八年级数学上册 第十五章《分式》检测卷 (新版)新人教版
人教版八年级数学上册第15章《分式》单元测试卷
19.先化简,再求值:x3-x1-x+x 1÷x22-x 1,其中 x=-3. 解:原式=x3-x1x+x+11-x-x1x-x1+ 1·x-12xx+1 =x-2x12+x4+x 1·x-12xx+1=2xx2+ x 2=x+2. ∵x=-3,∴原式=-3+2=-1.
四、解答题(二)(本大题共 3 小题,每小题 7 分,共 21 分) 20.解分式方程:x-1 2=1-2-1 x. 解:两边都乘 x-2,得 1=x-2+1,解得 x=2, 检验:x=2 时,x-2=0, 所以 x=2 不是分式方程的解,则原分式方程无解.
解:设文学书每本 x 元,则科普书每本(x+8)元, 根据题意得1x2+0080=8 0x00,解得 x=16, 经检验,x=16 是原方程的解,∴x+8=24. 答:文学书每本 16 元,科普书每本 24 元.
24.某部队将在指定山区进行军事演习,为了使道路便于部队 重型车辆通过,部队工兵连接到抢修一段长 3 600 米道路的任 务,按原计划完成总任务的13后,为了让道路尽快投入使用, 工兵连将工作效率提高了 50%,一共用了 10 小时完成任务. (1)按原计划完成总任务的13时,已抢修道路 1 200 米; (2)求原计划每小时抢修道路多少米?
解:(1)xx2--49÷x-1 3=x+x3-x4-3·(x-3)=xx- +43, ∴被墨水污染的部分为 x-4. (2)若x-1 3=1,∴x=4, 由于 x=4 时,除数xx+-34无意义,∴原分式的值不等于 1.
五、解答题(三)(本大题共 3 小题,每小题 9 分,共 27 分) 23.广州市某街道社区开展爱心捐赠活动,并决定赠送一批 阅读图书,用于贫困学生的课外学习.据了解,科普书的单 价比文学书的单价多 8 元,用 12 000 元购买科普书与用 8 000 元购买文学书的本数相同,求这两类书籍的单价各是多少元.
人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)
人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。
八年级数学上册第十五章分式检测题新版新人教版
第十五章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.若分式1x -2有意义,则x 的取值范围是( B )A .x >2B .x ≠2C .x ≠0D .x ≠-22.自然界中的数学不胜枚举,如蜜蜂建造的蜂房既坚固又省料,其厚度为0.000 073米,将0.000 073用科学记数法表示为( D )A .73×10-6B .0.73×10-4C .7.3×10-4D .7.3×10-53.下列式子:①2x ,②x 2 ,③32x 2-1 ,④xx -y,其中是分式的有( C )A .1个B .2个C .3个D .4个4.若分式a2a -1的值总是正数,则a 的取值范围是( D )A .a 是正数B .a 是负数C .a >12D .a <0或a >125.分式13-x可变形为( D )A .13+x B .-13+x C .1x -3 D .-1x -36.若分式x 2-1x +1的值等于0,则x 的值为( D )A .±1B .0C .-1D .17.某工厂计划生产300个零件,由于采用新技术,实际每天生产零件的数量是原计划的2倍,因此提前5天完成任务.设原计划每天生产零件x 个,根据题意,所列方程正确的是( C )A .300x -300x +2 =5 B .3002x -300x =5 C .300x -3002x =5 D .300x +2 -300x=58.如果m +n =1,那么代数式(2m +n m 2-mn +1m)·(m 2-n 2)的值为( D )A .-3B .-1C .1D .39.关于x 的分式方程ax -14-x +3x -4=-2的解为正数,且关于x 的不等式组⎩⎪⎨⎪⎧x >0,a +x 2≥x-52 有解,则满足上述要求的所有整数a 的和为( C ) A .-16 B .-12 C .-10 D .-610.定义一种新运算⎠⎛ba n ·xn -1d x =a n -b n ,例如⎠⎛n k 2x d x =k 2-n 2,若⎠⎛5mm -x -2d x =-2,则m =( B )A .-2B .-25C .2D .25二、填空题(每小题3分,共18分) 11.分式3x 2y 9xy 2 化为最简分式的结果是x3y.12.23x 2(x -y ) ,12x -2y ,34xy 的最简公分母是12(x -y)x 2y . 13.计算:(-13)-2+(-2 020)0=10.14.如果分式2x3x 2+5y 2 的值为9,把式中的x ,y 同时扩大为原来的3倍,则分式的值是3.15.读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为∑n =1100n ,这里“∑”是求和符号.通过对以上材料的阅读,计算∑n =12 0201n (n +1) =2 0202 021.16.已知1x +1y =3,给出下列结论:①代数式3x -2xy +3y x +xy +y 的值始终等于74 ;②当y=x +3时,x 2+1x 2 =499;③当3x 2y +3xy 2=4时,x +y =2.其中正确的是①.(填序号)三、解答题(共72分)17.(6分)(1)计算:|-12 |+(-1)2 019+2-1-(π-3)0;解:原式=12 -1+12 -1=-1.(2)解方程:1-x -32x +2 =3xx +1.解:去分母,得2x +2-x +3=6x ,解得x =1,经检验,x =1是分式方程的解.18.(6分)先化简,再求值:a a 2-a ·a 2-1a +1 -aa -1,其中a =2.解:aa2-a·a2-1a+1-aa-1=aa(a-1)·(a+1)(a-1)a+1-aa-1=1-aa-1=a-1-a a-1=-1a-1,当a=2时,原式=-12-1=-1.19.(8分)准备完成如图这样一道填空题,其中一部分被墨水污染了,若该题化简的结果为1x-3.(1)求被墨水污染的部分;(2)原分式的值能等于1吗?为什么?解:(1)∵x-4x2-9÷1x-3=x-4(x+3)(x-3)·(x-3)=x-4x+3,∴被墨水污染的部分为x-4.(2)若原式=1x-3=1,则x=4,由于原分式由以下过程得到:x-4x2-9÷x-4x+3=x-4(x-3)(x+3)·x+3x-4,∴当x=4时,x+3x-4无意义.∴原分式的值不能为1.20.(8分)已知分式1-mm2-1÷(1+1m-1).(1)请对分式进行化简;(2)如图,若m为正整数,则该分式的值对应的点落在数轴上的第________段上.(填序号)解:(1)原式=1-mm2-1÷m-1+1m-1=1-m(m+1)(m-1)·m-1m=1-1m+1=m+1-1 m+1=mm+1.(2)∵原式=mm+1,m为正整数且m≠±1,∴该分式的值应落在数轴上的第②段上,故答案为:②.21.(8分)已知关于x的分式方程mx+1-2m-x-1x2+x=0无解,求m的值.解:去分母,得mx-2m+x+1=0,分两种情况讨论:①分式方程有增根,则x=0或x=-1,将x =0,x =-1分别代入,得m =12 或m =0;②方程mx -2m +x +1=0,即(m +1)x=2m -1无解,∴m +1=0且2m -1≠0,∴m =-1.综上,m =12或m =0或m =-1.22.(8分)已知M =(1+1x -1 )÷1x 2-1 -(x -1),N =(3x x +1 -x x +1 )·x 2-1x +2,且x≠±1.小刚和小军在对上述式子进行化简后,小刚说不论x 取何值,M 的值都比N 的值大;小军说不论x 取何值,N 的值都比M 的值大,请你判断他们谁的结论正确,并说明理由.解:小刚的结论正确,理由:∵M=x -1+1x -1·(x-1)(x +1)-(x -1)=x(x +1)-(x -1)=x 2+1,N =3x -x x +1 ·(x -1)(x +1)x+2=2(x -1)+2=2x ,∴M -N =x 2+1-2x =(x -1)2,又x≠±1,∴M -N >0,∴小刚的结论正确,即不论x 取何值,M 的值都比N 的值大.23.(8分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.解:设甲校师生所乘大巴车的平均速度为x 千米/小时,则乙校师生所乘大巴车的平均速度为1.5x 千米/小时,由题意,得240x -2701.5x =1,解得x =60,经检验,x =60是所列方程的解,则1.5x =90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时,90千米/小时.24.(10分)对x ,y 定义一种新运算T ,规定:T(x ,y)=ax +by2x +y (其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a×0+b×12×0+1 =b.已知T(1,-1)=-2,T(4,2)=1.(1)求a ,b 的值;(2)若T(m ,m +3)=-1,求m 的值.解:(1)根据题中定义的新运算,得T(1,-1)=a -b2-1 =-2,即a -b =-2①,T(4,2)=4a +2b 8+2 =1,即2a +b =5②,①+②,得3a =3,解得a =1.把a =1代入①,得b =3.(2)根据题中定义的新运算,得T(m ,m +3)=m +3m +92m +m +3 =4m +93m +3 =-1,解得m =-127,经检验m =-127是分式方程的解.25.(10分)某快递公司有甲、乙、丙三个机器人分配快件,甲单独完成需要x 小时,乙单独完成需要y 小时,丙单独完成需要z 小时.(1)甲单独完成的时间是乙、丙合作完成时间的几倍?(2)若甲单独完成的时间是乙、丙合作完成时间的a 倍,乙单独完成的时间是甲、丙合作完成时间的b 倍,丙单独完成的时间是甲、乙合作完成时间的c 倍,求1a +1 +1b +1 +1c +1的值.解:(1)x÷[1÷(1y +1z )]=x÷[1÷y +z yz ]=x÷yz y +z =xy +xzyz .答:甲单独完成的时间是乙丙合作完成时间的xy +xz yz 倍.(2)由题意,得x =a 1y +1z ①,y =b 1x +1z ②,z =c1x +1y ③.由①,得a =x y +x z ,∴a +1=x y +x z +1, ∴1a +1 =1x y +x z +1 =yzxy +yz +xz;同理,由②,得1b +1 =xz xy +yz +xz ; 由③,得1c +1 =xy xy +yz +xz .∴1a +1 +1b +1 +1c +1=yz xy +yz +xz +xz xy +yz +xz +xy xy +yz +xz =xy +yz +xzxy +yz +xz =1.。
2022年八年级数学上册第十五章分式测试卷1新版新人教版
第15章分式一、选择题1.已知关于x的分式方程=1的解是非正数,则a的取值范围是()A.a≤﹣1 B.a≤﹣1且a≠﹣2 C.a≤1且a≠﹣2 D.a≤12.下列计算正确的是()A.﹣2﹣1=2 B.(﹣2)2=﹣4 C.20=0 D.=23.甲乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是()A.甲乙同时到达B地 B.甲先到达B地C.乙先到达B地 D.谁先到达B地与速度v有关4.若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠15.若x=3是分式方程﹣=0的根,则a的值是()A.5 B.﹣5 C.3 D.﹣36.关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0 B.a≠0 C.a≠5 D.a≠5且a≠07.解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)8.分式方程=的解为()A.x=0 B.x=3 C.x=5 D.x=99.分式方程=1的解为()A.1 B.2 C.D.010.关于x的分式方程的解是负数,则m的取值范围是()A.m>﹣1 B.m>﹣1且m≠0 C.m≥﹣1 D.m≥﹣1且m≠011.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠312.关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣113.已知方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值范围是()A.﹣1<b≤3 B.2<b≤3 C.8≤b<9 D.3≤b<4二、填空题14.若分式方程=a无解,则a的值为.15.关于x的分式方程﹣=0无解,则m= .16.关于x的方程x2﹣4x+3=0与=有一个解相同,则a= .17.已知关于x的方程的解是负数,则n的取值范围为.18.分式方程=的解是.19.方程=的解是.20.方程﹣=1的解是.21.若关于x的分式方程=﹣2有非负数解,则a的取值范围是.22.计算:20130﹣2﹣1= .23.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是米.24.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是.25.若关于x的方程无解,则m= .26.若关于x的分式方程的解为正数,那么字母a的取值范围是.27.关于x的方程=﹣1的解是正数,则a的取值范围是.28.已知关于x的方程的解是正数,则m的取值范围是.29.若关于x的方程=+1无解,则a的值是.三、解答题30.小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.参考答案与试题解析一、选择题1.已知关于x的分式方程=1的解是非正数,则a的取值范围是()A.a≤﹣1 B.a≤﹣1且a≠﹣2 C.a≤1且a≠﹣2 D.a≤1【考点】分式方程的解.【分析】先解关于x的分式方程,求得x的值,然后再依据“解是非正数”建立不等式求a 的取值范围.【解答】解:去分母,得a+2=x+1,解得,x=a+1,∵x≤0且x+1≠0,∴a+1≤0且a+1≠﹣1,∴a≤﹣1且a≠﹣2,∴a≤﹣1且a≠﹣2.故选:B.【点评】本题考查了分式方程的解,解一元一次不等式,需注意在任何时候都要考虑分母不为0,这也是本题最容易出错的地方.2.下列计算正确的是()A.﹣2﹣1=2 B.(﹣2)2=﹣4 C.20=0 D.=2【考点】负整数指数幂;有理数的乘方;算术平方根;零指数幂.【分析】根据有理数乘方的法则、算术平方根的定义以及负整数指数幂为正整数指数的倒数,任何非0数的0次幂等于1,分别进行计算,即可得出答案.【解答】解:A、﹣2﹣1=﹣,故本选项错误;B、(﹣2)2=4,故本选项错误;C、20=1,故本选项错误;D、=2,故本选项正确;故选D.【点评】此题考查了负整数指数幂、有理数的乘方、算术平方根以及零指数幂,注意:负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.3.甲乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是()A.甲乙同时到达B地 B.甲先到达B地C.乙先到达B地 D.谁先到达B地与速度v有关【考点】列代数式(分式).【分析】设从A地到B地的距离为2s,根据时间=路程÷速度可以求出甲、乙两人同时从A 地到B地所用时间,然后比较大小即可判定选择项.【解答】解:设从A地到B地的距离为2s,而甲的速度v保持不变,∴甲所用时间为,又∵乙先用v的速度到达中点,再用2v的速度到达B地,∴乙所用时间为,∴甲先到达B地.故选:B.【点评】此题主要考查了一元一次方程在实际问题中的应用,解题时首先正确理解题意,根据题意设未知数,然后利用已知条件和速度、路程、时间之间的关系即可解决问题.4.若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为0求出m的范围即可.【解答】解:去分母得:m﹣1=2x﹣2,解得:x=,由题意得:≥0且≠1,解得:m≥﹣1且m≠1,故选D【点评】此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.5.若x=3是分式方程﹣=0的根,则a的值是()A.5 B.﹣5 C.3 D.﹣3【考点】分式方程的解.【分析】首先根据题意,把x=3代入分式方程﹣=0,然后根据一元一次方程的解法,求出a的值是多少即可.【解答】解:∵x=3是分式方程﹣=0的根,∴,∴,∴a﹣2=3,∴a=5,即a的值是5.故选:A.【点评】(1)此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.(2)此题还考查了一元一次方程的求解方法,要熟练掌握.6.关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0 B.a≠0 C.a≠5 D.a≠5且a≠0【考点】分式方程的解.【分析】先解关于x的分式方程,求得x的值,然后再依据“关于x的分式方程=有解”,即x≠0且x≠2建立不等式即可求a的取值范围.【解答】解:=,去分母得:5(x﹣2)=ax,去括号得:5x﹣10=ax,移项,合并同类项得:(5﹣a)x=10,∵关于x的分式方程=有解,∴5﹣a≠0,x≠0且x≠2,即a≠5,系数化为1得:x=,∴≠0且≠2,即a≠5,a≠0,综上所述:关于x的分式方程=有解,则字母a的取值范围是a≠5,a≠0,故选:D.【点评】此题考查了求分式方程的解,由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式.另外,解答本题时,容易漏掉5﹣a≠0,这应引起同学们的足够重视.7.解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)【考点】解分式方程.【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣1和1﹣x互为相反数,可得1﹣x=﹣(x﹣1),所以可得最简公分母为x﹣1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选D.【点评】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:2﹣(x+2)=3形式的出现.8.分式方程=的解为()A.x=0 B.x=3 C.x=5 D.x=9【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解,故选D.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.分式方程=1的解为()A.1 B.2 C.D.0【考点】解分式方程.【专题】计算题.【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2﹣3x=x﹣2,解得:x=1,经检验x=1是分式方程的解.故选A.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.关于x的分式方程的解是负数,则m的取值范围是()A.m>﹣1 B.m>﹣1且m≠0 C.m≥﹣1 D.m≥﹣1且m≠0【考点】分式方程的解.【分析】由题意分式方程的解为负数,解方程求出方程的解x,然后令其小于0,解出m的范围.注意最简公分母不为0.【解答】解:方程两边同乘(x+1),得m=﹣x﹣1解得x=﹣1﹣m,∵x<0,∴﹣1﹣m<0,解得m>﹣1,又x+1≠0,∴﹣1﹣m+1≠0,∴m≠0,即m>﹣1且m≠0.故选:B.【点评】此题主要考查分式的解,关键是会解出方程的解,此题难度中等,容易漏掉隐含条件最简公分母不为0.11.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的范围即可.【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C【点评】此题考查了分式方程的解,时刻注意分母不为0这个条件.12.关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣1【考点】分式方程的解.【专题】计算题.【分析】将分式方程化为整式方程,求得x的值然后根据解为正数,求得a的范围,但还应考虑分母x+1≠0即x≠﹣1.【解答】解:分式方程去分母得:2x﹣a=x+1,解得:x=a+1,根据题意得:a+1>0且a+1+1≠0,解得:a>﹣1且a≠﹣2.即字母a的取值范围为a>﹣1.故选:B.【点评】本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为0.13.已知方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值范围是()A.﹣1<b≤3 B.2<b≤3 C.8≤b<9 D.3≤b<4【考点】分式方程的解;一元一次不等式组的整数解.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a的值,经检验确定出分式方程的解,根据已知不等式组只有4个正整数解,即可确定出b的范围.【解答】解:分式方程去分母得:3﹣a﹣a2+4a=﹣1,即(a﹣4)(a+1)=0,解得:a=4或a=﹣1,经检验a=4是增根,故分式方程的解为a=﹣1,已知不等式组解得:﹣1<x≤b,∵不等式组只有4个整数解,∴3≤b<4.故选:D【点评】此题考查了分式方程的解,以及一元一次不等式组的整数解,弄清题意是解本题的关键.二、填空题(共16小题)14.若分式方程=a无解,则a的值为1或﹣1 .【考点】分式方程的解.【专题】计算题.【分析】由分式方程无解,得到最简公分母为0求出x的值,分式方程去分母转化为整式方程,把x的值代入计算即可求出a的值.【解答】解:去分母得:x﹣a=ax+a,即(a﹣1)x=﹣2a,显然a=1时,方程无解;由分式方程无解,得到x+1=0,即x=﹣1,把x=﹣1代入整式方程得:﹣a+1=﹣2a,解得:a=﹣1,综上,a的值为1或﹣1,故答案为:1或﹣1【点评】此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.15.关于x的分式方程﹣=0无解,则m= 0或﹣4 .【考点】分式方程的解.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:m﹣(x﹣2)=0,解得:x=2+m,∴当x=2时分母为0,方程无解,即2+m=2,∴m=0时方程无解.当x=﹣2时分母为0,方程无解,即2+m=﹣2,∴m=﹣4时方程无解.综上所述,m的值是0或﹣4.故答案为:0或﹣4.【点评】本题考查了分式方程无解的条件,是需要识记的内容.16.关于x的方程x2﹣4x+3=0与=有一个解相同,则a= 1 .【考点】分式方程的解;解一元二次方程-因式分解法.【分析】利用因式分解法求得关于x的方程x2﹣4x+3=0的解,然后分别将其代入关于x的方程=,并求得a的值.【解答】解:由关于x的方程x2﹣4x+3=0,得(x﹣1)(x﹣3)=0,∴x﹣1=0,或x﹣3=0,解得x1=1,x2=3;当x1=1时,分式方程=无意义;当x2=3时,=,解得a=1,经检验a=1是原方程的解.故答案为:1.【点评】本题考查了一元二次方程的解、分式方程的解.解分式方程时,注意:分式的分母不为零.17.已知关于x的方程的解是负数,则n的取值范围为n<2且n≠.【考点】分式方程的解.【分析】求出分式方程的解x=n﹣2,得出n﹣2<0,求出n的范围,根据分式方程得出n﹣2≠﹣,求出n,即可得出答案.【解答】解:,解方程得:x=n﹣2,∵关于x的方程的解是负数,∴n﹣2<0,解得:n<2,又∵原方程有意义的条件为:x≠﹣,∴n﹣2≠﹣,即n≠.故答案为:n<2且n≠.【点评】本题考查了分式方程的解和解一元一次不等式,关键是得出n﹣2<0和n﹣2≠﹣,注意题目中的隐含条件2x+1≠0,不要忽略.18.分式方程=的解是x=2 .【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x=2x+2,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.方程=的解是x=9 .【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可确定出分式方程的解.【解答】解:去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解,故答案为:x=9【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.方程﹣=1的解是x=2 .【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣2x+2=x2﹣x,解得:x=2,经检验x=2是分式方程的解,故答案为:x=2【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.若关于x的分式方程=﹣2有非负数解,则a的取值范围是a且a.【考点】分式方程的解.【分析】将a看做已知数,表示出分式方程的解,根据解为非负数列出关于a的不等式,求出不等式的解集即可得到a的范围.【解答】解:分式方程去分母得:2x=3a﹣4(x﹣1),移项合并得:6x=3a+4,解得:x=,∵分式方程的解为非负数,∴≥0且﹣1≠0,解得:a≥﹣且a≠.故答案为:a且a.【点评】此题考查了分式方程的解,分式方程的解即为能使方程左右两边相等的未知数的值,本题注意x﹣1≠0这个隐含条件.22.计算:20130﹣2﹣1= .【考点】负整数指数幂;零指数幂.【分析】根据任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数进行计算即可得解.【解答】解:20130﹣2﹣1=1﹣=.故答案为:.【点评】本题考查了任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数,是基础题,熟记两个性质是解题的关键.23.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是米.【考点】列代数式(分式).【专题】计算题.【分析】这卷电线的总长度=截取的1米+剩余电线的长度.【解答】解:根据1米长的电线,称得它的质量为a克,只需根据剩余电线的质量除以a,即可知道剩余电线的长度.故总长度是(+1)米.故答案为:(+1).【点评】注意代数式的正确书写,还要注意后边有单位,故该代数式要带上括号.解决问题的关键是读懂题意,找到所求的量的等量关系.24.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是k>且k≠1 .【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据解为负数确定出k的范围即可.【解答】解:去分母得:(x+k)(x﹣1)﹣k(x+1)=x2﹣1,去括号得:x2﹣x+kx﹣k﹣kx﹣k=x2﹣1,移项合并得:x=1﹣2k,根据题意得:1﹣2k<0,且1﹣2k≠±1解得:k>且k≠1故答案为:k>且k≠1.【点评】此题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为0.25.若关于x的方程无解,则m= ﹣8 .【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母转化为整式方程,将x=5代入计算即可求出m的值.【解答】解:分式方程去分母得:2(x﹣1)=﹣m,将x=5代入得:m=﹣8.故答案为:﹣8【点评】此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.26.若关于x的分式方程的解为正数,那么字母a的取值范围是a>1且a≠2 .【考点】分式方程的解.【专题】计算题.【分析】将a看做已知数求出分式方程的解得到x的值,根据解为正数列出不等式,求出不等式的解集即可得到a的范围.【解答】解:分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,根据题意得:a﹣1>0且a﹣1﹣1≠0,解得:a>1且a≠2.故答案为:a>1且a≠2.【点评】此题考查了分式方程的解,弄清题意是解本题的关键.注意分式方程分母不等于0.27.关于x的方程=﹣1的解是正数,则a的取值范围是a>﹣1且a≠﹣.【考点】分式方程的解.【分析】根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得答案.【解答】解:=﹣1,解得x=,∵=﹣1的解是正数,∴x>0且x≠2,即0且≠2,解得a>﹣1且a≠﹣.故答案为:a>﹣1且a≠﹣.【点评】本题考查了分式方程的解,先求出分式方程的解,再求出a的取值范围.28.已知关于x的方程的解是正数,则m的取值范围是m>﹣6且m≠﹣4.【考点】分式方程的解.【分析】首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.【解答】解:解关于x的方程得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.【点评】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x的方程是关键,解关于x的不等式是本题的一个难点.29.若关于x的方程=+1无解,则a的值是2或1 .【考点】分式方程的解.【专题】压轴题.【分析】把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.【解答】解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即(a﹣1)x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.【点评】首先根据题意写出a的新方程,然后解出a的值.三、解答题30.小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.【考点】解分式方程.【专题】图表型.【分析】小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验,写出正确的解题过程即可.【解答】解:小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验;正确解法为:方程两边乘以x,得:1﹣(x﹣2)=x,去括号得:1﹣x+2=x,移项得:﹣x﹣x=﹣1﹣2,合并同类项得:﹣2x=﹣3,解得:x=,经检验x=是分式方程的解,则方程的解为x=.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.。
八年级数学上册第十五章分式周周清(检测内容15.1—15.2.2)(新版)新人教版
检测内容:15.1—得分________ 卷后分________ 评价________一、选择题(每小题4分,共36分)1.若代数式x -1x +1有意义,则实数x 应满足的条件是(B ) A .x ≠1 B .x ≠-1C .x =1D .x =-12.下列各式:3a ,a +b 7 ,x 2+12 y 2,5,1x -1 ,x 8π,x 2x ,分式有(C ) A .1个 B .2个 C .3个 D .4个3.与分式-x +y -x -y的值相等的分式是(D ) A .x +y x -y B .--x +y x -yC .-x -y -x +yD .x -y x +y4.下列式子从左到右的变形一定正确的是(A )A .am bm =a bB .a b =ac bcC .a b =a 2b 2D .a b =a -1b -15.(整体思想)已知1a -1b =3,则2b +3ab -2b a -ab -b的值是(D ) A .-72 B .-112 C .92 D .-346.下列运算结果正确的是(C )A .(2a a -b )2=4a 2a 2-b 2B .(3x 4y )2=3x 24y 2 C .m 4n 5 ·n 4m 3 =m n D .a b ÷c d =ac bd7.已知a ,b 为实数,且ab =1,设M =a a +1 +b b +1 ,N =1a +1 +1b +1,则M ,N 的大小关系是(B )A .M >NB .M =NC .M <ND .不能确定8.已知x 为整数,且2x +3 +23-x +2x +18x 2-9为整数,则符合条件的x 有(C ) A .2个 B .3个 C .4个 D .5个9.(攀枝花中考)一辆货车送货上山,并按原路下山.上山速度为a 千米/时,下山速度为b 千米/时,则货车上、下山的平均速度(单位:千米/时)为(D )A .12 (a +b )B .ab a +bC .a +b 2abD .2ab a +b二、填空题(每小题4分,共20分)10.分式x +1x ,x 2x +6 ,x -1x 2-9的最简公分母是__2x (x +3)(x -3)__. 11.如果分式|x |-3(x -3)(x +2)的值等于0,则x =__-3__. 12.不改变分式错误!的值,把它的分子与分母中的各项系数化为整数,则所得结果为__20m 2-5m 10m -3 __. 13.(1)化简:(-b a )÷b a 2-a的结果是__1-a __; (2)计算ab 23c 2 ÷3(ab )3-8c 的结果是 __-89a 2bc __. 14.已知x 3 =-y 2 =z 4 ≠0,则分式x 2-2xy +y 2y 2+4yz +4z 2=___2536 __. 三、解答题(共44分)15.(12分)计算:(1)(连云港中考)1a 2-a·a -1a ; 解:原式=1a (a -1)·a -1a =1a 2 (2)计算:a +3a -3 ·a 2+3a a 2+6a +9 -3a -3; 解:原式=a +3a -3 ·a (a +3)(a +3)2 -3a -3 =a a -3 -3a -3 =a -3a -3=1(3)(2ab 2a +b )2÷(ab 3a 2-b 2 )3·[12(a -b )]3. 解:原式=4a 2b 4(a +b )2 ·(a +b )3(a -b )3a 3b 9 ·18(a -b )3=a +b 2ab 5 16.(10分)先化简,再求值:(1)(曲靖中考)(1a -b -b a 2-b 2 )÷a 2-ab a 2-2ab +b 2,其中a ,b 满足a +b -12 =0; 解:原式=a +b -b (a +b )(a -b ) ·(a -b )2a (a -b ) =1a +b, 由a +b -12 =0,得到a +b =12,则原式=2(2)(x 2+3x x -1 -1)÷x 3+x 2x 2-2x +1 ,其中x 为不等式组⎩⎨⎧x >-1,3(x +1)≤x +7 的整数解. 解:原式=x 2+3x -x +1x -1 ·(x -1)2x 2(x +1)=(x +1)2x -1 ·(x -1)2x 2(x +1)=x 2-1x 2 , 解不等式组⎩⎨⎧x >-1,3(x +1)≤x +7,得-1<x ≤2, ∵x 为不等式组⎩⎨⎧x >-1,3(x +1)≤x +7 的整数解, x +1≠0,x -1≠0,x ≠0,∴x =2,∴当x =2时,原式=22-122 =3417.(10分)(渗透阅读理解)阅读下面的解题过程:已知:x x 2+1 =13 ,求x 2x 4+1的值. 解:由x x 2+1 =13知x ≠0, 所以x 2+1x =3,即x +1x=3. 所以x 4+1x 2 =x 2+1x 2 =(x +1x)2-2=32-2=7.故x 2x 4+1的值为17 . 该题的解法叫做“倒数法”,请你利用“倒数法”解决下面的题目:已知:x x 2-3x +1 =15 ,求x 2x 4+x 2+1的值. 解:∵x x 2-3x +1 =15,且x ≠0, ∴x 2-3x +1x =5,∴x +1x -3=5,∴x +1x=8, ∴x 4+x 2+1x 2 =x 2+1x 2 +1=(x +1x )2-1=63,∴x 2x 4+x 2+1 =16318.(12分)已知分式A =(a +1-3a -1 )÷a 2-4a +4a -1. (1)化简这个分式;(2)当a >2时,把分式A 化简结果的分子与分母同时加上3后得到分式B ,问:分式B 的值较原来分式A 的值是变大了还是变小了?试说明理由;(3)若A 的值是整数,且a 也为整数,求出符合条件的所有a 值的和.解:(1)A =a 2-1-3a -1 ÷(a -2)2a -1 =(a +2)(a -2)a -1 ·a -1(a -2)2 =a +2a -2(2)变小了,理由如下:A -B =a +2a -2 -a +5a +1 =12(a -2)(a +1).∵a >2,∴a -2>0,a +1>0,∴A -B =12(a -2)(a +1)>0,即A >B (3)A =a +2a -2 =1+4a -2,根据题意,a -2=±1,±2,±4,则a =1,0,-2,3,4,6,又a ≠1,∴0+(-2)+3+4+6=11,即符合条件的所有a 值的和为11。
人教版八年级数学上册第十五章 分式 单元检测(含答案)
第十五章分式一、单选题1.在5x,38a,2π,1xa-中,属于分式的个数为()A.0个B.1个C.2个D.3个2.下列分式为最简分式的是()A.11aa--B.235xy yxy-C.22m nn m+-D.22a ba b++3.下列各式中,变形不正确的是()A.2233x x=--B.66a ab b-=-C.3344x xy y-=-D.5533n nm m--=-4.计算322b b1·a a b⎛⎫⎛⎫÷⎪ ⎪⎝⎭⎝⎭的值为( )A.222baB.6ab2C.8aD.15.计算:22m-1m-1m m÷的结果是( )A.mm1+B.1mC.m-1 D.1m-16.若111u v f+=,则用u、v表示f的式子应该是()A.u vuv+B.uvu v+C.vuD.uv7.若234a b c ==,则2222232a bc c a ab c-+--的值是( ) A .13B .13-C .12D .12-8.纳米材料多被应用于建筑、家电等行业,实际上,纳米(nm)是一种长度的度量单位:1纳米=0.000000001米,用科学记数法表示0.12纳米应为( ) A.0.12×10-9米B.0.12×10-8米C.1.2×10-10米D.1.2×10-8米9.计算20140的结果是( ) A .1B .0C .2014D .﹣110.当m 为何值时,方程会产生增根( )A.2B.-1C.3D.-311.下列各式中,是分式方程的是( ) A.x+y=5B.C.D.12.已知一汽船在顺流中航行46千米和逆流中航行34千米,共用去的时间,正好等于它在静水中航行80千米用去的时间,且水流速度是2千米/时,求汽船在静水中的速度,若设汽船在静水中速度为x 千米/时,则所列方程正确的是( )A.+=B.+=C. =-D.=+二、填空题13.当x =_________时,分式242x x -+的值为0.14.当x =__________时,分式3xx-无意义. 15.若a+b=1,且a ∶b=2∶5,则2a-b=____________. 16.计算:(12)﹣2+(﹣2)3﹣20110=__________.三、解答题 17.解方程:(1)233011x x x +-=--;(2)1433162x x -=--. 18.计算:①()223·14a aa a a ----; ②211a a a ---; ③225611x x x x x+⎛⎫-÷ ⎪--⎝⎭19.22322222244(82)25356a b ab b ba b b ab a b ab a++-÷⋅---+,其中12a =-,14b =. 20.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本.(1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n 折售完剩余的书,结果第二次共盈利100m 元(n 、m 为正整数),求相应的n 、m 的值.答案1.C 2.D 3.D 4.C 5.A 6.B 7.C 8.C 9.A 10.C 11.D12.B 13.2 14.315.-1 716.﹣517.(1)x=0;(2)23 x=.18.①11aa-+;②11a-;③-5x19.242a ba b+-+,020.(1)第一次购书的进价为5元/本,且第二次买了2500本;(2)当n=4时,m=4;当n=6时,m=11;当n=8时,m=18。
人教版八年级数学上册第十五章分式-测试题带答案
人教版数学八年级上册第十五章《分式》考试试卷(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.分式x -1x +1的值为0,则x =( B )A .-1B .1C .±1D .02.将分式方程1x =2x -2去分母后得到的整式方程,正确的是( A )A .x -2=2xB .x 2-2x =2x C .x -2=x D .x =2x -4 3.化简xy -2yx 2-4x +4的结果是( D )A.x x +2 B.x x -2 C.y x +2 D.yx -24.已知a =2-2,b =(3-1)0,c =(-1)3,则a ,b ,c 的大小关系是( B ) A .a >b >c B .b >a >c C .c >a >b D .b >c >a5.一种微粒的半径是0.000041米,0.000041这个数用科学记数法表示为( B ) A .41×10-6B .4.1×10-5C .0.41×10-4D .4.1×10-46.下列运算正确的是( D ) A.aa -b -bb -a=1 B.m a -n b =m -na -bC.b a -b +1a =1a D.2a -b -a +b a 2-b 2=1a -b7.化简(1-2x +1)÷1x 2-1的结果是( B )A .(x +1)2B .(x -1)2C.1(x +1)2 D.1(x -1)28.分式方程1x -1-2x +1=4x 2-1的解是( D )A .x =0B .x =-1C .x =±1D .无解9.两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组步行的速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x 千米/小时,根据题意可列方程是( D )A.7500x -75001.2x =15B.7500x -75001.2x =14 C.7.5x -7.51.2x =15 D.7.5x -7.51.2x =1410.已知关于x 的分式方程m x -1+31-x=1的解是非负数,则m 的取值范围是( C ) A .m >2 B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠3 二、填空题(每小题3分,共18分) 11.计算:xy2xy=__y __.12.计算:(-2xy -1)-3=__-y 38x3__.13.方程2x -1x -3=1的根是x =__-2__.14.若(x -y -2)2+|xy +3|=0,则(3x x -y -2x x -y )÷1y 的值是__-32__.15.若a 2+5ab -b 2=0,则b a -a b的值为__5__.16.已知x 2-3x -4=0,则代数式x x 2-x -4的值是__12__.三、解答题(共72分) 17.(12分)计算:(1)4a 2b ÷(b 2a )-2·a b 2; (2)(a a -2-4a 2-2a )÷a +2a ;解:ab 解:1(3)a 2-b 2a ÷(a -2a -b2a ).解:a +b a -b18.(6分)x 2+x x 2-2x +1÷(2x -1-1x ).(1)化简已知分式;(2)从-2<x≤2的范围内选取一个合适的x 的整数值代入求值. 解:(1)x 2x -1(2)∵x≠±1,且x≠0,且-2<x≤2,∴x =2,将x =2代入得原式=419.(8分)解下列分式方程. (1)2x +3=1x -1; 解:x =5,经检验x =5是分式方程的解 (2)1x -2=1-x 2-x-3. 解:解得x =2.检验:x =2时,x -2=0,所以x =2不是原方程的解,∴原方程无解20.(7分)当x 为何值时,分式3-x 2-x 的值比分式1x -2的值大3?解:解得x =1.经检验,x =1是方程3-x 2-x -1x -2=3的解.即当x =1时,分式3-x2-x的值比分式1x -2的值大321.(7分)已知:[(x 2+y 2)-(x -y)2+2y(x -y)]÷4y=1,求4x 4x 2-y 2-12x +y 的值.解:∵[(x 2+y 2)-(x -y )2+2y (x -y )]÷4y =x -12y ,∴x -12y =1,∴4x4x 2-y2-12x +y=12x -y=12(x -12y )=1222.(7分)已知关于x 的方程1x -2+k x +2=3x 2-4无解,求k 的值.解:去分母,得(1+k )x =2k +1,∵方程无解,∴x =±2,将x =2代入得不成立,将x =-2代入得k =-3423.(7分)已知x 2x 2-2=3,求(11-x -11+x )÷(xx 2-1+x)的值.解:原式化简,得-2x 2.∵x 2x 2-2=3,∴x 2-2x 2=13,∴1-2x 2=13,∴-2x 2=-2324.(8分)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.解:设马小虎的速度为x 米/分,则爸爸的速度是2x 米/分,依题意得1800-200x=1800-2002x+10,解得x =80.经检验,x =80是原方程的根.答:马小虎的速度是80米/分25.(10分)“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?解:(1)设乙队单独施工,需要x 天才能完成该项工程,∵甲队单独施工30天完成该项工程的13,∴甲队单独施工90天完成该项工程,根据题意可得:13+15(190+1x )=1,解得:x =30,检验得:x =30是原方程的根,答:乙队单独施工,需要30天才能完成该项工程 (2)设乙队参与施工y 天才能完成该项工程,根据题意可得:190×36+y ×130≥1,解得:y ≥18,答:乙队至少施工18天才能完成该项工程附赠材料:怎样提高做题效率做题有方,考试才能游刃有余提到考试,映入我眼帘的就是一大批同学在题海里埋头苦干的情景。
2022年新人教版初中八年级数学上册第15章《分式》学习质量检测卷(附参考答案)
2022年新人教版初中八年级数学上册 第15章《分式》学习质量检测卷时间:90分钟 满分:100分班级__________姓名__________得分__________一、选择题(共12小题,满分36分,每小题3分)1.(3分)(2022秋•宾阳县期中)我国自主研发的北斗三号新信号22纳米工艺射频基带一体化导航定位芯片已实现规模化应用.已知22纳米=0.000000022米,数据0.000000022用科学记数法表示为( ) A .2.2×108B .2.2×10﹣8C .0.22×10﹣7D .22×10﹣9 2.(3分)(2022秋•安乡县期中)在式子1x−2,3xy π,−2ab 2c 3,2xy 中,分式的个数是( ) A .1个B .2个C .3个D .4个3.(3分)(2022•恩施市模拟)已知关于x 的分式方程1−mx−1−2=21−x 的解是非负数,则m 的取值范围是( ) A .m ≤5且m ≠﹣3 B .m ≥5且m ≠﹣3 C .m ≤5且m≠3D .m ≥5且m ≠34.(3分)(2021•黑龙江模拟)若关于x 的分式方程xx−3=1+mx−29−x 2无解,则m的值为( ) A .﹣3或−163 B .−163或−23 C .﹣3或−163或−23D .﹣3或−235.(3分)(2021•和平区二模)计算3x+1−3xx+1的结果为( ) A .3B .﹣3C .3−3xx+1D .3x−3x+16.(3分)(2021春•吴兴区期末)现有一列数:a 1,a 2,a 3,a 4,…,a n ﹣1,a n(n 为正整数),规定a 1=2,a 2﹣a 1=4,a 3﹣a 2=6,…,a n ﹣a n ﹣1=2n (n ≥2),若1a 2+1a 3+1a 4⋯1a n=97198,则n 的值为( )A .97B .98C .99D .1007.(3分)(2021•北碚区校级模拟)若数m 使关于x 的不等式组{2−x 3≤2+xx <m3有解且至多有3个整数解,且使关于x 的分式方程mx−2x−1+31−x =2有整数解,则满足条件的所有整数m 的个数是( ) A .5B .4C .3D .28.(3分)(2021•澧县模拟)若数a 使关于x 的不等式组{x−52+1≤x+135x −2a >2x +a至少有五个整数解,关于y 的分式方程a−3y−1−21−y=2有非负整数解,则满足条件的所有整数a 之和是( ) A .15B .14C .8D .79.(3分)(2020秋•云阳县期末)若关于x 的不等式组{x −3(x −2)>−2a+x 2<x 有解,关于y 的分式方程ay−14−y +3y−4=−2有整数解,则符合条件的所有整数a 的和为( ) A .0B .1C .2D .510.(3分)(2020•汉阳区校级自主招生)已知abc =1,a +b +c =2,a 2+b 2+c 2=3,则1ab+c−1+1bc+a−1+1ca+b−1的值为( ) A .﹣1B .−12C .2D .−2311.(3分)(2018春•温州期末)甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需( ) A .1316小时B .1312小时C .1416小时D .1412小时12.(3分)(2022秋•沙坪坝区校级期中)若整数a 使关于y 的不等式组{2y−53≤y−13a−y+3≥0至少有3个整数解,且使得关于x的分式方程3x(x−1)−a1−x=2x的解为正数,则所有符合条件的整数a的和为()A.﹣6B.﹣9C.﹣11D.﹣14二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•张店区校级月考)关于x的分式方程mx−3−23−x=1无解,则m的值14.(3分)(2022秋•旌阳区校级月考)若a+b=√5,则a4+a2b2+b4a2+ab+b2+3ab=.15.(3分)(2022秋•岳阳楼区月考)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际每天施工多少平方米?设原计划平均每天施工x平方米,则可列出方程为.16.(3分)(2022春•封丘县期中)受疫情的影响,“84”消毒液需求量猛增,某商场用4000元购进一批“84”消毒液后,供不应求,商场又用6750元购进第二批这种消毒液,所购的瓶数是第一批瓶数的 1.5倍,但每瓶单价贵了1元;则该商场第一批购进“84”消毒液每瓶的单价为元17.(3分)(2022春•济阳区期末)若x+1y =1,y+1z=1,则xyz=.18.(3分)(2022春•双流区期末)若关于x的分式方程上1x =x+2kx(x−1)−6x−1有正根,则k的取值范围为.三、解答题(共7小题,满分66分)19.(9分)(2022秋•门头沟区校级期中)先化简,再求值(1+y2x2−y2)⋅x−yx,其中xy=3.20.(9分)(2022秋•港南区期中)(1)计算:(﹣1)2020﹣(﹣3)+(7﹣π)0+(−12)﹣1;(2)解方程:xx−1−2=2x−1.21.(9分)(2022秋•文登区期中)先化简(x+2x2−2x −x−1x2−4x+4)÷x+2x3−4x,然后从2,0,﹣1三个数中选一个你喜欢的数代入求值.22.(9分)(2022秋•淅川县期中)阅读下列文字,并解决问题.已知x2y=3,求2xy(x5y2﹣3x3y﹣4x)的值.分析:考虑到满足x2y=3的x,y的可能值较多,不可能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2﹣3x3y﹣4x)=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:(1)已知ab=2,求(2a3b2﹣3a2b+4a)•(﹣2b)的值;(2)已知x−1x =3,求x2+1x2的值.23.(9分)(2022秋•青州市期中)如图,小琪的作业本上有这样一道填空题,其中有一部分被墨水污染了,若该题化简的结果为1x+3. (1)求被墨水污染的部分;(2)该题化简的结果1x+3能等于17吗?为什么?24.(10分)(2022秋•北碚区校级期中)为了尽快建一条全长11000米的道路,安排甲乙两队合作完成任务,最终乙队所修的道路比甲队所修的道路的两倍少1000米.(1)甲乙两队各修道路多少米?(2)实际修建过程中,乙队每天比甲队多20米,最终乙队完成任务时间是甲队完成任务时间的54倍,乙队每天修建道路多少米?25.(11分)(2022秋•朝阳区校级期中)先阅读下列解法,再解答后面的问题. 已知3x−4(x−1)(x−2)=Ax−1+Bx−2,求A 、B 的值.解法一:将等号右边通分,再去分母,得:3x ﹣4=A (x ﹣2)+B (x ﹣1), 即:3x ﹣4=(A +B ) x ﹣(2A +B ), 由多项式相等的意义可知, ∴{A +B =32A +B =4. 解得{A =1B =2.解法二:在已知等式中取x =0,有﹣A +B−2=−2,整理得2A +B =4; 取x =3,有A2+B =52,整理得A +2B =5. 解{2A +B =4A +2B =5, 得:{A =1B =2.(1)已知2(x−1)(x+1)=Ax−1+Bx+1,用上面的解法一或解法二求A 、B 的值.(2)①计算:[2(x−1)(x+1)+2(x+1)(x+3)+2(x+3)(x+5)+⋯+2(x+9)(x+11)](x +11);②直接写出使①中式子的值为正整数的所有整数x 的值之和.参考答案一、选择题(共12小题,满分36分,每小题3分)1.B ; 2.B ; 3.C ; 4.C ; 5.C ; 6.B ; 7.C ; 8.D ; 9.B ; 10.D ; 11.C ; 12.C ;二、填空题(共6小题,满分18分,每小题3分) 13.﹣2 14.5 15.33000x−330001.2x=1116.8 17.﹣118.k >−12且k ≠52;三、解答题(共7小题,满分66分) 19.解:原式=(x 2−y 2x 2−y 2+y 2x 2−y 2)•x−y x=x 2(x+y)(x−y)•x−y x=xx+y , ∵x y =3, ∴x =3y ,∴原式=3y3y+y =34. 20.解:(1)原式=1+3+1﹣2 =3;(2)去分母得:x ﹣2(x ﹣1)=2, 解得:x =0,检验:当x =0时,x ﹣1≠0, ∴原分式方程的解为x =0. 21.解:(x+2x 2−2x −x−1x 2−4x+4)÷x+2x 3−4x =[x+2x(x−2)−x−1(x−2)2]•x(x+2)(x−2)x+2=(x+2)(x−2)−x(x−1)x(x−2)2•x (x ﹣2)=x 2−4−x 2+xx−2=x−4x−2,∵x=2或0时,原分式无意义,∴x=﹣1,当x=﹣1时,原式=−1−4−1−2=53.22.解:(1)∵ab=2,∴(2a3b2﹣3a2b+4a)•(﹣2b)=﹣4a3b3+6a2b2﹣8ab=﹣4•(ab)3+6•(ab)2﹣8ab=﹣4×23+6×22﹣8×2=﹣4×8+6×4﹣8×2=﹣32+24﹣16=﹣24;(2)∵x−1x=3,∴x2+1x2=(x−1x)2+2=32+2=9+2=11.23.解:(1)设被墨水污染的部分是A,由题意得:x−4x2−9÷Ax−3=1x+3,x−4 (x+3)(x−3)⋅x−3A=1x+3,x−4A=1,解得:A=x﹣4;故被墨水污染的部分为x﹣4;(2)解:不能,理由如下:若1x+3=17,则x =4,由分式,x−4x 2−9÷x−4x−3=x−4x 2−9•x−3x−4, 当x =4时,原分式无意义, 所以不能.24.解:(1)设甲队修道路x 米,则乙队修道路(2x ﹣1000)米, 由题意得:x +2x ﹣1000=11000, 解得:x =4000, 则2x ﹣1000=7000,答:甲队修道路4000米,乙队修道路7000米;(2)乙队每天修建道路y 米,则甲队每天修建道路(x ﹣20)米, 由题意得:7000x =4000x−20×54,解得:x =70,经检验,x =70是原方程的解,且符合题意, 答:乙队每天修建道路70米.25.解:(1)等号右边通分、再去分母,得:2=A (x +1)+B (x ﹣1), 即2=(A +B )x +(A ﹣B ), ∴{A +B =0A −B =2, 解得:{A =1B =−1;(2)①原式=(1x−1−1x+1+1x+1−1x+3+1x+3−1x+5+⋯+1x+9−1x+11)(x +11) =(1x−1−1x+11)(x +11) =12(x−1)(x+11)•(x +11) =12x−1;②∵式子的值为正整数, ∴x ﹣1=1、2、3、4、6、12, 则x =2、3、4、5、7、13, ∴2+3+4+5+7+13=34.。
新人教版八年级(上)第十五章分式能力测试卷及答案
新人教版八年级(上)第十五章分式能力提升卷及答案一、亮出你的观点,明智选择!(每小题3分,共30分)1. 下列式子: x 1,2x ,yx xy +2,33y x -中,分式有( ). (A )1个 (B )2个 (C )3个 (D )4个2. 若分式322+-x x 有意义,则( ). (A )2x ≠ (B )2x = (C )32x =-(D )32x ≠- 3. 若把分式773x m x-中的x 、m 同时扩大3倍,则该分式的值( ). (A )扩大3倍 (B )扩大7倍(C )不变 (D )缩小为原来的134. 下列各式中,正确的是( ).(A )c c a b a b =--++ (B )c c a b b a=--+- (C )c c a b a b -=-++ (D )c c a b a b =--+- 5. 下列约分正确的是( )(A )326x x x = (B )0=++y x y x (C )x xy x y x 12=++ (D )214222=y x xy 7. 分式方程2114339x x x +=-+-的解是( ) (A )2x =± (B )2x =(C )2x =- (D )无解8. 将()()1021,3,44-⎛⎫-- ⎪⎝⎭这三个数按从小到大的顺序排列,正确的结果是( ). (A )()03-<114-⎛⎫ ⎪⎝⎭<()24- (B )114-⎛⎫ ⎪⎝⎭<()03-<()24- (C )()24-<()03-<114-⎛⎫ ⎪⎝⎭ (D )()03-<()24-<114-⎛⎫ ⎪⎝⎭ 10. “五一”节到了,为了让同学们过一个充实而有意义的假期,老师推荐给大家一本好书.已知小芳每天比小荣多看5页书,并且小芳看80页书所用的天数与小荣看70页书所用的天数相等,若设小芳每天看书x 页,则根据题意可列出方程为 ( )(A )80705x x =- (B )80705x x =+ (C )80705x x =+ (D )80705x x =- 二、写出你的结论,完美填空!(每小题3分,共30分)11. 当2x =时,分式x b x a --无意义,当4x =时,此分式的值为0,则a b -=_____. 12. 公式21P U R -=可以改写成P= 的形式.13. 若分式||55y y--的值等于0,则y = . 14. 方程542332x x x+=--的解是 . 15. 科学家发现一种病毒的长度约为0.000043mm ,科学记数法表示0.000043的结果为 .16. 有一个分式,三位同学分别说出了它的一些特点,甲:分式的值不可能为0;乙:分式有意义时x 的取值范围是1x ≠±;丙:当2x =-时,分式的值为1,•请你写出满足上述全部特点的一个分式___________.17. ()2x -︒有意义的条件是________.18. 分式y x 21,323x y ,232xyx +的最简公分母是______________. 19. 化简121112+-÷⎪⎭⎫ ⎝⎛-+a a a a 的结果是________________. 20. 某市道路改造中,需要铺设一条长为1200米的管道,为了尽量减少施工对交通造成的影响,实际施工时,工作效率比原计划提高了25%,结果提前了8天完成任务.设原计划每天铺设管道x 米,根据题意,可列分式方程为__________________.三、展示你的思维,规范解答!(共60分)21.(12分)计算:(1)23m n ·23n p ⎛⎫ ⎪⎝⎭÷2mn p ; (2)⎪⎪⎭⎫ ⎝⎛++÷--ab b a b a b a 2222222.(12分)解方程:(1)2131x x =--; (2)22333x x x-+=--.23.(6分)先化简,再求值:232224x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭,其中3x =.24.(8分)学习《分式》一章后,老师写出下面的一道题让同学们解答。
八年级数学上册第十五章《分式》测试卷课件(新版)新人教版
优质课件
2 3. 若分式 有意义,则 x 的取值范围是( A ) x-5 A.x≠5 B.x≠-5 C.x>5 D.x>-5 x+1 x 4. 分式方程 = 的解为( D x-3 x-1 )
A.x=1 B.x=-1 C.x=3 D.x=-3
优质课件
0.5x-y 5. 将分式 1 1 中分子和分母的系数都化为整 3x+5y 数,正确的是( A ) 15x-30y x-2y x-2y 2x-y A. B. C. D. 10x+6y 3x+5y 5x+3y 3x+5y 6. 化简(a-1b2)-2÷ (ab-1)3 的结果是( D ) 1 b b A.ab B.a C.a D.ab
优质课件
1 -2 10 7. 已知 a=-0.3 ,b=3 ,c=(-3) ,d=(-3) ,
2
-2
比较 a,b,c,d 的大小关系,则有( C ) A.a<b<c<d C.a<b<d<c B.a<d<c<b D.c<a<d<b
优质课件
8. 下列结论中,不正确的是( D ) 2 3 A.方程x= 的解是 x=2 x+1 2 3 B.方程 = 的解是 x=-5 x+1 x-1 2 x C.方程 =3- 的解是 x=4 x-2 x-2 3 x D.方程 =2+ 的解是 x=3 x-3 x-3
优质课件
【解析】 去分母得: k(x-1)+(x+k)(x+1)=(x+1)(x x+k k - 1),整理得: (2k+1)x=-1,∵方程 + =1 x+1 x-1 的解为负数, ∴2k+1>0 且 x≠±1, 即 2k+1≠1 且 2k+1≠ 1 1 -1,解得 k>-2且 k≠0,即 k 的取值范围为:k>-2且 k≠0.
优质课件
x-a 3 9. 若关于 x 的分式方程 -x=1 无解,则 a 的 x-1 值为( D ) A.0 B.1 C.0 或 1 D.1 或-2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十五章检测卷
(45分钟100分)
一、选择题(本大题共10小题,每小题4分,满分40分)
1.使分式有意义的x的取值范围是
A.x≥
B.x≤
C.x>
D.x≠
2.化简的结果是
A. B.
C. D.
3.某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法可表示为
A.1.6×10-4
B.1.6×10-5
C.1.6×10-6
D.16×10-6
4.已知a=2-2,b=(-1)0,c=(-1)3,则a,b,c的大小关系是
A.a>b>c
B.b>a>c
C.c>a>b
D.b>c>a
5.化简的结果是
A.x+1
B.x-1
C.x2-1
D.
6.下列分式运算中,结果正确的是
A.a-3b2÷a-2b2=
B.
C. D.
7.下列分式中,最简分式是
A. B. C. D.
8.分式方程-1=的解为
A.x=1
B.x=-1
C.无解
D.x=-2
9.xx年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,则下列方程正确的是
A.=5
B.=5
C.+5=
D.=5
10.已知关于x的分式方程=1的解是非负数,则m的取值范围是
A.m>2
B.m≥2
C.m≥2且m≠3
D.m>2且m≠3
二、填空题(本大题共4小题,每小题4分,满分16分)
11.计算:(-2xy-1)-3=- .
12.已知,则的值是-2.
13.若(x-y-2)2+|xy+3|=0,则的值是- .
14.若关于x的分式方程-3有增根,则实数m的值是1.
三、解答题(本大题共5小题,满分44分)
15.(8分)计算:
(1)(-2)2-+xx0;
解:原式=4-2+1=3.
(2).
解:原式==x-2.
16.(8分)在正数范围内定义一种运算△,其规则为a△b=,求方程x△(x+2)=的解.解:根据题意,得,
两边都乘以最简公分母x(x+2),得x+2+x=6,解得x=2,
经检验x=2是原分式方程的解.
所以原方程的解是x=2.
17.(8分)先化简:,然后解答下列问题:
(1)当x=3时,求原代数式的值;
(2)原代数式的值能等于-1吗?为什么?
解:(1)原式==·.当x=3时,原式==2.
(2)如果=-1,那么x+1=-(x-1),解得x=0,
当x=0时,除式=0,原式无意义,
故原代数式的值不能等于-1.
18.(10分)若解关于x的方程-3=无解,求代数式·(a2-1)的值.
解:方程-3=,
去分母化成整式方程得2x+a-16=0,所以a=16-2x,
因为关于x的方程-3=无解,所以x=5,
所以a=16-2×5=6,
当a=6时,
·(a2-1)=·(a2-1)=2(a+1)-(a-1)=a+3=6+3=9.
19.(10分)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.
(1)求乙队筑路的总公里数;
(2)若甲、乙两队平均每天筑路公里数之比为5∶8,求乙队平均每天筑路多少公里.
解:(1)60×=80(公里).
答:乙队筑路的总公里数为80公里.
(2)设乙队平均每天筑路8x公里,则甲队平均每天筑路5x公里,
根据题意得=20,解得x=0.1,
经检验,x=0.1是原方程的解,∴8x=0.8.
答:乙队平均每天筑路0.8公里.
感谢您的支持,我们会努力把内容做得更好!。