主成分分析法的步骤和原理 (1)
主成分分析法(1)【可编辑全文】
Fp
Cov(xi , Fj ) Cov(ui1F1 ui2F2 L uipFp , Fj ) uijj
(
xi
,
Fj
)
uij j i
j
uij j i
可见,xi 和 Fj 的相关的密切程度取决于对 应线性组合系数的大小。
五、原始变量被主成分的提取率
前面我们讨论了主成分的贡献率和累计贡献率,他度 量 了 F1 , F2 , …… , Fm 分 别 从 原 始 变 量 X1 , X2,……XP中提取了多少信息。那么X1,X2,……XP 各有多少信息分别F1,F2,……,Fm被提取了。应该用 什 么 指 标 来 度 量 ? 我 们 考 虑 到 当 讨 论 F1 分 别 与 X1 , X2 , ……XP 的 关 系 时 , 可 以 讨 论 F1 分 别 与 X1 , X2,……XP的相关系数,但是由于相关系数有正有负, 所以只有考虑相关系数的平方。
F1
F2
F3
i
i
t
F1
1
F2
0
1
F3
0
0
1
i 0.995 -0.041 0.057
l
Δi -0.056 0.948 -0.124 -0.102 l
t -0.369 -0.282 -0.836 -0.414 -0.112 1
主成分分析是把各变量之间互相关联的复杂 关系进行简化分析的方法。
在社会经济的研究中,为了全面系统的分析 和研究问题,必须考虑许多经济指标,这些指标 能从不同的侧面反映我们所研究的对象的特征, 但在某种程度上存在信息的重叠,具有一定的相 关性。
i
m
j
u2 ij
/
2 i
m
主成分分析法的步骤和原理
主成分分析法的步骤和原理
1.数据标准化:针对原始数据集,对每个变量进行标准化处理,使得
每个变量的均值为0,方差为1、这样做的目的是确保每个变量都具有相
同的重要性。
2.计算协方差矩阵:协方差矩阵是一个对称的矩阵,它描述了变量之
间的线性关系。
通过计算原始数据的协方差矩阵,可以得到变量之间的相
关程度。
3.计算特征值和特征向量:对协方差矩阵进行特征值分解,得到特征
值和特征向量。
特征值表示了每个主成分所解释的方差的大小,而特征向
量表示了每个主成分的方向。
4.选择主成分:根据特征值的大小,选择解释方差较大的前k个主成分,通常只选取特征值大于1的主成分。
这些主成分可以解释原始数据中
大部分的方差。
5.构建特征向量矩阵:将选取的k个特征向量按照特征值从大到小的
顺序排列,构成一个特征向量矩阵。
6.数据转换:将原始数据与特征向量矩阵相乘,得到降维后的数据集。
每个样本由k个主成分组成,而不再包含原始数据中的所有变量。
主成分分析的原理是基于最大方差的思想。
在原始数据中,方差较大
的变量携带了较多的信息,而方差较小的变量携带了较少的信息。
主成分
分析的目标是将原始数据投影到方差较大的方向上,以便在保留较多信息
的同时降低数据的维度。
通过特征值分解协方差矩阵,可以得到原始数据的主成分。
特征向量代表了每个主成分的方向,而特征值则表示了每个主成分所解释的方差大小。
通常,选择特征值较大的前几个主成分,可以达到保留较多信息的目的。
同时,主成分之间是正交的,即它们之间没有相关性,这样可以进一步减少数据冗余。
主成分分析法的步骤和原理[技巧]
主成分分析法的步骤和原理[技巧](一)主成分分析法的基本思想主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,[2]且所含的信息互不重叠。
采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型假设用p个变量来描述研究对象,分别用X,X…X来表示,这p个变量12p t构成的p维随机向量为X=(X,X…X)。
设随机向量X的均值为μ,协方差矩12p阵为Σ。
假设 X 是以 n 个标量随机变量组成的列向量,并且μk 是其第k个元素的期望值,即,μk= E(xk),协方差矩阵然后被定义为:Σ=E{(X-E[X])(X-E[X])}=(如图对X进行线性变化,考虑原始变量的线性组合:Z1=μ11X1+μ12X2+…μ1pXpZ2=μ21X1+μ22X2+…μ2pXp…… …… ……Zp=μp1X1+μp2X2+…μppXp主成分是不相关的线性组合Z,Z……Z,并且Z是X1,X2…Xp的线性组12p1 合中方差最大者,Z是与Z不相关的线性组合中方差最大者,…,Zp是与Z,211Z ……Z都不相关的线性组合中方差最大者。
2p-1(三)主成分分析法基本步骤第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始数据可得矩阵X=(x),其中x表示第i家上市公司的第j项财务指标数据。
ijm×pij 第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
主成分分析法
设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。 二、主成分分析的基 Nhomakorabea思想及步骤
1、基本思想
主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。
2、步骤
Fp=a1iZX1+a2iZX2+……+apiZXp 其中a1i, a2i, ……,api(i=1,……,m)为X的协方差阵Σ的特征值所对应的特征向量,ZX1, ZX2, ……, ZXp是原始变量经过标准化处理的值,因为在实际应用中,往往存在指标的量纲不同,所以在计算之前须先消除量纲的影响,而将原始数据标准化,本文所采用的数据就存在量纲影响[注:本文指的数据标准化是指Z标准化]。 A=(aij)p×m=(a1,a2,…am,),Rai=λiai,R为相关系数矩阵,λi、ai是相应的特征值和单位特征向量,λ1≥λ2≥…≥λp≥0 。 进行主成分分析主要步骤如下: 1. 指标数据标准化(SPSS软件自动执行); 2. 指标之间的相关性判定; 3. 确定主成分个数m; 4. 主成分Fi表达式; 5. 主成分Fi命名;
PCA的原理及详细步骤
一、基本原理主成分分析是数学上对数据降维的一种方法.其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP (比如p 个指标),重新组合成一组较少个数的互不相关的综合指标Fm 来代替原来指标.那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp 所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。
设F1表示原变量的第一个线性组合所形成的主成分指标,即11112121...p pF a X a X a X =+++,由数学知识可知,每一个主成分所提取的信息量可用其方差来度量,其方差Var(F1)越大,表示F1包含的信息越多。
常常希望第一主成分F1所含的信息量最大,因此在所有的线性组合中选取的F1应该是X1,X2,…,XP 的所有线性组合中方差最大的,故称F1为第一主成分。
如果第一主成分不足以代表原来p 个指标的信息,再考虑选取第二个主成分指标F2,为有效地反映原信息,F1已有的信息就不需要再出现在F2中,即F2与F1要保持独立、不相关,用数学语言表达就是其协方差Cov(F1, F2)=0,所以F2是与F1不相关的X1,X2,…,XP 的所有线性组合中方差最大的,故称F2为第二主成分,依此类推构造出的F1、F2、……、Fm 为原变量指标X1、X2……XP 第一、第二、……、第m 个主成分。
11111221221122221122...............p p p pm m m mp p F a X a X a X F a X a X a X F a X a X a X =+++⎧⎪=+++⎪⎨⎪⎪=+++⎩ 根据以上分析得知:(1) Fi 与Fj 互不相关,即Cov(Fi ,Fj) = 0,并有Var (Fi )=ai ’Σai,其中Σ为X 的协方差阵(2)F1是X1,X2,…,Xp 的一切线性组合(系数满足上述要求)中方差最大的,……,即Fm 是与F1,F2,……,Fm -1都不相关的X1,X2,…,XP 的所有线性组合中方差最大者。
主成分分析法介绍
主成分分析方法我们进行系统分析评估或医学上因子分析等时,多变量问题是经常会遇到的。
变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。
因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息事实上,这种想法是可以实现的,本节拟介绍的主成分分析方法就是综合处理这种问题的一种强有力的方法。
第一节 主成分分析方法的原理主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。
假定有n 样本,每个样本共有p 个变量描述,这样就构成了一个n×p 阶的数据矩阵:111212122212.....................p p n n np x x x x x x X x x x ⎛⎫⎪⎪= ⎪ ⎪⎪⎝⎭ (1)如何从这么多变量的数据中抓住事物的内在规律性呢要解决这一问题,自然要在p 维空间中加以考察,这是比较麻烦的。
为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。
那么,这些综合指标(即新变量)应如何选取呢显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。
如果记原来的变量指标为p x x x ,,21 ,它们的综合指标——新变量指标为 21,z z ,m z (m≤p)。
则)2.........(..........22112222121212121111⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=p mp m m m pp pp x l x l x l z x l x l x l z x l x l x l z在(2)式中,系数l ij 由下列原则来决定: (1)z i 与z j (i≠j ;i ,j=1,2,…,m)相互无关; (2)z 1是x 1,x 2,…,x p 的一切线性组合中方差最大者;z 2是与z 1不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者;……;z m 是与z 1,z 2,……z m-1都不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者。
(完整版)主成分分析法的步骤和原理
(一)主成分分析法的基本思想主成分分析(Principal Component Analysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。
[2]采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。
设随机向量X 的均值为μ,协方差矩阵为Σ。
对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X pZ 2=μ21X 1+μ22X 2+…μ2p X p…… …… ……Z p =μp1X 1+μp2X 2+…μpp X p主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2 ……Z p-1都不相关的线性组合中方差最大者。
(三)主成分分析法基本步骤第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m ×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。
第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。
主成分分析法及其在SPSS中的操作
一、(一)主成分分析基本原理概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。
从数学角度来看,这是一种降维处理技术。
思路:一个研究对象,往往是多要素的复杂系统。
变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。
原理:假定有n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵,记原变量指标为x 1,x 2,…,x p ,设它们降维处理后的综合指标,即新变量为 z 1,z 2,z 3,… ,z m (m ≤p),则系数l ij 的确定原则:①z i 与z j (i ≠j ;i ,j=1,2,…,m )相互无关;②z 1是x 1,x 2,…,x P 的一切线性组合中方差最大者,z 2是与z 1不相关的x 1,x 2,…,x P 的所有线性组合中方差最大者; z m 是与z 1,z 2,……,z m -1都不相关的x 1,x 2,…x P ,的所有线性组合中方差最大者。
新变量指标z 1,z 2,…,z m 分别称为原变量指标x 1,x 2,…,x P 的第1,第2,…,第m 主成分。
从以上的分析可以看出,主成分分析的实质就是确定原来变量x j (j=1,2 ,…, p )在诸主成分z i (i=1,2,…,m )上的荷载 l ij ( i=1,2,…,m ; j=1,2 ,…,p )。
⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X 212222111211⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=p mp m m m p p pp x l x l x l z x l x l x l z x l x l x l z 22112222121212121111............从数学上可以证明,它们分别是相关矩阵m 个较大的特征值所对应的特征向量。
主成分分析报告
主成分分析报告1. 简介主成分分析(Principal Component Analysis, PCA)是一种常用的数据降维技术,用于将高维数据集映射到低维子空间。
主成分分析主要通过计算数据集中的主成分,来捕捉数据中的主要变化方向和模式。
本报告将介绍主成分分析的原理、应用、算法实现以及使用注意事项。
2. 主成分分析原理主成分分析旨在将高维数据投影到低维空间,并保留尽可能多的有用信息。
其基本思想是通过线性变换,将原始数据映射到新的坐标系中,其中新坐标系的轴是原始数据的主成分方向。
主成分分析的步骤如下:1.计算原始数据的协方差矩阵;2.对协方差矩阵进行特征值分解,得到特征向量和特征值;3.选择最大的k个特征值对应的特征向量,构成变换矩阵;4.将原始数据通过变换矩阵进行映射,得到降维后的数据。
3. 主成分分析的应用主成分分析在数据处理和分析中有很多应用,其中包括:1.数据降维:主成分分析可以将高维数据集投影到低维空间,从而减少数据的维度。
这对于处理大规模数据、可视化和提高计算效率都非常有用。
2.数据可视化:通过将高维数据映射到二维或三维空间,可以更直观地展示数据的结构和模式。
3.噪声过滤:主成分分析可以过滤掉数据中的噪声,保留主要的信号。
4.特征提取:通过提取数据的主成分,可以捕捉到数据的主要变化模式,便于后续分析。
4. 主成分分析算法实现以下是使用Python进行主成分分析的示例代码:import numpy as npfrom sklearn.decomposition import PCA# 创建一个样本矩阵X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])# 创建PCA对象并指定主成分的数量pca = PCA(n_components=2)# 执行主成分分析X_pca = pca.fit_transform(X)# 输出降维后的数据print(X_pca)在上述代码中,首先创建了一个样本矩阵X,然后创建了一个PCA对象,并指定要保留的主成分数量为2。
主成分分析法实例
【转】主成分分析法概述、案例实例分析主成分分析法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
主成分分析正是适应这一要求产生的,是解决这类题的理想工具。
主成分分析法是一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。
在数学变换中保持变量的总方差不变,使第一变量具有最大的方差,称为第一主成分,第二变量的方差次大,并且和第一变量不相关,称为第二主成分。
依次类推,I 个变量就有I个主成分。
这种方法避免了在综合评分等方法中权重确定的主观性和随意性,评价结果比较符合实际情况;同时,主成份分量表现为原变量的线性组合,如果最后综合指标包括所有分量,则可以得到精确的结果,百分之百地保留原变量提供的变差信息,即使舍弃若干分量,也可以保证将85%以上的变差信息体现在综合评分中,使评价结果真实可靠。
是在实际中应用得比较广的一种方法。
由于其第一主成份(因子)在所有的主成分中包含信息量最大,很多学者在研究综合评价问题时常采用第一主成分来比较不同实体间的差别。
综上所述,该方法的优点主要体现在两个方面:1.权重确定的客观性;2.评价结果真实可靠。
1.主成分分析的基本原理主成分分析:把原来多个变量划为少数几个综合指标的一种统计分析方法,是一种降维处理技术。
)记原来的变量指标为x1,x2,…,xP,它们的综合指标——新变量指标为z1,z2,…,zm(m≤p),则z1,z2,…,zm分别称为原变量指标x1,x2,…,xP的第一,第二,…,第m 主成分,在实际问题的分析中,常挑选前几个最大的主成分。
统计学中的主成分分析方法简介
统计学中的主成分分析方法简介统计学是一门研究数据收集、分析和解释的学科,而主成分分析(Principal Component Analysis,简称PCA)是统计学中一种常用的数据降维技术。
它能够将高维度的数据转化为低维度的数据,从而帮助我们更好地理解和解释数据的结构和模式。
本文将对主成分分析方法进行简要介绍。
一、主成分分析的基本原理主成分分析的基本原理是通过线性变换将原始数据转换为一组新的互相无关的变量,这些新变量被称为主成分。
主成分是原始变量的线性组合,其中第一个主成分解释了原始数据中最大的方差,第二个主成分解释了剩余方差中的最大部分,以此类推。
通过选择前几个主成分,我们可以保留原始数据中的大部分信息,并且减少数据的维度。
二、主成分分析的步骤主成分分析的步骤可以概括为以下几个步骤:1. 数据标准化:为了保证不同变量之间的可比性,我们需要对原始数据进行标准化处理,通常是将每个变量减去其均值并除以标准差。
2. 计算协方差矩阵:协方差矩阵反映了不同变量之间的相关性。
通过计算原始数据的协方差矩阵,我们可以得到变量之间的相关性信息。
3. 计算特征值和特征向量:通过对协方差矩阵进行特征值分解,我们可以得到特征值和对应的特征向量。
特征值表示了主成分的方差,而特征向量表示了主成分的方向。
4. 选择主成分:根据特征值的大小,我们可以选择前几个特征值对应的特征向量作为主成分。
一般来说,我们选择特征值较大的前几个主成分,以保留较多的原始数据信息。
5. 计算主成分得分:通过将原始数据与选定的主成分进行线性组合,我们可以得到每个样本在主成分上的得分。
这些得分可以用来解释样本在主成分上的位置和相对重要性。
三、主成分分析的应用主成分分析在许多领域中都有广泛的应用。
以下是几个常见的应用示例:1. 数据压缩:通过选择较少的主成分,我们可以将高维度的数据压缩为低维度的数据,从而减少存储和计算的成本。
2. 数据可视化:通过将数据投影到前几个主成分上,我们可以将高维度的数据可视化为二维或三维的图形,更好地理解数据的结构和模式。
主成分分析法的原理
主成分分析法的原理主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维技术,它可以将高维数据转换为低维数据,同时保留原始数据的大部分信息。
主成分分析的核心思想是通过线性变换将高维数据转换成一组新的正交变量,这些新的变量称为主成分。
每个主成分都是原始数据的一个线性组合,其中第一个主成分具有最大的方差,第二个主成分具有次大的方差,而后续的主成分方差逐渐递减。
主成分分析的目标是保留尽可能多的方差,以便能够较好地表示原始数据。
主成分分析的步骤一般包括数据标准化、计算协方差矩阵、特征值分解以及选择主成分。
首先,为了消除不同变量之间的量纲影响,需要对原始数据进行标准化。
标准化可以使得不同变量具有相同的尺度,便于后续的主成分分析。
常用的标准化方法包括均值中心化和方差放缩。
均值中心化将数据的均值移动到原点,即对所有数据减去其均值;方差放缩将每个维度的数据除以其标准差,以确保每个维度的方差为1。
然后,计算协方差矩阵。
协方差矩阵反映了不同变量之间的相关性,可以通过计算数据的协方差来得到。
协方差的计算公式为:cov(X,Y) = E[(X-μX)(Y-μY)],其中X和Y分别表示两个变量,μX和μY分别表示它们的均值。
接下来,对协方差矩阵进行特征值分解。
特征值分解将协方差矩阵分解为特征向量和特征值的形式。
特征值表示了特征向量对应的方向上的方差大小,特征向量表示了数据的主要方向。
特征向量是由单位化的协方差矩阵的特征值对应的特征向量构成的。
最后,选择主成分。
主成分的选择依据主要是基于特征值的大小来确定。
特征值越大,表示数据在该主成分方向上的方差越大,保留该主成分所包含的信息越多。
一般来说,选择特征值大于某个阈值的主成分作为保留的主成分。
在选择主成分时,可以根据特征值的大小进行排序,选择前k个主成分。
通过选取较少的主成分,可以实现对高维数据的降维。
主成分分析有着广泛的应用,特别是在数据降维、数据可视化和数据压缩等领域。
主成分分析法的原理应用及计算步骤
主成分分析法的原理应用及计算步骤Σ的前m 个较大的特征值λ1≥λ2≥…λm>0,就是前m 个主成分对应的方差,i λ对应的单位特征向量i a 就是主成分Fi 的关于原变量的系数,则原变量的第i 个主成分Fi 为:Fi ='i a X主成分的方差(信息)贡献率用来反映信息量的大小,i α为:1/mi i ii αλλ==∑(3)选择主成分最终要选择几个主成分,即F1,F2,……,Fm 中m 的确定是通过方差(信息)累计贡献率G(m)来确定11()/pmi ki k G m λλ===∑∑当累积贡献率大于85%时,就认为能足够反映原来变量的信息了,对应的m 就是抽取的前m 个主成分。
(4)计算主成分载荷主成分载荷是反映主成分Fi 与原变量Xj 之间的相互关联程度,原来变量Xj (j=1,2 ,…, p )在诸主成分Fi (i=1,2,…,m )上的荷载 lij ( i=1,2,…,m ; j=1,2 ,…,p )。
:(,)(1,2,,;1,2,,)i j i ij l Z X a i m j p λ===在SPSS 软件中主成分分析后的分析结果中,“成分矩阵”反应的就是主成分载荷矩阵。
(5)计算主成分得分计算样品在m 个主成分上的得分:1122...i i i pi p F a X a X a X =+++ i = 1,2,…,m实际应用时,指标的量纲往往不同,所以在主成分计算之前应先消除量纲的影响。
消除数据的量纲有很多方法,常用方法是将原始数据标准化,即做如下数据变换:*1,2,...,;1,2,...,ij jijjx x x i n j ps -===其中:11n j ij i x x n ==∑,2211()1n j ij j i s x x n ==--∑ 根据数学公式知道,①任何随机变量对其作标准化变换后,其协方差与其相关系数是一回事,即标准化后的变量协方差矩阵就是其相关系数矩阵。
主成分分析
主成分分析法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
主成分分析正是适应这一要求产生的,是解决这类题的理想工具。
主成分分析法是一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。
在数学变换中保持变量的总方差不变,使第一变量具有最大的方差,称为第一主成分,第二变量的方差次大,并且和第一变量不相关,称为第二主成分。
依次类推,I 个变量就有I个主成分。
这种方法避免了在综合评分等方法中权重确定的主观性和随意性,评价结果比较符合实际情况;同时,主成份分量表现为原变量的线性组合,如果最后综合指标包括所有分量,则可以得到精确的结果,百分之百地保留原变量提供的变差信息,即使舍弃若干分量,也可以保证将85%以上的变差信息体现在综合评分中,使评价结果真实可靠。
是在实际中应用得比较广的一种方法。
由于其第一主成份(因子)在所有的主成分中包含信息量最大,很多学者在研究综合评价问题时常采用第一主成分来比较不同实体间的差别。
综上所述,该方法的优点主要体现在两个方面:1.权重确定的客观性;2.评价结果真实可靠。
1.主成分分析的基本原理主成分分析:把原来多个变量划为少数几个综合指标的一种统计分析方法,是一种降维处理技术。
)记原来的变量指标为x1,x2,…,xP,它们的综合指标——新变量指标为z1,z2,…,zm(m≤p),则z1,z2,…,zm分别称为原变量指标x1,x2,…,xP的第一,第二,…,第m 主成分,在实际问题的分析中,常挑选前几个最大的主成分。
主成分分析法
1.759
0.858 2.096 … -0.337 …
2
3 1 … 23 …
Bartlett 值= 313.417, P<0.0001,即相关矩阵 不是一个单位矩阵,故 考虑进行因子分析。
特征值、贡献率及累积贡献率
Total Variance Explained Initial Eigenvalues Extraction Sums of Squared Loadings % of Variance Cumulative % Total % of Variance Cumulative % 61.638 61.638 4.315 61.638 61.638 27.917 89.554 1.954 27.917 89.554 5.138 94.692 2.644 97.335 1.978 99.313 .473 99.786 .214 100.000
r1 p r2 p ... r pp
2、计算特征值和特征向量 解特征方程
|λE-R|=0
求出特征值 λi(i=1,2,…,p) 将这P个特征值按大小顺序排列,即 λ1≥λ2≥…≥λp≥0 然后按公式
| λi E-R|ei=0
分别求出对应于λi的特征向量ei(i=1,2,…,p)
3、计算主成分贡献率及累计贡献率
从上表知:前三个主成分累计贡献率达92.273%,因此,这三个主成 分Z1、Z2、Z3能够充分反映31个区域第三产业发展的综合水平 。
4、计算主成分载荷
主成分载荷lij
原变量xi
x1 x2 x3 x4 x5 x6 x7
第一主成分l1i 0.946 0.971 0.220 0.795 0.930 -0.0763 0.899
5 计算各省区在一二三主成分上的综合得分
主成分分析法原理简介
主成分分析法原理简介1.什么是主成分分析法主成分分析也称主分量分析,是揭示大样本、多变量数据或样本之间内在关系的一种方法,旨在利用降维的思想,把多指标转化为少数几个综合指标,降低观测空间的维数,以获取最主要的信息。
在统计学中,主成分分析(principal components analysis, PCA)是一种简化数据集的技术。
它是一个线性变换。
这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。
主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。
这是通过保留低阶主成分,忽略高阶主成分做到的。
这样低阶成分往往能够保留住数据的最重要方面。
但是,这也不是一定的,要视具体应用而定。
2.主成分分析的基本思想在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
主成分分析正是适应这一要求产生的,是解决这类题的理想工具。
对同一个体进行多项观察时必定涉及多个随机变量X1,X2,…,X p,它们之间都存在着相关性,一时难以综合。
这时就需要借助主成分分析来概括诸多信息的主要方面。
我们希望有一个或几个较好的综合指标来概括信息,而且希望综合指标互相独立地各代表某一方面的性质。
任何一个度量指标的好坏除了可靠、真实之外,还必须能充分反映个体间的变异。
如果有一项指标,不同个体的取值都大同小异,那么该指标不能用来区分不同的个体。
由这一点来看,一项指标在个体间的变异越大越好。
主成分分析法的步骤和原理
(一)主成分分析法的基本思想主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。
[2]采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型假设用p个变量来描述研究对象,分别用X1,X2…X p来表示,这p个变量构成的p维随机向量为X=(X1,X2…X p)t。
设随机向量X的均值为μ,协方差矩阵为Σ。
对X进行线性变化,考虑原始变量的线性组合:Z1=μ11X1+μ12X2+…μ1p X pZ2=μ21X1+μ22X2+…μ2p X p………………Z p=μp1X1+μp2X2+…μpp X p主成分是不相关的线性组合Z1,Z2……Z p,并且Z1是X1,X2…X p的线性组合中方差最大者,Z2是与Z1不相关的线性组合中方差最大者,…,Z p是与Z1,Z2……Z p-1都不相关的线性组合中方差最大者。
(三)主成分分析法基本步骤第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始数据可得矩阵X=(x ij)m×p,其中x ij表示第i家上市公司的第j项财务指标数据。
第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。
R 为实对称矩阵(即R ij =R ji ),只需计算其上三角元素或下三角元素即可,其计算公式为:2211)()()()(j kj nk i kj j kj n k i kj ij X X X X X X X X R -=--=-=∑∑ 第四步:根据协方差矩阵R 求出特征值、主成分贡献率和累计方差贡献率,确定主成分个数。
主成分分析法的原理应用及计算步骤
一、概述在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。
而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。
为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。
为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。
主成分分析正是这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。
主成分分析以最少的信息丢失为前提,将众多的原有变量综合6210x 较少几个综合指标,通常综合指标(主成分)有以下几个特点:↓主成分个数远远少于原有变量的个数原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。
↓主成分能够反映原有变量的绝大部分信息因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。
↓主成分之间应该互不相关通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。
↓主成分具有命名解释性总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。
二、基本原理主成分分析是数学上对数据降维的一种方法。
其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP (比如p 个指标),重新组合成一组较少个数的互不相关的综合指标Fm 来代替原来指标。
那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp 所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。
主成分分析法的步骤和原理
(一)主成分分析法的基本思想主成分分析(Principal Component Analysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。
[2]采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。
设随机向量X 的均值为μ,协方差矩阵为Σ。
对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X pZ 2=μ21X 1+μ22X 2+…μ2p X p…… …… ……Z p =μp1X 1+μp2X 2+…μpp X p主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2 ……Z p-1都不相关的线性组合中方差最大者。
(三)主成分分析法基本步骤第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m ×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。
第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)主成分分析法的基本思想
主成分分析(Principal Component Analysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。
[2]
采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型
假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。
设随机向量X 的均值为μ,协方差矩阵为Σ。
对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X p
Z 2=μ21X 1+μ22X 2+…μ2p X p
…… …… ……
Z p =μp1X 1+μp2X 2+…μpp X p
主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2 ……Z p-1都不相关的线性组合中方差最大者。
(三)主成分分析法基本步骤
第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m ×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。
第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。
R 为实对称矩阵
(即R ij =R ji ),只需计算其上三角元素或下三角元素即可,其计算公式为:
2211)()()
()(j kj n
k i kj j kj n k i kj ij X X X X X X X X R -=--=-=∑∑ 第四步:根据协方差矩阵R 求出特征值、主成分贡献率和累计方差贡献率,确定主成分个数。
解特征方程0=-R E λ,求出特征值λi (i=1,2,…,p )。
因为R 是正定矩阵,所以其特征值λi 都为正数,将其按大小顺序排列,即λ1≥λ2≥…≥λi ≥0。
特征值是各主成分的方差,它的大小反映了各个主成分的影响力。
主成分Z i 的贡献率W i =∑=p
j j j 1λλ,累计贡献率为
∑∑==p
j j m j j 11λλ。
根据选取主成分个数的原则,特征值要求大于1且累计贡献率达80%-95%的特征值λ1,λ2,…,λm 所对应的1,2,…,m (m ≤p ),其中整数m 即为主成分的个数。
第五步:建立初始因子载荷矩阵,解释主成分。
因子载荷量是主成分Z i 与原始指标X i 的相关系数R (Z i ,X i ),揭示了主成分与各财务比率之间的相关程度,
利用它可较好地解释主成分的经济意义。
第六步:计算企业财务综合评分函数F m ,计算出上市公司的综合值,并进行降序排列:
F m =W 1Z 1 + W 2Z 2+…+ W i Z i
[2] 朱星宇,陈勇强.SPSS 多元统计分析方法及应用[M].北京:清华大学出版社,2011.241。