初中函数及其图象性质

合集下载

(完整版)六大基本初等函数图像及其性质

(完整版)六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

1(3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。

b.1.当1>a 时,a 值越大,xa y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,x a y =的图像越远离y 轴。

4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=⋅(2)nm n m aa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m nm(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm yxf x xxx g ⎪⎫⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质图像1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。

定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R值域:R奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。

倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。

设一直线的倾斜角为a,则该直线的斜率k=tg(a)。

2.二次函数:题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。

定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式]此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);3.反比例函数在平面直角坐标系上的图象为双曲线。

八年级第十七章《函数及其图象》知识点

八年级第十七章《函数及其图象》知识点

.精品文档.八年级第十七章《函数及其图象》知识点八年级第十七《函数及其图象》知识点(2)一、一次函数(一)一次函数的概念:形如y=kx+b (其中k工0),两个特征:①k工0,②x的次数为1正比例函数的概念:当b=0时的一次函数成为正比例函数,此时称y与x成正比例【注意】两个变量成正比例,即y=kx.例题1、若函数y=(-1)x|| 是一次函数,则=.2、若y-1与x+3成正比例,且当x=1时,y=2,求y与x 的函数关系式.(二)一次函数的图象及其性质:y=kx+b (" 0)1、一次函数的图象是一条直线,故使用待定系数法求直线解析式时一般需要两个点.特殊直线:直线y=x或直线y= -x上的点到两坐标轴距离相等.2、一次函数的性质(与系数k、b相关)① k决定着函数的增减性当k > 0时,y随x的增大而增大(增函数),必过第一三象限当k v 0时,y随x的增大而减小(减函数),必过第二四象限② b决定着直线与y轴交点的位置:在原点的基础上“上加下减”当b=0时,必过原点;当b>0时,沿y轴向上平移;当b v 0时,沿y轴向下平移.补充口诀:上加下减改变b, y=kx+b —y=kx+b+左加右减改变x, y=kx+b —y=k(x+)+b③斜率k的性质:平移k不变;|k|越大,直线的倾斜程度越大;k=【可用于待定系数法求解析式中的k 1④截距b的性质:与y轴交点(0, b),与x轴交点(, 0)⑤四种特殊位置关系的直线:两直线平行k相等;两直线相互垂直--> k1 • k2= -1 ;两直线关于x轴对称--> k与b均互为相反数;两直线关于y轴对称k互为相反数,b相等.⑥点(x0, y0)到直线ax+by+=0的距离d公式:d=(三)一次函数的应用1、解题关键:点的坐标,尤其是交点的坐标三种交点:①与x轴交点,y坐标为0,即(x, 0)②与y轴交点,x坐标为0,即(0, y)③两个图象的交点:联立解析式,方程组的解即为交点的x坐标和y坐标2、解题思路:①与三角形全等、直角三角形、面积、周长、线段有关的问题均转化为点的坐标【数形结合很重要,注意运用“全等(含对称)、勾股定理、等面积法(含同底等高)”等知识】②求函数解析式(含求函数值或自变量的值)均用待定系数法,其中k、b注意利用性质求得.【待定系数法思路:几个未知系数,就用几个条件构造方程】③比较大小的三种方法:【含两种方案的比较问题】代入计算法(对函数解析式已知的题目适用)增减性分析法(对k的符号已知的适用)图象分析法(对能画出大致图形的适用,借助交点和坐标轴分析)④最值问题(如最大利润):先求出自变量的取值范围(常以“有几种方案”的问题出现,需根据题意列不等式组求出);再列出关于利润的函数表达式(要化简整理成y=kx+b 的形式),最后根据增减性结合具体方案(自变量取值范围),找出最值.⑤行程问题(常以两车同向或相向为背景)图象交点的意义:两车相遇(或追上)两车的距离即为:s=y1-y2例题1、已知直线y=(k+2)x+k2-4 的图象经过原点,贝U k=.2、若一次函数y=(k+2)x-2k+3的图象不经过第四象限,则k的取值范围是.3、已知直线平行于直线y=2x,且与y轴交点到原点的距离为2,则该直线的解析式是.4、把直线y=-x+3向上平移个单位后,与直线y=2x+4的交点在第一象限,则的取值范围是.5、函数y=ax-2与y=bx+3的图象交于x轴上的一点,则=.6、一次函数y=(3a-7)x+a-2 的图象与y轴交点在x轴上方,且y随x的增大而减小,求a的取值范围.7、正比例函数y=-kx的图象经过第一三象限,在函数y=(k-2)x 的图象上有三个点(x1 , y1 )、(x2, y2)、(x3, y3), 且x1 >x2 > x3时,贝» y1、y2、y3的大小关系为.&若直线y=kx+b交坐标轴于(-2,0) 、(0,3)两点,则不等式kx+b > 0的解集是.9、函数y= -x+3,当图象在第一象限时,x的取值范围是;当-1 < x < 3时,函数的最小值是.10、直线AB过点A (0,6 )、B (-3,0 ),直线D与直线AB相互垂直,且过点(0,1 ).(1)求两直线的解析式;(2)求直线D与x轴的交点D 的坐标;(3)求直线AB上到y轴距离等于4的点的坐标;(4)求两直线的交点P的坐标;(5)求厶PAD的面积;(6)在y 轴上的是否存在点,使得S A PA=S^ PAD.11、点A为直线y=-2x+2上的点,点A到两坐标轴的距离相等,则点A的坐标为.12、把Rt △ AB放在平面直角坐标系中,点A (1,0 )、点B( 4,0 ), / AB=90°, B=5.将厶AB沿x轴向右平移,当点落在直线y=2x-6上时,求线段B扫过的面积.13、某工厂投入生产一种机器,当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:x (单位:台)102030y (单位:万元/台)605550(1)求y与x之间的函数关系式,并写出自变量x的50取值范围;(2)市场调查发现,这种机器每月销售量z (台)与售价a (万元/台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润. (注:利润=售价-成本)14、现从A, B两个蔬菜市场向甲、乙两地运送蔬菜,A, B 两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A地到甲地的运费为50元/吨,到乙地的运费为30元/吨;从B地到甲地的运费为60元/吨,到乙地的运费为45元/吨.(1) 设从A地往甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨)运往乙地(单位:吨)AxB(2) 设总运费为元,请写出与x的函数关系式;(3) 共有多少种运送方案?哪种方案运费最少?15、一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1 (k),出租车离甲地的距离为y2 ( k),客车行驶时间为x ( h), y1 , y2 与x 的函数关系图象如图所示:(1)根据图象,求出y1 , y2关于x的函数关系式。

人教版九年级上册数学 讲义 二次函数的图像与性质

人教版九年级上册数学 讲义 二次函数的图像与性质
A. B.
C. D.
【例2】已知二次函数y=ax2+bx+1的大致图象如图所示,则函数y=ax+b的图
象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
【例3】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③a-b+c<0;④a+c>0,其中正确结论的个数为().
3、抛物线 ( )的顶点坐标公式:( , );对称轴是直线: ;当 时,函数有最值: 。
4、二次函数图像的平移:只要抛物线解析式中的a相同,它们之间可以相互平移得到,平移规律:左加右减,上加下减。
二、典型例题:
考点一:二次函数的定义
【例1】下列函数中,关于 的二次函数是( )。
A、 B、 C、 D、
A.y1<y2<y3B.y2<y1<y3
C.y3<y1<y2D.y1<y3<y2
【例2】已知二次函数 ,若自变量 分别取 , , ,且 ,则对应的函数值 的大小关系正确的是()
A. B. C. D.
三、强化训练:
【夯实基ห้องสมุดไป่ตู้】
1、二次函数 的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是()
【例2】已知函数 ( 为常数)。
(1) 为何值时,这个函数为二次函数?
(2) 为何值时,这个函数为一次函数?
考点二:二次函数的顶点、对称轴、最值
【例1】写出下列抛物线的对称轴方程、顶点坐标及最大或最小值;
(1) (2) (3)
考点三:抛物线的平移(上加下减,左加右减)
【例1】把抛物线 向左平移2个单位,再向下平移2个单位,则所得的抛物线的表达式是;
A、4个B、3个C、2个D、1个
考点五:直线与抛物线的位置关系

初中常用函数及其性质

初中常用函数及其性质

一.正比例函数的性质1.定义域:R(实数集)2.值域:R(实数集)3.奇偶性:奇函数4.单调性:当k>0时,图像位于第一、三象限,y随x的增大而增大(单调递增);当k<0时,图像位于第二、四象限,y随x的增大而减小(单调递减)5.周期性:不是周期函数。

6.对称轴:直线,无对称轴。

、二.一次函数图像和性质一般地,形如y=kx+b(k、b是常数,且k≠0•)的函数,•叫做一次函数(•linear function).一次函数的定义域是一切实数.当b=0时,y=kx+b即y=kx(k是常数,且k≠0•).所以说正比例函数是一种特殊的一次函数.当k=0时,y等于一个常数,这个常数用c来表示,一般地,我们把函数y=c(c是常数)叫做常值函数(constant function)它的定义域由所讨论的问题确定.一般来说, 一次函数y=kx+b(其中k、b是常数,且k≠0)的图像是一条直线. 一次函数y=kx+b的图像也称为直线y=kx+b. 一次函数解析式y=kx+b称为直线的表达式.一条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距.一般地,直线y=kx+b(k0)与y轴的交点坐标是(0,b).直线y=kx+b(k0)的截距是b.一次函数的图像:k>0 b>0 函数经过一、三、二象限k>0 b<0 函数经过一、二、三象限k<0 b>0 函数经过一、二、四象限k<0 b<0 函数经过二 、三、四象限 上面性质反之也成立 1.b 的作用在坐标平面上画直线y=kx+b (k≠0),截距b 相同的直线经过同一点(0,b). 2.k 的作用k 值不同,则直线相对于x 轴正方向的倾斜程度不同. (1)k>0时,K 值越大,倾斜角越大 (2)k<0时,K 值越大,倾斜角越大说明 (1) 倾斜角是指直线与x 轴正方向的夹角;(2)常数k 称为直线的斜率.关于斜率的确切定义和几何意义,将在高中数学中讨论. 3.直线平移一般地,一次函数y=kx+b(b0)的图像可由正比例函数y=kx 的图像平移得到.当b>0时,向上平移b 个单位;当b<0时,向下平移|b|个单位. 4.直线平行如果k1=k2 ,b1b2,那么直线y=k1x+b1与直线y=k2x+b2平行. 如果直线y=k1x+b1与直线y=k2x+b2平行,那么k1=k2 ,b1b2 . 1.一次函数与一元一次方程的关系一次函数 y=kx+b 的图像与x 轴交点的横坐标就是一元一次方程kx+b=0的解;反之,一元一次方程kx+b=0的解就是一次函数 y=kx+b 的图像与x 轴交点的横坐标.两者有着密切联系,体现数形结合的数学思想.2.一次函数与一元一次不等式的关系由一次函数 y=kx+b 的函数值y 大于0(或小于0),就得到关于x 的一元一次不等式kx+b>0(或kx+b<0).在一次函数 y=kx+b 的图像上且位于x 轴上方(或下方)的所有点,它们的横坐标的取值范围就是不等式kx+b>0(或kx+b<0)的解.三.二次函数图像及其性质1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的一元二次函数.2.二次函数2ax y =的性质(1)抛物线2ax y =)(0≠a 的顶点是原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系:①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5.抛物线c bx ax y ++=2的三要素:开口方向、对称轴、顶点. ①a 决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越小,抛物线的开口越大,a 越大,抛物线的开口越小。

初中数学一次函数的图象和性质

初中数学一次函数的图象和性质

一次函数的图象和性质一、知识要点:1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。

注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。

2、图象:一次函数的图象是一条直线(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。

(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(- ,0)和(0,b)的一条直线。

(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。

3、一次函数图象的性质:(1)图象在平面直角坐标系中的位置:(2)增减性:k>0时,y随x增大而增大;k<0时,y随x增大而减小。

4、求一次函数解析式的方法求函数解析式的方法主要有三种:一是由已知函数推导,如例题1;二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。

三是用待定系数法求函数解析式,如例2的第二小题、例7。

其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。

二、例题举例:例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。

分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x 的关系。

解:∵y=2y1y1=3x+2,∴y=2(3x+2)=6x+4,即变量y与x的关系为:y=6x+4。

例2、解答下列题目(1)(甘肃省中考题)已知直线与y轴交于点A,那么点A的坐标是()。

(A)(0,–3)(B)(C)(D)(0,3)(2)(杭州市中考题)已知正比例函数,当x=–3时,y=6.那么该正比例函数应为()。

河南专升本六大基本初等函数图像及其性质

河南专升本六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y=C(其中C为常数);αy=x y=x2y=x3R R RR[0,+∞)R奇偶奇增[0,+∞)增增(-∞,0]减y y=x2 y=x2x-1O1)当α为正整数时,函数的定义域为区间为x ∈(-∞,+∞),他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数;3)当α为正有理数m 时,n 为偶数时函数的定义域为(0,+∞),n 为奇数时函数的定义域为(-n∞,+∞),函数的图形均经过原点和(1,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数y =a x(x 是自变量,a 是常数且a >0,a ≠1),定义域是R ;[无界函数]1.指数函数的图象:y(0,1)Oy =ax(a >1)y =1xy =ax(0<a <1)y(0,1)Oy =1x2.指数函数的性质;1))当a >1时函数为单调增,当0<a <1时函数为单调减;2))不论x 为何值,y 总是正的,图形在x 轴上方;3))当x =0时,y =1,所以它的图形通过(0,1)点。

⎩=*=3.(选,补充)指数函数值的大小比较a ∈N *;a.底数互为倒数的两个指数函数⎛1⎫xf (x )=a x,f (x )= ⎪⎝a ⎭的函数图像关于y 轴对称。

h (x )=3xf (x )=2xy(0,1)b.1.当a >1时,a 值越大,y =a x的图像越靠近y 轴;Ox⎛1⎫xg (x )= ⎪y⎝3⎭⎛1⎫xq (x )= ⎪b.2.当0<a <1时,a 值越大,y =a x的图像越远离y 轴。

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2xy =3x y =21xy =1-=x y定义域 R RR [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时xyOxy =2x y =3x y =1-=x y 21xy =O=y xCy =Oxyy在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

(完整版)一次函数的图像与性质

(完整版)一次函数的图像与性质

一次函数的性质和图像目录一、函数的定义(一)、一次函数的定义函数。

(二)、正比例函数的定义二、函数的性质(一)、一次函数的性质(二)、正比例函数的性质三、函数的图像(一)、一次函数和正比例函数图像在坐标上的位置(二)、一次函数的图像1、一次函数图像的形状2、一次函数图像的画法(三)、正比例函数的图像1、正比例函数图像的形状2、正比例函数图像的画法3、举例说明正比例函数图像的画法四、k、b两个字母对图像位置的影响K、b两个字母的具体分工是:(一次项系数)k决定图象的倾斜度。

(常数项)b决定图象与y轴交点位置。

五、解析式的确定(一)一个点坐标决定正比,两个点坐标决定一次(二)用待定系数法确定解析式六、两条函数直线的四种位置关系两直线平行,k1= k2,b1≠b2两直线重合,k1= k2,b1=b2两直线相交,k1≠k2两直线垂直,k1×k2=-1(一)两条函数直线的平行(二)两条函数直线的相交(三)两条函数直线的垂直一次函数、反比例函数中自变量x前面的字母k称为比例系数这一节我们要学习正比例函数和一次函数。

一次函数的解析式是y=kx+b,如果当这个式子中的b=0时,式子就变成了正比例函数y=kx。

因此,正比例函数是一次函数当b=0时的特殊情况。

正是因为正比例函数实际上就是一次函数,所以把正比例函数和一次函数结合在一起来学习。

在正比例函数y=kx和反比例函数y=k/x中,由于函数y与自变量x之间有比例关系,就要在自变量x前面用字母系数k表示它们之间的比例关系,因而字母k就取名为比例系数。

确定了比例系数k就可以直接确定正比例函数或反比例函数的解析式。

但是,在一次函数y=kx+b和二次函数y=ax2+bx+c中,我们从观察解析式就可以看出,函数y与自变量x之间没有相直接对应的比例关系,因此这两种函数自变量x前面的k,就不能叫比例系数,只能叫常数。

若欲确定一次函数或二次函数的解析式时,题意仅已知常数k还不行,还需要其他常数如b、c等常数的协助。

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);二、幂函数 αy =1.幂函数的图像:3y2.幂函数的性质;1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数yxx a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。

b.1.当1>a 时,a 值越大,x a y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,xay =的图像越远离y 轴。

4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) nm n m a a a +=⋅ (2) n m n m a a a -=÷(3)()()mn nmnm aaa ==(4)()n n n b a ab =b.根式的性质;f xxxx g ⎪⎫ ⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。

基本初等函数图像与性质大全初中高中资料全

基本初等函数图像与性质大全初中高中资料全
(3)反函数的性质
①原函数 与反函数 的图象关于直线 对称.
②函数 的定义域、值域分别是其反函数 的值域、定义域.
③若 在原函数 的图象上,则 在反函数 的图象上.
④一般地,函数 要有反函数则它必须为单调函数.
六、三角函数的图像和性质
(一)正弦与余函数的图像与性质
函数
图像
定域义
R
R
值域
最值
单调性
奇偶性
③数乘: ④
⑤ ⑥换底公式:
(5)对数函数
函数名称
对数函数
定义
函数 且 叫做对数函数
图象
定义域
值域
过定点
图象过定点 ,即当 时, .
奇偶性
非奇非偶
单调性
在定义域上是增函数
在定义域上是减函数
函数值的
变化情况
变化对图象的影响
在第一象限, 越大图象越靠低;在第四象限, 越大图象越靠高.
五、反函数
(1)反函数的概念
奇函数
偶函数
周期性
是周期函数,2 为最小正周期
是周期函数,2 为最小正周期
对称性
对称中心 ,
对称中心 ,
2.正切与余切函数的图像与性质
函数
图像
定域义
值域
R
R
单调性
奇偶性
奇函数
奇函数
周期性
是周期函数, 为最小正周期
是周期函数, 为最小正周期
对称性
对称中心
对称中心
七、反三角函数的图像与性质
1.反正弦与反余函数的图像与性质
②正数的负分数指数幂的意义是: 且 .0的负分数指数幂没有意义.
(3)运算性质
① ②

初中数学函数大全

初中数学函数大全

初中数学函数大全(分类函数I、定义与定义式:自变量x变量y关系:y=kx+b(kb数k≠0)则称yx函数特别b=0yx比例函数II、函数性质:y变化值与应x变化值比例比值k即△y/△x=kIII、函数图象及性质:1. 作与图形:通3步骤(1)列表(般找4-6点);(2)描点;(3)连线作函数图象(用平滑直线连接)2. 性质:函数图象任意点P(xy)都满足等式:y=kx+b3. kb与函数图象所象限k>0直线必通、三象限y随x增增;k<0直线必通二、四象限y随x增减b>0直线必通、二象限;b<0直线必通三、四象限特别b=0直线通原点O(00)表示比例函数图象k>0直线通、三象限;k<0直线通二、四象限IV、确定函数表达式:已知点A(x1y1);B(x2y2)请确定点A、B函数表达式(1)设函数表达式(叫解析式)y=kx+b(2)函数任意点P(xy)都满足等式y=kx+b所列2程:y1=kx1+b①y2=kx2+b②(3)解二元程kb值(4)函数表达式V、y=kx+b,两坐标系必定经(0,b)(-b/k,0)两点VI、函数应用1.间t定距离s速度v函数s=vt2.水池抽水速度f定水池水量g抽水间t函数设水池原水量Sg=S-ft反比例函数形y=k/x(k数且k≠0) 函数叫做反比例函数自变量x取值范围等于0切实数反比例函数图像双曲线图面给k别负(2-2)函数图像二函数般自变量x变量y间存关系:y=ax^2+bx+c (a≠0)(abc数a≠0且a决定函数口向a>0口向向a<0口向向IaI决定口,IaI越口越, IaI越口越)则称yx二函数二函数表达式右边通二三项式x自变量yx函数二函数三种表达式般式:y=ax^2+bx+c(abc数a≠0)顶点式:y=a(x-h)^2+k [抛物线顶点P(hk)] 于二函数y=ax^2+bx+c 其顶点坐标(-b/2a,(4ac-b^2)/(4a))交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴交点A(x₁0) B(x₂0)抛物线]其x12= (-b±√(b^2-4ac))/(2a)注:3种形式互相转化关系:______h=-b/(2a) k=(4ac-b^2)/(4a) x₁,x₂=(-b±√b^2-4ac)/2a二函数图像平面直角坐标系作二函数y=x^2图像二函数看二函数图像条抛物线二函数标准画步骤(平面直角坐标系)(1)列表(2)描点(3)连线抛物线性质1.抛物线轴称图形称轴直线x = -b/2a称轴与抛物线唯交点抛物线顶点P特别b=0抛物线称轴y轴(即直线x=0)2.抛物线顶点P坐标P ( -b/2a (4ac-b^2)/4a )-b/2a=0Py轴;Δ= b^2-4ac=0Px轴3.二项系数a决定抛物线口向a>0抛物线向口;a<0抛物线向口|a|越则抛物线口越4.项系数b二项系数a共同决定称轴位置a与b同号(即ab>0)称轴y轴左;a与b异号(即ab<0)称轴y轴右5.数项c决定抛物线与y轴交点抛物线与y轴交于(0c)6.抛物线与x轴交点数Δ= b^2-4ac>0抛物线与x轴2交点Δ= b^2-4ac=0抛物线与x轴1交点_______Δ= b^2-4ac<0抛物线与x轴没交点X取值虚数(x= -b±√b^2-4ac 值相反数乘虚数i整式除2a)a>0函数x= -b/2a处取值f(-b/2a)=4ac-b^2/4a;{x|x<-b/2a}减函数{x|x>-b/2a}增函数;抛物线口向;函数值域{x|x≥4ac-b^2/4a}相反变b=0抛物线称轴y轴函数偶函数解析式变形y=ax^2+c(a≠0)二函数与元二程特别二函数(称函数)y=ax^2+bx+cy=0二函数关于x元二程(称程)即ax^2+bx+c=0函数图像与x轴交点即程实数根函数与x轴交点横坐标即程根1.二函数y=ax^2y=a(x-h)^2y=a(x-h)^2 +ky=ax^2+bx+c(各式a≠0)图象形状相同位置同顶点坐标及称轴表:解析式y=ax^2y=a(x-h)^2y=a(x-h)^2+ky=ax^2+bx+c顶点坐标(00)(h0)(hk)(-b/2a(4ac-b^2)/4a)称轴x=0x=hx=hx=-b/2ah>0y=a(x-h)^2图象由抛物线y=ax^2向右平行移h单位h<0则向左平行移|h|单位.h>0,k>0抛物线y=ax^2向右平行移h单位再向移k单位y=a(x-h)^2 +k 图象;h>0,k<0抛物线y=ax^2向右平行移h单位再向移|k|单位y=a(x-h)^2+k图象;h<0,k>0抛物线向左平行移|h|单位再向移k单位y=a(x-h)^2+k图象;h<0,k<0抛物线向左平行移|h|单位再向移|k|单位y=a(x-h)^2+k图象;研究抛物线y=ax^2+bx+c(a≠0)图象通配般式化y=a(x-h)^2+k形式确定其顶点坐标、称轴抛物线体位置清楚.给画图象提供便.2.抛物线y=ax^2+bx+c(a≠0)图象:a>0口向a<0口向称轴直线x=-b/2a顶点坐标(-b/2a[4ac-b^2]/4a).3.抛物线y=ax^2+bx+c(a≠0)若a>0x ≤-b/2ay随x增减;x ≥-b/2ay随x 增增.若a<0x ≤-b/2ay随x增增;x ≥-b/2ay随x增减.4.抛物线y=ax^2+bx+c图象与坐标轴交点:(1)图象与y轴定相交交点坐标(0c);(2)△=b^2-4ac>0图象与x轴交于两点A(x₁0)B(x₂0)其x1,x2元二程ax^2+ bx+c=0(a≠0)两根.两点间距离AB=|x₂-x₁| 另外抛物线任何称点距离由|2×(-b/2a)-A |(A其点)△=0.图象与x轴交点;△<0.图象与x轴没交点.a>0图象落x轴x任何实数都y>0;a<0图象落x轴x 任何实数都y<0.5.抛物线y=ax^2+bx+c值:a>0(a<0)则x= -b/2ay()值=(4ac-b^2)/4a. 顶点横坐标取值自变量值顶点纵坐标值取值.6.用待定系数求二函数解析式(1)题给条件已知图象经三已知点或已知x、y三应值设解析式般形式:y=ax^2+bx+c(a≠0).(2)题给条件已知图象顶点坐标或称轴设解析式顶点式:y=a(x-h)^2+k(a≠0).(3)题给条件已知图象与x轴两交点坐标设解析式两根式:y=a(x-x₁)(x-x₂)(a≠0).7.二函数知识容易与其知识综合应用形较复杂综合题目二函数知识主综合性题目考热点考题往往题形式现.。

初中数学函数图像总结

初中数学函数图像总结

初中数学函数图像总结函数是数学中一个非常重要的概念,而函数的图像则是函数概念的直观表现。

在初中数学中,我们学习了一些常见的函数及其图像,下面我将对初中数学中常见的函数图像进行总结。

一、一次函数。

一次函数的一般形式为y=kx+b,其中k和b为常数,k为斜率,b为截距。

一次函数的图像是一条直线,斜率决定了直线的倾斜程度,截距决定了直线与y轴的交点位置。

二、二次函数。

二次函数的一般形式为y=ax^2+bx+c,其中a、b、c为常数且a≠0。

二次函数的图像是一个抛物线,开口方向由a的正负决定,a>0时开口向上,a<0时开口向下。

抛物线的顶点坐标为(-b/2a, c-b^2/4a)。

三、指数函数。

指数函数的一般形式为y=a^x,其中a为底数,a>0且a≠1。

指数函数的图像是一条逐渐增长(a>1)或逐渐减小(0<a<1)的曲线,且必过点(0,1)。

四、对数函数。

对数函数的一般形式为y=loga(x),其中a为底数,a>0且a≠1,x>0。

对数函数的图像是一条逐渐增长(0<a<1)或逐渐减小(a>1)的曲线,且必过点(1,0)。

五、绝对值函数。

绝对值函数的一般形式为y=|x|。

绝对值函数的图像是一条以原点为对称中心的V形曲线。

六、三角函数。

三角函数包括正弦函数、余弦函数和正切函数等。

它们的图像是周期性的波浪线,正弦函数和余弦函数的波峰和波谷分别在y轴上方和下方,而正切函数的图像则有无数个渐近线。

以上是初中数学中常见的函数图像总结,通过对这些函数图像的了解,我们可以更好地理解函数的性质和特点,为进一步学习数学打下坚实的基础。

希望本文对你有所帮助,谢谢阅读!。

初中数学课件《一次函数的图像与性质》

初中数学课件《一次函数的图像与性质》


新知探究一: 一次函数y=kx+b的图象与直线y=kx的关系
画一次函数 y =2x-3 的图象. 列表 描点 连线
x … -2 -1 0 1 2 …
y=2x-3 … -7 -5 -3 -1 1 … y
y=2x … -4 -2 0 2 4 … 2
1.观察:函数y=2x-3的图象
它可以看作由直线 y=2x向下 平
新知探究二: 一次函数y=kx+b的性质
一次函数y=kx+b有下列性质: 1.当k>0时,y随x的增大而__增_大__ 这时函数
的图象从左到右__上_升__
(2) 当k<0时,y随x的增大而_减__小__,这
时函数的图象从左到右_下__降__.
新知探究二: 一次函数y=kx+b的性质
当k>0时,y随x的增大而增大
例:在同一坐标系中画出函数 y=2x-1 与 y=-0.5x+1的图象.
x y=2x-1
x
y= -0.5x+1
y 6
5
4
3
2
1
- - - - - - o1 2 3 4 5 6x 6 5 4 3 2 1-
1 2 3 4 5-6
例:用两点法在同一坐标系中画出函数y=2x-1 与y=-0.5x+1的图象.
数学思想:类比、数形结合、从特殊到一般。
归纳
对于一次函数y=kx+b(k,b为常数,k≠0) (1)判断k值符号的方法
①增减性法:当y随x的增大而增大时k > 0;反之k < 0 ②直线升降法:当直线从左到右上升时,k > 0; 反之k < 0 ③经过象限法:直线经过一、三象限时k > 0;

初中四种函数的性质

初中四种函数的性质

1、正比例函数Y=KX(K不等于0)K>0,图像经一、三象限,Y随X的增大而增大。

K<0,图像经二、四象限,Y随X的增大而减小。

(图象是经过圆点的一条直线)2、一次函数Y=aX+b(a不等于0)a>0,b>0,图像经一、二、三象限,Y随X的增大而增大。

a>0,b<0,图像经一、三、四象限,Y随X的增大而增大。

a<0,b>0,图像经一、二、四象限,Y随X的增大而减小。

a<0,b<0,图像经二、三、四象限,Y随X的增大而减小。

(图象为一条直线)注:当b=0,一次函数就便成了等比例函数3、y=ax²+bx+c(a,b,c为常数,a≠0)1.抛物线是轴对称图形。

对称轴为直线x=-b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P[-b/2a,(4ac-b²)/4a]。

当-b/2a=0时,P在y轴上;当Δ=b²-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ=b²-4ac>0时,抛物线与x轴有2个交点。

Δ=b²-4ac=0时,抛物线与x轴有1个交点。

Δ=b²-4ac<0时,抛物线与x轴没有交点。

V.二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax²+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax²+bx+c=0此时,函数图象与x轴有无交点即方程有无实数根。

函数及其图像复习知识点归纳(初二)

函数及其图像复习知识点归纳(初二)

一、知识点:〈一〉 平面直角坐标系1、 各象限内点的坐标特征2、 坐标轴上的点不属于任何一个象限例:(太原)在平面直角坐标系中,点P )2,1(a a -+在第四象限,求a 的取值范围。

3、 平面直角坐标系中点的坐标的对称(中考常考)思路:关于x 轴对称点的坐标有什么特征?关于y 轴对称点的坐标有什么特征?关于原点对称点的坐标有什么特征?例:点P )4,3(-关于原点对称的点的坐标是 ;此对称点到原点的距离是 。

例:在平面直角坐标系中,第一、三象限角平分线所在直线的函数关系式是 ;第二、四象限角平分线所在直线的函数关系式是 。

4、 图形的平移与坐标的变化(近几年的中考有上升趋势)〈二〉 正比例函数、一次函数1、 定义一次函数:)0(≠+=k b kx y 正比例函数:)0(≠=k kx y图象:一条直线(故一次函数)0(≠+=k b kx y 也叫直线)0(≠+=k b kx y )2、图象的性质:(由系数k 与b 决定)k :决定图象上升(或下降)的趋势〈即y 随x 的变化情况〉b :决定图象与y 轴的交点位置(纵截距)3、一次函数:)0(≠+=k b kx y 的几种大致图象(共6种)例:函数b kx y +=的图象大致如右,则( )A 0,0>>b kB 0,0<>b kC 0,0><b kD 0,0<<b k例:请写出一个一次函数,使它的图象不经过第一象限,该表达式可以是 。

(满足条件k<0, b<0即可)4、一次函数表达式的确定方法:待定系数法 依据:两点确定一条直线例:已知一次函数的图象经过A )3,1(),3,2(B --两点。

(1)求这个一次函数的表达式; (2)试判断点P )1,1(-是否在这个一次函数的图象上?y x o(在求系数k 与b 时,可用简便方法)5、 一次函数图象性质的运用〈三〉 反比例函数1、 定义及表达式:xk y = k xy = 1-=kx y )0(≠k 学会灵活运用上面三种表达式例:已知反比例函数的图象经过点(2,3),则这个反比例函数的表达式是 。

初中:二次函数性质与图像

初中:二次函数性质与图像

3.二次函数的图象与性质:
二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线,当a>0
时,抛物线的开口向上,这时当x≤-
b 2a
时,y随x的增大而减
小;当x≥-2ba时,y随x的增大而增大;当x=-2ba时,y有最
小值
4ac-b2 4a
.当a<0时,抛物线开口向下,这时当x≤-
b 2a
时,y随x的增大而增大;当x≥-
1.二次函数的定义: 一般地,形如_y=ax2+bx+c(其中 a,b,c 是常数,a≠0) 的函数叫做二次函数.
2.二次函数的三种表达式:
(1)一般式:y=ax2+bx+c(a,b,c是常数,a≠0).
(2)顶点式:y=a(x-h)2+k(a,h,k是常数,a≠0),顶 点坐标是(h,k). (3)交点式:y=a(x-x1)(x-x2)(a,x1,x2是常数, a≠0),其中x1,x2是二次函数与x轴的交点的横坐标,图 象的对称轴为直线__x=x1+2 x2.
=ax2+bx+c的图象与x轴相交于A(-2,0),B(1,0)
两点.有下列结论:①ac>0;②二次函数y=ax2+bx
+c的图象的对称轴为直线x=-1;③2a+c=0;④a
-b+c>0.其中正确的有
()
A. 0个
B. 1个
C. 2个
D. 3个
【解析】 函数图象开口向下,∴a<0,与y轴的交点在y轴的正半轴, ∴c>0,∴ac<0,故①错误. 二次函数的图象与x轴相交于点A(-2,0),B(1,0),由对称性可知其对
(1)b2-4ac>0⇔抛物线与x轴有两个交点
-b±
2ba2-4ac,0.
(2)b2-4ac=0⇔抛物线与x轴只有一个交点-2ba,0. (3)b2-4ac<0⇔抛物线与x轴没有交点.

初中数学函数知识点总结(定义、性质和图像)

初中数学函数知识点总结(定义、性质和图像)

函数知识点总结(掌握函数的定义、性质和图像)平面直角坐标系1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、各个象限内点的特征:第一象限:(+,+) 第二象限:(-,+) 第三象限:(-,-) 第四象限:(+,-)3、坐标轴上点的坐标特征:x 轴上的点,y 为零;y 轴上的点,x 为零;原点的坐标为(0 , 0)。

4、点的对称特征:已知点P(m,n),关于x 轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y 轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号 5、平行于坐标轴的直线上的点的坐标特征:平行于x 轴的直线上的任意两点:纵坐标相等; 平行于y 轴的直线上的任意两点:横坐标相等。

6、各象限角平分线上的点的坐标特征:第一、三象限角平分线上的点横、纵坐标相等。

第二、四象限角平分线上的点横、纵坐标互为相反数。

7、点P (x,y )的几何意义:点P (x,y )到x 轴的距离为 |y|,点P (x,y )到y 轴的距离为 |x|。

点P (x,y )到坐标原点的距离为22y x +8、两点之间的距离:X 轴上两点为A )0,(1x 、B )0,(2x |AB|||12x x -= Y 轴上两点为C ),0(1y 、D ),0(2y |CD|||12y y -=已知A ),(11y x 、B ),(22y x AB|=212212)()(y y x x -+-9、中点坐标公式:已知A ),(11y x 、B ),(22y x M 为AB 的中点,则:M=(212x x + , 212y y +) 10、点的平移特征: 在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点( x-a ,y ); 将点(x,y )向左平移a 个单位长度,可以得到对应点(x+a ,y ); 将点(x,y )向上平移b 个单位长度,可以得到对应点(x ,y +b ); 将点(x,y )向下平移b 个单位长度,可以得到对应点(x ,y -b )。

2023年中考数学专项突破之函数的图象与性质课件 52张PPT

2023年中考数学专项突破之函数的图象与性质课件       52张PPT
(5)与二次函数有关的还有二次三项式,二次三项式ax2+bx+c﹙a≠0﹚本身
就是含有字母x的二次函数.
返回子目录
例题3
已知,点M为二次函数y=-(x-b)2+4b+1图象的顶点,直线y=mx+5分别交x轴、y轴于点
A,B.
(1)判断顶点M是否在直线y=4x+1上,并说明理由;
(2)如图1,若二次函数图象也经过点A,B,且mx+5>-(x-b)2+
即为所求;(3)根据反函数的图象和性质,当点P在第一象限时,p>0;当点P在第三象限
时,p≤-2.

解析:(1)把A(2,m),B(n,-2)代入y= 得k2=2m=-2n,即m=-n,则A(2,-n),

如图,过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE,BF交于D,
∵A(2,-n),B(n,-2),
方法点拨
解答此类问题需要掌握二次函数的概念、图象和性质,画出草图观察分析,将函数
的平移、最值、增减性等贯穿在草图中,此类问题就会迎刃而解.
解题技巧
解决这类问题一般遵循这样的方法:
(1)求二次函数的图象与x轴的交点坐标,需将二次函数转化为一元二次方
程;
(2)求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶
点入口.两车距学校的路程s(单位:km)和行驶时间t(单位:min)之间的函数关系如
图所示.
请结合图象解决下面问题:
(1)学校到自然保护区的路程为 40 km,大客车途中停留了
5min, a=
;15
(2)在小轿车司机驶过自然保护区入口时,大客车离景点入口还有多远?
(3)小轿车司机到达自然保护区入口时发现本路段限速80 km/h,请你帮助小轿车司
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11课时┃ 浙考探究
浙考探究
► 类型之一 与平面直角坐标系有关的问题 命题角度: 1平面直角坐标系的概念; 2求坐标系中点的坐标. 例1 坐标平面上,在第二象限内有一点P,且P点到x轴 的距离是4,到y轴的距离是5,则P点坐标为( A ) A.(-5,4) B.(-4,5) C.(4,5) D.(5,-4)
用 坐 标 表 示 平 移
点的 平移
图形 的平 移
对于一个图形的平移,这个图形上所有点的坐标都 要发生相应的变化,反过来,从图形上点的坐标的 某种变化也可以看出对这个图形进行了怎样的平移
第11课时┃ 考点聚焦
某 关于x 点 的 对 称 关于y 点 的
点P(x,y)关于x轴对称 (x,-y) 的点P1的坐标为________
图11-1
第11课时┃ 浙考探究
[解析] 由题意得,点M关于x轴对称的点的坐标为 (1-2m,1-m). ∵M(1-2m,m-1)关于x轴的对称点在第一象限,
∴解得 在数轴上表示为:
第11课时┃ 浙考探究 ► 类型之四 确定位置的方法 命题角度: (1)横纵交错点(直角坐标系); (2)方位角+距离.
第12课时┃ 考点聚焦
考点9
一次函 数与一 次方程 一次函 数与一 元一次 不等式 一次函 数与方 程组
一次函数与一次方程(组)、一元一次不等式(组)
一次函数y=kx+b(k,b是常数,k≠0)的值为0时, 相应的自变量的值为方程kx+b=0的根 一次函数y=kx+b(k,b是常数,k≠0)的值大于 (或小于)0,相应的自变量的值为不等式kx+b>0 (或kx+b<0) 的解集
(1)正比例函数与一次函数的图象
一次函数 的图象
一条直线 的____________
图象关系
一次函数 y=kx+b 的图象可由正比例函数 y=kx 的图象平移得到,
b>0,向上平移 b 个单位;b<0,向下平移b个单位
图象确定
因为一次函数的图象是一条直线,由两点确定一条 直线可知画一次函数图象时,只要取两个点即可
第11课时┃ 考点聚焦
考点4 平面直角坐标系中的平移与对称点的坐标
在平面直角坐标系中,将点(x,y)向右(或向左)平 (x ____ 移a个单位长度,可以得到对应点__+a,y) 或( x-a,y ___ ___);将点(x,y)向上(或向下)平移b个单 (x, ____或(___ y-b x, ___) 位长度,可以得到对应点__ y+b)
第11课时 第12课时 第13课时 第14课时 第15课时 第16课时
平面直角坐标系与函数 一次函数的图象与性质 一次函数的应用 反比例函数 二次函数的图象与性 质(一) 二次函数的图象与性 质(二)
第17课时
二次函数的应用
第11课时┃ 平面直角坐标系
第11课时┃ 考点聚焦
考点聚焦
考点1 平面直角坐标系
第11课时┃ 浙考探究
[解析] 由已知得到:OA=2,∠COA=60°. 过 A 作 AB⊥x 轴于 B, ∴∠BOA=90°-60°=30°, ∴AB=1. 由勾股定理得 OB= 3, ∴A 的坐标是(- 3,-1). 故选 C.
第12课时┃ 一次函数的图象与性质
第12课时┃ 考点聚焦
考点聚焦
(2)坐标轴上点的坐标的特征 y=0,x为任意实数 点P(x, y)在x轴上⇔________________ x=0,y为任意实数 点P(x, y)在y轴上⇔________________ 点P(x, y)既在x轴上,又在y轴上⇔x、y同时为零, 即点P的坐标为(0, 0)
第11课时┃ 考点聚焦 考点2 平面直角坐标系内点的坐标特征
第12课时┃ 考点聚焦
(2)正比例函数与一次函数的性质
函数 字母取值 图象 经过的象限 函数性质
y=kx (k≠0)
k>0
一、三象限 ________
y 随x 增
大而增大
k<0
二、四象限 ________
y 随x 增
大而减小
第12课时┃ 考点聚焦
函数
字母取值
图象
经过的象限
一、二、三象限 ________
考点8
由待定系数法求一次函数的解析式
因在一次函数 y=kx+b(k≠0)中有两个未知系数 k 和 b, 所以,要确定其关系式,一般需要两个条件,常见的是已知两 点
b1=a1k+b, P1(a1,b1),P2(a2,b2),将其坐标代入得 b2=a2k+b,

待定系数法 出 k,b 的值即可,这种方法叫做______________________.
k1≠k2 ________⇔l1和l2相交
b1
和l 2 : y=k2x+ b2位置关 系
平行ห้องสมุดไป่ตู้
k 1 = k 2 , b1≠ b2
________⇔l1和l2平行
第12课时┃ 考点聚焦
考点7 两直线的交点坐标及一次函数的图象 与坐标轴围成的三角形的面积
分类 一条直线与 x轴交点坐标 求法 设y=0,求出对应的x值 设x=0,求出对应的y值 解由两个函数解析式组成的二元一次方程组,方 程组的解即两函数图象的交点坐标
(1)使解析式有意义 (2)使实际问题有意义
防错提 醒
函数不是数,它是指某一变化过程中的两个 变量之间的关系
第12课时┃ 考点聚焦
考点2
函数的表示方法
表示方法
(1)列表法; (2)图象法; (3)解析法
使用指导
表示函数时,要根据具体情况选择适当的方法,有 时为了全面认识问题,可同时使用几种方法
第12课时┃ 考点聚焦
考点1 函数的有关概念
常 量 与 变 量 定义 不变 在某一变化过程中,始终保持________的量 变化 叫做常量,数值发生________的量叫做变量 常量和变量是相对的,判断常量和变量的前提 是:“在某一变化过程中”.同一个量在不同 的变化过程中可以是常量,也可以是变量,这 要根据问题的条件来确定
关系
函 数 的
概 念
函数 定义
函数 值
一般地,在某个变化过程中,如果有两个变量 x与y,对于x的每一个确定的值,y都有唯一确 定的值与之对应,我们称x是自变量,y是x的函数
对于一个函数,如果当自变量x=a时,因变量 y=b,那么b叫做自变量的值为a时的函数值
第12课时┃ 考点聚焦
确定自 变量的 取值范 围的依 据
函数性质
k>0 b>0 y=kx+b (k≠0) k>0 b<0 k<0 b>0 k<0 b<0
y 随x 增
大而增大
一、三、四象限 ________
一、二、四象限 ________ 二、三、四象限 ________
y 随x 增
大而减小
第12课时┃ 考点聚焦
考点6
两条直线的位置关系
相交 直线l1: y=k1x+
正比例函数
特别地,当b=0时,一次函数y=kx+b变为y=kx(k 为常数,k≠0),这时y叫做x的正比例函数
第12课时┃ 考点聚焦
考点5
正比例函 数的图象
一次函数的图象和性质
正比例函数y=kx(k≠0)的图象是经过点(0,0)和 点(1,k)的一条直线
b 一次函数 y=kx+b(k≠0)的图象是经过点(0,b)和- ,0 k
第11课时┃ 浙考探究
求在坐标系中求点的坐标,可根据点到两坐标轴的距离及象 限内点的坐标的特征解决.
第11课时┃ 浙考探究

类型之二
坐标平面内点的坐标特征
命题角度: 1. 四个象限内点的坐标特征; 2. 坐标轴上的点的坐标特征; 3. 平行于x轴,平行于y轴的直线上的点的坐标特征; 4. 第一、三象限,第二、四象限的平分线上的点的 坐标特征. 例2 [2012²扬州] 在平面直角坐标系中, m>2 点P(m,m-2)在第一象限,则m的取值范围是________.
例 4 [2011²广安] 在直角坐标平面内的机器人接受指 令“[a,A]”(a≥0,0°<A<180°)后的行动结果为:在原地顺 时针旋转 A 后,再向正前方沿直线行走 a 个单位长度.若机器 人的位置在原点,正前方为 y 轴的负半轴,则它完成一次指令 [2,60°]后位置的坐标为( C ) A.(-1, 3) C.(- 3,-1) B.(-1,- 3) D.(- 3,1)
第11课时┃ 考点聚焦
考点3 点到坐标轴的距离
到 x 轴的 点 P(a,b)到 x 轴的距离等于点 P 的 距离 距离
纵坐标的绝对值 ________________,即b 横坐标的绝对值 ________________,即a
到 y 轴的 点 P(a,b)到 y 轴的距离等于点 P 的
第12课时┃ 浙考探究
例2 [2012²长沙] 小明骑自行车上学,开始以正常速度 匀速行驶,但行至中途时,自行车出了故障,只好停下来修 车,车修好后,因怕耽误上课,他比修车前加快了速度继续 匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象 ,如图12-1所示,那么符合小明行驶情况的大致图象 是( C )
平行于坐 标轴的直 线上的点 的坐标的 特征 (1)平行于x轴平行于x轴(或垂直于y轴)的直线 上的点的纵坐标相同,横坐标为不相等的实数 (2)平行于y轴平行于y轴(或垂直于x轴)的直线 上的点的横坐标相同,纵坐标为不相等的实数
各象限的 平分线上 的点的坐 标特征
(1)第一、三象限的平分线上的点第一、三象 相等 限的平分线上的点的横坐标和纵坐标________ (2)第二、四象限的平分线上的点第二、四象限 互为相反数 的平分线上的点的横坐标和纵坐标________
坐标轴上的点 对应关系
相关文档
最新文档