭。

图甲实验叫通电自感。

在闭合开关S 的瞬间,通过线圈L 的电流发生变化而引起穿过线圈L 的磁通量发生变化,线圈L 中产生感应电动势,这个感应电动势阻碍线圈中电流的增大,通过灯泡1A 的电流只能逐渐增大,所以1A 只能逐渐变亮。

图乙实验叫断电自感。

断开S 的瞬间,通过线圈L 的电流减弱,穿过线圈的磁通量很快减小,线圈L 中出现感应电动势。

虽然电源断开,但由于线圈L 中有感应电动势,且和A 组成闭合电路,使线圈中的电流反向流过灯A ,并逐渐减弱由于L 的直流电阻小于灯A 的电阻,其原电流大于通过灯A 的原电流,故灯闪亮一下后才逐渐熄灭。

2.结论由于通过线圈自身的电流发生变化时,线圈本身产生感应电动势的现象叫自感现象。

《涡流》 讲义

《涡流》 讲义

《涡流》讲义一、什么是涡流在物理学中,涡流是一种在导体内部产生的环流电流。

当导体处于变化的磁场中时,导体内部的自由电子会受到洛伦兹力的作用,从而形成闭合的环流,这就是涡流。

为了更形象地理解涡流,我们可以想象一个金属圆盘放置在一个变化的磁场中。

磁场的变化会导致磁力线不断地切割金属圆盘,就好像有无数个小“鞭子”在抽打自由电子,驱使它们运动起来,形成了涡流。

涡流在我们的日常生活和工业生产中有着广泛的应用,但同时也可能带来一些不利的影响。

二、涡流的产生条件要产生涡流,需要两个关键条件:一是要有导体,二是要有变化的磁场。

导体是涡流能够形成的物质基础。

常见的导体如铜、铝等金属,它们内部存在大量自由电子,能够在磁场的作用下自由移动。

变化的磁场则是驱动自由电子运动的动力。

这个磁场的变化可以是磁场强度的改变、方向的变化,或者是磁场的移动等。

三、涡流的特点1、闭合性涡流总是形成闭合的回路,这是由于自由电子在洛伦兹力的作用下不断运动,直到形成一个完整的环流。

2、热效应涡流在导体中流动时会产生热量。

这是因为电子在运动过程中会与导体中的原子发生碰撞,从而将部分能量转化为热能。

这种热效应在一些情况下是有益的,比如电磁炉就是利用涡流的热效应来加热食物;但在另一些情况下,比如变压器的铁芯中,涡流产生的热量会导致能量损耗和设备发热,需要采取措施来减小涡流。

3、集肤效应涡流还有一个重要的特点就是集肤效应。

当交流电流通过导体时,电流密度在导体横截面上的分布是不均匀的,越靠近导体表面,电流密度越大,越往导体内部,电流密度越小。

这是因为涡流在导体表面产生的磁场会削弱外部磁场在导体内部的渗透,从而导致电流主要集中在导体表面。

四、涡流的应用1、感应加热涡流可以用于金属的感应加热。

在工业生产中,需要对一些金属工件进行加热处理,如淬火、回火等。

通过在工件周围产生变化的磁场,从而在工件内部产生涡流,利用涡流的热效应可以快速、均匀地加热工件。

2、电磁阻尼在一些需要快速制动或减震的装置中,涡流可以起到电磁阻尼的作用。

【高中物理】高中物理(人教版)选修1-1同步教师用书:第3章-第6节-自感现象-涡流

【高中物理】高中物理(人教版)选修1-1同步教师用书:第3章-第6节-自感现象-涡流

六、自感现象涡流学习目标知识脉络1.知道什么是自感现象,了解自感系数与涡流.(重点)2.理解影响自感系数大小的因素.(重点)3.知道利用自感现象和涡流的实例,知道自感现象与涡流危害的避免方法.(难点)4.了解日光灯、电磁炉等家用电器的工作原理.(难点)自感现象及电感器[先填空]1.自感现象线圈中通交流时,由于线圈自身电流的变化,引起磁通量的变化,也会在它自身激发感应电动势,这个电动势叫做自感电动势,这种现象叫做自感现象.2.自感的作用阻碍电路中电流的变化.3.电感器:电路中的线圈叫做电感器.4.描述电感器性能的物理量:自感系数,简称自感.决定线圈自感系数的因素:线圈的大小、匝数、线圈中是否有铁芯.有铁芯时的自感系数比没有铁芯时大得多.5.电感器的电路作用:由于线圈中的自感电动势总是阻碍电流的变化.因此,电感器对交流有阻碍作用.[再判断]1.线圈中电流增大时,自感现象阻碍电流的增大.(√)2.线圈中电流减小时,自感现象阻碍电流的减小.(√)3.线圈匝数越多,对电流变化的阻碍作用就越大.(√)[后思考]1.一个灯泡通过一个粗导线绕制的线圈与一交流电源相连接,如图3-6-1所示.一条形铁块插进线圈之后,该灯明亮程度是否会发生变化?图3-6-1【提示】灯泡亮度会变暗,线圈和灯泡是串联的,因此加在串联电路两端的总电压等于线圈上的电压与灯泡上的电压之和.电源提供的220 V电压,一部分降落在线圈上,剩余的部分降落在灯泡上,把条形铁块插进线圈后,线圈的自感系数增大,对交流电的阻碍作用增大,线圈分得的电压增大,灯泡上的电压减小,故灯泡变暗.2.有人说自感现象不遵守法拉第电磁感应定律,你认为这种说法对吗?【提示】这种说法不对.自感现象是电磁感应现象,遵守法拉第电磁感应定律.1.通电自感和断电自感通电自感断电自感电路图电路准备灯A1、A2规格完全相同,闭合S,调节R使A1、A2亮度相同,再断开S线圈L的自感较大,闭合S,使灯A发光实验现象S重新闭合,灯A2立刻正常发光,S断开时,灯A过一会儿才灯A1逐渐亮起来熄灭原因S闭合时,电流从零开始增加,穿过L的磁通量逐渐增加,产生的感应电动势与L中原电流方向相反,阻碍L中电流增加,推迟了电流达正常值的时间S断开时,L中电流突然减弱,穿过L的磁通量减少,L中产生与原电流方向相同的感应电动势,阻碍电流的减小,这时,L与A构成闭合回路,灯A会闪亮一下再熄灭2.自感现象的实质自感现象遵循法拉第电磁感应定律.自感是由自身电流变化而产生的电磁感应现象.而前面所学变压器是由于另外线圈中电流变化,进而磁场、磁通量变化而在该线圈回路中产生电磁感应的现象,因此又叫互感现象.3.自感的作用阻碍电流的变化,应理解为自感仅仅是减缓了原电流的变化,而不会阻止原电流的变化或逆转原电流的变化.4.电感器的特点由于恒定直流的大小不变,通过电感器的磁通量不变,无自感电动势.因此,电感器对恒定直流无阻碍作用,故电感器有“通直流,阻交流”的特点.1.如图3-6-2所示电路中,S是闭合的,此时流过L的电流为I1,流过灯A 的电流为I2,且I1<I2,在t1时刻将S断开,那么流过灯泡的电流随时间变化的图象是图中的()【导学号:46852070】图3-6-2【解析】S断开前,流过A与L的电流分别为I2、I1,二者方向相同;S 断开后,I2立即消失,但由于自感作用,I1不会立即消失,并且A与L构成一回路,A中电流方向反向且由I1逐渐减小至0.【答案】 D2.如图3-6-3所示,L为自感系数较大的线圈,电路稳定后小灯泡正常发光,当断开开关S的瞬间会有()图3-6-3A.灯A立即熄灭B.灯A慢慢熄灭C.灯A突然闪亮一下再慢慢熄灭D.无法判定【解析】当开关S断开时,由于通过电感线圈的电流从有变到零,线圈将产生自感电动势,但由于线圈L与灯A串联,在S断开后,不能形成闭合回路,因此灯A在开关断开后,电源供给的电流为零,灯立即熄灭.因此正确选项为A.【答案】 A3.(多选)如图3-6-4所示,A1和A2是完全相同的灯泡,线圈L的电阻可以忽略,下列说法正确的是()【导学号:46852071】3-6-4A.闭合开关S接通电路时,A2先亮,A1后亮,最后一样亮B.闭合开关S接通电路时,A1、A2始终一样亮C.断开开关S切断电路时,A2立即熄灭,A1过一会才熄灭D.断开开关S切断电路时,A1、A2都过一会才熄灭【解析】闭合开关时,由于自感电动势的作用,A1电路中的电流只能逐渐增大到与A2中的电流相同,故选项A正确,选项B错误;开关由闭合到断开,L相当于电源,A1、A2、L组成闭合回路,电流由支路A1中的电流逐渐减小,故选项C错误,选项D正确.【答案】AD1.自感是线圈自身电流变化引起的;互感是另外线圈电流变化引起的.2.自感现象也遵循法拉第电磁感应定律.涡流及其应用[先填空]1.定义:只要在空间有变化的磁通量,其中的导体就会产生感应电流,我们把这种感应电流叫做涡流.2.应用:涡流通过电阻时可以生热,金属探测器和电磁炉就利用了涡流.但在电动机、变压器中涡流是有害的.[再判断]1.涡流是可以利用的.(√)2.变压器中的涡流是有害的.(√)3.冶炼金属中的涡流也是有害的.(×)[后思考]1.变压器中是如何减小涡流的?【提示】变压器中的铁芯是用涂有绝缘漆的硅钢片叠压制成,从而减小了涡流.2.电流频率的高低对涡流有什么影响?【提示】根据法拉第电磁感应定律知,电流频率越高涡流越强.1.涡流把块状金属放在变化的磁场中,或者让它在磁场中运动时,金属块内将产生感应电流,这种电流在金属块内自成闭合回路,很像水的漩涡,故叫涡电流,简称涡流.涡流常常很强.2.涡流的减少在各种电机和变压器中,为了减少涡流的损失,在电机和变压器上通常用涂有绝缘漆的薄硅钢片叠压制成的铁芯.3.涡流的利用冶炼金属的高频感应炉就是利用强大的涡流使金属尽快熔化.电学测量仪表的指针快速停止摆动也是利用铝框在磁场中转动产生的涡流.4.如图3-6-5所示,在一个绕在线圈的可拆变压器铁芯上分别放一小平底铁锅水和一玻璃杯水.给线圈通入电流,一段时间后,一个容器中水温升高,则通入的电流与水温升高的是()图3-6-5A.恒定电流、小铁锅B.恒定电流、玻璃杯C.变化的电流、小铁锅D.变化的电流、玻璃杯【解析】通入恒定电流时,所产生的磁场不变,不会产生感应电流,通入变化的电流,所产生的磁场发生变化,铁锅是导体,在导体内产生涡流,电能转化为内能,使水温升高;涡流是由变化的磁通量在导体内产生的,所以玻璃杯中的水不会升温.【答案】 C5.(多选)电磁炉在炉内由交变电流产生交变磁场,使放在炉上的金属锅体内产生感应电流而发热,从而加热食品.电磁炉的工作利用了()【导学号:46852072】A.电流的热效应B.静电现象C.电磁感应原理D.磁场对电流的作用【解析】电磁炉的原理是电磁炉产生高频的变化磁场,使炉上的铁或钢锅的锅底产生感应电流,此电流产生热量,所以选项A、C正确.【答案】AC6.下列关于涡流的说法中正确的是()A.涡流跟平时常见的感应电流一样,都是因为穿过导体的磁通量变化而产生的B.涡流不是感应电流,而是一种有别于感应电流的特殊电流C.涡流有热效应,但没有磁效应D.在硅钢中不能产生涡流【解析】涡流本质上是感应电流,是自身构成回路,在穿过导体的磁通量变化时产生的,所以选项A对,选项B错;涡流不仅有热效应,同其他电流一样也有磁效应,选项C错;硅钢电阻率大,产生的涡流较小,但仍能产生涡流,选项D错.【答案】 A为了减小涡流,变压器、电机里的铁芯不是由整块的钢铁制成,而是用薄薄的硅钢片叠合而成.一方面硅钢片的电阻率比一般钢铁的要大,从而减少损耗;另一方面,每层硅钢片之间都是绝缘的,阻断了涡流的通路,进一步减少了涡流的发热.计算表明:涡流的损耗与硅钢片的厚度的平方成正比.高中物理考试答题技巧及注意事项在考场上,时间就是我们致胜的法宝,与其犹犹豫豫不知如何落笔,倒不如多学习答题技巧。

互感与自感的关系

互感与自感的关系

互感与自感的关系互感和自感是两个物理概念,它们在电磁学和电路理论中起着重要的作用。

本文将探讨互感和自感之间的关系及其在电路中的应用。

一、互感和自感的定义互感是指两个或多个线圈或导体之间由于磁场的相互作用而产生的感应电势。

当电流通过一个线圈时,其磁场会影响附近的其他线圈,从而使其他线圈中有感应电势的产生。

这种现象称为互感。

自感是指电流通过一个线圈时,该线圈自身所产生的磁场对自身感应电势的影响。

当电流变化时,线圈中的磁场也会发生变化,从而在线圈中引起感应电势,这种现象称为自感。

二、互感和自感的关系互感和自感都是由于磁场变化而引起的感应电势,它们之间存在着密切的关系。

在电路中,互感和自感可以相互转换。

当两个线圈互相靠近时,它们之间会产生互感。

互感的大小与线圈的匝数、线圈之间的距离以及磁性材料的性质有关。

互感可以用数学公式表示为:M = k√(L1L2)其中,M表示互感系数,L1和L2分别表示两个线圈的自感系数,k表示两个线圈之间的耦合系数。

自感可以看作是互感的特殊情况,即只有一个线圈时的互感。

自感的大小与线圈的匝数、线圈的形状以及线圈中的电流有关。

自感可以用数学公式表示为:L = μ0μrN²A/l其中,L表示自感系数,μ0表示真空中的磁导率,μr表示线圈中的相对磁导率,N表示线圈的匝数,A表示线圈的横截面积,l表示线圈的长度。

互感和自感之间的关系可以通过互感和自感之比来描述,这个比值称为耦合系数。

耦合系数是一个介于0和1之间的数,表示互感和自感之间的相对强度。

当耦合系数等于1时,表示互感和自感完全一致;当耦合系数等于0时,表示互感和自感完全独立。

三、互感和自感的应用互感和自感在电路中有着广泛的应用。

它们可以实现信号的耦合、变压器的工作以及电路的滤波等功能。

1. 信号耦合:互感可用于将一个电路的信号传递到另一个电路中。

通过合适选择互感系数和耦合方式,可以实现信号的耦合和传输。

2. 变压器:变压器是基于互感的原理工作的。

电磁感应理解互感和自感现象的应用

电磁感应理解互感和自感现象的应用

电磁感应理解互感和自感现象的应用在我们日常生活中,电磁感应是一种非常常见的物理现象,它是指导线中电流变化产生的磁场经过导线圈内、外环境产生的一种电动势。

通过对电磁感应的研究,我们可以更好地理解互感和自感现象,并将其应用于各个领域。

一、互感现象互感现象是指当两个电路存在磁耦合时,其中一个电路中的电流或电压的变化会引起另一个电路中的电流或电压的变化。

互感现象在电子通信、电力传输和电路设计中有着广泛的应用。

电子通信:互感现象在无线通信系统中起着重要的作用。

例如,手机中的天线将电信号作为电磁波发送出去,而天线接收到的电磁波也会通过互感现象转换成电信号。

同时,在通信线路中使用的变压器也利用了互感现象进行信号的传输和接收。

电力传输:变压器是电力传输系统中的重要设备,它利用了互感现象进行电能的传输。

变压器中的两个线圈通过磁耦合,通过改变输入线圈的电流来实现输出线圈电流和电压的变化。

这种方式可以实现电能从发电厂向用户的传输,提高了电力传输的效率。

电路设计:互感器在电路设计中也有着广泛的应用。

例如,互感输入电流传感器可以测量电路中的电流,并将其转换为与电流成正比的输出电压。

另外,交流耦合电感器可以将输入信号与输出信号在电路中进行耦合,以实现信号放大或滤波。

二、自感现象自感现象是指导线自身的电阻率变化引起的感应电动势。

自感现象在电子元件和电路设计中也有着重要的应用。

电子元件:电感器是利用自感现象制造的电子元件之一。

电感器通过将导线绕制成线圈,利用自感现象将变化的电流转换成感应电动势。

这种感应电动势可以用于各种电路中,例如滤波器、调谐电路和振荡电路。

电路设计:自感现象也广泛应用于电路设计中。

例如,为了抑制电路中的高频噪声,可以使用自感元件制造一个自感环,通过自感现象将高频噪声转变为热能。

另外,在配电线路中使用的电感线圈也可以通过自感现象过滤电路中的谐振电流。

三、电磁感应的其他应用除了互感和自感现象的应用之外,电磁感应还具有其他一些重要的应用。

自感和互感(hh)

自感和互感(hh)

二、电感器
电感器:电路中的线圈又叫电感器。 1.电感器:电路中的线圈又叫电感器。
自感系数: 2、自感系数: 描述电感器的性能的,简称自感或电感。 (1)描述电感器的性能的,简称自感或电感。 影响因素: (2)影响因素:
决定大小的因素: 决定大小的因素:
1 2 3
线圈越大 匝数越多 它的自感系数越大 线圈越大、匝数越多,它的自感系数越大! 给线圈中加入铁芯 自感系数比没有铁芯大 给线圈中加入铁芯,自感系数比没有铁芯大多! 铁芯,
二、电感器
三、涡流及其应用
变压器在工作时,除了在原、 1.变压器在工作时,除了在原、副线圈产生感应电动 势外,变化的磁通量也会在铁芯中产生感应电流。 势外,变化的磁通量也会在铁芯中产生感应电流。 一般来说,只要空间有变化的磁通量, 一般来说,只要空间有变化的磁通量,其中的导体 就会产生感应电流,我们把这种感应电流叫做涡流。 就会产生感应电流,我们把这种感应电流叫做涡流。 应用: 2、应用: 新型炉灶——电磁炉。 电磁炉。 (1)新型炉灶 电磁炉 金属探测器:飞机场、 (2)金属探测器:飞机场、 火车站安全检查、扫雷、 火车站安全检查、扫雷、探 矿。
自感现象 涡流
电磁感应现象
图3.1—5 3.1 5
一、自感现象
自感: 自感: 由于线圈本身的电流发生变化而在 自身激发感应电动势的现象。 自身激发感应电动势的现象。 自感电动势: 自感电动势: 由自感现象产生的电动势叫做自感 电动势。 电动势
一、自感现象 自感的作用: 自感的作用: 作用 阻碍电路中原来电流的变化。 电路中原来电流的变化 阻碍电路中原来电流的变化。 1)电路中原电流增大时,自感电动势阻碍 电路中原电流增大时, 它增大。 它增大。 电路中原电流减小时, 2)电路中原电流减小时,自感电动势阻碍 它减小。 它减小。 “阻碍”不是“阻止”,电流还是变化的 阻碍”不是“阻止” 阻碍
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

互感和自感、涡流【学习目标】1、知道什么是互感现象和自感现象。

2、知道自感系数是表示线圈本身特征的物理量,知道它的单位及其大小的决定因素。

3、能够通过电磁感应部分知识分析通电、断电自感现象的原因。

4、知道涡流是如何产生的,知道涡流对人类有利和有害的两方面,以及如何利用涡流和防止涡流。

【要点梳理】要点一、互感现象两个线圈之间没有导线相连,但当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象称为互感,产生的感应电动势叫互感电动势。

要点诠释:(1)互感现象是一种常见的电磁感应现象,它不仅发生于绕在同一铁芯上的两个线圈之间,而且可以发生于任何相互靠近的电路之间。

(2)互感现象可以把能量从一个电路传到另一个电路。

变压器就是利用互感现象制成的。

(3)在电子电路中,互感现象有时会影响电路的正常工作,应设法减小电路间的互感。

要点二、自感现象1.实验如图甲所示,首先闭合S 后调节R ,使12A A 、亮度相同,然后断开开关。

再次闭合S ,灯泡2A 立刻发光,而跟线圈L 串联的灯泡1A 却是逐渐亮起来的。

如图乙所示电路中,选择适当的灯泡A 和线圈L ,使灯泡A 的电阻大于线圈L 的直流电阻。

断开S 时,灯A 并非立即熄灭,而是闪亮一下再逐渐熄灭。

图甲实验叫通电自感。

在闭合开关S 的瞬间,通过线圈L 的电流发生变化而引起穿过线圈L 的磁通量发生变化,线圈L 中产生感应电动势,这个感应电动势阻碍线圈中电流的增大,通过灯泡1A 的电流只能逐渐增大,所以1A 只能逐渐变亮。

图乙实验叫断电自感。

断开S 的瞬间,通过线圈L 的电流减弱,穿过线圈的磁通量很快减小,线圈L 中出现感应电动势。

虽然电源断开,但由于线圈L 中有感应电动势,且和A 组成闭合电路,使线圈中的电流反向流过灯A ,并逐渐减弱。

由于L 的直流电阻小于灯A 的电阻,其原电流大于通过灯A 的原电流,故灯闪亮一下后才逐渐熄灭。

2.结论由于通过线圈自身的电流发生变化时,线圈本身产生感应电动势的现象叫自感现象。

由于自感而产生的感应电动热叫自感电动势。

要点诠释:1.自感电动势的作用:总是阻碍导体中原电流的变化,即总是起着推迟电流变化的作用。

2.自感电动势的方向:自感电动势总是阻碍导体中原来电流的变化,当原来电流增大时,自感电动势与原来电流方向相反;当原来电流减小时,自感电动势与原来电流方向相同。

3.自感电动势大小:i E L t∆=∆自,大小由电流变化的快慢和自感系数L 决定。

要点三、自感系数自感系数是表示线圈产生自感电动势本领大小的物理量,简称为自感或电感,用L 表示。

要点诠释:(1)大小:线圈长度越长,线圈横截面积越大,单位长度上匝数越多,线圈的自感系数越大;线圈有铁芯比无铁芯时自感系数大得多。

(2)物理意义:表征线圈产生自感电动势本领大小的物理量,数值上等于通过线圈的电流在1s 内改变lA 时产生的自感电动势的大小。

(3)单位:亨利(符号H ),1亨=310毫亨=610微亨(361H 10mH 10H μ==)。

要点四、自感现象的应用和防止1.应用:电感线圈可以把电能转化为磁场能储存起来,也可以把储存的磁场能转化为电能;当自感系数很大时,可以产生自感电动势,增大电路的瞬时电压。

电感线圈可以延续电流的变化时间,起到一定的稳定电流的作用,在交流电路中,常用电感线圈来通直流阻交流,通低频阻高频。

电感线圈在各种电器设备和无线电技术中应用广泛,如日光灯电路中的镇流器、LC 振荡电路等。

2.危害和防止:在切断自感系数很大、电流很强的电路的瞬间,会产生很高的自感电动势,形成电弧,危及工作人员和设备安全,在这类电路中应采用特别的开关;制作精密电阻时,采用双线绕法来消除自感现象。

要点五、电感和电阻的比较1.阻碍作用:电阻R 对电流有阻碍作用,电感L 对电流的变化有阻碍作用。

2.大小因素:电阻越大,对电流的阻碍越大,产生的电势差越大;电感越大,对电流的阻碍作用越大,产生的自感电动势越大。

3.决定因素:电阻R 决定于导体长度、横截面积、材料电阻率;电感L 决定于线圈长度、横截面积、匝数、有无铁芯等。

4.联系:电感和电阻都是反映导体本身性质的物理量。

要点六、线圈对变化电流的阻碍作用与对稳定电流的阻碍作用的比较1.两种阻碍作用产生的原因不同线圈对稳定电流的阻碍作用,是由绕制线圈的导线的电阻决定,对稳定电流阻碍作用的产生原因,是金属对定向运动电子的阻碍作用。

而线圈对变化电流的阻碍作用,是由线圈的自感现象引起的,当通过线圈中的电流变化时,穿过线圈的磁通量发生变化,产生自感电动势,阻碍线圈中电流变化。

2.两种阻碍作用产生的效果不同在通电线圈中,电流稳定值为L E R /,由此可知,线圈的稳态电阻决定了电流的稳定值。

L 越大,电流由零增大到稳定值的时间越长,也就是说,线圈对变化电流的阻碍作用越大,电流变化的越慢。

总之,稳态电阻决定了电流所能达到的稳定值,对变化电流的阻碍作用决定了要达到稳定值所需的时间。

要点七、在断电自感中,灯泡是否闪亮一下的判断方法如图所示电路中,当开关S 断开后,灯泡A 是否会闪亮一下?闪亮一下的条件是什么?设开关闭合时,电源路端电压为U ,线圈的电阻为L R ,灯泡的电阻为A R ,则通过线圈的电流为L L U I R =,通过灯泡的电流为A AU I R =。

当开关断开后,线圈和灯泡组成的回路中的电流从L I 开始减弱。

若A L R R >,有A L I I <,在断开开关的瞬间,通过灯泡的电流会瞬间增大,灯泡会闪亮一下。

若A L R R ≤,有A L I I ≥,断开开关后,通过灯泡的电流减小,灯泡不会闪亮一下。

要点八、电路中电流大小变化的判断方法在进行分析计算时,要注意:①如果电感线圈的直流电阻为零,那么电路稳定时可认为线圈短路;②在电流由零增大的瞬间可认为线圈断路。

如图所示,S 闭合稳定后,若不考虑线圈的直流电阻,则灯泡不亮,流过线圈的电流I较大。

在S断开的瞬间,灯泡和线圈构成了闭合回路,其中线圈中电流的流向不变,其大小只能在原来大小的基础上减弱。

要点九、涡流当线圈中的电流随时间变化时,线圈附近的任何导体中都会产生感应电流,电流在导体内自成闭合回路,很像水中的旋涡,把它叫做涡电流,简称涡流。

要点诠释:1.涡流产生的原因:涡流是一种特殊的电磁感应现象,当把块状金属放在变化的磁场中,或者让它在非均匀磁场中运动,金属块内就产生感应电流,因为金属块本身可自行构成闭合回路,且块状金属导体的电阻一般情况下很小,所以产生的涡流通常是很强的。

2.涡流的防止:电动机、变压器的线圈中有变化的电流,因而在铁芯中产生了涡流,不仅浪费了能量,还可能损坏电器,因此,要想办法减小涡流。

为了达到减小涡流的目的,采用了电阻率大的硅钢做铁芯的材料,并把硅钢做成彼此绝缘的薄片,这样,就大大减小了涡流。

3.涡流的利用:用来冶炼合金钢的真空冶炼炉,炉外有线圈,线圈中通入反复变化的电流,炉内的金属中就产生涡流。

涡流产生的热量使金属达到很高的温度并熔化。

利用涡流冶炼金属的优点是整个过程能在真空中进行,这样就能防止空气中的杂质进入金属,可以冶炼高质量的合金。

要点十、电磁阻尼当导体在磁场中运动时,如果导体中出现涡流,即感应电流,则感应电流会使导体受到安培力作用,安培力的方向总是阻碍导体的运动,这种现象叫做电磁阻尼。

要点诠释:电磁阻尼在实际中有很多应用,课本上讲的使电学仪表的指针很快的停下来,就是电磁阻尼作用。

电磁阻尼还常用于电气机车的电磁制动器中。

要点十一、电磁驱动如果磁场相对于导体运动,在导体中会产生感应电流,感应电流使导体受到安培力的作用,安培力使导体运动起来,这种作用叫做电磁驱动。

电磁驱动的原因分析:如图所示,当蹄形磁铁转动时,穿过线圈的磁通量发生变化,由楞次定律知,线圈中有感应电流产生,以阻碍磁通量变化,线圈会跟着一起转动起来。

要点诠释:(1)线圈转动方向和磁铁转动方向相同,但转速小于磁铁转速,即同向异步。

(2)下一章要介绍的感应电动机、家庭中用的电能表、汽车上用的电磁式速度表,就是利用这种电磁驱动。

【典型例题】类型一、互感现象产生的条件例1. 如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,当PQ 在外力作用下运动时,MN在磁场力作用下向右运动,则PQ所做的运动可能是()A.向右匀加速运动B.向左匀加速运动C.向右匀减速运动D.向左匀减速运动【答案】BC举一反三【变式】如图所示,金属球(铜球)下端有通电的线圈,今把小球拉离平衡位置后释放,此后关于小球的运动情况是:(不计空气阻力)()A .做等幅振动;B .做阻尼振动;C .振幅不断增大;D .无法判定.【答案】B类型二、断电自感现象例2.如图所示的(a)、(b)两个电路中,电阻R和自感线圈L的电阻值都小,且小于灯泡A的电阻,接通开关S,使电路达到稳定,灯泡A发光,则()A.在电路(a)中,断开S后,A将逐渐变暗B.在电路(a)中,断开S后,A将先变得更亮,然后逐渐变暗C.在电路(b)中,断开S后,A将逐渐变暗D.在电路(b)中,断开S后,A将先变得更亮,然后逐渐变暗【答案】AD举一反三【变式】图为一演示实验电路图,图中L是一带铁心的线圈,A是一灯泡,电键K处于闭合状态,电路是接通的.现将电键K打开,则在电路切断的瞬间,通过灯泡A的电流方向是从_______端到________端.这个实验是用来演示_________现象的.【答案】a,b,自感类型三、通电自感现象例3.如图所示,电路中电源的内阻不能忽略,R的阻值和L的自感系数都很大,A、B为两个完全相同的灯泡,当S闭合时,下列说法正确的是()A.A比B先亮,然后A灭B.B比A先亮,然后B逐渐变暗C.A、B一起亮,然后A灭D.A、B一起亮,然后B灭【答案】B类型四、正确理解自感电动势例4.如图所示,L为自感系数较大的线圈,电路稳定后小灯泡正常发光,当断开开关S的瞬间会有()A .灯A 立即熄灭B .灯A 慢慢熄灭C .灯A 突然闪亮一下再慢慢熄灭D .灯A 突然闪亮一下再突然熄灭【答案】A举一反三【变式】如图所示的电路中,A B 、两灯电阻均为R ,且R r ,L 为纯电感线圈,原先12S S 、均断开,则( )A .1S 闭合瞬间,A 灯先亮,B 灯后亮,以后两灯一样亮B .1S 闭合后,再闭合2S ,两灯亮度不变C .12S S 、均闭合后,再断开1S ,B 灯立即熄灭,A 灯闪亮一下才熄灭D .12S S 、均闭合后,先断开2S ,再断开1S ,A 灯立即熄灭,B 灯闪亮一下才熄灭【答案】AC类型五、自感现象在电路中的应用例5.在如图所示的电路中,L 为电阻很小的线圈,1G 和2G 为零点在表盘中央的相同的电流表。

相关文档
最新文档