主成分分析法的步骤和原理
PCA主成分分析法原理分析
PCA主成分分析法原理分析PCA的主成分分析法包括以下几个关键步骤:1.数据中心化:首先,需要将数据进行中心化处理,即将每个维度的数据减去其均值。
这样做是为了消除数据之间的平移差异,使得数据均值为零。
2.计算协方差矩阵:然后,计算中心化后的数据的协方差矩阵。
协方差矩阵的元素表示了不同维度之间的相关性,其中对角线元素为每个维度的方差,非对角线元素表示两个维度之间的协方差。
3.特征值分解:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。
特征向量表示了协方差矩阵的主成分方向,而特征值表示了各个主成分的重要程度。
4.选择主成分:根据特征值的大小选择主成分。
通常选择具有最大特征值的前k个主成分,这些主成分能够解释数据中最大的方差。
这样即可实现对数据维度的压缩,将原始高维数据投影到低维空间中。
5.数据重构:根据选定的主成分,将原始数据映射到低维空间中。
通过将数据点乘以选定的主成分组成的矩阵,即可重构出低维表示的数据。
1.最大可分性:PCA试图通过选择最大方差的线性组合来达到尽可能保留更多的数据信息。
方差是表征数据分散程度的度量,选择方差最大的线性组合可以使我们保留更多的原始数据特征。
2.无关性:PCA假设主成分之间应该是无关的。
为了满足这一点,PCA试图通过计算协方差矩阵来衡量变量之间的相关性。
将数据映射到主成分上可以将原始数据的相关性转化为主成分之间的无关性。
3.数据压缩:PCA可以将高维数据映射到低维空间,实现对数据的压缩。
通过选择具有最大方差的主成分,可以将原始数据中较小方差的维度舍弃,从而实现数据的降维。
总结起来,PCA主成分分析法通过计算数据的协方差矩阵和特征值分解,找到数据中最大方差的主成分,实现对数据维度的压缩和重构。
PCA 的关键思想是通过选择最大方差的线性组合来保留数据的主要信息,并将原始数据的相关性转化为主成分之间的无关性。
通过PCA可以实现对高维数据的降维和可视化,为数据分析提供了有力的工具。
主成分分析法的步骤和原理
主成分分析法的步骤和原理
1.数据标准化:针对原始数据集,对每个变量进行标准化处理,使得
每个变量的均值为0,方差为1、这样做的目的是确保每个变量都具有相
同的重要性。
2.计算协方差矩阵:协方差矩阵是一个对称的矩阵,它描述了变量之
间的线性关系。
通过计算原始数据的协方差矩阵,可以得到变量之间的相
关程度。
3.计算特征值和特征向量:对协方差矩阵进行特征值分解,得到特征
值和特征向量。
特征值表示了每个主成分所解释的方差的大小,而特征向
量表示了每个主成分的方向。
4.选择主成分:根据特征值的大小,选择解释方差较大的前k个主成分,通常只选取特征值大于1的主成分。
这些主成分可以解释原始数据中
大部分的方差。
5.构建特征向量矩阵:将选取的k个特征向量按照特征值从大到小的
顺序排列,构成一个特征向量矩阵。
6.数据转换:将原始数据与特征向量矩阵相乘,得到降维后的数据集。
每个样本由k个主成分组成,而不再包含原始数据中的所有变量。
主成分分析的原理是基于最大方差的思想。
在原始数据中,方差较大
的变量携带了较多的信息,而方差较小的变量携带了较少的信息。
主成分
分析的目标是将原始数据投影到方差较大的方向上,以便在保留较多信息
的同时降低数据的维度。
通过特征值分解协方差矩阵,可以得到原始数据的主成分。
特征向量代表了每个主成分的方向,而特征值则表示了每个主成分所解释的方差大小。
通常,选择特征值较大的前几个主成分,可以达到保留较多信息的目的。
同时,主成分之间是正交的,即它们之间没有相关性,这样可以进一步减少数据冗余。
主成分分析
一、主成分分析基本原理概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。
从数学角度来看,这是一种降维处理技术。
思路:一个研究对象,往往是多要素的复杂系统。
变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。
原理:假定有 n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵,x11x12 x1px21 x22 x2p Xxn 1xn2xnp记原变量指标为x1,x2,,,xp ,设它们降维处理后的综合指标,即新变量为 z1,z2,z3,,,zm(m ≤p),则z 1l11x 1 l 12x 2l1p xpz 2 l 21x1 l22x2l2p xp ............ z mlm1x 1 l m2x 2lmp xp系数lij 的确定原则:①zi 与zj (i ≠j ;i ,j=1,2,,,m )相互无关;②z 是x 1 ,x ,,,x 的一切线性组合中方差最大者,z 是与z 不相关的x ,x ,,,1 2P2 1 1 2 xP 的所有线性组合中方差最大者;zm 是与z1,z2,,,, zm -1都不相关的x1,x ,,x P ,的所有线性组合中方差最大者。
2新变量指标z1,z2,,,zm 分别称为原变量指标x1,x2,,,xP 的第1,第2,,,第m 主成分。
从以上的分析可以看出,主成分分析的实质就是确定原来变量xj (j=1,2 ,,,p )在诸主成分zi (i=1,2,,,m )上的荷载lij (i=1,2,,,m ;j=1,2,,,p )。
从数学上可以证明,它们分别是相关矩阵m个较大的特征值所对应的特征向量。
二、主成分分析的计算步骤1、计算相关系数矩阵r11 r12 r1 pr21 r22 r2 pRrp1 rp2 rpprij(i,j=1,2,,,p)为原变量xi与xj的相关系数,rij=rji,其计算公式为n(x ki x i)(x kj x j)r ijk1n n(x ki2(x kj x j)2 x i)k1k12、计算特征值与特征向量解特征方程I R0,常用雅可比法(Jacobi)求出特征值,并使其按大小顺序排列1 2 p0;p 分别求出对应于特征值i的特征向量e i(i1,2,L,p),要求ei=1,即e ij21j1其中e ij表示向量e i的第j 个分量。
主成分分析法的步骤和原理[技巧]
主成分分析法的步骤和原理[技巧](一)主成分分析法的基本思想主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,[2]且所含的信息互不重叠。
采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型假设用p个变量来描述研究对象,分别用X,X…X来表示,这p个变量12p t构成的p维随机向量为X=(X,X…X)。
设随机向量X的均值为μ,协方差矩12p阵为Σ。
假设 X 是以 n 个标量随机变量组成的列向量,并且μk 是其第k个元素的期望值,即,μk= E(xk),协方差矩阵然后被定义为:Σ=E{(X-E[X])(X-E[X])}=(如图对X进行线性变化,考虑原始变量的线性组合:Z1=μ11X1+μ12X2+…μ1pXpZ2=μ21X1+μ22X2+…μ2pXp…… …… ……Zp=μp1X1+μp2X2+…μppXp主成分是不相关的线性组合Z,Z……Z,并且Z是X1,X2…Xp的线性组12p1 合中方差最大者,Z是与Z不相关的线性组合中方差最大者,…,Zp是与Z,211Z ……Z都不相关的线性组合中方差最大者。
2p-1(三)主成分分析法基本步骤第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始数据可得矩阵X=(x),其中x表示第i家上市公司的第j项财务指标数据。
ijm×pij 第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
主成分分析法的原理应用及计算步骤57270
一、概述在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。
而变量之间信息的高度重叠与高度相关会给统计方法的应用带来许多障碍。
为了解决这些问题,最简单与最直接的解决方案就是削减变量的个数,但这必然又会导致信息丢失与信息不完整等问题的产生。
为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。
主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。
主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点:↓主成分个数远远少于原有变量的个数原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。
↓主成分能够反映原有变量的绝大部分信息因子并不就是原有变量的简单取舍,而就是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。
↓主成分之间应该互不相关通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。
↓主成分具有命名解释性总之,主成分分析法就是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。
二、基本原理主成分分析就是数学上对数据降维的一种方法。
其基本思想就是设法将原来众多的具有一定相关性的指标X1,X2,…,XP(比如p 个指标),重新组合成一组较少个数的互不相关的综合指标Fm 来代替原来指标。
那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp 所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。
(完整版)主成分分析法的步骤和原理
(一)主成分分析法的基本思想主成分分析(Principal Component Analysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。
[2]采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。
设随机向量X 的均值为μ,协方差矩阵为Σ。
对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X pZ 2=μ21X 1+μ22X 2+…μ2p X p…… …… ……Z p =μp1X 1+μp2X 2+…μpp X p主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2 ……Z p-1都不相关的线性组合中方差最大者。
(三)主成分分析法基本步骤第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m ×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。
第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。
主成分分析法及其在SPSS中的操作
一、(一)主成分分析基本原理概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。
从数学角度来看,这是一种降维处理技术。
思路:一个研究对象,往往是多要素的复杂系统。
变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。
原理:假定有n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵,记原变量指标为x 1,x 2,…,x p ,设它们降维处理后的综合指标,即新变量为 z 1,z 2,z 3,… ,z m (m ≤p),则系数l ij 的确定原则:①z i 与z j (i ≠j ;i ,j=1,2,…,m )相互无关;②z 1是x 1,x 2,…,x P 的一切线性组合中方差最大者,z 2是与z 1不相关的x 1,x 2,…,x P 的所有线性组合中方差最大者; z m 是与z 1,z 2,……,z m -1都不相关的x 1,x 2,…x P ,的所有线性组合中方差最大者。
新变量指标z 1,z 2,…,z m 分别称为原变量指标x 1,x 2,…,x P 的第1,第2,…,第m 主成分。
从以上的分析可以看出,主成分分析的实质就是确定原来变量x j (j=1,2 ,…, p )在诸主成分z i (i=1,2,…,m )上的荷载 l ij ( i=1,2,…,m ; j=1,2 ,…,p )。
⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X 212222111211⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=p mp m m m p p pp x l x l x l z x l x l x l z x l x l x l z 22112222121212121111............从数学上可以证明,它们分别是相关矩阵m 个较大的特征值所对应的特征向量。
主成分分析法的原理和步骤
主成分分析法的原理和步骤主成分分析(Principal Component Analysis,简称PCA)是一种常用的多元统计分析方法,它通过线性变换将高维数据转换为低维数据,从而实现降维和数据可视化。
PCA的基本思想是通过选取少数几个主成分,将原始变量的方差最大化,以便保留大部分的样本信息。
下面我将详细介绍PCA的原理和步骤。
一、主成分分析的原理主成分分析的核心原理是将n维的数据通过线性变换转换为k维数据(k<n),这k维数据是原始数据最具有代表性的几个维度。
主成分是原始数据在新坐标系中的方向,其方向与样本散布区域最大的方向一致,而且不同主成分之间互不相关。
也就是说,新的坐标系是通过原始数据的协方差矩阵的特征值分解得到的。
具体来说,假设我们有一个m个样本、维度为n的数据集X,其中每个样本为一个n维向量,可以表示为X=\left ( x_{1},x_{2},...,x_{m} \right )。
我们的目标是找到一组正交的基变量(即主成分)U=\left ( u_{1},u_{2},...,u_{n} \right ),使得原始数据集在这组基变量上的投影方差最大。
通过对协方差矩阵的特征值分解,可以得到主成分对应的特征向量,也就是新的基变量。
二、主成分分析的步骤主成分分析的具体步骤如下:1. 标准化数据:对于每一维度的数据,将其减去均值,然后除以标准差,从而使得数据具有零均值和单位方差。
标准化数据是为了消除不同维度上的量纲差异,确保各维度对结果的影响是相等的。
2. 计算协方差矩阵:对标准化后的数据集X,计算其协方差矩阵C。
协方差矩阵的元素c_{ij}表示第i维度与第j维度之间的协方差,可以用以下公式表示:\[c_{ij}=\frac{\sum_{k=1}^{m}\left ( x_{ik}-\bar{X_{i}} \right )\left( x_{jk}-\bar{X_{j}} \right )}{m-1}\]其中,\bar{X_{i}}表示第i维度的平均值。
主成分分析法
四、主成份分析法旳环节
1)数据归一化处理:数据原则化(Z) 2)Βιβλιοθήκη 算有关系数矩阵R: 3)计算特征值;
特征值越大阐明主要程度越大。
4)计算主成份贡献率及方差旳合计贡献率; 5)计算主成份载荷与特征向量:
主成份旳负荷值大小反应了主成份因子对可测变量旳影响程 度;载荷值越大阐明此变量对主成份旳解释越多,及贡献越大。
• 因子分析 优点:第一它不是对原有变量旳取舍,而是根据原始变 量旳信息进行重新组合,找出影响变量旳共同因子,化简 数据;第二,它经过旋转使得因子变量更具有可解释性, 命名清楚性高。 缺陷 :在计算因子得分时,采用旳是最小二乘法,此法 有时可能会失效。
总之,主成份分析是因子分析旳一种特例。
谢 谢 观 看!
旋转后旳主成份因子载荷矩阵
景区满意度旋转前后成份矩阵图对比
5、碎石图分析
选用主成份旳个数,急转处是拟定主成份旳个数处。
景区满意度碎石图
八、与因子分析法旳区别
1、基本概念
➢ 主成份分析就是将多项指标转化为少数几项综合 指标,用综合指标来解释多变量旳方差- 协方差构 造。综合指标即为主成份。所得出旳少数几种主 成份,要尽量多地保存原始变量旳信息,且彼此 不有关。
注意:进行主成份旳变量之间必须要有有关性, 经过分析后变量之间独立。
二、主成份分析法基本原理
主成份分析就是设法将原来众多具有一定有关性 旳变量(如p个变量),重新组合成一组新旳相互无 关旳综合变量来替代原来变量。怎么处理?
一般数学上旳处理就是将原来p个变量作线性组合 作为新旳综合变量。怎样选择?
假如将选用旳第一种线性组合即第一种综合变量 记为F1,自然希望F1尽量多旳反应原来变量旳信 息。怎样反应?
主成分分析法
主成分分析法主成分分析(Principal Component Analysis,简称PCA)是一种常用的降维方法,它通过线性变换将高维数据转换为低维数据,从而提取出数据的最主要特征。
本文将详细介绍主成分分析的原理、应用以及算法流程。
一、原理主成分分析是一种基于统计学的数据降维方法。
其基本思想是将原始数据通过线性变换,得到一组新的不相关变量,即主成分,用来代替原始变量。
这些主成分在不同维度上的方差依次递减,即第一主成分包含最多的原始变量信息,第二主成分包含不重叠的信息量,以此类推。
主成分分析的目标是最大化原始数据的方差,从而保留尽可能多的信息。
首先,通过计算协方差矩阵来评估各个变量之间的相关性,然后通过特征值分解找出协方差矩阵的特征向量,即主成分。
最后,根据特征值的大小来选择保留的主成分个数。
二、应用主成分分析广泛应用于数据预处理、特征提取和数据可视化等领域。
以下是主成分分析的几个典型应用:1. 数据降维:主成分分析可以将高维数据转换为低维数据,从而减少计算量和存储空间,并提高模型的计算效率。
2. 特征提取:主成分分析可以将原始数据中高度相关的特征转换为互不相关的主成分,保留了原始数据的主要信息。
这样可以提高模型的训练速度和泛化能力。
3. 图像压缩:主成分分析可以将图像的冗余信息去除,从而实现图像的压缩和存储。
通过保留图像中的主要特征,可以在减少存储空间的同时保持图像的质量。
4. 数据可视化:主成分分析可以将高维数据映射到二维空间,从而实现数据的可视化。
通过显示主成分的分布,可以更好地理解数据之间的关系,并发现数据中的模式和异常。
三、算法流程主成分分析的算法流程如下:1. 数据标准化:将原始数据进行标准化处理,使得每个变量具有相同的尺度,从而避免变量之间的差异对主成分的影响。
2. 计算协方差矩阵:根据标准化后的数据计算协方差矩阵,该矩阵表示各个变量之间的相关性。
3. 特征值分解:对协方差矩阵进行特征值分解,得到特征值和特征向量。
主成分分析方法PPT课件
X
x21
x22
x2
p
xn1
xn 2
xnp
❖ 当p较大时,在p维空间中考察问题比较麻烦。 为了克服这一困难,就需要进行降维处理. 要求:较少的几个综合指标尽量多地反映原来较 多变量指标所反映的信息,同时它们之间又是彼 此独立的
例,成绩数据
❖ 100个学生的数学、物理、化学、语文、历 史、英语的成绩如下表(部分)。
p
lk2j 1, (k 1,2,, m)
j 1
Rlk lk (R E)lk 0
计算主成分贡献率及累计贡献率
▲贡献率:
k
p
i
(k 1,2,, p)
i 1
▲累计贡献率:
k
p
j1 j / i1 i
一般取累计贡献率达85—95%的特征值 1, 2 ,, m 所对应的第一、第二、…、第m(m≤p)个主成分
6
6
样方
1
物种X1 1
物种X2 5
2 3 4 5 6 总和 2 0 2 -4 -1 0 2 1 0 -4 -4 0
种X2
X2
12
10
8
6
4
2
0
0
1
2
3
4
5
6
7
种X1
6 5 4 3 2 1 0 -5 -4 -3 -2 -1-1 0 1 2 3 4 5 6 -2 -3 -4 -5
X1
中心化后的原始数据矩阵
X
1 5
2 2
0 1
2 0
4 4
1 4
❖ 把坐标轴X1、 X2刚性地旋转 一个角度,得
到图中新坐标
轴Y1和Y2
X2
6
主成分分析的实验原理
主成分分析的实验原理
主成分分析(Principal Component Analysis,PCA)是一种常
用的数据降维和特征提取方法,通过线性变换将原始数据转化为新的一组无关变量,称为主成分,以便于分析和解释数据的结构和关系。
PCA的实验原理基于以下假设和步骤:
1. 假设数据集包含d个变量和n个样本,构成一个d×n的数据矩阵X。
2. 对数据进行归一化处理,即对每个变量进行均值中心化处理,使得每个变量的平均值为0。
3. 计算数据矩阵X的协方差矩阵C,其中C的(i,j)元素表示第
i个变量和第j个变量之间的协方差。
4. 对协方差矩阵C进行特征值分解,得到特征值和特征向量。
特征值表示对应的特征向量所代表的方向上的方差,特征向量表示数据在该方向上的投影。
5. 选择特征值较大的前k个特征向量作为主成分,通常选择的依据是特征值的大小或者保留的方差占总方差的比例。
6. 将原始数据投影到选定的k个主成分上,得到降维后的数据矩阵Y,其中Y的维度为k×n。
7. 可选地,对降维后的数据进行可视化和进一步分析。
通过主成分分析,可以实现以下目标:
1. 提取数据中的主要特征,降低数据的维度,从而减少计算和存储的成本。
2. 去除数据中的噪声和冗余信息,提高数据的表达能力和泛化能力。
3. 揭示数据中的隐含结构和关系,帮助理解和解释数据。
4. 在数据可视化和聚类分析等任务中提供更好的表达和解释能力。
综上所述,主成分分析是一种基于线性变换和协方差分析的数据降维和特征提取方法,通过选择主要特征和投影数据到主成分上实现数据的简化和分析。
主成分分析法原理及应用
一、概述在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。
而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。
为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。
为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。
主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。
主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点:主成分个数远远少于原有变量的个数原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。
主成分能够反映原有变量的绝大部分信息因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。
主成分之间应该互不相关通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。
主成分具有命名解释性总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。
二、基本原理主成分分析是数学上对数据降维的一种方法。
其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP (比如p 个指标),重新组合成一组较少个数的互不相关的综合指标Fm 来代替原来指标。
那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp 所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。
主成分分析法
人均GDP→ x1 第二产业增加值比重→ x3 第三产业从业人员比重→ x5 城市化水平→ x7
人均第三产业增加值→ x2 第三产业增加值比重→ x4 第三产业固定资产投资比重→ x6
2、计算各指标之间的相关系数矩阵
x1
x2
Rij
x3 x4
x5
x6
x7
x1
x2
1 0.988
0.988 1
0.339 0.241
216.39 291.52 225.25 196.37 226.51 217.09 181.38 194.04 188.09 211.55 220.91 242.16 193.46 228.44 175.23 236.29
8.128 8.135 18.352 16.861 18.279 19.793 4.005 9.11 19.409 11.102 4.383 10.706 11.419 9.521 18.106 26.724
3.5 主成分分析法
本节主要内容:
❖ 主成分分析的基本原理 ❖ 主成分分析的计算步骤 ❖ 主成分分析方法应用实例 ❖ 主成分分析方法的SPSS实现
主成分分析法
概念:把原来多个变量划为少数几个综合指标 的一种统计分析方法,是一种降维处理技术.
一个研究对象,往往是多要素的复杂系统。变量太多无疑会增 加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少 的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留 原来较多的变量所反应的信息,这样问题就简5 5.176 5.643 4.881 4.066 4.484 5.721 3.133 4.615 6.053 6.442 7.881 5.789 7.162
0.011 0.012 0.034 0.055 0.076 0.001 0.015 0.002 5.055 0.01 0.011 0.154 0.012 0.069 0.048 0.092
主成分分析法的步骤和原理
(一)主成分分析法的基本思想主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。
[2]采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型假设用p个变量来描述研究对象,分别用X1,X2…X p来表示,这p个变量构成的p维随机向量为X=(X1,X2…X p)t。
设随机向量X的均值为μ,协方差矩阵为Σ。
对X进行线性变化,考虑原始变量的线性组合:Z1=μ11X1+μ12X2+…μ1p X pZ2=μ21X1+μ22X2+…μ2p X p………………Z p=μp1X1+μp2X2+…μpp X p主成分是不相关的线性组合Z1,Z2……Z p,并且Z1是X1,X2…X p的线性组合中方差最大者,Z2是与Z1不相关的线性组合中方差最大者,…,Z p是与Z1,Z2……Z p-1都不相关的线性组合中方差最大者。
(三)主成分分析法基本步骤第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始数据可得矩阵X=(x ij)m×p,其中x ij表示第i家上市公司的第j项财务指标数据。
第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。
R 为实对称矩阵(即R ij =R ji ),只需计算其上三角元素或下三角元素即可,其计算公式为:2211)()()()(j kj nk i kj j kj n k i kj ij X X X X X X X X R -=--=-=∑∑ 第四步:根据协方差矩阵R 求出特征值、主成分贡献率和累计方差贡献率,确定主成分个数。
主成分分析法的步骤和原理
主成分分析(Principal ComponentAnalysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。
⑵采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型假设用p个变量来描述研究对象,分别用X i,X2…X P来表示,这p个变量构成的p维随机向量为X=(X i, X2-X p)t。
设随机向量X的均值为卩,协方差矩阵为艺。
假设X是以n个标量随机变量组成的列向量,并且卩k是其第k个元素的期望值,即,卩k= E(xk),协方差矩阵然后被定义为:工=E{(X -E[X])(X-E[X])}=( 如图对X进行线性变化,考虑原始变量的线性组合:2 =卩11X +卩12X2+…卩1p X pZ2=卩21X1+ 卩22X2+…卩2p X p乙=卩P1X1+ [1 P2X2+…卩PP X P主成分是不相关的线性组合乙,Z2……乙,并且乙是X,X2…X p的线性组合中方差最大者,乙是与乙不相关的线性组合中方差最大者,…,Z p是与Z1,Z2…… Z p-1都不相关的线性组合中方差最大者。
(三)主成分分析法基本步骤第一步:设估计样本数为n,选取的财务指标数为P,则由估计样本的原始数据可得矩阵X=(X ij)mXp,其中X ij表示第i家上市公司的第j项财务指标数据。
第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R,是反映标准化后的数据之(X kj X x X kjX j ) R jX i )2:X kj X j )2 第四步:根据协方差矩阵 R 求出特确定主成分个数。
主成分分析法的步骤和原理
(一)主成分分析法的基本思想主成分分析(Principal Component Analysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。
[2]采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。
设随机向量X 的均值为μ,协方差矩阵为Σ。
对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X pZ 2=μ21X 1+μ22X 2+…μ2p X p…… …… ……Z p =μp1X 1+μp2X 2+…μpp X p主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2 ……Z p-1都不相关的线性组合中方差最大者。
(三)主成分分析法基本步骤第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m ×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。
第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。
其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。
《主成分分析法》课件
主成分分析法的目的是减少数据的维 度,同时保留数据中的主要信息,以 便更好地理解和分析数据。
历史与发展
1901年
由英国统计学家Karl Pearson提出主成分的概 念。
1933年
美国统计学家Harold Hotelling将主成分分析 法应用于心理学和教育学领域。
20世纪70年代
随着计算机技术的发展,主成分分析法在各个领域得到广泛应用。
04
主成分分析法的步骤
数据标准化
总结词
消除量纲和数量级对分析的影响
详细描述
在进行主成分分析之前,需要对数据进行标准化处理,即将各指标的均值调整为0,标准差调整为1, 以消除不同量纲和数量级对分析的影响。
计算相关系数矩阵
总结词
衡量变量间的相关性
VS
详细描述
通过计算原变量之间的相关系数矩阵,可 以了解各变量之间的相关性。相关系数矩 阵中的元素表示各指标之间的相关系数, 用于衡量变量间的线性关系。
详细描述
市场细分是主成分分析法在市场营销领域中的重要应 用。通过对市场数据进行主成分分析,可以提取出影 响市场需求的共同因素,进而将市场划分为不同的子 市场。这种分析方法有助于企业识别不同子市场的需 求特点、消费行为和竞争状况,为制定针对性的营销 策略提供依据。
实例二:客户分类
要点一
总结词
利用主成分分析法对客户进行分类,有助于企业更好地了 解客户群体特征,提高客户满意度和忠诚度。
01
数学模型
主成分分析通过线性变换将原始 变量转换为彼此独立的主成分, 这种变换是线性的。
变换矩阵
02
03
特征向量
线性变换需要一个变换矩阵,该 矩阵由原始变量和主成分之间的 系数构成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主成分分析法的步骤和原理
(总2页)
-CAL-FENGHAI.-(YICAI)-Company One1
-CAL-本页仅作为文档封面,使用请直接删除
(一)主成分分析法的基本思想
主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。
[2]
采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。
(二)主成分分析法代数模型
假设用p个变量来描述研究对象,分别用X
1,X
2
…X
p
来表示,这p个变量构
成的p维随机向量为X=(X
1,X
2
…X
p
)t。
设随机向量X的均值为μ,协方差矩阵
为Σ。
假设 X 是以 n 个标量随机变量组成的列向量,并且μk 是其第k个元素的期望值,即,μk= E(xk),协方差矩阵然后被定义为:
Σ=E{(X-E[X])(X-E[X])}=(如图
对X进行线性变化,考虑原始变量的线性组合:
Z1=μ11X1+μ12X2+…μ1p X p
Z2=μ21X1+μ22X2+…μ2p X p
………………
Z p=μp1X1+μp2X2+…μpp X p
主成分是不相关的线性组合Z
1,Z
2
……Z
p
,并且Z
1
是X1,X2…X p的线性组合
中方差最大者,Z
2是与Z
1
不相关的线性组合中方差最大者,…,Z p是与Z
1
,
Z 2……Z
p-1
都不相关的线性组合中方差最大者。
(三)主成分分析法基本步骤
第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始
数据可得矩阵X=(x
ij )
m×p
,其中x
ij
表示第i家上市公司的第j项财务指标数
据。
第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。
第三步:根据标准化数据矩阵建立协方差矩阵R,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分
析。
其中,R
ij (i,j=1,2,…,p)为原始变量X
i
与X
j
的相关系数。
R为实对
称矩阵(即R
ij =R
ji
),只需计算其上三角元素或下三角元素即可,其计算公式
为:
22
1
1
)
()()()(j kj n
k i kj j kj n
k i kj ij X X X X X X X X R -=
--=
-=
∑∑
第四步:根据协方差矩阵R 求出特征值、主成分贡献率和累计方差贡献率,确定主成分个数。
解特征方程0=-R E λ,求出特征值λi (i=1,2,…,p )。
因为R 是正定矩阵,所以其特征值λi 都为正数,将其按大小顺
序排列,即λ1≥λ2≥…≥λi ≥0。
特征值是各主成分的方差,它的大小反映
了各个主成分的影响力。
主成分Z i 的贡献率W i =
∑=p
j
j j
1
λλ,累计 贡献率为
∑∑==p
j
j m
j j 1
1
λλ。
根据选取主成分个数的原则,特征值要求大于1且累计贡
献率达80%-95%的特征值λ1,λ2,…,λm 所对应的1,2,…,m (m ≤p ),其中整数m 即为主成分的个数。
第五步:建立初始因子载荷矩阵,解释主成分。
因子载荷量是主成分Z i 与原始指标X i 的相关系数R (Z i ,X i ),揭示了主成分与各财务比率之间的相关程度,利用它可较好地解释主成分的经济意义。
第六步:计算企业财务综合评分函数F m ,计算出上市公司的综合值,并进行降序排列:
F m =W 1Z 1 + W 2Z 2+…+ W i Z i
[2]
朱星宇,陈勇强.SPSS 多元统计分析方法及应用[M].北京:清华大学出版社,。