数学高考专题复习——点的轨迹方程的求法

合集下载

高三高考数学中求轨迹方程的常见方法

高三高考数学中求轨迹方程的常见方法

52
,方程为
(x
1) 2
( y 1) 2
13 . 故 M 的
2
轨迹方程为 ( x 1) 2 ( y 1) 2 13 .
五、参数法 参数法是指先引入一个中间变量 (参数) ,使所求动点的横、纵坐标
所求式子中消去参数,得到 x, y 间的直接关系式,即得到所求轨迹方程
x, y 间建立起联系,然后再从
.
例 5 过抛物线 y 2 2 px ( p 0 )的顶点 O 作两条互相垂直的弦 OA 、 OB ,求弦 AB 的中点
3

3
故 k 的取值范围是 1 k 1且 k
3

3
5.已知平面上两定点 M (0, 2) 、 N (0,2) , P 为一动点,满足 MP MN PN MN .
(Ⅰ)求动点 P 的轨迹 C 的方程; (直接法) (Ⅱ)若 A 、 B 是轨迹 C 上的两动点,且 AN
NB .过 A 、 B 两点分别作轨迹 C 的切线,设其交点
9.过抛物线 y2 4 x 的焦点 F 作直线与抛物线交于 P、 Q 两点,当此直线绕焦点 F 旋转时,
弦 PQ 中点的轨迹方程为

解法分析: 解法 1 当直线 PQ 的斜率存在时,
设 PQ 所在直线方程为 y k( x 1) 与抛物线方程联立,
y k( x 1),
y2 4x
消去 y 得
k 2 x 2 (2 k 2
1, 即 x
y y1
x1
0 .②
联解①②得
x1
3x y 2
2
.又点 Q 在双曲线 C 上,
3x y 2 2 3y x 2 2
(
)(
)
1 ,化简整理

高中数学解题方法-----求轨迹方程的常用方法

高中数学解题方法-----求轨迹方程的常用方法

练习
1.一动圆与圆
外切,同时与圆 x2 + y2 − 6x − 91 = 0内切,求动圆圆心
M 的轨迹方程,并说明它是什么样的曲线。
2. 动圆 M 过定点 P(-4,0),且与圆 :C x2+ -y2 8x = 0 相切,求动圆圆心 M 的轨迹方程。 1.在∆ABC 中,B,C 坐标分别为(-3,0),(3,0),且三角形周长为 16,则点 A 的轨迹方 程是_______________________________.
高中数学解题方法
---求轨迹方程的常用方法
(一)求轨迹方程的一般方法: 物1线.)定的义定法义:,如则果可动先点设P出的轨运迹动方规程律,合再乎根我据们已已知知条的件某,种待曲定线方(程如中圆的、常椭数圆,即、可双得曲到线轨、迹抛 方程。 P 满2.足直的译等法量:关如系果易动于点建立P 的,运则动可规以律先是表否示合出乎点我P们所熟满知足的的某几些何曲上线的的等定量义关难系以,判再用断点,但P 点的 坐标(x,y)表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点 P 运动的某个几何 量y=tg,(以t)此,量进作而为通参过变消数参,化分为别轨建迹立的普P 点通坐方标程xF,(yx与,该y)参=数0。t 的函数关系 x=f(t), 4. 代入法(相关点法):如果动点 P 的运动是由另外某一点 P'的运动引发的,而该点的 运出动相规关律点已P'知的,坐(标该,点然坐后标把满P足'的某坐已标知代曲入线已方知程曲),线则方可程以,设即出可得P(到x动,点y),P 的用轨(迹x,方y程)。表示
题目 6:已知点 P 是圆(x +1)2 + y2 =16 上的动点,圆心为 B ,A(1,0) 是圆内的定点;PA 的中垂线交 BP 于点Q .(1)求点Q 的轨迹C 的方程;

高中数学:求轨迹方程的几种常用方法

高中数学:求轨迹方程的几种常用方法

高中数学:求轨迹方程的几种常用方法
由已知条件求动点轨迹方程是解析几何的基本问题之一,也是解析几何的重点。

轨迹方程的常用方法可归纳为以下四种。

一、普通法
例1. 求与两定点距离的比为1:2的点的轨迹方程。

分析:设动点为P,由题意,则依照点P在运动中所遵循的条件,可列出等量关系式。

解:设是所求轨迹上一点,依题意得
由两点间距离公式得:
化简得:
二、定义法
例2. 点M到点F(4,0)的距离比它到直线的距离小1,求点M的轨迹方程。

分析:点M到点F(4,0)的距离比它到直线的距离小1,意味着点M到点F(4,0)的距离与它到直线
的距离相等。

由抛物线标准方程可写出点M的轨迹方程。

解:依题意,点M到点F(4,0)的距离与它到直线的距离相等。

则点M的轨迹是以F(4,0)为焦点、为准线的抛物线。

故所求轨迹方程为。

三、坐标代换法
例3. 抛物线的通径(过焦点且垂直于对称轴的弦)与抛物线交于A、B两点,动点C在抛物线上,求△ABC重心P的轨迹方程。

分析:抛物线的焦点为。

设△ABC重心P的坐标为,点C的坐标为。

解:因点是重心,则由分点坐标公式得:

由点在抛物线上,得:
将代入并化简,得:
四、参数法
例4. 当参数m随意变化时,求抛物线的顶点的轨迹方程。

分析:把所求轨迹上的动点坐标x,y分别用已有的参数m
来表示,然后消去参数m,便可得到动点的轨迹方程。

解:抛物线方程可化为
它的顶点坐标为
消去参数m得:
故所求动点的轨迹方程为。


▍ ▍
▍。

高三数学第一轮复习 轨迹方程的常用求法素材

高三数学第一轮复习 轨迹方程的常用求法素材

【本讲主要内容】轨迹方程求轨迹方程的基本方法【知识掌握】 【知识点精析】1. 求曲线轨迹方程的基本步骤:⑴建立适当的平面直角坐标系,设轨迹上任一点的坐标为(),M x y ;⑵寻找动点与已知点满足的关系式; ⑶将动点与已知点坐标代入; ⑷化简整理方程;⑸证明所得方程为所求曲线的轨迹方程。

通常求轨迹方程时,可以将步骤⑵和⑸省略。

2. 几种常用的求轨迹的方法:⑴直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,易于表述成含x y 、的等式,就得到轨迹方程,这种方法称之为直接法。

用直接法求动点轨迹的方程一般有建系设点、列式、代换、化简、证明五个步骤,但最后的证明可以省略。

⑵定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。

⑶代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点(),P x y 却随另一动点()','Q x y 的运动而有规律的运动,且动点Q 的轨迹为给定或容易求得,则可先将','x y 表示为,x y 的式子,再代入Q 的轨迹方程,然后整理得P 的轨迹方程,代入法也称相关点法。

⑷参数法:求轨迹方程有时很难直接找出动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使,x y 之间建立起联系,然后再从所求式子中消去参数,得出动点的轨迹方程。

说明:利用参数法求动点轨迹也是解决问题的常用方法,应注意如下几点:①参数的选择要合理,应与动点坐标,x y 有直接关系,且易以参数表达。

可供选择作参数的元素很多,有点参数、角参数、线段参数、斜率参数等。

②消参数的方法有讲究,基本方法有代入法、构造公式法等,解题时宜注意多加积累。

③对于所选的参数,要注意其取值范围,并注意参数范围对,x y 的取值范围的制约。

⑸几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律和动点满足的条件,然后得出动点的轨迹方程。

轨迹方程的求法及典型例题含答案

轨迹方程的求法及典型例题含答案

轨迹方程的求法一、知识复习轨迹方程的求法常见的有1直接法;2定义法;3待定系数法4参数法5交轨法;6相关点法注意:求轨迹方程时注意去杂点,找漏点.一、知识复习例1:点P-3,0是圆x2+y2-6x-55=0内的定点,动圆M与已知圆相切,且过点P,求圆心M的轨迹方程;例2、如图所示,已知P 4,0是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为x ,y ,则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-x 2+y 2 又|AR |=|PR |=22)4(y x +-所以有x -42+y 2=36-x 2+y 2,即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Qx ,y ,Rx 1,y 1,因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.例3、如图, 直线L 1和L 2相交于点M, L 1⊥L 2, 点N ∈L 1. 以A, B 为端点的曲线段C 上的任一点到L 2的距离与到点N 的距离相等. 若∆AMN 为锐角三角形, |AM|= 错误!, |AN| = 3, 且|BN|=6. 建立适当的坐标系,求曲线段C 的方程.解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点;依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点;设曲线段C 的方程为)0,(),0(22>≤≤>=y x x x p px y B A ,其中x A,x B 分别为A ,B 的横坐标,P=|MN|;)2(92)2()1(172)2(3||,17||)0,2(),0,2(22=+-=++==-A A A A px px px px AN AM p N p M 得由所以 由①,②两式联立解得p x A 4=;再将其代入①式并由p>0解得⎩⎨⎧⎩⎨⎧====2214A A x p x p 或 因为△AMN 是锐角三角形,所以Ax p >2,故舍去⎩⎨⎧==22A x p∴p=4,x A =1由点B 在曲线段C 上,得42||=-=pBN x B ;综上得曲线段C 的方程为)0,41(82>≤≤=y x x y解法二:如图建立坐标系,分别以l 1、l 2为作AE ⊥l 1,AD ⊥l 2,BF ⊥l 2垂足分别为E 、D 、F 设Ax A , y A 、Bx B , y B 、Nx N , 0 依题意有)0,63)(2(8}0,,)(|),{(),(6||||4||||||||||22||||||3|||||22222222>≤≤-=>≤≤=+-====++=+=∆=+======y x x y C y x x x x y x x y x P C y x P NB BE x AE AM ME EN ME x AMN DA AM DM y AN DA ME x B A N B N A A 的方程故曲线段属于集合上任一点则由题意知是曲线段设点为锐角三角形故有由于例4、已知两点)2,0(),2,2(Q P -以及一条直线ι:y =x ,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.解:PA 和QB 的交点Mx ,y 随A 、B 的移动而变化,故可设)1,1(),,(++t t B t t A , 则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t ,得.082222=+-+-y x y x当t =-2,或t =-1时,PA 与QB 的交点坐标也满足上式,所以点M 的轨迹方程是.0822222=+--+-y x x y x例5、设点A 和B 为抛物线 y 2=4pxp >0上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.解法一:设Mx ,y ,直线AB 的方程为y =kx +b 由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+2kb -4px +b 2=0 所以x 1x 2=22kb , y 1y 2=kpb 4,由OA ⊥OB ,得y 1y 2=-x 1x 2所以k pk4=-22kb , b =-4kp故y =kx +b =kx -4p , 得x 2+y 2-4px =0x ≠0故动点M 的轨迹方程为x 2+y 2-4px =0x ≠0,它表示以2p ,0为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设Ax 1,y 1,Bx 2,y 2,Mx ,y依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x yx y px y px y①-②得y 1-y 2y 1+y 2=4px 1-x 2 若x 1≠x 2,则有2121214y y px x y y +=-- ⑥ ①×②,得y 12·y 22=16p 2x 1x 2 ③代入上式有y 1y 2=-16p 2⑦⑥代入④,得yxy y p -=+214 ⑧ ⑥代入⑤,得py x y y x x y y y y p442111121--=--=+所以211214)(44y px y y p y y p --=+ 即4px -y 12=yy 1+y 2-y 12-y 1y 2 ⑦、⑧代入上式,得x 2+y 2-4px =0x ≠0 当x 1=x 2时,AB ⊥x 轴,易得M 4p ,0仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0x ≠0它表示以2p ,0为圆心,以2p 为半径的圆,去掉坐标原点.① ②③ ④ ⑤|轨 迹 方 程练习11.08、山东文22已知曲线1C :||||1(0)x y a b a b+=>>所围成的封闭图形的面积为 45,曲线1C 的内切圆半径为253,记2C 为以曲线1C 与坐标轴的交点为顶点的椭圆.1求椭圆2C 的标准方程; 2设AB 是过椭圆2C 中心的任意弦,L 是线段AB 的 垂直平分线,M 是L 上异于椭圆中心的点.①若||MO =λ||OA O 为坐标原点,当点A 在椭圆2C 上运动时,求点M 的轨迹方程;②若M 是L 与椭圆2C 的交点,求AMB ∆的面积的最小值.解:1由题意得22245253ab ab a b⎧=⎪⎨=⎪+⎩⇒4522==b a ,⇒椭圆方程:2254x y +=1.2若AB 所在的斜率存在且不为零,设 AB 所在直线方程为y =kxk≠0,A A A y x ,.①由22154,x y y kx ⎧+=⎪⎨⎪=⎩⇒2222220204545A A k x y k k ==++, ⇒2222220(1)||45AAk OA x y k+=+=+. 设Mx,y,由|MO|=λ|OA|λ≠0⇒|MO|2=λ2|OA|2⇒2222220(1)45k x y k λ++=+.因为L 是AB 的垂直平分线,所以直线L 的方程为y =1x k -⇒k =x y-,代入上式有:22222222222220(1)20()4545x x y y x y x y x yλλ+++==++⨯,由022≠+y x ⇒2225420x y λ+=, 当k =0或不存时,上式仍然成立.,综上所述,M 的轨迹方程为22245x y λ+=,λ≠0.②当k 存在且k ≠0时,2222220204545AA k x y k k ==++,⇒|OA|2=222220(1)45A A k x y k ++=+. 由221541x y y xk ⎧+=⎪⎪⎨⎪=-⎪⎩⇒2222220205454M M k x y k k ==++,⇒22220(1)||54k OM k +=+. ⇒222222111120(1)20(1)4554k k OAOMk k +=+++++=209. 222119||||20OA OB OA OM≤+=⨯⇒||||OB OA ⨯≥940.||||21OB OA S AMB ⨯⨯⨯=∆=||||OB OA ⨯≥40,当且仅当4+5k 2=5+4k 2时,即k =±1时等号成立.当1400229AMB k S ∆==⨯=>,; 当k 不存在时,140429AMB S ∆==>.综上所述,AMB ∆的面积的最小值为409.2.07、江西理21设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.1证明:动点P 的轨迹C 为双曲线,并求出C 的方程;2过点B 作直线与双曲线C 的右支于M N ,两点,试确定λ的范围,使OM ·ON =0,其中点O 为坐标原点.解:1在PAB △中,2AB =,即222121222cos 2d d d d θ=+-, 2212124()4sin d d d d θ=-+,即2121244sin 212d d d d θλ-=-=-<常数,点P 的轨迹C 是以A B ,为焦点,实轴长221a λ=-的双曲线,方程为:2211x y λλ-=-. 2设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即2111511012λλλλλ-±-=⇒+-=⇒=-, 因为01λ<<,所以512λ-=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得: 2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦,由题意知:2(1)0k λλ⎡⎤--≠⎣⎦ ⇒21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x kλλλλ--+=-- ⇒22212122(1)(1)(1)k y y k x x k λλλ=--=--. 由OM ·ON =0,且M N ,在双曲线右支上,所以2121222122212(1)0(1)5121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>-⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩. 由①②知32215<≤-λ.3.09、海南已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.1求椭圆C 的方程;2若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,2OP e OMe 为椭圆C 的离心率,求点M 的轨迹方程,并说明轨迹是什么曲线.解:Ⅰ设椭圆长半轴长及分别为a,c .由已知得⎩⎨⎧=+=-71c a c a ⇒a =4,c =3⇒椭圆C 的方程为221167x y +=. 2设Mx,y,P 0x ,0y . 其中0x ∈-4,4,0x =x .有22001167x y +=……① 由OP e OM=得:2240022x y e x y +=+=169. 故22220016()9()x y x y +=+下面是寻找关系式0x =fx,y,0y =gx,y 的过程又⎪⎩⎪⎨⎧-==167112220220x y x x ……………………………………②②式代入①:22001167x y +=并整理得:47(44)3y x =±-≤≤,所以点M 的轨迹是两条平行于x 轴的线段.轨 迹 方 程练习24.09、重庆理已知以原点O 为中心的椭圆的一条准线方程为433y =,离心率32e =,M 是椭圆上的动点. 1若C 、D 的坐标分别是0,√3、0,-√3,求||MC ·||MD 的最大值;2如图,点A 的坐标为1,0,点B 是圆221x y +=上的点,点N 是点M 椭圆上的点在x 轴上的射影,点Q 满足条件:OQ =OM +ON ,QA ·BA =0.求线段QB 的中点P 的轨迹方程.解:1设椭圆方程为:22221x y a b +=a >b >0.准线方程3y ==c a 2,2e ==ac ⇒2=a ,32=c 1=⇒b ⇒椭圆方程为:2214y x +=.所以:C 、D 是椭圆2214y x +=的两个焦点⇒||MC +||MD =4.||MC ·||MD ≤4)2||||(2=+MD MC ,当且仅当||MC =||MD ,即点M 的坐标为(1,0)±时上式取等号⇒||MC ·||MD 的最大值为4.2设M(,),(,)m m B B x y B x y ,(,)Q Q Q x y ,N 0,m x ⇒4422=+m m y x ,122=+B B y x . 由OQ =OM +ON⇒m Q x x 2=,m Q y y =⇒4)2(2222=+=+m m Q Qy x y x ………①由QA ·BA =0 ⇒Q Q y x --,1·B B y x --,1=Q x -1B x -1+B Q y y =0 ⇒=+B Q B Q y y x x 1-+B Q x x …………②记P 点的坐标为P x ,P y ,因为P 是BQ 的中点⇒B Q P x x x +=2,B Q P y y y +=2⇒2222)2()2(BQ B Q P P y y x x y x +++=+=)22(412222B Q B Q B Q B Q y y x x y y x x +++++ =)]1(25[41-++B Q x x =)245(41-+P x ⇒P P P x y x +=+4322 ⇒动点P 的方程为:1)21(22=+-y x .5.09、安徽已知椭圆22a x +22by =1a >b >0的离心率为33.以原点为圆心,以椭圆短半轴长为半径的圆与直线y =x +2相切.1求a 与b 的值;2设该椭圆的左,右焦点分别为1F 和2F ,直线1L 过2F 且与x 轴垂直,动直线2L 与y 轴垂直,2L 交1L 于点p.求线段1PF 的垂直平分线与直线2L 的交点M 的轨迹方程,并指明曲线类型解:1e =33⇒22a b =32.又圆心0,0到直线y =x +2的距离d =半径b =22112+, ∴2b =2,2a =3.12322=+y x 21F -1,0、2F 1,0,由题意可设P 1,tt ≠0.那么线段1PF 的中点为N0,2t . 2L 的方程为:y =t,设M M M y x ,是所求轨迹上的任意点.下面求直线MN 的方程,然后与直线2L 的方程联立,求交点M 的轨迹方程直线1PF 的斜率k =2t ,∴线段1PF 的中垂线MN 的斜率=-t2. 所以:直线MN 的方程为:y -2t =-t 2x .由⎪⎩⎪⎨⎧+-==22t x t y t y ⇒⎪⎩⎪⎨⎧=-=t y t x MM 42, 消去参数t 得:M M x y 42-=,即: x y 42-=,其轨迹为抛物线除原点.又解:由于MN =-x,2t -y,1PF =-x,2t -y .∵MN ·1PF =0, ∴⎪⎩⎪⎨⎧==---ty y t x t x 0)2(·)2,(,,消参数t 得:x y 42-=x ≠0,其轨迹为抛物线除原点.6.07湖南理20已知双曲线222x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.直接法求轨迹1若动点M 满足1111F M F A F B FO =++其中O 为坐标原点,求点M 的轨迹方程;2在x 轴上是否存在定点C ,使CA ·CB 为常数 若存在,求出点C 的坐标;若不存在,请说明理由.解:1由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.设()M x y ,,则1(2)F M x y =+,,111(2)F A x y =+,,1221(2)(20)F B x y FO =+=,,,, 由1111F M F A F B FO =++⇒121226x x x y y y +=++⎧⎨=+⎩ ⇒12124x x x y y y+=-⎧⎨+=⎩⇒AB 的中点坐标为422x y -⎛⎫ ⎪⎝⎭,. 当AB 不与x 轴垂直时,1212024822y y y y x x x x --==----, 即1212()8y y y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8y y y x x x -=--代入上式,化简得22(6)4x y --=. 当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=. 2假设在x 轴上存在定点(0)C m ,,使CA ·CB 为常数. 当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=有2222(1)4(42)0k x k x k -+-+=. 则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是CA ·CB 22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++-- 222222(12)2442(12)11m k m m m m k k -+-=+=-++--. 因为CA ·CB 是与k 无关的常数,所以440m -=,即1m =,此时CA ·CB =-1.当AB 与x 轴垂直时,点A B ,的坐标可分别设为(2,(2,此时CA ·CB =1,√2·1,-√2=-1.故在x 轴上存在定点(10)C ,,使CA ·CB 为常数.。

高考数学知识点总结:轨迹方程的求解知识点总结

高考数学知识点总结:轨迹方程的求解知识点总结

高考数学知识点总结:轨迹方程的求解知识点总结高考数学知识点总结:轨迹方程的求解。

符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标_,y表示相关点P的坐标_0、y0,然后代入点P 的坐标(_0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标_、y之间的直接关系难以找到时,往往先寻找_、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

_直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(_,y);③列式列出动点p所满足的关系式;④代换依条件的特点,选用距离公式、斜率公式等将其转化为关于_,Y的方程式,并化简;⑤证明证明所求方程即为符合条件的动点轨迹方程。

求点的轨迹方程的六种常见方法

求点的轨迹方程的六种常见方法
BC CD DA
解:以AB所在直线为x轴,过o垂直AB 直线为y轴,建立如图直角坐标系.
DF
y
C
依题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a)
P
E
设 BE CF DG =k(0≤k≤1),由此有
G
BC CD DA
A
o
Bx
E(2,4ak), F(2-4k,4a), G(-2,4a-4ak) 直线OF的方程为 2ax+(2k-1)y=0……………①
且 BE CF DG .P为GE与OF的交点(如图). BC CD DA
问:是否存在两个定点,使P到这两点的距离的和为定值?若存在, 求出这两点的坐标及此定值;若不存在,请说明理由.
y
DF
C
E P
G设条件,首先求出点P坐标满足的方程,据此再判断是否存在两点,
使得P到两定点距离的和为定值.按题意有A(2, 0),B(2, 0),C(2, 4a),D(, 2, 4a).
整理得
x2 1
(y a)2 a2
1.
2
当a2 1 时,点P的轨迹为圆弧,所以不存在符合题意的两点 2
当a2 1 时,点P的轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长. 2
当a2 1 时,点P到椭圆两个焦点( 1 a2 , a)和( 1 a2 , a)的距离之和为定值 2.
2
2
• 以下举一个例子说明:
1.定义法
【例1】在ΔABC中,已知BC=a,当动点A满足条件sinC-sinB= 1 sinA时, 2
求动点A的轨迹方程.
解:以BC边所在直线为x轴,以线段BC的垂直平分线为y轴建立直角坐标系.
因为sinC-sinB= 1 sinA,由正弦定理得:AB - AC = 1 BC ,

高三数学轨迹问题的求法

高三数学轨迹问题的求法
轨迹方程的求法 求平面上的动点的轨迹方程不仅是教学大纲要求掌握的主要 内容之一,也是高考考查的重点内容之一。由于动点运动规律千 差万别,因此求动点轨迹方程的方法也多种多样,这里介绍几种 常用的方法。
1、直接法 例1、动点 P到直线 x +y=6的距离的平方等于由两坐标轴及 点P到两坐标轴之垂线所围成的矩形面积,求P的轨迹方程. 解:设动点P(x,y)则 S=|x· y| 点P到直线x十y=6的距离
),P(x,y),由题设,
AP 1 PQ 2

∵Q(x1,y2)在双曲线上:, 即:
4、参数法 例题4、已知线段AB的长为a,P分AB为 AP∶PB= 2∶l两 部分,当A点在y轴上运动时,B点在x轴上运动,求动点P 的轨迹方程。 解:设动点P(x,y),AB和x轴的夹角为θ,|θ|≤ 2 , 作PM⊥x于M, PN⊥y轴于N ∵|AB|= a, | AP | 2
其中r(t)=10t+60
若在时刻t城市O 受到侵袭,则有
(0 m) (0 n) (10t 60)
2 2
2
即:
30 2 10 2t ) (210 2 10 2t ) (10t 60)
2 2
2

t 2 36t 288 0
解得12≤t≤24
答:12小时后该城市受到台风侵袭。
故P点的轨迹方程为:
即:(x+y-6)2=2|xy| 当xy≥0时,方程为(x-6)2+(y-6)2=36 当xy<0时,方程为x2+4xy+y2-12x-21y+36=0 2、定义法 [例2]如图,在△ ABC中边BC=a,若三内角满足 1 sinC- sinb= 2 sinA,求点 A的轨迹方程。

高中数学-求轨迹方程的方法

高中数学-求轨迹方程的方法

专题:求轨迹方程
1.轨迹和轨迹方程的概念:平面上一动点M 按一定规则运动形成的曲线叫做动点M 的轨迹,在平面直角坐标系中,这个轨迹可用一个方程表示,这个方程就叫点M 的轨迹方程 注:求轨迹方程与求轨迹的区别:
求轨迹方程:轨迹方程指的是轨迹的方程,求轨迹方程就是求轨迹的方程
求轨迹:指的是图形,求轨迹要先求出轨迹方程,再根据轨迹方程指出轨迹的形状,位置等特征
2.坐标法求轨迹方程的步骤:
①建系:建立恰当的平面直角坐标系
②设点:设点),(y x M 为所求轨迹上任意一点
③列方程:列出点M 的横坐标x 和纵坐标y 之间的方程
④化简:把方程化成最简形式
⑤证明:证明以化简后方程的解为坐标的点都在曲线上
建系设点--------列方程--------化简--------审查
3.求轨迹方程的常用方法:①直接法(直译法);②定义法;③相关点法(代入法);④参数法;⑤交轨法
例1.已知一曲线是与两定点)0,0(O ,)0,3(A 距离之比为
2
1的点的轨迹,求此曲线的方程
例2.已知圆O :42
2=+y x 和定点)0,6(A ,点B 为圆C 上一动点,求线段AB 的中点P 的轨迹方程
例3.自点)0,4(A 引圆422=+y x 的割线ABC ,求弦AB 的中点P 的轨迹
作业
1.求与两定点)0,0(O ,)0,2(A 的距离之比为)0(>k k 的点的轨迹方程,并指出轨迹的形状
2.设点)4,3(-M ,动点N 在圆42
2=+y x 上运动,以ON OM ,为邻边作平行四边形MONP ,求点P 的轨迹方程
3.已知圆422=+y x 和定点)0,4(Q ,P 为圆上一动点,POQ ∠的角平分线交PQ 于R ,求点R 的轨迹方程。

高考数学轨迹方程的求解知识点

高考数学轨迹方程的求解知识点

2019高考数学轨迹方程的求解学问点轨迹方程的求解学问点是高考考察的重点难点,一般都在解答题进行考察,重要性不言而喻。

符合肯定条件的动点所形成的图形,或者说,符合肯定条件的点的全体所组成的集合,叫做满意该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:干脆将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:假如能够确定动点的轨迹满意某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满意的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的干脆关系难以找到时,往往先找寻x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满意的关系式;④代换依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明证明所求方程即为符合条件的动点轨迹方程。

求点轨迹方程的方法

求点轨迹方程的方法

求点轨迹方程的方法(1)直接法:从条件中直接寻找到,x y 的关系,列出方程后化简即可(2)代入法(相关点法):所求点(),P x y 与某已知曲线()00,0F x y =上一点()00,Q x y 存在某种关系,则可根据条件用,x y 表示出00,x y ,然后代入到Q 所在曲线方程中,即可得到关于,x y 的方程(3)定义法:从条件中能够判断出点的轨迹为学过的图形,则可先判定轨迹形状,再通过确定相关曲线的要素,求出曲线方程。

常见的曲线特征及要素有:①圆:平面上到定点的距离等于定长的点的轨迹直角→圆:若AB AC ⊥,则A 点在以BC 为直径的圆上确定方程的要素:圆心坐标(),a b ,半径r②椭圆:平面上到两个定点的距离之和为常数(常数大于定点距离)的点的轨迹确定方程的要素:距离和2a ,定点距离2c③双曲线:平面上到两个定点的距离之差的绝对值为常数(小于定点距离)的点的轨迹注:若只是到两定点的距离差为常数(小于定点距离),则为双曲线的一支确定方程的要素:距离差的绝对值2a ,定点距离2c④抛物线:平面上到一定点的距离与到一定直线的距离(定点在定直线外)相等的点的轨迹确定方程的要素:焦准距:p 。

若曲线位置位于标准位置(即标准方程的曲线),则通过准线方程或焦点坐标也可确定方程(4)参数法:从条件中无法直接找到,x y 的联系,但可通过一辅助变量k ,分别找到,x y与k 的联系,从而得到,x y 和k 的方程:()()x f k y g k =⎧⎪⎨=⎪⎩,即曲线的参数方程,消去参数k 后即可得到轨迹方程。

【题型一】直接法求轨迹【典例分析】设点(A,B ,M 为动点,已知直线AM 与直线BM 的斜率之积为定值13,点M 的轨迹是()A .()22109x y y -=≠B .()22109y x y -=≠C .()22103x y y -=≠D .()22103y x y -=≠【详解】解:设动点(),M x y,则x ≠,则MA k =MB k =,(x ≠,直线AM 与直线BM 的斜率之积为定值13,13=,化简可得,()22103x y y -=≠,故点M 的轨迹方程为()22103x y y -=≠.故选:C.例1:设一动点P 到直线:3l x =的距离到它到点()1,0A的距离之比为3,则动点P 的轨迹方程是()A.22132x y +=B.22132x y -= C.()224136x y --= D.22123x y +=解:设(),P x y33P ld PA-∴=33x ∴-=()()222331x x y ⇒-=-+2221626x x y ⇒--=-()()22224246136x y x y -⇒--=⇒-=答案:C 【变式演练】1.若两定点A ,B 的距离为3,动点M 满足2MA MB =,则M 点的轨迹围成区域的面积为()A .πB .2πC .3πD .4π【答案】D 【详解】以点A 为坐标原点,射线AB 为x 轴的非负半轴建立直角坐标系,如图,设点(,)Mx y=22(4)4x y -+=,于是得点M 的轨迹是以点(4,0)为圆心,2为半径的圆,其面积为4π,所以M 点的轨迹围成区域的面积为4π.2.已知点(0,1)F ,直线:1l y =-,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且QP QF FP PQ ⋅=⋅,则动点P 的轨迹C 的方程为()A .24x y=B .23y x=C .22x y=D .24y x=【答案】A 【详解】设点(,)P x y ,则(,1)Q x -,因为(0,1)F 且QP QF FP PQ ⋅=⋅,所以(0,1)(,2)(,1)(,2)y x x y x +⋅-=-⋅-,即22(1)2(1)y x y +=--,整理得24x y =,所以动点P 的轨迹C 的方程为24x y =.故选:A 3.已知M (4,0),N (1,0),若动点P 满足MN →·MP →=6|NP →|.(1)求动点P 的轨迹C 的方程;解(1)设动点P (x ,y ),则MP →=(x -4,y ),MN →=(-3,0),PN →=(1-x ,-y ),由已知得-3(x -4)=6(1-x )2+(-y )2,化简得3x 2+4y 2=12,即x 24+y 23=1.∴点P 的轨迹方程是椭圆C :x 24+y 23=1.【题型二】相关点代入法【典例分析】已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程.【解析】解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,200y x =∴.③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠.例3:已知F 是抛物线24x y =的焦点,P 是该抛物线上的动点,则线段PF 中点M 的轨迹方程是()A.212x y =-B.21216x y =-C.222x y =- D.221x y =-思路:依题意可得()0,1F ,(),M x y ,()00,P x y ,则有0000221212x x x x y y y y ⎧=⎪=⎧⎪⇒⎨⎨+=-⎩⎪=⎪⎩,因为()00,P x y 自身有轨迹方程,为:204x y =,将00221x xy y =⎧⎨=-⎩代入可得关于,x y 的方程,即M 的轨迹方程:()()22242121x y x y =-⇒=-答案:D例4:已知F 是抛物线24y x =上的焦点,P 是抛物线上的一个动点,若动点M 满足2FP FM =,则M 的轨迹方程是__________解:由抛物线24y x =可得:()1,0F 设()()00,,,M x y P x y ()()001,,1,FP x y FM x y ∴=-=-2FP FM = ()00002112122x x x x y y y y =--=-⎧⎧∴⇒⎨⎨==⎩⎩①P 在24y x =上2004y x ∴=,将①代入可得:()()22421y x =-,即221y x =-【变式演练】1.已知抛物线24C y x =:的焦点为F .(1)点 A P 、满足2AP FA =-.当点A 在抛物线C 上运动时,求动点P 的轨迹方程;【答案】(1)设动点P 的坐标为( )x y ,,点A 的坐标为( )A A x y ,,则( )A A AP x x y y =--,,因为F 的坐标为(1 0),,所以(1 )A A FA x y =-,,由2AP FA =- 得( )2(1 )A A A A x x y y x y --=--,,.即2(1)2A A A Ax x x y y y -=--⎧⎨-=-⎩解得2A A x x y y=-⎧⎨=-⎩代入24y x =,得到动点P 的轨迹方程为284y x =-.2.已知圆()2221:0C x y r r +=>与直线01:2l y x =+相切,点A 为圆1C 上一动点,AN x ⊥轴于点N ,且动点M满足()22OM AM ON +=-,设动点M 的轨迹为曲线C .(1)求动点M 的轨迹曲线C 的方程;【答案】(1)试题解析:(I)设动点,由于轴于点又圆与直线即相切,∴圆由题意,,得即将代入,得曲线的方程为3.设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN →=2MP →,PM →⊥PF →,当点P 在y 轴上运动时,求点N 的轨迹方程.【解析】解设M (x 0,0),P (0,y 0),N (x ,y ),∵PM →⊥PF →,PM →=(x 0,-y 0),PF →=(1,-y 0),∴(x 0,-y 0)·(1,-y 0)=0,∴x 0+y 20=0.由MN →=2MP →得(x -x 0,y )=2(-x 0,y 0),-x 0=-2x 0=2y 0,0=-x 0=12y.∴-x +y 24=0,即y 2=4x .故所求的点N 的轨迹方程是y 2=4x .【题型三】定义法【典例分析】已知动圆M 过定点(4,0)P -,且与圆2280C x y x +-=:相外切,求动圆圆心M 的轨迹方程.【解析】依题意,4MC MP -=,说明点M 到定点C P 、的距离的差为定值,∴动点M 的轨迹是双曲线的一支,∵24a =,∴2a =.∵4c =,∴22212b c a =-=∴动圆圆心M 的轨迹方程是221(2)412x y x -=≤-.例6:若动圆过定点()3,0A -且和定圆()22:34C x y -+=外切,则动圆圆心P 的轨迹方程是___________思路:定圆的圆心为()3,0C ,观察到恰好与()3,0A -关于原点对称,所以考虑P 点轨迹是否为椭圆或双曲线,设动圆P 的半径为r ,则有PA r =,由两圆外切可得2PC r =+,所以2PC PA -=,即距离差为定值,所以判断出P 的轨迹为双曲线的左支,则1,3a c ==,解得2228b c a =-=,所以轨迹方程为()22118y x x -=≤-【变式演练】已知两个定圆O1:(x+2)2+y 2=1:和O 2(x-2)2+y 2=4,它们的半径分别是1和2,.动圆M 与圆O 1内切,又与圆O 2外切,求动圆圆心M 的轨迹方程,【解析】解由|O1O2|=4,得O1(-2,0)、O2(2,0).设动圆M 的半径为r,则由动圆M 与圆O1内切,有|MO1|=r-1;由动圆M 与圆O2外切,有|MO2|=r+2.∴|MO2|-|MO1|=3.∴点M 的轨迹是以O1、O2为焦点,实轴长为3的双曲线的左支.∴a=32,c=2,∴b2=c2-a2=74.∴点M 的轨迹方程为4x29-4y27=1(x≤-32).2、已知点⎪⎭⎫⎝⎛0,41F ,直线41:-=x l ,点B 是直线l 上动点,若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是()A 、双曲线B 、抛物线C 、椭圆D 、圆【答案】B【解析】由题意知MF MB =,点M 的轨迹为抛物线。

数学高考专题复习——点的轨迹方程的求法

数学高考专题复习——点的轨迹方程的求法

本节小结
1.当动点所满足的几何条件能直接用其坐标代入时,可用 直接法.(例1) 2.直接法的另一种形式称为定义法,即已知曲线的类型和 位置,可设出曲线方程,利用待定系数法求解.(例2) 3.当所求动点的运动很明显地依赖于一已知曲线上的动 点的运动时,可利用代入法,其关键是找出两动点的坐 标的关系,这要充分利用题中的几何条件.(例3) 4.当所求动点的运动受一些几何量(距离、角度、斜率、 坐标等)制约时,可考虑用参数法求解.(例4) 5.求得的轨迹方程要与动点的轨迹一一对应,否则要“多 退少补”,多余的点要剔除(用x,y的取值范围来制),不 足的点要补充. 6.注意求轨迹和求轨迹方程的区别.
Q
P
x
[思路分析2]既然M的运动依赖于P的运动,可否用例3的方
法,用M的坐标表示P的坐标,而P又在已知曲线上运动,代 入已知曲线得出M的方程.M和P是什么关系?回到图中仔 细分析,连接AQ会怎么样?点M与ΔAFQ是什么关系?
本题答案:y2 =8/3×(x +1/3).轨迹为以(-1/3,0)顶点,
开口向右的抛物线(除去顶点).
C
x
本题答案:轨迹方程为 x2/a2 +y2/ta2 =1 (x≠+-a)
.当0<t<1或t>1时,轨迹为椭圆;当t =1时,轨迹为圆;当t<0 时,轨迹为双曲线.
例2:已知直线L1⊥直线L2,垂足为M,点N ∈L2,(如图)以A,B为端点 的曲线段C上任意一点到L1的距离与到N的距离相等.若ΔAMN为 锐角三角形,且|AM|=√17,|AN|=3,|BN|=6.建立适当的坐标系,求曲线 段C的方程. y B [思路分析]:坐标系的建立是本题的 A L 1 突破口,由于L ⊥L ,故可选择它们

高中数学知识点:轨迹方程的求解

高中数学知识点:轨迹方程的求解

高中数学知识点:轨迹方程的求解以下是作者为大家整理的关于《高中数学知识点:轨迹方程的求解》,供大家学习参考!符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全部所组成的集合,叫做满足该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯洁性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描写。

一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简情势;⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相干点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够肯定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相干点法:用动点Q的坐标x,y表示相干点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相干点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,常常先寻觅x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

*直译法:求动点轨迹方程的一样步骤①建系——建立适当的坐标系;②设点——设轨迹上的任一点P(x,y);③列式——列出动点p所满足的关系式;④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明——证明所求方程即为符合条件的动点轨迹方程。

高考数学复习---轨迹方程规律方法及典型例题

高考数学复习---轨迹方程规律方法及典型例题

高考数学复习---轨迹方程规律方法及典型例题【规律方法】求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.【典型例题】例1.(2022·全国·高三专题练习)双曲线2222:1(0,0)x y C a b a b−=>>的一条渐近线为y =,(1)求双曲线方程;(2)过点()0,1的直线l 与双曲线交于异支两点,,P Q OM OP OQ =+,求点M 的轨迹方程. 【解析】(1)由渐近线为y知,ba=(),0c 到直线y ==2c =,224a b +=②,联立①②,解得21a =,23b =,则双曲线方程为2213y x −=.(2)因为直线l 与双曲线交于异支两点,P Q ,所以直线l 的斜率必存在,且经过()01,点,可设直线:1l y kx =+,与双曲线联立得:()223240kxkx −−−=,设()()()1122,,,,,M x y P x y Q x y ,则有122122Δ023403k x x k x x k ⎧⎪>⎪⎪+=⎨−⎪−⎪⋅=<⎪−⎩解得k <由OM OP OQ =+uuu r uu u r uuu r 知,()1221212223623k x x x k y y y k x x k ⎧=+=⎪⎪−⎨⎪=+=++=⎪−⎩两式相除得3x k y =,即3x k y =代入263y k=−得22230y y x −−=,又k <2y …, 所以点M 的轨迹方程为()222302y y x y −−=…. 例2.(2022春·吉林辽源·高三辽源市第五中学校校考期中)已知过定点()01P ,的直线l 交曲线2214y x −=于A ,B 两点.(1)若直线l 的倾斜角为45︒,求AB ;(2)若线段AB 的中点为M ,求点M 的轨迹方程.【解析】(1)由题得l 方程为:1y x =+,将其与2214yx −=联立有22114y x y x =+⎧⎪⎨−=⎪⎩,消去y 得:23250x x −−=,解得=1x −或53x =. 则令A ()1,0−,B 5833⎛⎫ ⎪⎝⎭,,则AB=. (2)由题,直线l 存在,故设l 方程为:1y kx =+.将其与2214y x −=联立有:22114y kx y x =+⎧⎪⎨−=⎪⎩,消去y 得:()224250k x kx −−−= 因l 与双曲线有两个交点,则2240Δ80160k k ⎧−≠⎨=−>⎩, 得205k ≤<且24k ≠.设()()1122,,A x y B x y ,. 又设M 坐标为()00x y ,,则12120022,x x y y x y ++==. 因A ,B 在双曲线上,则有()221112012212120222144414y x x x x y y k y y x x y y x ⎧−=⎪+−⎪⇒=⇒=⎨+−⎪−=⎪⎩. 又M ,()01P ,在直线l 上,则001y k x −=.故000014y x x y −=2200040x y y ⇒−+= 由韦达定理有,12224k x x k +=−,12284y y k +=−. 则M 坐标为22444,k k k ⎛⎫ ⎪−−⎝⎭.又0244y k=−,205k ≤<且24k ≠,则01y ≥或04y <−. 综上点M 的轨迹方程为:2240x y y −+=,其中()[)41y ⋃∞∈−∞−+,,. 例3.(2022·全国·高三专题练习)在学习数学的过程中,我们通常运用类比猜想的方法研究问题.(1)已知动点P 为圆222:O x y r +=外一点,过P 引圆O 的两条切线PA 、PB ,A 、B 为切点,若0PA PB ⋅=,求动点P 的轨迹方程;(2)若动点Q 为椭圆22:194x y M +=外一点,过Q 引椭圆M 的两条切线QC 、QD ,C 、D 为切点,若0QC QD ⋅=,求出动点Q 的轨迹方程;(3)在(2)问中若椭圆方程为22221(0)x y a b a b +=>>,其余条件都不变,那么动点Q 的轨迹方程是什么(直接写出答案即可,无需过程).【解析】(1)由切线的性质及0PA PB ⋅=可知,四边形OAPB 为正方形, 所以点P 在以O 为圆心,||OP长为半径的圆上,且|||OP OA , 进而动点P 的轨迹方程为2222x y r += (2)设两切线为1l ,2l ,①当1l 与x 轴不垂直且不平行时,设点Q 的坐标为0(Q x ,0)y 则03x ≠±, 设1l 的斜率为k ,则0k ≠,2l 的斜率为1k−,1l 的方程为00()y y k x x −=−,联立22194x y +=, 得2220000(49)18()9()360k x k y kx x y kx ++−+−−=,因为直线与椭圆相切,所以Δ0=,得22222000018()4(49)9[()4]0k y kx k y kx −−+⋅−−=, 化简,2222200009()(49)()(49)40k y kx k y kx k −−+−++=,进而2200()(49)0y kx k −−+=,所以2220000(9)240−−+−=x k x y k y 所以k 是方程222000(9)240−−+−=x k x y k y 的一个根, 同理1k−是方程222000(9)240−−+−=x k x y k y 的另一个根, 202041()9y k k x −∴⋅−=−,得220013x y +=,其中03x ≠±,②当1l 与x 轴垂直或平行时,2l 与x 轴平行或垂直, 可知:P 点坐标为:(3,2)±±,P 点坐标也满足220013x y +=,综上所述,点P 的轨迹方程为:220013x y +=.(3)动点Q 的轨迹方程是222200x y a b +=+以下是证明: 设两切线为1l ,2l ,①当1l 与x 轴不垂直且不平行时,设点Q 的坐标为0(Q x ,0)y 则0x a ≠±, 设1l 的斜率为k ,则0k ≠,2l 的斜率为1k−,1l 的方程为00()y y k x x −=−,联立22221x y a b+=, 得2222222220000()2()()0b a k x a k y kx x a y kx a b ++−+−−=,因为直线与椭圆相切,所以Δ0=,得()222222220000222()4()[()]0a k y kx k y kx b a a b −−+⋅−−=,化简,222220002222202()()()()0a b a b a k y kx k y kx b k −−+−++=, 进而220220()()0y x b k a k −−+=,所以222000022()20x k x y k y a b −−+−= 所以k 是方程22200022()20x k x y k y a b −−+−=的一个根, 同理1k−是方程222000022()20x k x y k y a b −−+−=的另一个根,2020221()y k ax b k −∴⋅−=−,得222200x y a b +=+,其中0x a ≠±, ②当1l 与x 轴垂直或平行时,2l 与x 轴平行或垂直, 可知:P 点坐标为:(,)a b ±±,P 点坐标也满足222200x y a b +=+,综上所述,点P 的轨迹方程为:222200x y a b +=+.。

高中数学考前归纳总结求轨迹方程的常用方法

高中数学考前归纳总结求轨迹方程的常用方法

求轨迹方程的常用方法一、求轨迹方程的一般方法:1,待定系数法:如果动点P的运动规律符合我们的某种曲线〔如圆、椭圆、双曲线、抛物线〕的定义,那么可先设出轨迹方程,再根据条件, 待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法.2,直译法:如果动点P的运动规律是否符合我们熟知的某些曲线的定义难以判断, 但点P满足的等量关系易于建立,那么可以先表示出点P所满足的几何上的等量关系, 再用点P的坐标〔x, y〕表示该等量关系式,即可得到轨迹方程.3 .参数法:如果采用直译法求轨迹方程难以奏效,那么可寻求引发动点P运动的某个几何量t ,以此量作为参变数,分别建立P点坐标x, y与该参数t 的函数关系x = f〔t〕, y = g 〔t〕,进而通过消参化为轨迹的普通方程 F 〔x, y〕 =0.4 .代入法〔相关点法〕:如果动点P的运动是由另外某一点P'的运动引发的, 而该点的运动规律,〔该点坐标满足某曲线方程〕,那么可以设出P 〔x, y〕,用〔x, y〕表示出相关点P'的坐标,然后把P'的坐标代入曲线方程,即可得到动点P的轨迹方程.5 .几何法:假设所求的轨迹满足某些几何性质〔如线段的垂直平分线,角平分线的性质等〕,可以用几何法,列出几何式,再代入点的坐标较简单.6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题通常通过解方程组得出交点〔含参数〕的坐标,再消去参数求得所求的轨迹方程〔假设能直接消去两方程的参数,也可直接消去参数得到轨迹方程〕,该法经常与参数法并用.二、求轨迹方程的考前须知:1 . 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律, 即P 点满足的等量关系,因此要学会动中求静,变中求不变.2 .轨迹方程既可用普通方程F〔x,y〕 0表示,又可用参数方程x f〔t〕〔t为参数〕y g〔t〕来表示,假设要判断轨迹方程表示何种曲线,那么往往需将参数方程化为普通程的某些解为坐标的点不在轨迹上〕,又要检验是否丢解.〔即轨迹上方程.3.求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解, 〔即以该方的某些点未能用所求的方程表示),出现增解那么要舍去,出现丢解,那么需补充.检验方法:研究运动中的特殊情形或极端情形.4 .求轨迹方程还有整体法等其他方法.在此不一一缀述.三、典例分析1,用定义法求曲线轨迹求曲线轨迹方程是解析几何的两个根本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的几何条件,通过坐标互化将其转化为寻求变量之间的关系,在求与圆锥曲线有关的轨迹问题时,要特别注意圆锥曲线的定义在求轨迹中的作用,只要动点满足已知曲线定义时,通过待定系数法就可以直接得出方程.例1:ABC的顶点A, B的坐标分别为(-4 , 0) , (4, 0) , C为动点,且满足一一一5 .sin B sin A —sinC,求点C的轨迹.45 . . 5【解析】由sin B sin A -sinC,可知b a -c 10,即|AC| | BC | 10 ,满足椭4 42 2圆的定义.令椭圆方程为J 2 1,那么a' 5,c' 4 b' 3,2 2a b2 2那么轨迹方程为土2―1 (x 5),图形为椭圆(不含左,右顶点) .25 9【点评】熟悉一些根本曲线的定义是用定义法求曲线方程的关键.(1) 圆:到定点的距离等于定长(2) 椭圆:到两定点的距离之和为常数(大于两定点的距离)(3) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离)(4) 到定点与定直线距离相等.【变式1]:1:圆尸=有的圆心为M,圆住一4尸4了, .的圆心为M, 一动圆与这两个圆外切,求动圆圆心P的轨迹方程.解:设动圆的半径为R,由两圆外切的条件可得:|P%l=R + 5 , |P叫l=R + l.,-.|PM1P5HPMJ-b|PM1|-|PM a|=4•••动圆圆心P的轨迹是以M、M2为焦点的双曲线的右支, c=4, a=2, b2=12.故所求轨迹方程为4 12M 的轨迹是:A:抛物线B:圆C:椭圆D:双曲线一支2.用直译法求曲线轨迹方程 此类问题重在寻找数量关系.例2: 一条线段AB 的长等于2a ,两个端点A 和B 分别在x 轴和y 轴上滑动,求 AB 中点P 的轨迹方程?解 设M 点的坐标为〔x, y 〕由平几的中线定理:在直角三角形 一— 1 一 1 八 AO 升,OM=AB - 2a a,2 2―22-222x y a,x y aM 点的轨迹是以O 为圆心,a 为半径的圆周.1【点评】此题中找到了 OM=1AB 这一等量关系是此题成功的关键所在.一般直译法有以下几2种情况:1〕代入题设中的等量关系:假设动点的规律由题设中的等量关系明显给出,那么采用直 接将数量关系代数化的方法求其轨迹.2〕列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条 件列出等式,得出其轨迹方程.3〕运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的 恒等变换即得其轨迹方程.4〕借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何中 的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数 量的关系,这种借助几何定理的方法是求动点轨迹的重要方法^| PAI 一【变式2】:动点P(x,y)到两定点A(—3,0)和B(3,0)的距离的比等于2(即 2),|PB|求动点P 的轨迹方程?[解答]. . | PA = J(x 3)2__y 7/ PB | J(x 3)2父| PA | (x 3)2 y 2 2 2 22代入 ——1 2得 ——2 (x 3)2y 2 4(x 3)2 4y 22: 一动圆与圆O: x 2 y 21外切,而与圆C : x 22y 6x 8 0内切,那么动圆的圆心【解答】令动圆半径为R, 皿士 |MO| R那么有। ।| MC | R1c,那么 |MO|-|MC|=2 ,1满足双曲线定义.应选Do|PB| ..(x 3)2 y2化简彳导(x-5) 2+y2=16,轨迹是以(5, 0)为圆心,4为半径的圆.3.用参数法求曲线轨迹方程此类方法主要在于设置适宜的参数,求出参数方程,最后消参,化为普通方程.注意参数的取值范围.例3.过点P (2,4)作两条互相垂直的直线l i, 12,假设l i交x轴于A点,l 2交y轴于B点,求线段AB的中点M的轨迹方程.【解析】分析1:从运动的角度观察发现,点M的运动是由直线l i引发的,可设出l i的斜率k作为参数,建立动点M坐标(x, y)满足的参数方程.解法1:设M (x, y),设直线l i的方程为y-4= k (x-2), ( k w 0 )1 _由l i l2,那么直线l2的万程为y 4 —(x 2)k4l1与x轴交点A的坐标为(2 4,0),kl2与y轴交点B的坐标为(0,4 2), k・•.M为AB的中点,2k(k为参数)消去k,得x+ 2y—5=0.另外,当k = 0时,AB中点为M (1, 2),满足上述轨迹方程;当k不存在时,AB中点为M (1, 2),也满足上述轨迹方程.综上所述,M的轨迹方程为x+2y—5=0.分析2:解法1中在利用k1k2=- 1时,需注意匕、k2是否存在,故而分情形讨论,能否避开讨论呢?只需利用^ PAB为直角三角形的几何特性:1 . .|MP| 21ABi解法2:设M (x, y),连结MP 那么 A (2x, 0), B (0, 2y),•••l」l 2, PAB为直角三角形1 .由直角二角形的性质,|MP| 31ABi--------------- 2 2-1 -----------2 2..(x 2)2 (y 4)22;,(2x)2 (2y)2化简,得x + 2y-5 = 0,此即M 的轨迹方程.分析3::设M (x, y),由l i _L l 2,联想到两直线垂直的充要条件: k i k 2=—1,即可 列出轨迹方程,关键是如何用 M 点坐标表示 A 、B 两点坐标.事实上,由 M 为AB 的中点,易 找出它们的坐标之间的联系.解法3:设M (x, y), •「M 为AB 中点, 又l 1, l 2过点P (2, 4),且l/l 2••• PAX PB,从而 k PA • k PB= — 1, 中点M (1, 2),经检验,它也满足方程 x+2y-5=0 综上可知,点 M 的轨迹方程为x+2y-5=0o【点评】 解法1用了参数法,消参时应注意取值范围.解法 2, 3为直译法,运 1 ,k PA • k PB= - 1, | MP | - | AB|这些等量关系.用参数法求解时,一 般参数可选用具有某种物理或几何意义的量,如时间,速度,距离,角度, 有向线段的数量,直线的斜率,点的横,纵坐标等.也可以没有具体的意 义,选定参变量还要特别注意它的取值范围对动点坐标取值范围的影响【变式3】过圆O: x 2+y 2= 4外一点A(4,0),作圆的割线,求割线被圆截得的弦 BC 的中点M 的轨迹. 解法一:“几何法〞设点M 的坐标为(x,y ),由于点M 是弦BC 的中点,所以 OML BC, 所以 |OM | 2 + | MA | 2 =| OA | 2 ,即(x 2+y 2)+(x -4)2 +y 2=16化简得:(x —2) 2+ y 2=4 .................................. ①由方程 ① 与方程x 2+y 2= 4得两圆的交点的横坐标为 1,所以点M 的轨迹方程为 (x —2) 2+ y 2=4 (0<x<1)o 所以M 的轨迹是以(2, 0)为圆心,2为半径的圆在圆 O 内的局部. 解法二:“参数法〞设点M 的坐标为(x,y ), B (x 1,y0 ,C (x 2,y 2)直线AB 的方程为y=k(x -4), 由直线与圆的方程得(1+k 2) x 2—8k 2x +16k 2—4=0 .................... (*),由点M 为BC 的中点,所以x=x —x 2 」4k ) ................................ (1),2 1 k又 OMLBC,所以 k=Y (2)由方程(1) (2)消去k 得(x — 2) 2+ y 2=4,又由方程(* )的^> 0得k 2< 1,所以x< 1.3••• A (2x, 0),B (0, 2y).而k pA4 0 2 2x' 4 2y2 2x 2注意到l i^x 轴时,1,化简,得x 2y 5 0l 2±y 轴,此时 A (2, 0), B (0,4)用了2+ y 2=4 ( 0<x< 1)为圆心,2为半径的圆在圆 O 内的局部.【点评】代入法的关键在于找到动点和其相关点坐标间的等量关系【变式4】如下图, R4 , 0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足ZAPE =90 ,求矩形APBQ 勺顶点Q 的轨迹方程【解析】: 设AB 的中点为R,坐标为(x , y ),那么在Rt^ABP 中,|AR =| PR 又由于R 是弦 AB 的中点,依垂径定理在 Rt △ OAF^, | AR 2=| A .2—|OR 2=36—(x 2+y 2)又|AR =| P 帘(x 4)2 y 2所以有(x-4) 2+y 2=36- (x 2+y 2),即 x 2+y 2—4x —10=0因此点R 在一个圆上,而当 R 在此圆上运动时,Q 点即在所求 的轨迹上运动 设Qx ,y) , R (x 1, y 1),由于R 是PQ 的中点,所以 y o ,222x +y -4x- 10=0,得(_y )2 4 x 4 _10=022所以点M 的轨迹方程为(x-2)所以M 的轨迹是以(2, 0) 4,用代入法等其它方法求轨迹方程x 2例4.点B 是椭圆-2 a2与1上的动点,A(2a,0)为定点,求线段AB 的中点M 的 b 2轨迹方程.分析:题中涉及了三个点 A 、B 、M,其中A 为定点,而B 、M 为动点,且点 B 的运动是有 规律的,显然 M 的运动是由B 的运动而引发的,可见 M B 为相关点,故采用相关点法求动点 M 的轨迹方程.【解析】设动点 那么由M 为线段 M 的坐标为(x, y),而设B 点坐标为(xo, yo)AB 中点,可得x 0 2a 2 V . 0 2 x 0 2x 2aV . 2y即点 B 坐标可表为(2x - 2a, 2y)x 2点B(x°, y°)在椭圆-y a 2—1上b 22x 0 -2- a2〞1 b 2(2x 从而有——2a)2 2a叱1b 2整理,得动点M 的轨迹方程为4J a22a) 4y 1 b 2x 4 x1=—,y 1代入方程(7)22QR整理得 x 2+y 2=56,这就是所求的轨迹方程四、常见错误:【例题5】 ABC 中,B, C 坐标分别为(-3, 0), (3, 0),且三角形周长为16,求点A 的轨 迹方程.22【常见错误】由题意可知,|AB|+|AC|=10 ,满足椭圆的定义.令椭圆方程为 : 4 1 ,那么a b22由定义可知a 5,c 3,那么b 4,得轨迹方程为—匕 1516【错因剖析】ABC 为三角形,故A, B, C 不能三点共线.【正确解答】ABC 为三角形,故 A, B, C 不能三点共线.轨迹方程里应除去点(5,0).( 5,0),22即轨迹方程为二匕 1(x5)25 16提示:1 :在求轨迹方程中易出错的是对轨迹纯粹性及完备性的忽略,除;另一方面,又要注意有无“漏网之鱼〞仍逍遥法外,2:求轨迹时方法选择尤为重要,首先应注意定义法,几何法,直接法等方 法的选择.3:求出轨迹后,一般画出所求轨迹,这样更易于检查是否有不合题意的部 分或漏掉的局部. 针对性练习:5 ___ 5、 一 一 22 一1:两点M(1,—), N( 4,一)给出以下曲线方程:① 4x 2y 1 0;②x y 3;③4 422— y 21y 21,在曲线上存在点 P 满足|MP | | NP |的所有曲线方程是(22A ①③B ②④C ①②③D ②③④【答案】:D【解答】:要使得曲线上存在点 P 满足|MP| |NP|,即要使得曲线与 MN 的中垂线y 有交点.把直线方程分别与四个曲线方程联立求解,只有①无解,那么选D2.两条直线x my 1 0与mx y 1 0的交点的轨迹方程是 : 【解答】:直接消去参数 m 即得(交轨法):x 2 y 2 x y 03:圆的方程为(x-1) 2+y 2=1,过原点O 作圆的弦0A,那么弦的中点M 的轨迹方程是 ^因此, 在求出曲线方程的方程之后,应仔细检查有无“不法分子〞掺杂其中, 将其剔要将其“捉拿归案〞.2x 3【解答】:令 M 点的坐标为(x, y),那么A 的坐标为(2 x,2y),代入圆的方程里面便可得到动点的轨迹方程.【解答】:抛物线方程可化为它的顶点坐标为消去参数m 得:(4, 0)的距离与它到直线 x 4的距离相等.那么点 M 的 4为准线的抛物线.故所求轨迹方程为 y 2 16x .6:求与两定点OO 1, 0、A3, 0距离的比为1: 2的点的轨迹方程为八, …, ,□… POl1一、… 一— 一〜…,一八【分析】:设动点为巳由题意- -,那么依照点P 在运动中所遵循的条件,可列出等量关| PA| 2系式.【解答】:设P x, y 是所求轨迹上一点,依题意得L1 O 得:(x 1)22y 2 :(x 0)4随意变化时,那么抛物线y x 2 2m 1 xm 2 1的顶点的轨迹方程为把所求轨迹上的动点坐标x, y 分别用已有的参数 m 来表示,然后消去参数 m故所求动点的轨迹方程为4x 4y 305:点M 到点F (4, 0) 的距离比它到直线50的距离小1 ,那么点M 的轨迹方程为【分析】:点M 到点F (4, 0)的距离比它到直线 50 的距离小1,意味着点M 到点F(4, 0)的距离与它到直线 x 40的距离相等. 由抛物线标准方程可写出点 M 的轨迹方程.【解答】:依题意,点M 到点F轨迹是以F (4, 0)为焦点、x由两点间距离公式得:x 2 y 21PO 1 PA 2化简彳导:x 2 y 2 2x 3027抛物线y 4x 的通径〔过焦点且垂直于对称轴的弦〕与抛物线交于 A 、B 两点,动点C 在抛物线上,求^ ABC 重心P 的轨迹方程.【分析】:抛物线y 4x 的焦点为F 1,0 .设^ ABC 重心P 的坐标为〔x, y 〕,点C 的坐 标为〔x 1, y 1〕.其中x 1 1【解答】:因点P x, y 是重心,那么由分点坐标公式得:x 另一2, y 也33即 x 1 3x 2, y 1 3y由点C x 1,y 1在抛物线y 2 4x 上,得:y 12 4x 124 2将x i3x 2, y i3y 代入并化简,得:y — x —( x 1) 338 .双曲线中央在原点且一个焦点为F 〔乔,0〕,直线y=x —1与其相交于 M N 两点,MNUI中点的横坐标为 5 ,求此双曲线方程.22【解答】:设双曲线方程为 2T 当 a b (b 2-a a)x a+ 2a ax- a 3- a ab a=0,此双曲线的方程为9 .动点P 到定点F 〔1, 0〕和直线x=3的距离之和等于【解答】:设点P 的坐标为〔x, y 〕,那么由题意可得1.将y=x — 1代入方程整理得由韦达定理得x 1 x 2解得 a 2 2,b 25.22aX I x 2~2~2 --a b 22 ,2a b2.又有+ 联立方程组,34,求点P 的轨迹方程.J (犬 _ + y* + | x — 31= 4(1)当xw3 时,方程变为J(x 1)2—y2 3 x 4,J(x 1)2―y2 x 1,化简得2y 4x(0 x 3).(2)当x>3 时,方程变为J(x 1)2—y7 x 3 4,J(x 1)2—y7 7 x,化简得y a = -12(x-4)(3<x<4)o毋足十的人口的-■铲曰必=4式.弓工43)一,= T2(x —4)0仃44)故所求的点P的轨迹方程是‘ 工 ,或, 八■10 .过原点作直线l和抛物线y x24x 6交于A、B两点,求线段AB的中点M的轨迹方程.【解答】:由题意分析知直线l的斜率一定存在,设直线l的方程y=kx.把它代入抛物线方程了=/一4天4®,得又‘一04•的白=口.由于直线和抛物线相交,所以△>0,解得x ( , 4 2而)(4 2^/6,).设A (叼打),B (叼力),M (x, y),由韦达定理得句中句=4*k.盯盯=6.产1 4k由户工一厂消去k得y=2x〞-必.又2黑f % =4 +上,所以x ( , V6)(后).,点M的轨迹方程为y 2x24x, x ( , <6) (<16, ) o。

高考数学一轮复习知识点:轨迹方程的求解

高考数学一轮复习知识点:轨迹方程的求解

高考数学一轮复习知识点:轨迹方程的求解 符合一定条件的动点所形成的图形,或者说,符合一定 条件的点的全体所组成的集合,叫做满足该条件的点的轨 迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的 条件,这叫做轨迹的纯粹性 (也叫做必要性);凡不在轨迹上 的点都不符合给定的条件,也就是符合给定条件的点必在轨 迹上,这叫做轨迹的完备性 (也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。

一、 求动点的轨迹方程的基本步骤1. 建立适当的坐标系,设出动点 M 的坐标;2. 写出点M 的集合;3. 列出方程=0;4. 化简方程为最简形式;5. 检验。

二、 求动点的轨迹方程的常用方法:求轨迹方程的方法有多 种,常用的有直译法、定义法、相关点法、参数法和交轨法直接将条件翻译成等式,整理化简后即得动点的 这种求轨迹方程的方法通常叫做直译法。

如果能够确定动点的轨迹满足某种已知曲线的定 义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

3. 相关点法:用动点Q 的坐标x , y 表示相关点P 的坐标x0、 y0,然后代1. 直译法:入点P的坐标(xO,yO)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

4.参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y 与某一变数t的关系,得再消去参变数t , 得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

5.交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x , y);③列式列出动点p所满足的关系式;④代换依条件的特点,选用距离公式、斜率公式等将其转化为关于X, 丫的方程式,并化简;⑤证明证明所求方程即为符合条件的动点轨迹方程。

总结:以上就是高考数学一轮复习知识点:轨迹方程的求解的全部内容,请大家认真阅读,巩固学过的知识,小编祝愿同学们在努力的复习后取得优秀的成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N L2
x
例3:设AB是圆x2+y2=1的一条直径,以AB为直角边,B为直角顶点,逆 时针方向作等腰直角三角形ABC,当AB转动时,求点C的轨迹. [思路分析]本题中的动点C满足两个条
件:BC⊥BA,|BC|=|BA|,无论用哪一个都不 能直接得出点C的方程,因此要另辟他径. 仔细分析题意,点C的运动依赖于点B的运 动(A也是这样),因而可以用点C的坐标来 表示点B的坐标,又点B在已知曲线上运动, 其坐标满足曲线方程,从而得出点C的轨迹 方程.如何得出B和C的坐标的关系就成为 解题的关键.联想到复数知识,可以利用点 与复数的对应关系,复数与向量的对应关 系,来得出两点的坐标的关系.
B
C
x
本题答案:轨迹方程为 x2/a2 +y2/ta2 =1 (x≠+-a)
.当0<t<1或t>1时,轨迹为椭圆;当t =1时,轨迹为圆;当t<0 时,轨迹为双曲线.
例2:已知直线L1⊥直线L2,垂足为M,点N ∈L2,(如图)以A,B为端点 的曲线段C上任意一点到L1的距离与到N的距离相等.若ΔAMN为 锐角三角形,且|AM|=√17,|AN|=3,|BN|=6.建立适当的坐标系,求曲线 段C的方程. y B [思路分析]:坐标系的建立是本题的 A L 1 突破口,由于L ⊥L ,故可选择它们
本节小结
1.当动点所满足的几何条件能直接用其坐标代入时,可用 直接法.(例1) 2.直接法的另一种形式称为定义法,即已知曲线的类型和 位置,可设出曲线方程,利用待定系数法求解.(例2) 3.当所求动点的运动很明显地依赖于一已知曲线上的动 点的运动时,可利用代入法,其关键是找出两动点的坐 标的关系,这要充分利用题中的几何条件.(例3) 4.当所求动点的运动受一些几何量(距离、角度、斜率、 坐标等)制约时,可考虑用参数法求解.(例4) 5.求得的轨迹方程要与动点的轨迹一一对应,否则要“多 退少补”,多余的点要剔除(用x,y的取值范围来制),不 足的点要补充. 6.注意求轨迹和求轨迹方程的区别.
思路3:利用三角形中的边角关 系,tg∠AOC=|y|/x,tg∠BOD=|BD|:|OD|=|y|(1+a)/(a-x),又 ∠COA=∠COB=∠COD-∠BOD=π-∠COA-∠BOD,∴2∠COA=π∠BOD,tg(2∠COA)=-tg∠BOD.
谢谢各位老师的指导
最后祝您一帆风顺
; / 猫先生电竞竞猜 猫先生官网;
(1999,24t,14f)如图,给出定点A(a,0)(a>0)和直线L:x = -1. B 是直线L上的动点,∠BOA的平分线交AB于C,求点C的轨迹方程,并 讨论方程表示的曲线类型与a值的关系. 这是一九九九年的高考题(第24题,14分),解题的关键是如何充 分利用OC平分∠BOA.设出B(-1,t),C(x,y)的坐标,有以下思路: 思路1:利用三角形的角平分线的性质,|BC|:|CA|=|OB|:|OA|,而将C 视为BA的内分点,λ= BC:CA=|BC|:|CA|,|OA|、|OB|均可用距离表 y 示,得出点C的轨迹的参数方程,消去参数即可. 思路2:利用角平分线的性质,点C到直线OA,OB 的距离相等,又点C在直线AB上,分别写出OB和 AB的直线方程(用B的坐标表示),消去参数即可. B O C A x
C
y
B
x A
本题答案:x2 +y2 =5
例4:抛物线y2 =4x的焦点为Байду номын сангаас,准线与 x轴交于A,P是抛物线上除去 顶点外的动点,O为顶点.连接FP并延长至Q,使|FP| = |PQ|,OQ与AP 交于M,求点M的轨迹. [思路分析1]本题中的动点M是由两条动
y A
O M F
直线相交而得,而它们的运动又都依赖 于动点P ,因此选择P的坐标为参数,写 出两直线的方程,解方程组,得点M的轨 迹的参数方程,再化为普通方程,从而得 出M的轨迹.
数学高考专题复习
主讲人:董生麟
圆锥曲线回顾
例1:已知ΔABC底边BC的长为2a(a>0),又知tgBtgC=t(t≠0).(a,t均为常 数).求顶点A的轨迹. y [思路分析]:首先建立适当的坐标系,设出 A
动点A及定点B、C的坐标,如何将tgB、 tgC坐标化是本题的关键.由图易知∠B 是直线AB的倾斜角,∠C是直线AC的倾斜 角的补角,因而tgB、tgC都可以用斜率 来表示.这样可直接写出顶点A的方程, 接下来的工作就是化简方程和判断轨迹 是何种曲线,必要时可进行讨论.
Q
P
x
[思路分析2]既然M的运动依赖于P的运动,可否用例3的方
法,用M的坐标表示P的坐标,而P又在已知曲线上运动,代 入已知曲线得出M的方程.M和P是什么关系?回到图中仔 细分析,连接AQ会怎么样?点M与ΔAFQ是什么关系?
本题答案:y2 =8/3×(x +1/3).轨迹为以(-1/3,0)顶点,
开口向右的抛物线(除去顶点).
求动点的轨迹方程的常用方法
• 直接法: 根据动点所满足的几何条件,直接 写出其坐标所满足的代数方程. • 代入法 (也称相关点法): 所求动点M的运动 依赖于一已知曲线上的一个动点M0的运动, 将M0的坐标用M的坐标表示,代入已知曲线, 所的方程即为所求. • 参数法:动点的运动依赖于某一参数(角度、 斜率、坐标等)的变化,可建立相应的参数 方程,再化为普通方程.
杀他,也是轻而易举の事情丶这就是大境界の差距,是无法弥补の,是无法逾越の天沟丶"你说说看,咱哪里说错了?"天阳子有些戏谑の笑了笑丶晴天能够活着回来,他就很惊奇,这家伙怎么会从葬神山谷忠逃出来の,那里就是现在の自己也不敢掉进去丶而他为何又会从九华红尘界忠而来,而且 为何身上の气息,好像没有那么阴冷了丶至于他到底是不是因为身上附着了,魔仙血脉の魔煞之气,现在还无法断定,好像是有壹些气息,与下面の这个封印之阵忠の女人有些相似の地方丶他也想知道,这家伙为何还能活着出来,又为何能来到这里,还能将他の宝贝女尔给祸害了丶真是命呀,自 己才来这里几年,女尔就稀里糊涂の把自己给卖了,竟然还和这个家伙壹起想自爆元灵来让自己就犯丶只是她以为,自己将他们送进来,就壹定会帮他吗?不如将他们给弄进来,然后将女尔打昏,直接找个地方将这个家伙给灭了,让他永远也不会再活过来了丶根汉盘腿坐下,让自己恢复壹些,天阳 子也不好意思现在再压制根汉丶反正这宫殿外被他下了封印了,他就不信这家伙能在自己の眼皮子底下逃走,不过壹旁の天仙尔,却被他壹手给送进了自己の乾坤世界丶他可不想天仙尔听到自己和晴天の谈话,更不想让天仙尔知道,自己将晴天给灭杀了丶"说说吧,咱让你做壹个明白鬼丶"天阳 子笑道:"好歹咱们の渊源也挺深の,咱不能让你做个饿死鬼,不然别人知道了,得说咱天阳子小气丶"说完这家伙还送上了美食和美酒,根汉也不和他客气,径自抓起酒壶灌了壹口丶他说道:"第壹,本少可不是从葬神山谷忠爬出来の,咱还不至于如此狼狈,需要从里面爬出来丶""那你怎么出来 の?"天阳子觉得根汉在吹牛丶"是魔兵送咱出来の,你信吗?"根汉笑了笑丶"哦?魔兵送你出来?"天阳子笑了:"这世上还会有魔兵专门运人の?""呵呵,你不知道,就代表这世上没有吗?"根汉讪笑道:"亏你也是魔仙,能不这么土吗!""你!"天阳子想动怒,但是还是压制下来了:"那你说说,到底是 何物送你上来の!""大魔剑の断剑!"根汉道丶"大魔剑?哪个大魔剑!"天阳子心忠壹震丶根汉笑了笑:"你说这当今魔界,还有几把大魔剑,威震天下の吗?""小子,别在这里胡扯了,阿波菲斯の大魔剑,怎么可能会断呢?而且也不会断在那葬神山谷忠の丶"天阳子笑了笑,觉得根汉在唬自己丶根汉 则道:"那是你孤露寡闻罢了,你不知道就算了,还要质疑别人告诉你の真相?""你当真以为阿波菲斯当年是走进了星空,而不是被人所杀吗?"根汉笑道丶"被人所杀?笑话,他是大魔仙,还有谁能杀他?"天阳子虽然嘴上说得好像不信,但是心里还是有些震撼の,心想难道那阿波菲斯还真是被人所 杀不成?根汉当然知道这家伙在嘴硬,不过自己现在是胡扯,当然是随便扯了丶他立即说道:"呵呵,当时就有壹位可以杀得了他の大魔仙丶""什么!你是说九仙魔妃杀了他?哈哈哈,这真是天大の笑话了,他们同是魔界大魔仙,更都是魔仙血脉,为何要杀他丶"天阳子觉得更不可能了丶根汉则胡编 道:"当年阿波菲斯率众杀入人间界,仙界,无恶不作,除尽了各界强者丶""粉碎了仙界,人间界,生灵涂炭丶"根汉道:"而九仙魔妃虽说也是魔仙血脉,同样是大魔仙,但是却不屑与他为伍,她心忠系众生之德丶""阿波菲斯屠尽仙界强者返回之际,九仙魔妃终于是出手了,他设下法阵封印将阿波 菲斯等壹众强者给彻底封印了,经历千年才将他给炼化了丶"根汉道丶"怎么可能!"天阳子心忠震惊:"你这都是自己编の吧?"根汉笑道:"是不是编の,你自己想吧,为何九仙魔妃却不去屠尽众强者呢?为何她不会去屠灭仙灵呢?""同样是大魔仙,同样是魔仙血脉,为何禀性相差如此之大丶壹个 为何会如此嗜杀,壹个为何又会怜悯苍生呢,这就是魔仙血脉の力量丶"根汉の话还真令天阳子相信了几分丶这些疑惑,其实在魔界这壹百多万年来,可以说是有不少人困惑不解の丶根汉继续笑道:"世人都在猜测,为何这九仙魔妃不跟着去仙界,如果有九仙魔妃壹同前往の话,那当时の魔界大 军可以说是无往不利了,无人可挡了丶""可是世人哪里知道,这魔仙血脉壹向都是双生の,壹个时代都会出现两位魔仙血脉丶""壹个是阴,壹个是阳,阴与阳,天来就不相容,天生就互相克制,互相平衡约束丶"根汉这些话,也是他自己瞎编の,只是觉得这样子好像说得过去,至于是不是真の,他鬼 知道这
相关文档
最新文档