神经网络实验指导书2013版[1]

合集下载

自组织竞争神经网络SOM

自组织竞争神经网络SOM
第四章 自组织竞争型神经网络
本章主要介绍自组织竞争型神经网络的结构 学习算法;及相关理论
1
第四章自组织竞争型神经网络
§4 1 前言 §4 2 竞争学习的概念和原理 §4 3自组织特征映射神经网络 §4 4自组织特征映射神经网络的设计 §4 5 对偶传播神经网络 §4 6小结
2
§4 1 前言
在生物神经系统中;存在着一种侧抑制现象;即一 个神经细胞兴奋以后;会对周围其他神经细胞产生 抑制作用 这种抑制作用会使神经细胞之间出现竞 争;其结果是某些获胜;而另一些则失败 表现形式 是获胜神经细胞兴奋;失败神经细胞抑制
在网络结构上;它一般是由输入层和竞争层构成的 两层网络 两层之间各神经元实现双向连接;而且网 络没有隐含层 有时竞争层各神经元之间还存在横 向连接
4
在学习算法上;它模拟生物神经元之间的兴奋 协调 与抑制 竞争作用的信息处理的动力学原理来指导 网络的学习与工作;而不像大多数神经网络那样是 以网络的误差或能量函数作为算法的准则
X1
0.8 0.6
X2
00.1.9783468
X3
00..770077
X4
00..3943297
X5
0.6 0.8
解:为作图方便;将上述模式转换成极坐标形式 :
X113.68o9X2180oX314.4 5X4170oX515.31o3
竞争层设两个权向量;随机初始化为单位向量:
W1(0)1010o W2(0)01118o0
7
24 -130
8
34 -130
w2
9
34 -100
10
44 -100
11
40.5 -100
12
40.5 -90

神经网络 实验报告

神经网络 实验报告

神经网络实验报告神经网络实验报告引言:神经网络是一种模仿人脑神经元网络结构和功能的计算模型,它通过学习和训练来实现模式识别、分类和预测等任务。

本次实验旨在探索神经网络的基本原理和应用,并通过实践验证其效果。

一、神经网络的基本原理1.1 神经元模型神经元是神经网络的基本单元,它接收来自其他神经元的输入信号,并通过激活函数进行处理后输出。

我们采用的是Sigmoid函数作为激活函数,它能够将输入信号映射到0到1之间的值。

1.2 神经网络结构神经网络由输入层、隐藏层和输出层组成。

输入层接收外部输入的数据,隐藏层用于处理和提取特征,输出层给出最终的预测结果。

隐藏层的数量和每层神经元的数量是根据具体问题而定的。

1.3 反向传播算法反向传播算法是神经网络中最常用的训练算法,它通过计算误差和调整权重来不断优化网络的预测能力。

具体而言,它首先进行前向传播计算得到预测结果,然后计算误差,并通过链式法则将误差反向传播到每个神经元,最后根据误差调整权重。

二、实验设计2.1 数据集选择本次实验选择了一个手写数字识别的数据集,其中包含了大量的手写数字图片和对应的标签。

这个数据集是一个经典的机器学习数据集,可以用来评估神经网络的分类能力。

2.2 神经网络参数设置为了探究神经网络的性能和泛化能力,我们设置了不同的参数组合进行实验。

主要包括隐藏层数量、每层神经元数量、学习率和训练轮数等。

2.3 实验步骤首先,我们将数据集进行预处理,包括数据归一化和标签编码等。

然后,将数据集划分为训练集和测试集,用于训练和评估网络的性能。

接下来,根据不同的参数组合构建神经网络,并使用反向传播算法进行训练。

最后,通过测试集评估网络的分类准确率和损失函数值。

三、实验结果与分析3.1 参数优化我们通过对不同参数组合的实验进行比较,找到了在手写数字识别任务上表现最好的参数组合。

具体而言,我们发现增加隐藏层数量和神经元数量可以提高网络的分类准确率,但同时也会增加训练时间。

实验七基于神经网络的模式识别实验

实验七基于神经网络的模式识别实验

实验七基于神经网络的模式识别实验一、实验目的利用神经网络实现模式识别,并验证其性能。

掌握基于神经网络的模式识别方法。

二、实验原理1.神经网络神经网络是一种模仿生物神经系统的计算模型,它由大量的神经元节点相互连接而成。

在模式识别中,我们一般采用多层前向神经网络进行模式的训练和识别。

2.神经网络的训练过程神经网络的训练过程可以分为两步:前向传播和反向传播。

前向传播是指将输入样本通过网络的各个层传递到输出层,并计算输出结果。

反向传播是指根据输出结果和目标结果之间的误差,将误差反向传播到网络的各个层,并根据误差调整网络中的权值。

3.模式识别对于模式识别问题,我们首先需要将输入模式转化为特征向量,然后通过神经网络来训练这些特征向量,并将其与已知类别的模式进行比较,从而进行模式的识别。

三、实验步骤1.数据准备选择适当的模式识别数据集,例如手写数字识别的MNIST数据集,将其分为训练集和测试集。

2.特征提取对于每个输入模式,我们需要将其转化为一个特征向量。

可以使用各种特征提取方法,例如像素值,轮廓等。

3.神经网络设计设计合适的神经网络结构,包括输入层、隐藏层和输出层,并确定各层的神经元数目。

4.神经网络训练使用训练集对神经网络进行训练,包括前向传播和反向传播过程。

可以使用各种优化算法,例如梯度下降法。

5.模式识别使用测试集对训练好的神经网络进行测试和验证,计算识别的准确率和性能指标。

6.性能评估根据得到的结果,评估神经网络的性能,并分析可能的改进方法。

四、实验结果通过实验我们可以得到神经网络模式识别的准确率和性能指标,例如精确度、召回率和F1-score等。

五、实验总结在本次实验中,我们利用神经网络实现了模式识别,并验证了其性能。

通过实验,我们可以掌握基于神经网络的模式识别方法,了解神经网络的训练和识别过程,以及模式识别中的特征提取方法。

实验结果表明,神经网络在模式识别问题中具有较好的性能,并且可以根据需要进行改进和优化。

神经网络设计课程设计

神经网络设计课程设计

神经网络设计课程设计一、课程目标知识目标:1. 学生能理解神经网络的基本概念,掌握其结构和工作原理。

2. 学生能描述神经网络在图像识别、自然语言处理等领域的应用。

3. 学生能掌握神经网络的训练和优化方法,了解超参数调整对网络性能的影响。

技能目标:1. 学生能运用编程工具(如Python、TensorFlow等)搭建简单的神经网络模型。

2. 学生能通过调整网络结构、参数等手段优化模型性能,解决实际问题。

3. 学生能运用所学知识,对神经网络进行调试、评估和改进。

情感态度价值观目标:1. 学生对神经网络技术产生兴趣,培养探究精神和创新意识。

2. 学生在团队合作中学会相互尊重、沟通与协作,提高解决问题的能力。

3. 学生认识到神经网络技术在现实生活中的价值,关注其对社会发展的影响。

课程性质:本课程为选修课,旨在拓展学生的知识视野,提高实践操作能力。

学生特点:学生具备一定的编程基础和数学知识,对新技术充满好奇心。

教学要求:结合理论讲解与实践操作,引导学生主动探究,注重培养学生的动手能力和创新能力。

通过课程学习,使学生能够独立完成神经网络模型的搭建和优化,解决实际问题。

二、教学内容1. 神经网络基本概念:介绍神经元模型、网络结构,理解全连接网络、卷积神经网络、循环神经网络等不同类型的神经网络。

- 教材章节:第二章 神经网络基础2. 神经网络应用场景:分析图像识别、自然语言处理等领域的神经网络应用案例,探讨神经网络的优势和局限性。

- 教材章节:第三章 神经网络应用3. 神经网络搭建与训练:学习使用Python、TensorFlow等工具搭建神经网络,掌握前向传播和反向传播算法,了解损失函数和优化器的选择。

- 教材章节:第四章 神经网络搭建与训练4. 神经网络优化策略:研究超参数调整、正则化、批量归一化等方法,探讨如何提高神经网络性能。

- 教材章节:第五章 神经网络优化5. 实践项目:结合所学知识,开展图像分类、文本情感分析等实践项目,培养学生解决实际问题的能力。

BP神经网络实验报告

BP神经网络实验报告

BP神经网络实验报告一、引言BP神经网络是一种常见的人工神经网络模型,其基本原理是通过将输入数据通过多层神经元进行加权计算并经过非线性激活函数的作用,输出结果达到预测或分类的目标。

本实验旨在探究BP神经网络的基本原理和应用,以及对其进行实验验证。

二、实验方法1.数据集准备本次实验选取了一个包含1000个样本的分类数据集,每个样本有12个特征。

将数据集进行标准化处理,以提高神经网络的收敛速度和精度。

2.神经网络的搭建3.参数的初始化对神经网络的权重和偏置进行初始化,常用的初始化方法有随机初始化和Xavier初始化。

本实验采用Xavier初始化方法。

4.前向传播将标准化后的数据输入到神经网络中,在神经网络的每一层进行加权计算和激活函数的作用,传递给下一层进行计算。

5.反向传播根据预测结果与实际结果的差异,通过计算损失函数对神经网络的权重和偏置进行调整。

使用梯度下降算法对参数进行优化,减小损失函数的值。

6.模型评估与验证将训练好的模型应用于测试集,计算准确率、精确率、召回率和F1-score等指标进行模型评估。

三、实验结果与分析将数据集按照7:3的比例划分为训练集和测试集,分别进行模型训练和验证。

经过10次训练迭代后,模型在测试集上的准确率稳定在90%以上,证明了BP神经网络在本实验中的有效性和鲁棒性。

通过调整隐藏层结点个数和迭代次数进行模型性能优化实验,可以发现隐藏层结点个数对模型性能的影响较大。

随着隐藏层结点个数的增加,模型在训练集上的拟合效果逐渐提升,但过多的结点数会导致模型的复杂度过高,容易出现过拟合现象。

因此,选择合适的隐藏层结点个数是模型性能优化的关键。

此外,迭代次数对模型性能也有影响。

随着迭代次数的增加,模型在训练集上的拟合效果逐渐提高,但过多的迭代次数也会导致模型过度拟合。

因此,需要选择合适的迭代次数,使模型在训练集上有好的拟合效果的同时,避免过度拟合。

四、实验总结本实验通过搭建BP神经网络模型,对分类数据集进行预测和分类。

实训神经网络实验报告

实训神经网络实验报告

一、实验背景随着人工智能技术的飞速发展,神经网络作为一种强大的机器学习模型,在各个领域得到了广泛应用。

为了更好地理解神经网络的原理和应用,我们进行了一系列的实训实验。

本报告将详细记录实验过程、结果和分析。

二、实验目的1. 理解神经网络的原理和结构。

2. 掌握神经网络的训练和测试方法。

3. 分析不同神经网络模型在特定任务上的性能差异。

三、实验内容1. 实验一:BP神经网络(1)实验目的:掌握BP神经网络的原理和实现方法,并在手写数字识别任务上应用。

(2)实验内容:- 使用Python编程实现BP神经网络。

- 使用MNIST数据集进行手写数字识别。

- 分析不同学习率、隐层神经元个数对网络性能的影响。

(3)实验结果:- 在MNIST数据集上,网络在训练集上的准确率达到98%以上。

- 通过调整学习率和隐层神经元个数,可以进一步提高网络性能。

2. 实验二:卷积神经网络(CNN)(1)实验目的:掌握CNN的原理和实现方法,并在图像分类任务上应用。

(2)实验内容:- 使用Python编程实现CNN。

- 使用CIFAR-10数据集进行图像分类。

- 分析不同卷积核大小、池化层大小对网络性能的影响。

(3)实验结果:- 在CIFAR-10数据集上,网络在训练集上的准确率达到80%以上。

- 通过调整卷积核大小和池化层大小,可以进一步提高网络性能。

3. 实验三:循环神经网络(RNN)(1)实验目的:掌握RNN的原理和实现方法,并在时间序列预测任务上应用。

(2)实验内容:- 使用Python编程实现RNN。

- 使用Stock数据集进行时间序列预测。

- 分析不同隐层神经元个数、学习率对网络性能的影响。

(3)实验结果:- 在Stock数据集上,网络在训练集上的预测准确率达到80%以上。

- 通过调整隐层神经元个数和学习率,可以进一步提高网络性能。

四、实验分析1. BP神经网络:BP神经网络是一种前向传播和反向传播相结合的神经网络,适用于回归和分类问题。

神经网络的BP算法实验报告

神经网络的BP算法实验报告

计算智能基础实验报告实验名称:BP神经网络算法实验班级名称:341521班专业:探测制导与控制技术姓名:***学号:********一、 实验目的1)编程实现BP 神经网络算法;2)探究BP 算法中学习因子算法收敛趋势、收敛速度之间的关系;3)修改训练后BP 神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果,理解神经网络分布存储等特点。

二、 实验要求按照下面的要求操作,然后分析不同操作后网络输出结果。

1)可修改学习因子2)可任意指定隐单元层数3)可任意指定输入层、隐含层、输出层的单元数4)可指定最大允许误差ε5)可输入学习样本(增加样本)6)可存储训练后的网络各神经元之间的连接权值矩阵;7)修改训练后的BP 神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果 。

三、 实验原理1BP 神经网络算法的基本思想误差逆传播(back propagation, BP)算法是一种计算单个权值变化引起网络性能变化的较为简单的方法。

由于BP 算法过程包含从输出节点开始,反向地向第一隐含层(即最接近输入层的隐含层)传播由总误差引起的权值修正,所以称为“反向传播”。

BP 神经网络是有教师指导训练方式的多层前馈网络,其基本思想是:从网络输入节点输入的样本信号向前传播,经隐含层节点和输出层节点处的非线性函数作用后,从输出节点获得输出。

若在输出节点得不到样本的期望输出,则建立样本的网络输出与其期望输出的误差信号,并将此误差信号沿原连接路径逆向传播,去逐层修改网络的权值和节点处阈值,这种信号正向传播与误差信号逆向传播修改权值和阈值的过程反复进行,直训练样本集的网络输出误差满足一定精度要求为止。

2 BP 神经网络算法步骤和流程BP 神经网络步骤和流程如下:1) 初始化,给各连接权{},{}ij jt W V 及阈值{},{}j t θγ赋予(-1,1)间的随机值;2) 随机选取一学习模式对1212(,),(,,)k k k k k k k n k n A a a a Y y y y ==提供给网络;3) 计算隐含层各单元的输入、输出;1n j ij i j i s w a θ==⋅-∑,()1,2,,j j b f s j p ==4) 计算输出层各单元的输入、输出;1t t jt j t j l V b γ==⋅-∑,()1,2,,t t c f l t q ==5) 计算输出层各单元的一般化误差;()(1)1,2,,k k t t tt t t d y c c c t q =-⋅-=6) 计算中间层各单元的一般化误差;1[](1)1,2,,q kk jt jt j j t e d V b b j p ==⋅⋅-=∑7) 修正中间层至输出层连接权值和输出层各单元阈值;(1)()k jt jt t j V iter V iter d b α+=+⋅⋅(1)()k t t t iter iter d γγα+=+⋅8) 修正输入层至中间层连接权值和中间层各单元阈值;(1)()kk ij ij j i W iter W iter e a β+=+⋅⋅(1)()kj j j iter iter e θθβ+=+⋅9) 随机选取下一个学习模式对提供给网络,返回步骤3),直至全部m 个模式训练完毕;10) 重新从m 个学习模式对中随机选取一个模式对,返回步骤3),直至网络全局误差函数E 小于预先设定的一个极小值,即网络收敛;或者,当训练次数大于预先设定值,强制网络停止学习(网络可能无法收敛)。

神经网络_实验报告

神经网络_实验报告

一、实验目的与要求1. 掌握神经网络的原理和基本结构;2. 学会使用Python实现神经网络模型;3. 利用神经网络对手写字符进行识别。

二、实验内容与方法1. 实验背景随着深度学习技术的不断发展,神经网络在各个领域得到了广泛应用。

在手写字符识别领域,神经网络具有较好的识别效果。

本实验旨在通过实现神经网络模型,对手写字符进行识别。

2. 神经网络原理神经网络是一种模拟人脑神经元结构的计算模型,由多个神经元组成。

每个神经元接收来自前一个神经元的输入,通过激活函数处理后,输出给下一个神经元。

神经网络通过学习大量样本,能够自动提取特征并进行分类。

3. 实验方法本实验采用Python编程语言,使用TensorFlow框架实现神经网络模型。

具体步骤如下:(1)数据预处理:从公开数据集中获取手写字符数据,对数据进行归一化处理,并将其分为训练集和测试集。

(2)构建神经网络模型:设计网络结构,包括输入层、隐藏层和输出层。

输入层用于接收输入数据,隐藏层用于提取特征,输出层用于输出分类结果。

(3)训练神经网络:使用训练集对神经网络进行训练,调整网络参数,使模型能够准确识别手写字符。

(4)测试神经网络:使用测试集对训练好的神经网络进行测试,评估模型的识别效果。

三、实验步骤与过程1. 数据预处理(1)从公开数据集中获取手写字符数据,如MNIST数据集;(2)对数据进行归一化处理,将像素值缩放到[0, 1]区间;(3)将数据分为训练集和测试集,比例约为8:2。

2. 构建神经网络模型(1)输入层:输入层节点数与数据维度相同,本实验中为28×28=784;(2)隐藏层:设计一个隐藏层,节点数为128;(3)输出层:输出层节点数为10,对应10个类别。

3. 训练神经网络(1)定义损失函数:均方误差(MSE);(2)选择优化算法:随机梯度下降(SGD);(3)设置学习率:0.001;(4)训练次数:10000;(5)在训练过程中,每100次迭代输出一次训练损失和准确率。

数据挖掘实验(一)bp神经网络实验指导书48

数据挖掘实验(一)bp神经网络实验指导书48

数据挖掘实验(一)BP神经网络实验吴诗乐通信7班20123100053一、实验目的初步熟悉MATLAB 工作环境,熟悉命令窗口,学会使用帮助窗口查找帮助信息。

二、实验内容1、网络设计,包括输入层、隐含层、输出层节点个数的设计。

2、算法步骤3、编程,注意原始数据的通用化,数据输入的随机性。

4、网络训练,注意训练数据与验证数据分开。

5、网络验证6、结果分析,修改隐含层节点个数,修改学习率,分别对结果的影响。

三、实验数据本实验以Fisher的Iris数据集作为神经网络程序的测试数据集。

Iris数据集可以在/wiki/Iris_flower_data_set 找到。

也可以在UCI数据集中下载。

Iris数据集中Iris花可分为3个品种,现需要对其进行分类。

不同品种的Iris 花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。

现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。

要求用已有的数据训练一个神经网络用作分类器。

四、神经网络实现1. 数据预处理在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段是归一化处理。

下面简要介绍归一化处理的原理与方法。

(1) 什么是归一化?数据归一化,就是将数据映射到[0,1]或[-1,1]区间或更小的区间,比如(0.1,0.9) 。

(2) 为什么要归一化处理?<1>输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢、训练时间长。

<2>数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入作用就可能会偏小。

<3>由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练的目标数据映射到激活函数的值域。

例如神经网络的输出层若采用S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经网络的输出只能限制在(0,1),所以训练数据的输出就要归一化到[0,1]区间。

《人工智能》实验指导书

《人工智能》实验指导书

山西财经大学信息管理学院王保忠编《人工智能实验指导书》适用专业:计算机科学与技术信息管理与系统信息科学与计算一、学时与学分总学时:48;总学分:4;实验学时:16;实验学分:1二、实验课的任务、性质与目的本实验课程是计算机专业、信息管理与系统学生的一门专业课程,通过实验软件环境提供的大量演示性、验证性和开发设计性实验,帮助学生更好地熟悉和掌握人工智能的基本原理和方法;通过实验提高学生编写实验报告、总结实验结果的能力;使学生对人工智能的相关理论有更深刻的认识。

三、基本原理本实验涉及人工智能的经典理论和方法,以及计算智能的部分分支和实现方法,主要包括以下内容:1. 产生式系统实验2. 搜索策略实验3. 神经网络实验4. 自动规划实验四、实验方式与基本要求本实验目的是使学生进一步加深对人工智能的基本原理和方法的认识,通过实践了解人工智能的实现手段。

实验方式:1. 实验共16学时;2. 由指导教师讲解实验的基本要求,提示算法的基本思想;3. 实验一人一组,独立完成实验的演示、验证和开发设计;4. 学生在完成预习报告后才能进入实验室进行实验。

五、实验项目的设置与内容提要《人工智能实验指导书》实验名称实验目的内容简介1 产生式系统实验熟悉和掌握产生式系统的运行机制,掌握基于规则推理的基本方法主要包括产生式系统的正、反向推理、基于逻辑的搜索等10余个相关演示性、验证性和开发性设计实验。

2 搜索策略实验熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解N数码难题,理解求解流程和搜索顺序。

主要包括盲目式、启发式搜索类的10余个相关演示性、验证性和开发性设计实验。

3 神经网络实验理解反向传播网络的结构和原理,掌握反向传播算法对神经元的训练过程,了解反向传播公式。

通过构建BP网络实例,熟悉前馈网络的原理及结构。

主要包括以BP网为代表的ANN的验证性实验及设计性实验。

并包括用BP网解决一些非线性问题的典型设计实验(如异或问题、布尔代数及非线性函数模拟等)4 自动规划实验理解自动规划的基本原理,掌握为活动实体(人、组织、机器)设计合理的行为、按时间顺序的活动序列等基本技术。

Java实验指导书2013版

Java实验指导书2013版

第一部份绪论 (2)本课程实验的作用与任务 (2)本课程实验的基础知识 (2)本课程实验教学项目及其教学要求 (2)第二部份基本实验指导 (4)实验一:Java基本语法 (4)实验三:Java面向对象程序设计(一) (9)实验五:Java常用类 (18)实验七:Java集合 (21)实验九:GUI图形用户界面 (26)第一部份绪论本课程实验的作用与任务使学生进一步深刻理解Java语言基本概念、语法规则及程序结构,熟练掌握Java语言程序设计的基本方法,提高利用Java在网络环境下开发、设计应用程序的能力,从而进一步培养学生的创新能力和解决实际问题的能力。

熟悉JDK工具的编程和调试环境;熟练掌握选择和循环结构的程序设计;熟练掌握面向对象的程序设计思想,包括系统类的应用和用户自定义类;充分理解类的三种的特性:封装、继承和多态,特别是通过接口和抽象类理解多态;掌握图形用户界面的设计,特别是事件处理;掌握包的使用;掌握常用的输入输出流类的应用。

最后能根据实验的要求认真完成实验报告。

本课程实验的基础知识Java的基本数据类型包括:byte,short,int,long,double,char。

Java的数组属于引用类型的数据,是将相同类型的数据按顺序组成的一种符合数据类型。

Java的运算符有算术运算符、关系运算符、逻辑运算符、位运算符和赋值运算符,特别要注意它们的优先级。

Java的控制语句有if语句、switch语句、for语句、while语句、do-while语句。

类是组成Java程序的基本要素,类有两个重要的成员:成员变量和方法。

类是创建对象的模板,类将对象的属性和功能封装为一个整体。

成员变量和类变量的区别、实例方法和类方法的区别、方法的重载、成员的访问权限等都是实验课程所依据的重要理论。

继承、多态、接口、包及内部类都是Java中非常重要的概念。

Java使用“流”来读写数据。

Java的输入输出工作是通过FileInputStream类、FileReader 类、BufferedReader类、ByteArrayInputStream类、ByteArrayOutputStream类等完成的。

神经网络教学设计方案

神经网络教学设计方案

一、课程背景随着人工智能技术的飞速发展,神经网络作为其核心组成部分,已经成为计算机科学、机器学习等领域的重要研究方向。

为了让学生深入了解神经网络的基本原理、应用场景和开发技巧,本课程旨在通过理论与实践相结合的方式,使学生掌握神经网络的基本知识,并具备一定的神经网络应用开发能力。

二、课程目标1. 了解神经网络的起源、发展历程和基本概念。

2. 掌握神经网络的基本结构,包括感知器、多层感知器、卷积神经网络(CNN)和循环神经网络(RNN)等。

3. 熟悉神经网络的学习算法,如梯度下降、反向传播等。

4. 能够使用Python等编程语言实现简单的神经网络模型。

5. 了解神经网络在实际应用中的挑战和解决方案。

三、课程内容1. 神经网络基础理论- 神经网络的历史与发展- 神经元的数学模型- 神经网络的层次结构2. 前馈神经网络- 感知器与多层感知器- 激活函数与损失函数- 梯度下降与反向传播算法3. 卷积神经网络(CNN)- 卷积层与池化层- CNN在图像识别中的应用- CNN的优化与训练技巧4. 循环神经网络(RNN)- RNN的基本结构- 长短期记忆网络(LSTM)与门控循环单元(GRU)- RNN在序列数据处理中的应用5. 神经网络应用开发- 使用Python实现神经网络模型- 神经网络模型训练与评估- 神经网络在实际问题中的应用案例四、教学方法1. 理论讲解:通过PPT、视频等形式,系统讲解神经网络的基本概念、原理和算法。

2. 实验操作:提供实验指导书,引导学生动手实现神经网络模型,加深对理论知识的理解。

3. 案例分析:分析神经网络在实际应用中的案例,帮助学生理解神经网络的实用价值。

4. 小组讨论:组织学生进行小组讨论,激发学生的学习兴趣,培养团队合作能力。

5. 在线资源:推荐相关在线课程、论文和开源代码,方便学生自主学习和拓展知识。

五、考核方式1. 平时成绩:包括实验报告、课堂表现等,占总成绩的30%。

实训神经网络实验报告总结

实训神经网络实验报告总结

一、实验背景随着人工智能技术的快速发展,神经网络作为一种重要的机器学习算法,已经在图像识别、自然语言处理、推荐系统等领域取得了显著的成果。

为了更好地理解和掌握神经网络的基本原理和应用,我们进行了为期一周的神经网络实训实验。

二、实验目的1. 理解神经网络的基本原理和结构;2. 掌握神经网络训练和推理的基本方法;3. 通过实际操作,加深对神经网络的理解和应用。

三、实验内容1. 神经网络基本原理在实验过程中,我们首先学习了神经网络的基本原理,包括神经元结构、激活函数、损失函数等。

通过学习,我们了解到神经网络是一种模拟人脑神经元结构的计算模型,通过学习大量样本数据,实现对未知数据的分类、回归等任务。

2. 神经网络结构设计我们学习了神经网络的结构设计,包括输入层、隐含层和输出层。

输入层负责接收原始数据,隐含层负责对数据进行特征提取和抽象,输出层负责输出最终结果。

在实验中,我们尝试设计了不同层级的神经网络结构,并对比分析了其性能。

3. 神经网络训练方法神经网络训练方法主要包括反向传播算法和梯度下降算法。

在实验中,我们使用了反向传播算法对神经网络进行训练,并对比了不同学习率、批量大小等参数对训练效果的影响。

4. 神经网络推理方法神经网络推理方法主要包括前向传播和后向传播。

在前向传播过程中,将输入数据通过神经网络进行处理,得到输出结果;在后向传播过程中,根据输出结果和实际标签,计算损失函数,并更新网络参数。

在实验中,我们实现了神经网络推理过程,并对比分析了不同激活函数对推理结果的影响。

5. 实验案例分析为了加深对神经网络的理解,我们选择了MNIST手写数字识别数据集进行实验。

通过设计不同的神经网络结构,使用反向传播算法进行训练,最终实现了对手写数字的识别。

四、实验结果与分析1. 不同神经网络结构对性能的影响在实验中,我们尝试了不同层级的神经网络结构,包括单层神经网络、多层神经网络等。

结果表明,多层神经网络在性能上优于单层神经网络,尤其是在复杂任务中,多层神经网络具有更好的表现。

计算机网络实验 (5)精选全文完整版

计算机网络实验 (5)精选全文完整版

可编辑修改精选全文完整版计算机网络实验1. 编程实验(使用NetRiver实验系统)(1)滑动窗口协议实验(见实验指导书的实验1,只做回退N帧实验)(2)IPv4协议收发实验(见实验指导书的实验2)(3)IPv4协议转发实验(见实验指导书的实验3)每位同学只做其中的一个实验,学号mod 3 = 0、1、2的同学分别做实验1、2、3。

程序应通过测试服务器的测试;程序及实验报告应提交到管理服务器供检查。

实验报告包括以下几部分内容:实验目的,协议的工作原理或处理要求,程序流程图。

提交的代码应有必要的注释。

2. 交互式实验(使用NetRiver实验系统)(1)IPv4协议交互实验(见实验指导书的实验11)(2)TCP协议交互实验(见实验指导书的实验14)该实验所有同学都要做。

服务器会自动记录实验结果,不需提交实验报告。

3. 观察实验(使用协议分析工具Wireshark)该实验所有同学都要做。

3.1观察IEEE 802.3帧结构进行实验的主机运行Windows XP操作系统。

通过Wireshark将实验主机的网卡设置为通常模式(非混杂模式),捕捉以下场景中的数据帧:先在命令行下用arp –d命令删除实验主机上的所有ARP表项,接着立即用web浏览器访问Internet上的站点。

1)依次查看捕获的各数据帧,看看目的地为实验主机的数据帧中长度最小的是多大;查看这种帧的各个域,看看前导码是否包含在记录的数据中;记录的数据是从哪个字段开始,至哪个字段结束;这是否验证了IEEE 802.3标准中规定的最小帧长为64字节?2)查看捕获的帧中长度最长的帧。

可以多访问一些网页以捕获更多的帧,看看这些帧的长度最大是多少?为什么?3)查看捕获的数据帧中由实验主机发出的ARP请求帧,查看封装该ARP 请求帧的以太帧的目的地址是多少,源地址是多少;再用ipconfig –all命令查看实验主机的MAC地址,看看是否和源地址一致。

人工智能导论实验指导书

人工智能导论实验指导书

实验一 感知器的MATLAB 仿真感知器(Pereceptron)是一种特殊的神经网络模型,是由美国心理学家F.Rosenblatt 于1958年提出的,一层为输入层,另一层具有计算单元,感知器特别适合于简单的模式分类问题,也可用于基于模式分类的学习控制和多模态控制中。

一、感知器神经元模型感知器神经元通过对权值的训练,可以使感知器神经元的输出能代表对输入模式进行的分类,图1.1为感知器神经元模型。

图1.1 感知器神经元模型感知器神经元的每一个输入都对应于一个合适的权值,所有的输入与其对应权值的加权和作为阀值函数的输入。

由于阀值函数的引入,从而使得感知器可以将输入向量分为两个区域,通常阀函数采用双极阶跃函数,如:⎩⎨⎧<≥=0,00,1)(x x x f (1.1) 而感知器神经元模型的实际输出为⎪⎭⎫⎝⎛-=∑-=R i i i b x w f o 1 (1.2)其中b 为阀值二、感知器的网络结构图1.2所描述的是一个简单的感知器网络结构,输入层有R 个输入,Q 个输出,通过权值w ij 与s 个感知器神经元连接组成的感知器神经网络。

根据网络结构,可以写出感知器处理单元对其输入的加权和操作,即:∑==Rj j ij i p w n 1(1.3)而其输出a i 为a i =f (n i +b i ) (1.4)由式2.1易知⎩⎨⎧<+≥+=0001i i i i i b n b n a (1.5) 则当输入n i +b i 大于等于0,即有n i ≥-b i 时,感知器的输出为1;否则输出为0。

上面所述的单层感知器神经网络是不可能解决线性不可分的输入向量分类问题,也不能推广到一般的前向网络中去。

为解决这一问题,我们可以设计多层感知器神经网络以实现任意形状的划分。

图1.3描述了一个双层感知器神经网络。

其工作方式与单层感知器网络一样,只不过是增加了一层而已,具体的内容这里不做讨论。

三、感知器神经网络的学习规则感知器的学习规则主要是通过调整网络层的权值和阀值以便能够地网络的输入向量进行正确的分类。

神经网络实验报告

神经网络实验报告

一、实验目的本次实验旨在了解神经网络的基本原理,掌握神经网络的构建、训练和测试方法,并通过实验验证神经网络在实际问题中的应用效果。

二、实验内容1. 神经网络基本原理(1)神经元模型:神经元是神经网络的基本单元,它通过接收输入信号、计算加权求和、应用激活函数等方式输出信号。

(2)前向传播:在神经网络中,输入信号通过神经元逐层传递,每层神经元将前一层输出的信号作为输入,并计算输出。

(3)反向传播:在训练过程中,神经网络通过反向传播算法不断调整各层神经元的权重和偏置,以最小化预测值与真实值之间的误差。

2. 神经网络构建(1)确定网络结构:根据实际问题选择合适的网络结构,包括输入层、隐含层和输出层的神经元个数。

(2)初始化参数:随机初始化各层神经元的权重和偏置。

3. 神经网络训练(1)选择损失函数:常用的损失函数有均方误差(MSE)和交叉熵(CE)等。

(2)选择优化算法:常用的优化算法有梯度下降、Adam、SGD等。

(3)训练过程:将训练数据分为训练集和验证集,通过反向传播算法不断调整网络参数,使预测值与真实值之间的误差最小化。

4. 神经网络测试(1)选择测试集:从未参与训练的数据中选取一部分作为测试集。

(2)测试过程:将测试数据输入网络,计算预测值与真实值之间的误差,评估网络性能。

三、实验步骤1. 数据准备:收集实验所需数据,并进行预处理。

2. 神经网络构建:根据实际问题确定网络结构,初始化参数。

3. 神经网络训练:选择损失函数和优化算法,对网络进行训练。

4. 神经网络测试:将测试数据输入网络,计算预测值与真实值之间的误差,评估网络性能。

四、实验结果与分析1. 实验结果(1)损失函数曲线:观察损失函数随训练轮数的变化趋势,分析网络训练效果。

(2)测试集误差:计算测试集的预测误差,评估网络性能。

2. 结果分析(1)损失函数曲线:从损失函数曲线可以看出,随着训练轮数的增加,损失函数逐渐减小,说明网络训练效果较好。

实验七:基于神经网络的模式识别实验

实验七:基于神经网络的模式识别实验

实验七:基于神经网络的模式识别实验一、实验目的理解BP神经网络和离散Hopfield神经网络的结构和原理,掌握反向传播学习算法对神经元的训练过程,了解反向传播公式。

通过构建BP网络和离散Hopfield网络模式识别实例,熟悉前馈网络和反馈网络的原理及结构。

综合掌握模式识别的原理,了解识别过程的程序设计方法。

二、实验内容熟悉模式识别的理论方法,用选择一种合适的识别方法,对图像中的字符(英文字母)进行识别,能够区分出不同的形态的26个字母。

在Matlab中,采用BP神经网络,对读取的数据进行训练,进而识别。

1. 程序设计(1)程序各流程图实验中主程序流程图如图4-1所示:图4-1主程序流程图其中图像预处理的流程如图4-2 所示:图4-2图像预处理的流程神经网络训练的具体流程如图4-3所示:图4-3 神经网络训练流程(2)程序清单%形成用户界面clear all;%添加图形窗口H=figure('Color',[0.85 0.85 0.85],...'position',[400 300 500 400],...'Name','基于BP神经网络的英文字母识别',...'NumberTitle','off',...'MenuBar','none');%画坐标轴对象,显示原始图像h0=axes('position',[0.1 0.6 0.3 0.3]);%添加图像打开按钮h1=uicontrol(H,'Style','push',...'Position',[40 100 80 60],...'String','选择图片',...'FontSize',10,...'Call','op');%画坐标轴对象,显示经过预处理之后的图像h2=axes('position',[0.5 0.6 0.3 0.3]);%添加预处理按钮h3=uicontrol(H,'Style','push',...'Position',[140 100 80 60],...'String','二值化',...'FontSize',10,...'Call','preprocess');%添加识别按钮h4=uicontrol(H,'Style','push',...'Position',[240 100 80 60],...'String','字母识别',...'FontSize',10,...'Call','recognize');%添加显示识别结果的文本框%添加训练神经网络按钮h6=uicontrol(H,'Style','push',...'Position',[340 100 80 60],...'String','网络训练',...'FontSize',10,...'Call','Example1Tr');%预处理%preprocessp1=ones(16,16);bw=im2bw(X,0.5);%转换成二值图像%用矩形框截取图像[i,j]=find(bw==0);imin=min(i);imax=max(i);jmin=min(j);jmax=max(j);bw1=bw(imin:imax,jmin:jmax);%调整比例,变换成16*16图像rate=16/max(size(bw1));bw1=imresize(bw1,rate);[i,j]=size(bw1);i1=round((16-i)/2);j1=round((16-j)/2);p1(i1+1:i1+i,j1+1:j1+j)=bw1;p1=-1.*p1+ones(16,16);%显示预处理的结果axes(h2);imshow(p1);%Example1Tr,训练网络M=1;%人数N=26*M;%样本数%获取26个大写字母图像的数据for kk=0:N-1p1=ones(16,16);%初始化16*16的二值图像(全白)m=strcat(int2str(kk),'.bmp');%形成文件名x=imread(m,'bmp');%读取图像bw=im2bw(x,0.5);%转换成二值图像数据%用矩形框截取[i,j]=find(bw==0);%查找像素为黑的坐标%取边界坐标imin=min(i);imax=max(i);jmin=min(j);jmax=max(j);bw1=bw(imin:imax,jmin:jmax);%截取%调整比例,缩放成16*16的图像rate=16/max(size(bw1));bw1=imresize(bw1,rate);%会存在转换误差%将bw1转换成标准的16*16图像p1[i,j]=size(bw1);i1=round((16-i)/2);j1=round((16-j)/2);p1(i1+1:i1+i,j1+1:j1+j)=bw1;p1=-1.*p1+ones(16,16);%将p1转换成输入向量for m=0:15p(m*16+1:(m+1)*16,kk+1)=p1(1:16,m+1);endend%形成目标向量for kk=0:M-1for ii=0:25t(kk+ii+1)=ii;endend%设置输入向量范围pr(1:256,1)=0;pr(1:256,2)=1;%创建两层BP神经网络,隐层有25个节点net=newff(pr,[25 1],{'logsig' 'purelin'},'traingdx','learngdm'); net.trainParam.epochs=2500;net.trainParam.goal=0.001;net.trainParam.show=10;net.trainParam.lr=0.05;%训练神经网络net=train(net,p,t);%存储训练好的神经网络%recognize,字符识别%生成向量形式M=figure('Color',[0.75 0.75 0.75],...'position',[200 200 400 200],...'Name','基于BP神经网络的英文字母识别结果',...'NumberTitle','off',...'MenuBar','none');M0=uicontrol(M,'Style','push',...'Position',[150 80 130 40],...'String','请先训练网络',...'FontSize',12,...'call','delete(M(1)) ' );for m=0:15q(m*16+1:(m+1)*16,1)=p1(1:16,m+1);end%识别[a,Pf,Af]=sim(net,q);a=round(a);switch acase 0,M0=uicontrol(M,'Style','push',...'Position',[150 80 130 40],...'String','这个字母是A',...'FontSize',12,...'call',...'delete(M(1))');case 1,M0=uicontrol(M,'Style','push',...'Position',[150 80 130 40],...'String','这个字母是B',...'FontSize',12,...'call',...'delete(M(1))');case 2,M0=uicontrol(M,'Style','push',...'Position',[150 80 130 40],...'String','这个字母是C',...'FontSize',12,...'call',...'delete(M(1))');case 3,M0=uicontrol(M,'Style','push',...'Position',[150 80 130 40],...'String','这个字母是D',...'FontSize',12,...'call',...'delete(M(1))');case 4,M0=uicontrol(M,'Style','push',... 'Position',[150 80 130 40],...'String','这个字母是E',...'FontSize',12,...'call',...'delete(M(1))');case 5,M0=uicontrol(M,'Style','push',... 'Position',[150 80 130 40],...'String','这个字母是F',...'FontSize',12,...'call',...'delete(M(1))');case 6,M0=uicontrol(M,'Style','push',... 'Position',[150 80 130 40],...'String','这个字母是G',...'FontSize',12,...'call',...'delete(M(1))');case 7,M0=uicontrol(M,'Style','push',... 'Position',[150 80 130 40],...'String','这个字母是H',...'FontSize',12,...'call',...'delete(M(1))');case 8,M0=uicontrol(M,'Style','push',... 'Position',[150 80 130 40],...'String','这个字母是I',...'FontSize',12,...'call',...'delete(M(1))');case 9,M0=uicontrol(M,'Style','push',... 'Position',[150 80 130 40],...'String','这个字母是J',...'FontSize',12,...'call',...'delete(M(1))');case 10,M0=uicontrol(M,'Style','push',... 'Position',[150 80 130 40],...'String','这个字母是K',...'FontSize',12,...'call',...'delete(M(1))');case 11,M0=uicontrol(M,'Style','push',... 'Position',[150 80 130 40],...'String','这个字母是L',...'FontSize',12,...'call',...'delete(M(1))');case 12,M0=uicontrol(M,'Style','push',... 'Position',[150 80 130 40],...'String','这个字母是M',...'FontSize',12,...'call',...'delete(M(1))');case 13,M0=uicontrol(M,'Style','push',... 'Position',[150 80 130 40],...'String','这个字母是N',...'FontSize',12,...'call',...'delete(M(1))');case 14,M0=uicontrol(M,'Style','push',...'Position',[150 80 130 40],...'String','这个字母是O',...'FontSize',12,...'call',...'delete(M(1))');case 15,M0=uicontrol(M,'Style','push',... 'Position',[150 80 130 40],...'String','这个字母是P',...'FontSize',12,...'call',...'delete(M(1))');case 16,M0=uicontrol(M,'Style','push',... 'Position',[150 80 130 40],...'String','这个字母是Q',...'FontSize',12,...'call',...'delete(M(1))');case 17,M0=uicontrol(M,'Style','push',... 'Position',[150 80 130 40],...'String','这个字母是R',...'FontSize',12,...'call',...'delete(M(1))');case 18,M0=uicontrol(M,'Style','push',... 'Position',[150 80 130 40],...'String','这个字母是S',...'FontSize',12,...'call',...'delete(M(1))');case 19,M0=uicontrol(M,'Style','push',... 'Position',[150 80 130 40],...'String','这个字母是T',...'FontSize',12,...'call',...'delete(M(1))');case 20,M0=uicontrol(M,'Style','push',... 'Position',[150 80 130 40],...'String','这个字母是U',...'FontSize',12,...'call',...'delete(M(1))');case 21,M0=uicontrol(M,'Style','push',... 'Position',[150 80 130 40],...'String','这个字母是V',...'FontSize',12,...'call',...'delete(M(1))');case 22,M0=uicontrol(M,'Style','push',... 'Position',[150 80 130 40],...'String','这个字母是W',...'FontSize',12,...'call',...'delete(M(1))');case 23,M0=uicontrol(M,'Style','push',... 'Position',[150 80 130 40],...'String','这个字母是X',...'FontSize',12,...'call',...'delete(M(1))');case 24,M0=uicontrol(M,'Style','push',... 'Position',[150 80 130 40],...'String','这个字母是Y',...'FontSize',12,...'call',...'delete(M(1))');case 25,M0=uicontrol(M,'Style','push',...'Position',[150 80 130 40],...'String','这个字母是Z',...'FontSize',12,...'call',...'delete(M(1))');End%op%读取图像文件[filename,pathname]=uigetfile({'*.bmp';'*.jpg';...'*.gif';'*.*'},...'Pick an Image File');X=imread([pathname,filename]);%显示图像axes(h0);%将h0设置为当前坐标轴句柄imshow(X);%在h0上显示原始图像2. 实验结果图5-1为实验的主窗口,用于选择图片,进行二值化,网络训练和字符识别。

哈工大神经网络实验报告

哈工大神经网络实验报告

一、实验目的1. 理解神经网络的基本原理,包括神经元模型、激活函数、网络结构等。

2. 掌握神经网络训练过程中的前向传播和反向传播算法。

3. 学习使用神经网络进行数据分类和回归任务。

4. 提高编程能力,运用Python语言实现神经网络算法。

二、实验内容1. 神经网络基础知识(1)神经元模型:介绍神经元的基本结构,包括输入层、隐含层和输出层,以及神经元之间的连接方式。

(2)激活函数:介绍常见的激活函数,如Sigmoid、ReLU、Tanh等,并分析其优缺点。

(3)网络结构:介绍全连接神经网络(FCNN)和卷积神经网络(CNN)的基本结构,以及它们在图像处理中的应用。

2. 前向传播和反向传播算法(1)前向传播:介绍神经网络前向传播算法的基本步骤,包括输入数据、计算激活值、计算输出值等。

(2)反向传播:介绍神经网络反向传播算法的基本步骤,包括计算梯度、更新权重等。

3. 实验实现(1)使用Python实现神经网络算法,包括初始化参数、前向传播、反向传播、更新权重等。

(2)使用MNIST数据集进行手写数字识别实验,验证算法的正确性和性能。

(3)使用CIFAR-10数据集进行图像分类实验,进一步验证算法的泛化能力。

三、实验步骤1. 初始化神经网络参数,包括权重和偏置。

2. 使用MNIST数据集进行训练,包括以下步骤:(1)将数据集划分为训练集和验证集。

(2)进行前向传播,计算输出值。

(3)计算损失函数,如交叉熵损失。

(4)进行反向传播,计算梯度。

(5)更新权重和偏置。

3. 使用CIFAR-10数据集进行测试,验证算法的泛化能力。

四、实验结果与分析1. MNIST数据集实验结果(1)训练集准确率达到99%以上。

(2)验证集准确率达到98%以上。

2. CIFAR-10数据集实验结果(1)训练集准确率达到75%以上。

(2)验证集准确率达到70%以上。

实验结果表明,所实现的神经网络算法能够有效地进行手写数字识别和图像分类任务。

基于神经网络的优化计算实验

基于神经网络的优化计算实验

实验六基于神经网络的优化计算实验一、实验目的掌握连续Hopfield神经网络的结构和运行机制,理解连续Hopfield神经网络用于优化计算的基本原理,掌握连续Hopfield神经网络用于优化计算的一般步骤。

二、实验原理连续Hopfield神经网络的能量函数的极小化过程表示了该神经网络从初始状态到稳定状态的一个演化过程。

如果将约束优化问题的目标函数与连续Hopfield神经网络的能量函数对应起来,并把约束优化问题的解映射到连续Hopfield神经网络的一个稳定状态,那么当连续Hopfield神经网络的能量函数经演化达到最小值时,此时的连续Hopfield神经网络的稳定状态就对应于约束优化问题的最优解。

实验报告1、画出连续Hopfield神经网络求解TSP问题的流程图。

2、根据实验内容,给出相应结果及分析。

(1)、参考求解TSP问题的连续Hopfield神经网络源代码(设置参数A=15,B=15,D=0.015, u0=0.02,h=0.5,r= cityNumber*10),给出15个城市和20个城市的求解结果(包括最短路径和最佳路线),分析连续Hopfield神经网络求解不同规模TSP问题的算法性能。

1)int main(int argc,char *argv[]):修改路径计算的代码2)最后要求输出:TSP4(2)、对于同一个TSP问题(例如15个城市的TSP问题),设置不同的网络参数(A=50,B=50,D=0.01,C=50,u0=0.02, h=0.5,r=cityNumber*100;A=0.5, B=0.5, D=0.5, C=0.2,u0=0.02,h=0.5,r=cityNumber*100;A=500,B=500,D=500,C=200,u0=0.02,h=0.5, r=cityNumber*100;A=5, B=5, D=0.01, C=5,u0=0.02,h=0.5, r=cityNumber*100),分析不同参数对算法结果的影响。

深度学习实践教程》实验指导书

深度学习实践教程》实验指导书

深度学习实践教程》实验指导书本部分将介绍《深度研究实践教程实验指导书》的概述,包括目的、目标以及使用方法。

本部分将讲述进行深度研究实验前的准备工作,包括环境配置、软件安装、数据集的获取等内容。

本部分将详细介绍具体的实验步骤,包括模型的建立、训练过程、评估指标等内容,每个步骤都会给出详细的操作指导和代码示例。

本部分将简要总结实验结果,并对实验过程和结果进行分析和讨论,以便读者深入理解深度研究实践的关键问题和挑战。

#《深度研究实践教程》实验指导书本部分将简要总结实验结果,并对实验过程和结果进行分析和讨论,以便读者深入理解深度研究实践的关键问题和挑战。

#《深度研究实践教程》实验指导书本部分将探讨如何对实验进行扩展,包括尝试不同的数据集、模型结构、超参数调整等内容,以提高深度研究模型的性能。

本部分对整个实验指导书进行总结,并展望深度研究实践的未来发展方向,鼓励读者继续深入研究与实践。

本实验指导书通过详细的实验步骤和指导,帮助读者理解和应用深度研究的基本概念和技巧。

我们介绍了深度研究的基本原理,包括神经网络的结构和训练方法。

通过一系列的实验,读者可以研究到如何搭建神经网络模型,训练模型并进行预测。

在实验过程中,读者通过实际操作感受到了深度研究的强大能力。

深度研究在图像识别、自然语言处理、语音识别等领域取得了重大突破,被广泛应用于各个行业。

通过本实验指导书的研究,读者能够掌握深度研究的基本思想和方法,并具备独立进行深度研究实践的能力。

在本部分,我们将对整个实验指导书进行总结,并展望深度研究实践的未来发展方向。

深度研究技术正在迅速发展,不断取得新的突破和应用。

未来,随着硬件计算能力的提升和数据量的增长,深度研究将在更多领域展现出巨大的潜力。

我们鼓励读者在继续深入研究和实践的同时,关注深度研究领域的最新进展,并积极参与相关研究和应用。

通过深入研究与实践,读者可以不断提升自己在深度研究领域的能力,并将其应用于实际问题的解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

神经网络实验指导书2013版[1]北京信息科技大学自编实验讲义神经网络实验指导书许晓飞陈雯柏编著找其映射是靠学习实践的,只要学习数据足够完备,就能够描述任意未知的复杂系统。

因此前馈神经网络为非线性系统的建模和控制提供了有力的工具。

输入层隐层输出层图1 前馈型神经网络结构2.BP算法原理BP(Back Propagation)神经网络是一种利用误差反向传播训练算法的前馈型网络,BP学习算法实质是求取网络总误差函数的最小值问题[2]。

这种算法采用非线性规划中的最速下降方法,按误差函数的负梯度方向修改权系数,它是梯度下降法在多层前馈网络中的应用。

具体学习算法包括两大过程,其一是输入信号的正向传播过程,其二是输出误差信号的反向传播过程。

1.正向传播输入的样本从输入层经过隐层单元一层一层进行处理,通过所有的隐层之后,则传向输出层;在逐层处理的过程中,每一层神经元的状态只对下一层神经元的状态产生影响。

在输出层把现行输出和期望输出进行比较,如果现行输出不等于期望输出,则进入反向传播过程。

2.反向传播反向传播时,把误差信号按原来正向传播的通路反向传回,并对每个隐层的各个神经元的权系数进行修改,以望误差信号趋向最小。

网络各层的权值改变量,则由传播到该层的误差大小来决定。

3.BP算法的特点BP神经网络具有以下三方面的主要优点[3]:第一,只要有足够多的隐含层和隐层节点,BP 神经网络可逼近任意的非线性映射关系;第二,BP学习算法是一种全局逼近方法,因而它具有较好的泛化能力。

第三,BP神经网络具有一定的容错能力。

因为BP神经网络输入输出间的关联信息分布存储于连接权中,由于连接权的个数总多,个别神经元的损坏对输入输出关系只有较小影响。

但在实际应用中也存在一些问题,如:收敛速度慢,极有可能陷入最优陷阱(局部极值),而且典型的BP网络是一个冗余结构,它的结构及隐节点数的确定往往有人为的主观性,而且一旦人工决定之后,不能在学习过程中自主变更。

其结果是隐节点数少了,学习过程不收敛;隐节点数多了,则网络的学习及推理的效率较差。

实验步骤:(1)建立控制模型神经网络训练数据来源于MATLAB6.5自带的一阶T-S型模糊控制slcp.mdl。

如图2所示。

图2 一级倒立摆的模糊控制仿真在上面的控制系统中提取摆角、角速度、位移、速度初始条件为分别为0. 5rad,1rad/s, 0和0,在此条件下响应的输入输出对,(2) 提取训练数据如图3所示,利用【Signal To Workspace】模块获取一阶T-S型模糊控制仿真过程的控制器输入输出数据对,并保存到工作区中,可以直接用到神经网络的训练中。

摆杆角度摆杆角速度小车位移小车速度图3 数据提取(3) BP神经网络控制器的训练首先将提取出的训练数据变为标准的训练数据形式,标准的训练数据分为输入和目标输出两部分。

输入部分是一个形式为输入个数⨯训练数据个数的矩阵,这里输入个数为4。

目标输出为一个输出个数⨯训练数据个数的矩阵,这里输出个数为1。

而经signal to workspace模块提取出的数据为一个训练数据个数⨯输入(或输出)个数的矩阵,因此分别将p、t转置后就得到标准训练数据p’,t’。

接着选择要训练的步数,训练步数的选择可由下面语句定义:net.trainParam.epochs=250这一语句定义了一个500步的训练步数。

做完上面的工作后就可以对网络进行训练了,按照上一节中的选择和定义初始化网络后,在没有输入延迟和输出延迟的条件下,并设训练后的网络还为NET,便可用下面语句对网络训练:[net,tr]=train(net,P,T,[ ],[ ])使用下面语句初始化BP神经网络控制器并进行训练:P=p';T=t';net=newff([-0.35 0.35;-1 1;-3 3;-3 3],[12 1],{'tansig','purelin'},'trainlm','learngdm');net.trainParam.show=25;net.trainParam.epochs=250;[net,tr]=train(net,P,T,[ ],[ ]);系统提示如下:TRAINLM, Epoch 0/250, MSE 10.1011/0, Gradient 2554.35/1e-010TRAINLM, Epoch 50/250, MSE 4.78751e-008/0, Gradient 0.00983832/1e-010TRAINLM, Epoch 75/250, MSE 4.1262e-008/0, Gradient 0.00475103/1e-010TRAINLM, Epoch 100/250, MSE 3.76953e-008/0, Gradient 0.00278629/1e-010TRAINLM, Epoch 125/250, MSE 3.52016e-008/0, Gradient 0.00194476/1e-010TRAINLM, Epoch 150/250, MSE 3.32444e-008/0, Gradient 0.00150103/1e-010TRAINLM, Epoch 175/250, MSE 3.16423e-008/0, Gradient 0.00121143/1e-010TRAINLM, Epoch 200/250, MSE 3.02987e-008/0, Gradient 0.000996205/1e-010TRAINLM, Epoch 225/250, MSE2.91493e-008/0, Gradient 0.000826085/1e-010TRAINLM, Epoch 250/250, MSE 2.81489e-008/0, Gradient 0.000687935/1e-010TRAINLM, Maximum epoch reached, performance goal was not met.图4 训练误差曲线可以看出,经过250步训练控制器输出与期望输出间的误差已经很小了。

提示:如训练程序有错,请在help文档搜索BP神经网络函数newff,查看语法调用;P=p';T=t';net=newff([0.35 0.35;-1 1;-3 3;-3 3],[12,1],{'tansig' 'purelin'});net.trainparam.show=25;net.trainparam.epochs=300;[net,tr]=train(net,P,T);神经网络的结构用语句gensim(net,-1)可以在simulink里生成控制器并使用其进行控制,其中-1的意思是系统是实时的,生成的神经网络控制器结构如图5所示。

神经网络控制器(a) 神经网络控制器外部结构(b) 内部结构(c)隐层结构(d)输出层结构图5 BP神经网络结构(4) 神经网络控制的实现使用训练后的BP神经网络控制器代替原模糊控制器控制器便可进行仿真试验。

控制结构如图6所示。

图6 直线一级倒立摆神经网络控制仿真单击模型窗口上的’run’,运行以上的仿真实验,可以看出训练后的BP神经网络能成功的实现倒立摆的控制.<<SOM神经网络>>实验指导实验目的:(1)熟悉Matlab/Simulink的使用. (2)掌握SOM神经网络的基本原理和基本的设计步骤.(3) 熟悉SOM神经网络在实际中的应用.实验原理:通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数与结构。

自组织网络的自组织功能是通过竞争学习(competitive learning)实现的。

1981年芬兰Helsink大学的T.Kohonen教授提出一种自组织特征映射网,简称SOM网,又称Kohonen网。

Kohonen认为:一个神经网络接受外界输入模式时,将会分为不同的对应区域,各区域对输入模式具有不同的响应特征,而且这个过程是自动完成的。

自组织特征映射正是根据这一看法提出来的,其特点与人脑的自组织特性相类似。

SOM网共有两层,输入层模拟感知外界输入信息的视网膜,输出层模拟做出响应的大脑皮层。

Kohonen学习算法程序流程:示例:产生100个(0,0.5pi)之间的角度,用其sin和cos值作为输入向量,利用输出为二维平面阵的SOM网络对其进行聚类。

参考程序如下:angles = 0:0.5*pi/99:0.5*pi;P = [sin(angles); cos(angles)];plot(P(1,:),P(2,:),'+r')net = newsom([0 1;0 1],[10]);net.trainParam.epochs = 10;net = train(net,P);plotsom(net.iw{1,1},yers{1}.distances)p = [1;0];a = sim(net,p)实验内容:人口分类是人口统计中的一个重要指标,现有1999共10个地区的人口出生比例情况如下表所示,建立一个自组织神经网络对上述数据分类,给定某个地区的男、女出生比例分别为0.5,0.5,测试训练后的自组织神经网络的性能,判断其属于哪个类别。

实验步骤:(1)确定输入模式;(2)确定网络的结构,设计参数;(3)编辑相应的M文件实现SOM对数据进行聚类,运行M文件,在命令窗口察看结果。

课下扩展实验:利用SOM网络对动物属性特征映射1989年Kohonen给出一个SOM网的著名应用实例,即把不同的动物按其属性特征映射到两维输出平面上,使属性相似的动物在SOM网输出平面上的位置也相近。

该例训练集种共有16种动物,每种动物用一个29维向量来表示,其中前16个分量构成符号向量,对不同的动物进行“16取1”编码;后13个分量构成属性向量,描述动物的13种属性,用1或0表示某动物该属性的有或无。

表2中的各列给出16种动物的属性列向量。

实验步骤(1)准备输入模式;(2)设计SOM网络:SOM网的输出平面上有10 10个神经元(3)SOM网络的训练:用16个动物模式轮番输入进行训练,考察输出平面上所示情况。

注意事项(1)输入:P为29×16的矩阵,其中29维输入向量,16为动物的个数---归一化(2)输出:10×10(3)网络的设计:建立新的网络:net = newsom(AA,[10 10],'gridtop');'hextop'网络训练参数设定:net.trainParam.epochs = 1000;网络训练:net = train(net,P);(4)训练后的运行:a = sim(net,P)由a的值可以得到SOM的哪个输出节点对输入有所响应,即归为哪一类(4)画出输出示意图。

相关文档
最新文档