人教版六年级下册数学5 《鸽巢问题》说课稿

合集下载

人教版数学六年级下册鸽巢问题说课稿(推荐3篇)

人教版数学六年级下册鸽巢问题说课稿(推荐3篇)

人教版数学六年级下册鸽巢问题说课稿(推荐3篇)人教版数学六年级下册鸽巢问题说课稿【第1篇】说教学目标:1.通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

3.在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

说教学重点:理解鸽巢原理,掌握先平均分,再调整的方法。

说教学难点:理解总有至少的意义,理解至少数=商数+1。

说教学过程:一、游戏引入出示一副扑克牌。

教师:今天老师要给大家表演一个魔术。

取出大王和小王,还剩下52张牌,下面请5位同学上来,每人随意抽一张,不管怎么抽,至少有2张牌是同花色的。

同学们相信吗?5位同学上台,抽牌,亮牌,统计。

教师:这类问题在数学上称为鸽巢问题(说板书)。

因为52张扑克牌数量较大,为了方便研究,我们先来研究几个数量较小的同类问题。

二、探索新知1.教学例1。

(1)教师:把3支铅笔放到2个铅笔盒里,有哪些放法?请同桌二人为一组动手试一试。

教师:谁来说一说结果?教师根据学生回答在黑板上画图表示两种结果教师:不管怎么放,总有一个铅笔盒里至少有2支铅笔,这句话说得对吗?教师:这句话里总有是什么意思?教师:这句话里至少有2支是什么意思?(2)教师:把4支铅笔放到3个铅笔盒里,有哪些放法?请4人为一组动手试一试。

教师:谁来说一说结果?(教师根据学生回答在黑板上画图表示四种结果)引导学生仿照上例得出不管怎么放,总有一个铅笔盒里至少有2支铅笔。

假设法(反证法)教师:前面我们是通过动手操作得出这一结论的,想一想,能不能找到一种更为直接的方法得到这个结论呢?小组讨论一下。

如果每个盒子里放1支铅笔,最多放3支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。

首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现总有一个盒子里至少有2支铅笔。

六年级下册数学说课稿《鸽巢问题》人教版

六年级下册数学说课稿《鸽巢问题》人教版

六年级下册数学说课稿《鸽巢问题》人教版一. 教材分析《鸽巢问题》是人教版六年级下册数学的教学内容。

本节课主要让学生理解并掌握鸽巢问题的基本概念及解题方法,能够运用鸽巢问题解决实际问题。

通过学习,学生可以培养逻辑思维能力、归纳总结能力和解决实际问题的能力。

二. 学情分析六年级的学生已经具备了一定的数学基础,对于问题解决有一定的认识。

但是,对于鸽巢问题的理解和运用还需要进一步引导和培养。

在学生的认知过程中,需要通过实例分析、讨论交流等方式,让学生逐步理解并掌握鸽巢问题的解题方法。

三. 说教学目标1.知识与技能:学生能够理解鸽巢问题的基本概念,掌握解决鸽巢问题的方法,能够运用鸽巢问题解决实际问题。

2.过程与方法:通过实例分析、讨论交流等方式,培养学生逻辑思维能力、归纳总结能力和解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:学生能够理解鸽巢问题的基本概念,掌握解决鸽巢问题的方法。

2.教学难点:学生能够运用鸽巢问题解决实际问题,培养学生的逻辑思维能力和解决实际问题的能力。

五. 说教学方法与手段本节课采用问题驱动法、实例分析法、讨论交流法等教学方法,利用多媒体课件、教学卡片等教学手段,帮助学生理解和掌握鸽巢问题的解题方法。

六. 说教学过程1.导入:通过一个实际问题,引发学生对鸽巢问题的思考,激发学生的学习兴趣。

2.基本概念:引导学生通过观察、分析实例,总结出鸽巢问题的基本概念。

3.解决方法:让学生通过小组合作、讨论交流等方式,探索并掌握解决鸽巢问题的方法。

4.实际应用:让学生运用解决鸽巢问题的方法,解决实际问题,体会数学在生活中的应用。

5.总结提升:通过总结归纳,使学生形成系统化的知识结构,培养学生解决实际问题的能力。

七. 说板书设计板书设计主要包括鸽巢问题的基本概念、解决方法和实际应用,通过板书设计,帮助学生理解和掌握鸽巢问题的解题方法。

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。

教学“鸽巢问题”,教材安排了两个例题。

这节课教学内容是例1。

例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。

初步接触“鸽巢问题”对于学生来说,有一定的难度。

教学时,应放手让学生自主探索。

教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。

二、教学内容教材第68页例1及“做一做”第1、2题。

三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。

2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。

3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。

四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。

教学难点:初步理解“鸽巢原理”,能口头表达推理过程。

五、教学准备一副扑克牌、课件等。

六、教学过程(一)引入新知1.抢凳子游戏。

2.抽扑克牌游戏。

教师:这类问题在数学上称为鸽巢问题(板书)。

因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。

【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。

(二)探究新知1.教学例1。

(1)把3枝铅笔放进2个笔筒中。

想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。

人教版数学六年级下册鸽巢问题说课稿(推荐3篇)

人教版数学六年级下册鸽巢问题说课稿(推荐3篇)

人教版数学六年级下册鸽巢问题说课稿(推荐3篇)人教版数学六年级下册鸽巢问题说课稿【第1篇】开场白:尊敬的各位评委老师:大家好!我是面试小学数学教师的3号考生,今天试讲的题目是《数学广角—鸽巢问题》,下面开始我的试讲。

一、导入师:上课!同学们好,请坐!师:玩过“抢椅子”游戏吗?谁能说说游戏规则?你那么高兴,你来说!师:他说将椅子围成一个圈,人也站一个圈,有专门的主持人负责敲鼓,开始敲时人就围着椅子同一方向转,当敲击声停止,就要抢坐在椅子上。

师:那椅子数和人数是怎样的?师:他说椅子数比人数少1。

师:规则说的很详细!大家听明白了吗?想试试吗?师:大家都很踊跃!那就请刚才说游戏规则的同学选出三名同学,一起来玩这个游戏吧!师:老师当主持人,我们玩三次,大家注意观察,看看有什么发现!师:有趣的游戏结束了,你发现了什么?有一名同学没抢到椅子。

师:一个简单的游戏里,又蕴含着什么数学知识呢?你想知道吗?师:就让我们一起来探究:数学广角—鸽巢问题。

二、新授师:大屏幕上,这三名同学在做一个探究活动,找一找其中的数学信息吧!师:你举手最快了,请你!师:他说要把4支铅笔放进3个笔筒里,总有一个笔筒里至少有2支铅笔。

师:声音洪亮,信息找的很完整!师:这里的“总有”和“至少”是什么意思?自己想一想,和同桌说一说。

师:你平时不怎么举手,这次很勇敢,说说你的理解!师:他说“总有”就是总是会有的意思,“至少”是最少的意思。

师:很高兴你能说的这么好!是的,“总有”是总是会有、一定有,“至少”是最少、最低限度。

这句话其实就是说无论怎么放,都会有一个笔筒里最少是2支铅笔。

师:那这句话到底对不对呢?怎样验证呢?师:现在,我们开展小组探究活动,用老师给大家准备的纸杯当笔筒,用你的四支笔,摆一摆、画一画、写一写,把自己的想法表示出来。

师:活动之前,老师想提示大家,一个笔筒里放4支笔,另两个笔筒里没有,这4支笔无论放到哪个笔筒里,都只看做一种情况。

人教版数学六年级下册鸽巢问题说课稿(推荐3篇)

人教版数学六年级下册鸽巢问题说课稿(推荐3篇)

人教版数学六年级下册鸽巢问题说课稿(推荐3篇)人教版数学六年级下册鸽巢问题说课稿【第1篇】教学内容人教版教材小学数学六年级第十二册“数学广角”例1及相关内容。

说教学目标(1)经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。

( 2)通过操作发展学生的类推能力,形成比较抽象的数学思维。

3)通过“鸽巢问题”的灵活应用感受数学的魅力。

说教学重点经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。

说教学难点理解“鸽巢问题”里的先“平均分”,再得出至少数的过程。

并对一些简单实际问题加以“模型化”。

教具、学具准备若干个纸杯(每小组3个)、笔 每小组4根)、扑克牌1副说教学过程一、扑克魔术导入。

请同学们看我表演一个“魔术”。

拿出一副扑克牌(去掉大小王)52张中有四种花色,请一个同学帮我从中随意抽5张牌,无论怎么抽,总有一种花色至少有2张牌是同花色的你相信吗?你能说明其中的道理吗?老师不用看就知道“一定有2张牌是同花色的对不对?假如请这位同学再抽取,不管怎么抽,总有2张牌是同花色的,同意么?其实这里蕴含了一个有趣的数学原理,这节课我们一起探究这个数学原理? 说板书课题:鸽巢问题)二、学习例1,列举探究1、用枚举法深入研究4支笔放进3个纸杯里。

(1)要把4支笔放进3个纸杯里(纸杯代替),有几种放法?请同学们想一想,小组摆一摆,记一记;再把你的想法在小组内交流。

提醒学生左3右1与左1右3是同一种方法——不管杯子的顺序)( 2)反馈:四种放法: 4,0,0)、 3,1,0)、 2,2,0)、 2,1,1)( 3)观察这四种放法,同学们有什么发现呢? 不管怎么放,总有一个纸杯里至少放有2枝铅笔)让孩子们充分地说。

说板书:枚举法4)“总有”什么意思? 一定有)( 5)“至少”有2本是什么意思? 最少是2本,2本或者2本以上)。

2、假设法①还可以这样想:先放3支,在每个笔筒中平均放1支,剩下的1支再放进其中的一个笔筒。

2024年人教版数学六年级下册鸽巢问题说课稿推荐3篇

2024年人教版数学六年级下册鸽巢问题说课稿推荐3篇

人教版数学六年级下册鸽巢问题说课稿推荐3篇〖人教版数学六年级下册鸽巢问题说课稿第【1】篇〗说教学目标:1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。

2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。

3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。

说教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。

说教学难点:理解鸽巢原理,并对一些简单的实际问题加以模型化。

说教学过程:一、创设情境、导入新课1、师:同学们,你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。

今天我们就一起来研究它。

二、合作探究、发现规律师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。

请看大屏幕。

(生齐读题目)1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。

(1)理解“总有”、“至少”的含义。

(PPT)总有:一定有至少:最少师:这个结论正确吗?我们要动手来验证一下。

(2)同学们的课桌上都有一张作业纸,请同桌两人合作探究:把4支铅笔放进3个笔筒里,有几种不同的摆法探究之前,老师有几个要求。

(一生读要求)(3)汇报展示方法,证明结论。

(展示两张作品,其中一张是重复摆的。

)第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?说板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。

)总结:把4支铅笔放进3个笔筒中一共只有四种情况,在每一种情况中,都一定有一个笔筒中至少有2支铅笔。

鸽巢问题说课稿

鸽巢问题说课稿

《鸽巢问题》说课稿赵燕玲一.说教材1、说教学内容我说课的内容是新人教版六年级数学下册第五单元数学广角《鸽巢问题》第一课时,教材68-69页的例1和例2.2、教材的地位和作用在数学问题中,有一类与“存在性”有关的问题,如任意367名学生中,一定存在两名学生,他们在同一天过生日。

在这类问题中,让学生初步经历“数学证明”的过程。

实际上,通过“说理”的方式来理解“鸽巢原理”的过程就是一种数学证明的雏形,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。

还要注意培养学生的“模型”思想,这个过程是将具体问题“数学化”的过程,能从纷繁的现实素材中找出最本质的数学模型,是体现和发展学生数学思维和能力的重要方面3、学情分析六年级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。

教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。

鸽巢原理是学生从未接触过的新知识,在具体分的过程中,我想学生都会运用平均分的方法解决问题得出结论。

但我想这些学生中大多数只“知其然,不知为什么平均分能保证“至少”的情况,他们并不理解。

有时要找到实际问题与“鸽巢原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。

因此,教师要耐心细致的引导,重在让学生经历知识的发生、发展和过程,而不是生搬硬套,只求结论,不仅要让学生知其然,更要知其所以然4、说教学目标根据《数学课程标准》和教材内容,我确定本节课学习目标如下:知识与技能:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。

过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

提高学生有根据、有条理地进行思考和推理的能力。

情感与态度:体会数学与生活的紧密联系,通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

人教版六年级下学期数学《 鸽巢问题》说课稿-

人教版六年级下学期数学《 鸽巢问题》说课稿-

人教版六年级下学期数学《鸽巢问题》说课稿-一. 教材分析鸽巢问题是数学中的一个经典问题,它涉及到组合计数和概率论的初步概念。

人教版六年级下学期数学教材中引入了鸽巢问题,旨在让学生通过解决实际问题,进一步理解整数和分数的概念,以及培养学生的逻辑思维和解决问题的能力。

二. 学情分析六年级的学生已经掌握了基本的数学知识,具备了一定的逻辑思维和解决问题的能力。

但是,对于鸽巢问题这种涉及组合计数和概率论的问题,可能还需要进一步的引导和培养。

因此,在教学过程中,我将会根据学生的实际情况,逐步引导学生理解和掌握鸽巢问题的解法。

三. 说教学目标1.知识与技能目标:通过解决鸽巢问题,让学生进一步理解整数和分数的概念,掌握鸽巢问题的解法。

2.过程与方法目标:培养学生运用数学知识解决实际问题的能力,提高学生的逻辑思维和解决问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生勇于探索、积极思考的学习态度。

四. 说教学重难点1.教学重点:让学生掌握鸽巢问题的解法,培养学生运用数学知识解决实际问题的能力。

2.教学难点:对于复杂情况的鸽巢问题,如何引导学生理解和运用概率论的知识。

五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握鸽巢问题的解法。

2.教学手段:利用多媒体教学,通过生动的动画和图示,帮助学生形象地理解鸽巢问题。

六. 说教学过程1.导入:通过一个实际问题,引发学生对鸽巢问题的思考,激发学生的学习兴趣。

2.探究:引导学生通过小组合作,共同探讨鸽巢问题的解法,培养学生合作学习的能力。

3.讲解:在学生探究的基础上,进行讲解,让学生理解鸽巢问题的解法,并能够运用到实际问题中。

4.练习:设计一些相关的练习题,让学生通过练习,巩固所学知识,提高解决问题的能力。

5.总结:通过总结,让学生理解鸽巢问题的解法,并能够运用到实际问题中。

七. 说板书设计板书设计要简洁明了,能够突出鸽巢问题的关键点,包括鸽巢问题的定义、解法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版六年级下册数学《鸽巢问题》说课稿我说课的内容是人教版六年级数学下册第五单元的数学广角《鸽巢问题》。

我将从以下几方面进行说课。

说教材。

《鸽巢问题》包含着一个重要而又基本的数学原理——“鸽巢原理”,应用它可以使生活中很多有趣的,又相当复杂的问题,得以简单的解决。

我要说的是第一课时,本节教材通过几个直观的例子,借助实际操作,向学生介绍“鸽巢原理”,使学生在理解的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢原理”去解决。

说学情虽然六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,但因为鸽巢原理的实质是揭示了一种存在性,比较抽象,因此要真正让小学生深刻理解,还是很有挑战性的。

说教学目标根据《新课程标准》的要求和学生已有的知识基础和认知能力,确定以下教学目标:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。

会用“鸽巢原理”解决简单的实际问题。

通过“鸽巢原理”的灵活运用,感受数学的魅力,渗透数学模型思想。

说重点难点教学重点:经历“鸽巢原理”的探究过程,建立数学模型。

教学难点:理解“鸽巢原理”。

在“说理”中体会“鸽巢原理”的简单应用。

说教法学法教法:主要采用探究发现法、实践操作法和讲授法,并充分运用多媒体教学手段,帮助学生理解并建立数学模型。

学法:主要采用动手实践、自主探索、合作交流的学习方法,通过多方面数学活动获得知识,得到全面发展。

说教学过程我本着以学定教的设计理念,设计四个环节:游戏导入,激发兴趣——自主操作,探究新知——巩固应用,提升认识——全课总结,畅谈感受。

接下来,我具体谈谈这四个环节的教学:第一环节游戏导入,激发兴趣课的开始我设计了5个同学抢坐4把椅子的游戏,激发兴趣,启迪思考。

【设计意图:创设贴近生活的数学情境,让学生初步体验“总有什么至少怎么样”的说法,激起学生探究其中原理的兴趣,为学习新知做了铺垫。

】第二环节自主操作,探究新知。

根据学生认知规律,我设计了两个活动活动一,动手操作,初识原理出示例1,把4支铅笔放在3个笔筒里,不管怎么放,总有一个笔筒里至少有两支笔。

为什么?我先启发学生利用准备的学具用枚举法来验证。

先独立思考: 1.可以怎么放?2.共有几种不同摆法?3.你是怎样比较得到至少数的?小组内交流,汇报验证过程。

根据学生汇报情况,我利用课件再现分的过程,帮助学生加深对“总有”和“至少”的理解。

重点理解“至少”,是从放笔最多的笔筒中比较出至少数。

以此突破难点。

接着优化验证方法,启发不用一一枚举,用假设法直接得到至少数。

叙述分的过程,引出平均分和平均分的算式。

顺向思考,把6支笔放到5个笔筒里呢?把10支笔放到9个笔筒里呢?把100支笔放到99个笔筒里呢?你发现了什么规律?这时学生有的认为是商+1,有的认为是商加余数。

最后设疑,如果余数不是1 ,那么这个至少数会是多少呢?【设计意图:引导学生积极参与到实践活动中,结合课件的形象展示,帮助学生突破理解难点。

由最后的质疑在学生心中产生冲突,把探究引向深入。

】活动二,深入探究,完善原理借助“7只鸽子飞入5个鸽巢”来解决余数不是1的情况,从而完善对原理的认识。

这里我会尊重学生的个性思考,让学生就商+1,还是商加余数,展开辩论,通过假设法的摆放,证明当余数不是1时,要把余数进行二次平均分,来实现鸽巢里的鸽子为至少数。

最后揭示这类问题就是数学上有名的“鸽巢问题”,介绍这一问题的发现者—-德国数学家狄里克雷。

【设计意图:我注重了教学的直观性原则,让学生的动手操作贯穿于探究说理的全过程,加深了学生对商+1的理解,建立了数学模型,突破了教学重点。

】第三环节巩固应用,提升认识我把练习设计为A组和B组。

A组主要是面对全体学生的,B组是面向学有余力的学生的。

【设计意图:渗透“数学来源于生活,又还原与生活的理念”,通过练习既让学生对所学的知识加深理解,形成技能。

尊重学生的个体差异性,让每一个学生都能在学习中得到发展。

】第四环节全课总结,畅谈感受通过让学生畅谈收获,培养学生自我总结的能力,了解学生在学习过程中的得与失。

说板书设计鸽巢原理(抽屉原理)【设计意图:整个板书是在教学的过程中动态生成的,让教学环节依次呈现,突出重点,突破难点,起到画龙点睛的作用。

】说教学反思反思这节课,可取之处有:1.着重让学生经历知识的产生、形成的过程,恰当引导,建立模型。

2.瞄准学生的认知障碍,力求让学生知其然并知其所以然。

3.灵活使用教材,达成教学目标。

遗憾之处一是感觉老师仍在牵着学生走,不敢放手,二是对于“总有……至少……”的精炼说法,一定还有学生理解不到位。

回顾整节课,我欣喜地看到了学生在课堂上思维碰撞的火花,它时时点亮的是积极探究的科学精神。

探索出一个简单的算式模型,成功地解决生活中某一类抽象费解的普遍现象,不正是数学这门课程的魅力所在吗?我要说,我爱数学,我爱探究!我的说课到此结束,谢谢大家。

《鸽巢问题》说课稿尊敬的各位评委老师,大家好!今天我说课的内容是《鸽巢问题》,下面我将就这个内容从以下几个方面进行阐述。

一、说教材1.教材分析《鸽巢问题》是人教版小学数学六年级下册第68页的内容,是数与代数领域的重要知识点。

2.教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:经历“鸽巢问题”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

②能力目标:通过画图发展学生的类推能力,形成比较抽象的数学思维。

③情感目标:通过“鸽巢问题”的灵活应用感受数学的魅力。

3.教学重难点在深入研究教材的基础上,我确定了本节课的重难点。

重点:经历“鸽巢问题”的探究过程,初步了解“抽屉原理”。

难点:理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。

二、说教法学法有这样一句话:听见了,忘记了;看见了,记住了;体验了,理解了。

可见让学生感受数学、经历数学、体验数学是学生学习数学的最佳方式。

因此,这节课我采用的教法:引导法、观察法、讨论法;学法:动手操作法,合作交流法。

三、说教学准备在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

四、说教学过程新课标指出:“教学活动是师生积极参与、交往互动、共同发展的过程”本着这个教学理念,我设计了如下教学环节。

环节一、情境导入我给大家表演一个魔术。

一副牌,取出大小王,还剩52张牌,你们5人每人随意抽出一张,我知道至少有2张牌是同花色的。

问问同学是否相信,并做几组实验,验证这一猜想。

借助同学的疑问和兴趣,此时,我会点明:告知这个故事里蕴含着一个重要的数学原理,即抽屉原理,从而引出新知。

通过情境设置,从学生熟悉的生活情境和已有的知识基础出发,找准了新知识的起点,激发起学生对的比例的学习兴趣和求知欲。

环节二、探索新知首先我会出示例题“把4支铅笔放进3个笔筒里,有几种不同的放法?”让学生通过画图或者操作展示各种不同的放法,让同学先思考,然后再小组讨论后,汇报交流,再上台展示。

然后我会通过课件展示四种放法,其中重点展示第四种(2,1,1)的放法,并质疑:最后一只可以随便放吗,引发学生思考讨论。

然后,我会用课件动态圈出每种方法中铅笔数量最多的笔筒,随后提出疑问:仔细观察每种放法中圈出的笔筒中铅笔的数量,你发现了什么?不管怎么放,总有一个笔筒至少有几只铅笔?学生自然得出结论:把4支铅笔放进3个笔筒里,总有一个笔筒里至少有2支铅笔。

接着结合刚刚课件展示的放法,引导学生了解第四种方法属于至少的情况。

最后,我会引导学生这样想,我们还可以用假设法,我们从最不利的原则去考虑:如果我们在每个笔筒里先放1支笔,最多放3支。

剩下的1支还要放进其中的一个笔筒。

所以不管怎么放,总有一个笔筒里至少放进2支笔。

此环节,我通过让学生动手探究,自主合作交流的方式,引导学生学生逐步的理解所授新知,在探索中学习,在学习中发展,有效的掌握本节课的重难点。

环节三、拓展延伸根据教材,我会进行有效的拓展延伸,发现关于此类问题的规律。

首先提出问题:如果把5支铅笔放进4个笔筒里,不管怎么放,总有一个至少有几支铅笔?引导学生可以画图,也可动脑思考。

反馈时注重让学生理解假设法。

即把5支铅笔放进4个笔筒里如果在每个笔筒放1支铅笔,还剩的那支可任意放。

然后继续延伸提问:如果把6支铅笔放进5个笔筒呢?7支铅笔放进6个笔筒呢?这样的现象能说完吗?你发现了什么规律?能用一句话把它说完吗?学生互相交流,讨论答案。

最后学生可能猜想结论是把n+1个物体放入n个抽屉中,总有一个抽屉至少有2个物体。

然后让学生用算式表示抽屉原理的思考方法。

也就是通过4÷3=1(支)……1(支) 5÷4=1(支)……1(支)等演算到(n+1) ÷n=1(支)……1(支),证明这一猜想的科学性。

爱因斯坦说:提出一个问题比解决一个问题更重要。

为培养学生的问题意识,此时我会鼓励学生进行质疑,学生可能会提:当铅笔数比数不止多1时又怎么解决?当余数不是1时,至少还是2吗?等等,我会通过让学生先独立思考而后小组合作的方式去探究,从而得出结论。

此环节,我通过组织学生自主探究,体验由特殊到一般的推理方法得出规律,让学生保持高度的学生热情和探索欲望,亲身经历和体验知识的形成过程,让学生在探究活动中实现自主体验,获得自主发展。

环节四、实践应用我根据本课的教学重点和难点,有层次、有针对性地设计下述练习:1.牛刀小试。

(1) 把5鸽子放进3个鸽舍中,总有一个鸽舍至少有2鸽子。

为什么?(2)13个同学中至少有2个同学在同一个月出生,为什么?2.大显身手。

(1)把7只鸽子放进5个鸽舍中,总有一个鸽舍至少有几只鸽子?(重点讲解当余数是2时怎么处理)3.终极挑战。

挑战世界数学名题。

(这样设计练习一是为了巩固基础知识,二是为了让有需要的学生在拓展中得到挑战,从而让不同层次的学生在学习上得到不同的发展)环节五、全课总结在这个环节,我充分发挥学生的主体作用,让学生总结今天所学知识点,若学生总结不够完善,我再加以补充,强化对知识得认知。

四、板书设计【设计意图:整个板书是在教学的过程中动态生成的,让教学环节依次呈现,突出重点,突破难点,起到画龙点睛的作用。

】五、说教学反思反思这节课,可取之处有:1.着重让学生经历知识的产生、形成的过程,恰当引导,建立模型。

2.瞄准学生的认知障碍,力求让学生知其然并知其所以然。

3.灵活使用教材,达成教学目标。

遗憾之处一是感觉老师仍在牵着学生走,不敢放手,二是对于“总有……至少……”的精炼说法,一定还有学生理解不到位。

回顾整节课,我欣喜地看到了学生在课堂上思维碰撞的火花,它时时点亮的是积极探究的科学精神。

探索出一个简单的算式模型,成功地解决生活中某一类抽象费解的普遍现象,不正是数学这门课程的魅力所在吗?我要说,我爱数学,我爱探究我的说课到此结束,谢谢大家。

相关文档
最新文档