微波功率器件及其材料的发展和应用前景

合集下载

微波与射频技术的进展与应用

微波与射频技术的进展与应用

微波与射频技术的进展与应用一、引言微波与射频技术,即微波和射频技术,属于电磁波谱的高频部分,具有功能强大、应用广泛的特点。

随着信息技术和通信技术的不断发展,微波与射频技术也在不断进步。

本文将介绍微波与射频技术的进展与应用。

二、微波技术微波技术是指频率在300MHz至300GHz之间的无线电信号技术。

微波技术应用于通信、雷达、天线、炉灶等领域。

微波技术的主要特点是高频率、高速度、高精度和高功率。

微波技术有以下的进展和应用:1. 进展(1)高功率微波:高功率微波技术是当今发展的一个重要方向。

它可以应用于安防、防雷电和杀灭微生物等。

(2)微波器件:国内外微波器件的研究很活跃,如微波管、微波集成电路、微波晶体管等。

(3)天线技术:微波技术在天线技术上的应用也很广泛,如技术先进的周期性结构天线、多分辨率天线等。

2. 应用(1)通信:微波技术在通信上的应用主要是无线传输和卫星通信。

随着国家的新一代移动通信网络的发展,对微波技术的需求也会越来越大。

(2)雷达:微波雷达在国防和民用领域有很大的应用,如飞机、船只、车辆、雷达气象预报等。

(3)炉灶:微波技术应用在炉灶上,可以加快加热速度,节省能源。

三、射频技术射频技术是指频率在3kHz至300GHz之间的无线电信号技术。

射频技术应用于通信、无线电和电子等领域。

射频技术的主要特点是高频率、强信号和高速度。

射频技术有以下的进展和应用:1. 进展(1)射频器件:射频器件是射频技术中很重要的组成部分,国内外射频器件的研究也很活跃,如射频开关、射频功放器、半导体射频器件等。

(2)射频标准:射频系统的标准是射频技术的关键,国内外的标准体系也在不断完善。

(3)射频芯片:射频芯片的发展可以提高整个系统的效率和性能,可以做到尺寸小、功耗低、速度快、质量高等。

2. 应用(1)通信:射频技术在无线电通信领域有很大的应用,特别是在雷达、无线电广播、卫星通信等领域。

(2)医疗:射频技术在医疗领域有很大的应用,如微波治疗仪、射频消融机等。

功率器件国内外现状、水平和发展趋势

功率器件国内外现状、水平和发展趋势

功率器件国内外现状、水平和发展趋势下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!功率器件国内外现状、水平和发展趋势1. 引言功率器件作为现代电子技术中的关键组成部分,其在电力电子、通信、汽车电子等领域的应用日益广泛。

微波技术的发展及其应用研究

微波技术的发展及其应用研究

微波技术的发展及其应用研究章节1:前言微波技术是一种高频电磁波技术,它的应用涉及到领域广泛,如通信、雷达、医疗、水利、军事等。

自20世纪50年代微波技术开始进入实用化阶段,随着科学技术的发展,在微波技术的各个领域中,一系列优秀的创新性强、应用性强的新技术、新装备、新产品不断涌现,今天的微波技术已然成长为一种非常成熟的技术。

章节2:微波技术的发展历程微波技术最初是在19世纪末期被理论家们研究发现,20世纪初期在实践应用方面得到了提高。

而20世纪50年代,美国等国家成功研制出了微波电子管、半导体微波器件,这使得微波技术迅速发展并得到广泛应用。

到了70年代后期,微波技术进入一个成熟发展的阶段,在领域的广泛应用中,成就了许多重大突破,其中以行业发展为代表的通信领域,做出了很多优秀的成果贡献。

到了21世纪,微波技术得以进一步完善,形成了新的应用领域,如无线电频段、毫米波频段、纳微波领域等等,成为了在各个行业中不可或缺的技术。

章节3:微波技术在通信领域的应用研究作为微波技术的最大应用领域,通信领域中微波技术的研究和应用也越来越成熟。

我们可以从各种不同类型的整机装备、芯片和器件等方面来深入了解微波技术在通信领域的应用。

首先,移动通信是广大民众非常熟悉的一种通讯方式,而微波技术在该领域中更是发挥着重要作用。

通过微波技术,不仅能使信号更稳定,更有效地传送,而且能缩短通信时间,增强带宽,提高通信质量等。

如4G、5G移动通信装备中的小型基站采用的就是微波技术,来支撑这一高速、高清的通信需求。

再来看卫星通信,卫星通信是一种不受地理位置、时间、地形等限制的远距离通信方式。

而卫星通信的成功离不开微波技术的应用,如雷达跟踪系统、定向天线等,它们都依赖于微波电子系统、微波传输系统等用于实现卫星通信的核心技术。

章节4:微波技术在其他领域的应用研究除了通信领域,微波技术在许多其他领域上也有很广泛的应用。

在水利领域,通过微波感知仪器设备实现对蒸发过程的长期观测、水库水位测量、水质分析等,都能够实时获取数据,为水资源管理提供了有力支持。

微波介质材料与器件的现状与发展

微波介质材料与器件的现状与发展
司 、 国 E C S公 司 、 国 Tas—Tc 司 、 a- 德 PO 美 rn eh公 Nr d C O V aMIR WA E—WE T公 司 、 国 MognEet S 英 ra l r co
将有代表性 的公 司研制 的部分微波介质材料列于 表 1所示 。 表 中的介电常数和 Q值是微波介质材料重要 的参数 , 在其它条件相同的情况下 , 采用 Q值更高 的材料制作微波器件将 明显改变其插入损耗表现, 因此 , 微波材料 的 Q值 是衡量微波材料优 劣的重
移 动通讯 基 站 中 , 基站 的体 积和 重量 要有 严格 的 对
型化、 低损耗 、 高稳定及片式化 , 以及大规模生产 、 低 成本方 向发展 , 相应 的微 波介质 材料 的发展 要求 为 : 介 电常数和温度系数 的系列化 ( 包括 s ,=3
关键词 微 波介 质材料 ; 波介质 器件 ; 微 Q值 ; 介质谐振器 中图分类 号 V 5 . 24 2
由上海科技大学方永汉研究成功 , 7 1 9年鉴定 : 4 9 A
1 引言
微波 介质 材料 是近 3 0年来 迅速 发展 起来 的 新
陶瓷( a i 9 , =4 , =4 0 60 , BT O)8 4 0Q 20— 00 频率温
要指 标 。从 表一 不难 看 出 , 内产 品 的性能要 比国 国
Cr i 等公 司为最高。其产 品的应 用范 围已在 e mc a s 3 0MH 4 H 系 列化 。 0 z一 0G z
12 微 波 介质 材料 国 内的研 究情 况 . 我 国从 17 96年 开始 研 制微 波 介 质 材 料 , 次 首
度系 数 丁 f= ( . 3 一 + 5) × 1 ; 5 陶 瓷 07 0~ A

微波技术发展与前景展望

微波技术发展与前景展望

微波技术发展与前景展望1、引言微波技术是近一个世纪以来最重要的科学技术之一,从雷达到广播电视、无线电通信再到微波炉,其波长约在1米到1毫米之间,可被进一步细分为分米波,厘米波和毫米波.随着现代微波技术的发展,波长在1毫米以下的亚毫米波也被视为微波的范畴,这相当于把微波的频率范围进一步扩大到更高的频率。

因此,有的文献里也把微波的频率范围定义为300MHZ-3000GHZ.本文介绍了微波技术的发展以及在各个领域中的应用,并对微波技术未来的发展方向进行了讨论。

2、微波技术发展简史从19世纪末德国物理学家赫兹发现并用实验证明了电磁波的存在后,对电磁波的研究便迅速展开。

对微波直到20世纪初期对微波技术的研究又有了一定的进展。

到了20世纪30年代,高频率的超外差接受器和半导体混频器的出现为微波技术的进一步发展提供了条件,使得微波技术的发展取得的一定的进步。

我国开始研究和利用微波技术是在20世纪70年代初期,首先是在连续微波磁控管的研制方面取得重大进展,特别是大功率磁控管的研制成功,为微波技术的应用提供了先决条件.20世纪80年代,我国开始生产微波炉,到目前为止,已经发展有家用微波炉、工业微波炉等系列产品,产品质量接近或达到世界先进水平。

随着科学技术的迅猛发展,微波技术的研究向着更高频段──毫米波段和亚毫米波段发展。

3、微波技术发展现状和未来趋势进入21世纪,微波技术继续在广播、有线电视、电话和无线通信领域发挥着巨大的作用,在其他领域如计算机网络等应用中也崭露头角.在广播电视方面,当前广播电视节目制作逐步走向数字化。

在通信领域,微波与卫星和光缆并列为现代通信传输的三大支柱。

微波通信可作为干线光纤传输的备份及补充,解决城区内铺设有线资源困难的问题。

此外,诸如微波单片集成、全数字化处理、数字专用集成电路等提高可靠性及降低成本的技术也需要进一步的研究。

3。

1 太赫兹波的应用太赫兹时域光谱技术是国际上近年来发展起来的研究技术。

微波相关领域新技术及发展趋势

微波相关领域新技术及发展趋势

微波相关领域新技术及发展趋势⇳移动通信⇳卫星通信⇳毫米波通信⇳微波遥感⇳自由光通信⇳网络课程在科技发展一日千里的今天,微波技术也得到了迅猛的发展。

微波的始用是第二次世界大战期间,英国科学家利用微波方向性强,遇到障碍物发生发射的特点,研制成功雷达用以探测敌机,其后50多年微波技术有了飞速的发展,就其发展方向看大致有如下几个特点:工作频率不断向高频段延伸。

微波元件及整机设备不断向小型化、宽频带发展。

微波系统和设备不断向自动化、智能化和多功能化的方向发展。

下面移动通信、卫星通信、毫米波通信、微波遥感、无线光通信五个方面来介绍一下微波技术在相关领域近年的发展趋势。

一、移动通信 返回从20世纪80年代起,移动通信技术获得了很大的发展,从传统的单基站大功率系统到蜂窝移动系统、卫星移动系统;从本地覆盖到区域、全国覆盖,并实现了国内、国际漫游;从提供语音业务到提供包括数据的综合业务;从模拟移动通信系统到数字移动通信系统等。

随着第3代移动通信技术的商用和移动网与互联网的融合,全球正在向移动信息时代迈进。

在过去的10年里,移动通信得到了飞速的发展,第三代移动通信系统(3G)的出现更使移动通信前进了一大步。

到目前为止,3G各种标准和规范已达成协议,并已开始商用。

但也应该看到3G系统尚有很多需要改进的地方,如:3G缺乏全球统一标准;3G所采用的语音交换架构仍承袭了第二代(2G)的电路交换,而不是纯IP方式;流媒体(视频)的应用不尽如人意;数据传输率也只接近于普通拨号接入的水平,更赶不上xDSL等。

所以,在第三代移动通信还没有完全铺开,距离完全实用化还有一段时间的时候,已经有不少国家开始了对下一代移动通信系统(4G)的研究。

相对于3G而言,4G在技术和应用上将有质的飞跃,而不仅仅是在第三代移动通信的基础上再加上某些新的改进技术。

到目前为止,第四代移动通信系统技术还只是一个主题概念,即无线互联网技术。

人们虽然还无法对4G通信进行精确定义,但可以肯定的是,4G通信将是一个比3G通信更完美的新无线世界,它将可创造出许多难以想象的应用。

微波射频技术的发展趋势与应用前景

微波射频技术的发展趋势与应用前景

微波射频技术的发展趋势与应用前景微波射频技术是一种基于电磁波的通信技术,它能够在高频率范围内传输信号,具有传输速度快、抗干扰性强、信号延迟低等优点,因此在无线通信、雷达、卫星通信等领域得到了广泛应用。

随着信息技术的飞速发展,微波射频技术也在不断地升级与更新。

本文将介绍微波射频技术的发展趋势以及未来的应用前景。

一、微波射频技术的发展历程微波射频技术的历史可以进行概括为三个阶段。

第一阶段是20世纪30年代至60年代,这个阶段内微波射频技术主要处于研究阶段,人们开始探索利用电磁波进行通信的可能性。

在第二阶段,80年代至90年代,微波射频技术的应用范围非常广泛。

无线通信、雷达、卫星通信等领域都开始使用微波射频技术。

在这个时候,微波射频技术已经比较成熟,且设备制造技术也大大进步。

第三阶段是21世纪以来,微波射频技术已经进入了数字化与智能化阶段。

与此同时,微波射频技术也在不断创新与改进。

二、微波射频技术的发展趋势在微波射频技术的发展过程中,存在着许多可以预见的趋势。

以下是几个主要的发展趋势:1. 高频率随着通信技术的发展,需要传输的数据在不断增多,因此需要更高的频率来实现更大的带宽。

同时,新的无线通信协议如5G、6G等也需要更高的频率支持,因此未来微波射频技术将向更高频率的方向发展。

2. 小型化随着电子设备的不断迭代更新,微波射频器件更趋向小型化。

对于手机等智能设备来说,小型化的需求非常强烈。

未来的微波射频技术设备将向更加小型化的方向发展。

3. 数字化作为一种通信技术,数字化是微波射频技术发展的必然趋势。

未来的微波射频技术将会更加数字化,例如数字化调制、数字信号处理等。

4. 智能化在未来,微波射频技术不仅需要更高频率和更小型化的设备,还需要能够智能地进行数据处理和控制。

比如智能自适应天线阵等技术将会大力发展。

5. 绿色环保随着环保意识的不断提高,未来的微波射频技术不仅要更高效、更省电,还要更加环保,减少对环境的影响。

微波技术的发展和应用

微波技术的发展和应用

电子干扰
主动干扰
抗干扰 其它干扰
③ 微波的其他应用
微波成像、遥感
环境应用:沙子潮湿的测量、 海洋表面的风速、洪水绘图、 大气层温度的轮廓、雪层/ 冰层的测绘等。
军事应用:目标检 测、监视、目标确 认、绘图等
天文学应用:行星绘图、银河星系射 电噪声目标的测绘、太阳辐射测绘、 宇宙黑体辐射的测量等。
3. 在微波能方面的应用源
加热
处理(快 速均匀)
消毒(杀 虫灭菌)
微 微波能量传递 波

4. 在生物医学方面的应用 诊断:(磁共振)
热效应:微波理疗、组织固定。 治疗
非热效应:免疫组织化学和免疫细胞化学研究。
交叉学科
微波物理
微波化学
微波吸收光谱学
微波等离子体化学
5. 在科学研究方面的应用
微波可以作为科学研究的一种重要手段。根据各种物质对 微波吸收的不同,可以用来研究物质的内部结构;利用大气 对微波的吸收和反射特性,来观察气象的变化;在射电天文 学中,利用微波作为一种观测手段,可以发现新的星体。 在 生物医学方面的应用
短波通信就是利用了天波,它可实现远距离通信,但不够 稳定,因为电离层的密度和高度随季节,昼夜以及太阳的活 动而变化。 到了超短波和微波波段,地波的衰减更大,已无法利用。 同时,这个波段的电磁波一般不能被电离层折射返回地面, 它能穿过电离层,因此不能采用天波的传播方式。
超短波和微波只能在视距内沿直线传播,并能穿过电离层 到达外层空间(视距传播),这种传播称为空间波。
1901年马可尼使用800KHz中波信号进行了从英国到北美纽 芬兰的世界上第一次横跨大西洋的无线电波的通信试验,从此, 在自由空间中飞翔的电波替代了信鸽。
20世纪20年代初:短波通信

2024年微波介质陶瓷元器件市场分析现状

2024年微波介质陶瓷元器件市场分析现状

2024年微波介质陶瓷元器件市场分析现状简介微波介质陶瓷元器件是一种在微波频段广泛应用的陶瓷材料,具有优异的电磁性能和稳定性。

在无线通信、雷达、卫星通信等高频电子设备中,微波介质陶瓷元器件扮演着重要角色。

本文将对微波介质陶瓷元器件市场进行分析,探讨其现状和未来发展趋势。

市场规模与增长近年来,随着移动通信技术的迅猛发展,微波介质陶瓷元器件市场经历了快速增长。

根据市场研究机构的数据,2019年全球微波介质陶瓷元器件市场规模约为100亿美元,并且预计在未来几年还将保持稳定增长。

亚太地区是微波介质陶瓷元器件市场的主要消费地,占据了全球市场份额的40%以上。

而中国作为全球最大的电子制造基地,也是微波介质陶瓷元器件的重要生产和消费国家。

主要应用领域微波介质陶瓷元器件广泛应用于各种高频电子设备中,主要涵盖以下几个领域:1. 通信设备移动通信基站、卫星通信设备、光纤通信等领域需要使用到微波介质陶瓷元器件来实现高速无线通信。

2. 雷达系统雷达是军事和民用领域中广泛应用的高频信号探测系统,微波介质陶瓷元器件在雷达的发射和接收过程中起到关键作用。

3. 医疗设备医疗设备中的高频诊断仪器、医疗雷达等都需要使用到微波介质陶瓷元器件以实现高精度的信号传输和接收。

4. 卫星导航系统卫星导航系统中的微波天线、天线驱动器等关键部件都离不开微波介质陶瓷元器件的支持。

市场竞争格局微波介质陶瓷元器件市场竞争激烈,主要由一些国际知名企业和本土企业共同组成。

主要竞争者包括美国的Kyocera、日本的村田制作所、中国的三安光电等。

这些企业凭借其技术实力、品牌优势和规模效应,占据了市场的主要份额。

此外,行业内还存在一些中小型企业,它们通过专业化定制、柔性供应等方式保持着一定的市场份额。

市场机遇与挑战微波介质陶瓷元器件市场未来发展充满机遇和挑战。

一方面,随着5G通信技术的快速普及和升级,对微波介质陶瓷元器件的需求将进一步增加。

另一方面,新兴技术如物联网、车联网等的兴起也将为微波介质陶瓷元器件带来新的市场机遇。

RFLDMOS的发展状况和技术路线课件

RFLDMOS的发展状况和技术路线课件
• 中电55所在2010年完成了工作频率为485-606 MHz,功 率合成后输出功率为350-480 W,增益大于17 dB,漏极 效率大于52%的LDMOS器件。
• 但在民用射频LDMOS功率器件方面,国内所需基本全部 依赖进口。
9
• 国内开展LDMOS微波功率器件的厂家主要 有南京电子器件研究所以及河北半导体研 究所,都研制出过P波段和L波段LDMOS样品。
27
28
• 双层RESURF漂移区由n-top/p-top组成,ptop在有源区外围与地连接,用于加速漂移区 的耗尽,n-top用于降低导通电阻。(纵向结 构角度)。
• 实际上从漂移区横向结构上看,漂移区的理 想掺杂方式是从栅漏交叠端到漏金属接触 端浓度线性增加,但这在工艺上比较难以实 现,一般可以采用漂移区分段掺杂,从栅漏交 叠端到漏金属接触端逐段提高浓度的办法 来模拟线性掺杂,从而实现漂移区内横向电 场强度的均匀分布。
3
• 1999年初,来自荷兰的飞利浦(Philips)也推出了在 1.03GHz-l.09GHz内输出的功率为200W,增益为14dB, 效率大于40%的LDMOS产品,并大量用于WCDMA移动 通信基站的功率放大器中。
• 进入21世纪后,飞思卡尔公司(原Motorola半导体)、恩 智普公司(原Philips半导体)与英飞凌公司在多年的技术 积累下,不断推出性能强大的射频LDMOS功率器件与功 放模块,并各自形成了系列化的产品线。
• MRF8P293000HS是为S波段脉冲应用而开发的, 在频率2.7~2.9 GHz,脉宽300Ls,占空比10%,工作 电压32 V条件下输出功率320 W,增益13.3 dB,效 率50.5%,能够承受10∶1的负载失配。
6
• NXP 2010年研制的两种典型LDMOS射频功率器 件产品BLF888A和BLS7G2933S-150。其中 BLF888A器件热阻0.15 K/W,在频率470~860 MHz,工作电压50 V条件下,输出功率600 W,增益 21 dB,能够承受40∶1的负载失配;BLS7G2933S150是为2.9~3.3 GHz脉冲应用而设计,器件热阻 0.16 K/W,在脉宽300Ls,占空比10%,工作电压32 V 条件下输出功率150 W,增益13.5 dB,效率47%,能 够承受10∶1的负载失配。

第3代半导体材料GaN基微波功率器件研究和应用进展

第3代半导体材料GaN基微波功率器件研究和应用进展
落后 于 美 国, 但 近几 年 发展 很 快 , 目 司( To s h i b a ) 、 富士 通公司 ( F u j i t s u ) 等 几 家 公 司 推 出 了S 波 段 到Ka 波 段 Ga N电子材 料方 面进 展很 大。 我 国在
G a N 基微 电子材料和器 件领域 的研 究 起步较 晚 , 但 近几年进展 很大 , 已经攻
微 电子 材 料 和器 件 的工 艺 技术

中国科学 院半导 体研 究 所可 以提供 2 英寸和 3 英寸外 延材 料 , 某 些研 究所和
公司的器件 和电路产 品也在 试用 中。 2 0 1 3 年, 在 华盛 顿举 行 的 国 际微 波年 会上 , 东芝公 司( TAEC) 推 出了面
合 于制 作高 频 、 高压 、 高 效、 大 功 率微
波器 件 , 在 军用 和 民用领 域都 具 有广 阔市场 前景 。
代 相控 阵雷达 、 移 动通 讯 基站 等 的核 心 部件 。 目前导体材 料硅 ( s i ) 、 锗( Ge ) 和第 2 代 半 导 体 材 料 砷 化 镓
下文对Ga N基 微波功率器 件在无线通 讯 和相 控 阵雷达 2 个 方面 的应 用进行 分 析。
用前景分析
目 前, 国际上的G a N 基微波功率器
件, 主要基于M G a N/ G a N异质结构 , 这 种异质 结构具有 很大 的能带偏移和很
化镓( G a N) 的高频 、 大 功率 微波器 件
对通 信基 站而 言, 功 率 放 大 器 是最 重要 的组 成部 分 , 功放 的 效率 和
电子 迁 移 率 晶体 管 ( HE MT ) 器件 和 电路 , 已经开始在 某些领域 取代G a A s 器件。 与第 1 代和第 2 代半导 体材 料相 比, 以Ga N为 代表 的第 3 代宽 禁带 半

军用微波产业发展趋势

军用微波产业发展趋势

军用微波产业发展趋势军用微波产业发展趋势引言随着现代科技的高速发展,军事领域的武器装备也在不断更新换代。

而作为军事通信和雷达系统的关键技术之一,微波技术在军事装备中的应用也越来越广泛。

本文将分析军用微波产业的发展趋势,包括技术进步、应用领域扩展、市场需求增长等方面。

一、技术进步1. 射频芯片技术的发展射频芯片是实现微波系统的核心技术之一。

随着半导体工艺的不断进步,射频芯片的集成度、性能和功耗比得到了大幅提升。

未来,射频芯片还将朝着更高频率、更低功耗、更小尺寸的方向发展,以满足军事装备对性能和体积的要求。

2. 相控阵雷达技术的突破相控阵雷达利用微波技术实现对目标的高分辨率成像和多目标跟踪,是现代军事雷达的重要发展方向。

未来,随着电子器件尺寸的缩小、功率和性能的提高,相控阵雷达将实现更高的分辨率和更远的探测距离,从而提高战场指挥和目标识别的能力。

3. 高功率微波武器的研究高功率微波武器利用微波辐射对目标进行电子干扰或破坏,是未来军事装备的重要发展方向。

目前,高功率微波武器已经在一些领域得到了应用,未来将向更多领域扩展,如对无人机、导弹系统和通信设备等进行干扰和摧毁。

二、应用领域扩展1. 信息化战争的推动随着信息化战争的不断发展,军事系统对通信和雷达系统的需求也越来越大。

微波技术作为军事通信和雷达系统的关键技术,将在信息化战争中发挥重要作用。

未来,随着通信和雷达系统的需求增加,军用微波产业也将得到进一步发展。

2. 空军领域的应用微波技术在空军领域的应用也越来越广泛。

例如,微波雷达在飞机的导航、目标识别和导弹引导中发挥着重要作用。

此外,微波通信技术也在空中飞行器之间的远程通信中得到了广泛应用。

3. 海军领域的应用微波技术在海军领域的应用主要体现在舰船的通信和雷达系统中。

微波通信系统可以实现舰船之间的远程通信,并支持海上作战指挥和情报交流。

同时,微波雷达也可以实现对海上目标的探测和跟踪,提高海军的作战能力。

微波技术原理及其发展与应用

微波技术原理及其发展与应用

微波技术原理及其发展与应用微波技术在短短的几十年内已渗透到各行各业,对社会发展和人们的生活产生了深远影响。

文章在微波发展的基础上,详细介绍了微波加热和微波灭菌两种技术的作用机理,并对微波加热的条件、特点等作出说明,另外,还包括微波技术在各个领域的广泛应用,同时对微波技术目前存在的问题作了分析,并对微波技术的发展前景作了展望。

标签:微波技术;微波加热;微波灭菌;原理;应用;前景1 引言微波是一种波长很短的电磁波,其波长范围在0.1mm~1m之间,由于其最长波长值比超短波最小波长值还要短,故称其为微波。

微波具有极高的频率,其范围在300MHz~3000GHz之间,故微波亦称作“超高频电磁波”。

微波整体范围介于红外线与超短波之间,根据微波波长范围的不同,又可将微波分为分米波、厘米波、毫米波以及亚毫米波。

微波在整个电磁波频谱中所处的位置简图如图1所示[1]。

随着科学的发展,微波技术得到了广泛的应用,尤其是在通信行业,如微波卫星通信、微波散射通信、模拟微波通信和数字微波通信等。

为避免微波通信频率与工业、医学、科学等的频率相互干扰,故将微波通信频率与其他用途的微波频率分开使用。

目前,工业、医学、科学常用的微波频率有433MHz、915MHz、2450MHz、5800MHz、22125MHz,其中915MHz和2450MHz在我国常用于工业加热。

2 微波技术的发展历程微波技术的发展主要取决于微波器件的应用和发展。

早在20世纪初,就有研究人员开始了对微波理论的探索,并进行了相关的实验研究。

但由于当时信号发生器功率较小,加之信号接收器灵敏度较差,使得实验未能取得实质性的进展[2]。

1936年,波导技术的进一步发展为微波技术的研究提供了可靠的理论及实将波导用作宽带传输线并申验条件。

美国电话电报公司的George C. Southworth.请了专利,同时,美国麻省理工学院的M.L.Barrow完成了空管传输电磁波的实验,这些工作为规则波导奠定了理论基础,推动了微波技术进一步向前发展[3]。

微波功率放大器发展探讨

微波功率放大器发展探讨

微波功率放大器发展探讨摘要:微波功率放大器主要分为真空和固态两种形式。

本文将对两种器件以及它们竞争与融合的产物——微波功率模块(MPM)的发展情况作一介绍与分析。

关键词:微波功率放大器;发展0引言微波功率放大器主要分为真空和固态两种形式。

基于真空器件的功率放大器,曾在军事装备的发展史上扮演过重要角色,而且由于其功率与效率的优势,现在仍广泛应用于雷达、通信、电子对抗等领域。

后随着GaAs晶体管的问世,固态器件开始在低频段替代真空管,尤其是随着GaN,SiC等新材料的应用,固态器件的竞争力已大幅提高。

1 真空放大器件研究与应用现状跟固态器件相比,真空器件的主要优点是工作频率高、频带宽、功率大、效率高,主要缺点是体积和质量均较大。

真空器件主要包括行波管、磁控管和速调管,它们具有各自的优势,应用于不同的领域。

其中,行波管主要优势为频带宽,速调管主要优势为功率大,磁控管主要优势为效率高。

行波管应用最为广泛,因此本文主要以行波管为例介绍真空器件。

随着技术的不断进步,现阶段行波管主要呈现以下特点。

一是高频率、宽带、高效率的特点,可有效减小系统的体积、重量、功耗和热耗,在星载、弹载、机载等平台上适应性更强,从而在军事应用上优势突出。

二是耐高温特性,使行波管的功率和相位随着温度的变化波动微小,对系统的环境控制要求大大降低。

三是抗强电磁干扰和攻击特性,使其在高功率微波武器和微波弹的对抗中显示出坚实的生存能力。

四是寿命大幅提高,统计研究显示,大功率行波管使用寿命普遍大于5 000 h,中小功率产品寿命大于10 000 h,达到武器全寿命周期。

1.1 行波管有源组阵技术国外近几年主要在更高频段发展一系列的小型化行波管,频段覆盖X,Ku,K,Ka,140 GHz等,并不断在新技术上获得突破。

国内经过近10多年的努力,行波管在保持大功率和高效率的前提下,体积减小了1个数量级,为有源组阵技术奠定了良好的基础。

行波管有源组阵的形式分为单元放大式和子阵放大式两种。

微波功率晶体管技术的发展研究

微波功率晶体管技术的发展研究

微波功率晶体管技术的发展研究微波功率晶体管(MPT)技术是微波通讯领域的一项重要技术,具有广泛的应用前景。

随着社会科技的进步和信息化的快速发展,微波通讯在许多领域中得到广泛应用,如卫星通信、雷达、无线通信等。

而MPT技术的发展则为微波通讯的发展注入了新的活力。

MPT是用于生成和放大微波信号的器件。

MPT是半导体器件中最有前途、最富有希望的领域之一。

MPT技术的发展,主要集中在提高晶体管的功率输出、线性度和效率。

MPT对于提高微波通讯的性能具有重要的作用。

MPT的发展历史可以追溯到二十世纪五十年代,当时人们在实验中发现,用晶体管工作在甚高频段可以将其用作微波发生器和放大器,这为微波通讯领域打开了新的可能性。

此后,MPT技术开始迅猛发展,应用领域也变得越来越广泛。

目前,MPT已经成为无线通信、雷达、卫星通信等领域的必备器件。

MPT技术的研究和发展主要涉及以下方面。

1.材料和工艺技术MPT的性能主要取决于晶体管的材料和工艺技术。

因此,材料和工艺技术的研究是MPT技术的重要方面。

目前,MPT所采用的材料主要是氮化硅、氮化铝、砷化镓等。

而工艺技术的研究主要集中在提高晶体管的质量和生产效率。

2.晶体管结构优化晶体管的结构对于其性能有着重要的影响。

目前,晶体管结构优化的研究主要集中在提高功率输出和线性度。

同时,晶体管的对称性和稳定性也是研究的重点之一。

3.效率和线性度的提高效率和线性度是衡量MPT性能的重要指标。

目前,主要的研究方向集中在提高晶体管的效率和线性度。

效率的提高主要通过减少能量的散失来实现。

而线性度的提高主要是通过改善晶体管的非线性特性来实现。

4.温度特性的研究温度特性是MPT性能的重要指标之一。

随着微波通讯的发展,MPT技术的应用范围越来越广泛,因此其温度特性的研究也变得越来越重要。

目前,研究的方向主要集中在提高晶体管的温度稳定性和降低其温度漂移。

总之,随着科技的不断进步,MPT技术的发展也在不断地向前推进。

我国微波技术应用的发展现状及市场前景

我国微波技术应用的发展现状及市场前景
(吉林建筑工程学院电气与电子信息学院,吉林长春 1301 18)
【摘 要】本文指 出 目前我国微波应用技术在工业 、医药等行业 的具体研发 内容 、方 向和 目标 ,并论述 了现 阶段微波技术应用 的不足和问题 ,预测了我国微波应用工 程市场 的良好发展前景 。 [关键词】微 波技术 ;设备技术 ;产业化 【中图分类号】TN40 【文献标识码】A [文章编号】1008—178X(2012)06—0045—03
加 强科 研 单 位 和高 校 的合作 ,以减 少 许多 项 目长 期停 留在实 验 而不 能转 向生产 的情 况 。因此 ,微 波技 术应用研发单位应具有规模试验的能力 ,必要时可先组织规模实验 ,使超大规模业化工程设计更具有可靠 性 ,将 大专 院校 、研 究所 及 实验 室 的科研 成果 尽 快产业 化 。 2 研 发 的具体 内容及 发展 方 向 2.1 磁 控 制管 研发
微 波 应用 从 加 热干 燥转 向高科 技应 用 ,在实 验 室应 用 中暴 露 出许 多需 要切 实解 决 的 问题 ,对 此 ,笔 者 提 出如 下措 施 :(1)增 加微 波 功率 源 的输 出稳 定 性 ,强 调 功率 的一致 性 ,毫 秒 级 调制 手 段 和调 制 重 复 精度 , 研 制超 大 功 率 的微 波功 率 源 ;(2)提 高大 功率 微 波小 传输 元 件及 功 率 比例取 样元 件 的质 量 ;(3)研究 有 效 的传 感 工艺 参 数 方法 和 闭环 控制 方 法 ;(4)为 适应 新 的应 用发 展 方 向 ,必 须 研究 多种 应 用器 设计 方法 ,使 应 用 器 的设计具有高度兼容性及适应性 。
克 服 目前产 品质 量不 理 想 的局 面 ,并在 此基 础 上研 究 长 寿命 、高 可靠 、高稳 定度 的微 波功 率源 。研制 成套 的大功率微波元件及应用器设计方法 ,包括气相 、液相 、固相处理及真空干燥应用器 。以高效 、环保 干燥设备取代部分以蒸汽、油锅炉为能源 的干燥技术领域 ,并研制多种传感方法及 闭环控制 。

2024年微波器件市场调研报告

2024年微波器件市场调研报告

2024年微波器件市场调研报告1. 引言本报告对微波器件市场进行了综合调研和分析。

微波器件是一种广泛应用于无线通信和雷达系统中的重要组成部分。

本报告旨在帮助读者了解微波器件市场的现状、市场规模和增长趋势,并提供有关主要参与者、竞争环境和市场机会的深入洞察。

2. 市场概述2.1 定义微波器件是指在微波频段(300 MHz至300 GHz之间的频段)中工作的电子器件。

它们包括微波功率放大器、微波二极管、微波滤波器等。

2.2 市场分类根据功能和应用领域的不同,微波器件市场可以分为以下几个主要分类:•微波功率放大器市场•微波二极管市场•微波滤波器市场•微波开关市场•微波无源器件市场2.3 市场规模和增长趋势根据市场调研和数据分析,微波器件市场规模在过去几年内持续增长。

预计在未来几年内,随着5G通信和物联网的快速发展,微波器件市场将继续保持强劲增长。

3. 市场主要参与者3.1 参与者概述微波器件市场涉及多个参与者,包括制造商、供应商和分销商。

在全球范围内,一些重要的参与者在市场上扮演着关键角色。

3.2 主要厂商本报告列举了一些在微波器件市场上具有重要地位的主要厂商,他们包括:•公司A•公司B•公司C•公司D•公司E3.3 市场竞争环境微波器件市场竞争激烈,厂商之间在产品性能、价格和服务等方面进行竞争。

技术创新和产品研发能力成为了赢得市场份额的关键因素。

4. 市场机会和挑战4.1 市场机会随着5G通信和物联网的快速崛起,微波器件市场面临着巨大的机会。

高速、低延迟和高频宽等要求推动了微波器件的需求增长。

4.2 市场挑战微波器件市场也面临一些挑战。

其中包括技术复杂性、成本压力和市场竞争激烈等。

厂商需要不断提升产品性能、降低成本以及加强市场营销能力。

5. 总结微波器件市场具有广阔的发展前景,这得益于5G通信和物联网的快速发展。

在市场竞争激烈的环境下,主要参与者需要加强技术创新和产品研发能力,以赢得市场份额。

此外,厂商还需关注市场的机会和挑战,通过降低成本、提高性能以及加强市场营销能力来应对挑战。

微波器件的作用及应用介绍

微波器件的作用及应用介绍

微波器件的作用及应用介绍
一、微波器件简介工作在微波波段(频率为300~300000兆赫)的器件,称为微波器件。

微波器件是工作在微波波段的一系列相关器件的统称。

如连接元件、终端元件、匹配元件、衰减与相移元件、分路元件、滤波元件等。

通过电路设计,可将这些器件组合成各种有特定功能的微波电路,微波期间和微波电路共同构成了微波系统。

二、微波器件的分类微波器件按结构可分为:波导型、同轴线型、微带线型
按工作波形分为:单模器件、多模器件
按网络端口可分为:一端口网络、二端口网络、三端口网络、四端口网络。

三、微波器件的作用1.终端负载元件:为一端口互易元件,主要包括短路负载、匹配负载和失配负载
1)短路负载,要求:
(1)保证接触处的损耗小,
(2)当活塞移动时,接触损耗变化小;
(3)大功率时,活塞与波导壁间不应产生打火现象。

可用作调配器,纯电抗元件
结构方式:接触式、扼流式(金属片)
2)匹配负载
全部吸收输入功率的元件主要技术指标:工作频率f、输入驻波比、功率容量。

作为匹配标准、等效天线、吸收负载等。

3)失配负载
作为标准失配负载。

吸收一部分功率,反射一部分功率。

2.微波连接元件:二端口互易元件。

主要包括:波导接头、衰减器、相移器、转换接头。

作用是将作用不同的微波元件连接成完整的系统。

无耗互易二端口网络的基本性质:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微波功率器件及其材料的发展和应用前景来源:《材料导报》内容摘要:介绍了微波功率器的发展和前景,对HBT, MESFET 和HEMT微波功率器件材料的特点和选取,以及器件的特性和设计做了分类说明。

着重介绍了SiGe合金.InPSiC、GaN等新型微波功率器件材料。

并对目前各种器件的最新进展和我国微波功率器件的研制现状及与国外的差距做了概述与展望。

文剑曾健平晏敏(湖南大学应用物理系,长沙410082)0 概述由Ge、Si、Ⅲ-V化合物半导体等材料制成的,工作在微波波段的二极管、晶体管称为微波器件。

微波即波长介于1m~1mm之间的电磁波,相应频率在300MHz~300GHz之间。

微波半导体器件在微波系统中能发挥各方面性能,归纳起来为微波功率产生及放大、控制、接收3个方面。

对微波功率器件要求有尽可能大的输出功率和输出效率及功率增益。

进入20世纪90年代后,由于MOCVD(金属有机化学气相淀积)和MBE(分子束外延)技术的发展,以及化合物材料和异质结工艺的日趋成熟,使三端微波器件取得令人瞩目的成就,使得HBT(异质结双极型晶体管)、MESFET(肖特基势垒场效应晶体管)以及HEMT(高电子迁移率晶体管)结构的各种器件性能逐年提高。

与此同时,在此基础上构成的MMIC(单片集成电路)已实用化,并进人商品化阶段,使用频率基本覆盖整个微波波段,不仅能获得大功率高效率而且,噪声系数小。

随着微波半导体器件工作频率的进一步提高,功率容量的增大,噪声的降低以及效率和可靠性的提高,特别是集成化的实现,将使微波电子系统发生新的变化。

表1列出了几种主要的三端微波器件目前的概况。

表1 微波三端器件概况1 HBT功率微波器件的特性及设计要点微波双极型晶体管包括异质结微波双极型晶体管和Si 微波双极型晶体管。

Si器件自20世纪60年代进入微波领域后,经过几十年的发展,性能已接近理论极限,并且其理论和制造已非常成熟,这可为后继的第二代、第三代器件借鉴。

HBT主要由化合物半导体或合金半导体构成,需要两种禁带宽度不同的材料分别作为发射区和基区,宽带隙材料作发射区,窄带隙材料作基区。

当为DHBT(双异质结双极型晶体管)时,集电区与基区材料带隙也不相同。

为更加有效地利用异质结晶体管的特性,其结构也不再是普通的平面结构,而是采用双平面结构。

1.1 材料的选取及特性虽然大部分微波功率器件被Ⅲ-V化合物功率器件占据,但Ⅲ-V化合物HBT在目前也存在着可用频率范围小、材料制备及工艺成本高,器件在这些材料上的集成度不高,机械强度小以及在大功率情况下热不稳定现象严重,并可能造成发射结陷落和雪崩击穿,以及晶格匹配和热匹配等问题。

InP自身具有良好的特性,与GaAs相比,击穿电场、热导率、电子平均速度均更高,而且在异质结InAlAs/InGaAs界面处存在着较大的导带不连续性、二维电子气密度大,沟道中电子迁移率高等优点,决定了InP基器件在化合物半导体器件中的地位和优异的性能。

随着近几年对InP器件的大力开发和研制,InPHBT有望在大功率、低电压等方面开拓应用市场,拥有更广的应用领域。

987年Lyer.S.S和Patton.G.L等首次发表了用MBE技术成功地研制出Si0.88Ge0.l2基区HBT,使SiGe合金受到关注。

由于近年来的研究,基于SiGe的HBT器件很好地解决了材料问题,因其与SiCMOS器件工艺的兼容性,使得SiGe HBT能够高度集成,而且由于材料的纯度与工艺的完善,使其具有比Ⅲ-V化合物HBT更小的1/f噪声。

SiGe合金的带隙可根据组分的变化自由调节,且其电子、空穴的迁移率比Si中的高,由于比硅单晶器件有更好的性能,SiGe与目前的硅超大规模集成电路制造工艺的兼容性使其在成本与性价比方面具有极大的优势,因此SiGe被看作是第二代器件材料,受到广泛重视。

由于Si和Ge有高达4.2%的晶格失配,则必须在低温下才能生长出高质量的SiGe/Si异质结,并且Ge组分越小热稳定性就会越好。

1.2 器件的设计功率微波晶体管不仅工作频率高,而且承受的功率大,即要求有大的电压和电流容量。

提高电流容量需增加发射极总周长,并防止大电流下的发射结注入效率下降,避免有效基区扩展效应和发射极电流集边效应等。

从频率和功率两方面考虑则可用增益带宽乘积来表示:其中G TM是增益,f是带宽,f T是特征频率,l e为发射极寄生电感,r b是基区电阻,C C 是集电极电容。

故要减小结面积以减小电容C C,并减小r b。

HBT理论(利用半导体材料带隙宽度的变化及其作用于电子和空穴上的电场力来控制载流子的分布和流动)的提出很好地解决了这些问题。

由于HBT晶体管发射区材料的禁带宽度比基区大,对npn型HBT,其宽禁带的发射区势垒阻碍了基区空穴的注入,因而可在注入比不变的情况下提高基区掺杂浓度,降低基区电阻。

采用选择再生长技术可将其基区电阻r b缩小4倍,同时利用非晶InGaAs缓变基区使通过再生长的基于GaAs的HBT获得更低的rb、C C,从而获得更高的f max,这样可扩大Ⅲ-V 化合物器件的频率范围。

这些器件有26GHz HBT,输出功率为3.63W,功率效率(PAE)为21%;35GHz HBT,输出功率为1W,效率为29%等。

此外,我国中科院做电子研究所利用发射极金属掩蔽进行内切腐蚀的方法研制成自对准InGaP/GaAs HBT,其特征频率(f T)达到54GHz。

由于热传导的二维、三维效应,晶体管的结温不处于统一温度,而是随位置变化的。

在微波功率管中,这种现象更加明显,究其原因主要有:①微波应用中,发射极与基极的线条更细、发射极间距更小、热偶合更加显著;②为提高微波和功率性能,集电极电流密度很大,因而功率密度更高;③为获得更大的功率和充分利用芯片面积,器件有源区的面积也不断增加,器件的中心区域热流趋近一维传导,而边缘则是二维、三维导热;④发射极电流密度对温度的正反馈,电流集中于中心区域。

所以中心与边缘温度相差很大,严重时可达几十度,导致器件的可靠性下降。

实验表明,低掺杂的外延层不仅能作为镇流电阻,而且还能非常有效地降低发射极电流集边效应,大大提高了器件可靠性,此法主要是减弱发射极电流密度对温度的正反馈效应,不能改变热流的二维、三维效应。

采用不等间距和不等发射极条长设计或发射条的间断设计 (即在器件的中心区边缘发射条断开,并空出此区域,因而在此区域没有功耗)可获得结温一致的晶体管。

2003年蔡勇等人的模拟数据表明,采用功率密度非均匀设计可整体提高微波功率晶体管器件的可靠性。

对于Si/SiGe/Si的器件的设计,可采用双平面结构。

与小功率微波HBT器件相比,微波功率器件的发射结大小的特性并不是最重要的。

器件设计的目标是大功率和高速度,即对于SiGe HBT来说既要有大的输出功率,又要有高的微波波段响应频率,这两方面是互相限制的,所以当器件用作功率放大器时其特性可用最高振荡频率来衡量,即:为了提高器件的频率响应,采用了竖直和外延结构优化组合设计方法来达到高的,f max 值。

对于SiGe HBT,Ge的含量必须很好设计,这有利于提高器件的性能。

最大的Ge成分是在E-B结一边,然后向B-C结渐变降低,是最合适的选择,当前的研究表明35 at%左右(<40 at%)的Ge含量可使少子在基区的迁移率达到最大。

作为功率器件,基区要求高掺杂,可降低基区电阻,并可产生良好的欧姆接触,从而降低接触金属的宽度,并能使基区宽度进一步缩小,这可提高频率特性(在不考虑基区穿通的情况下)。

高掺杂将降低载流子迁移率。

但根据基区掺杂浓度的增加带来的好处超过了载流子迁移率下降的弊端。

集电区厚度及掺杂浓度的设计对功率微波晶体管来说最为重要,因为它将影响器件的热效应和速度,采用厚的轻掺杂的集电区有利于提高f max,同时也会降低热效应,这给器件功率特性(即减小了集电结电流密度)带来不利影响。

虽然厚集电区会使τc增加而使f T下降,但它带来的好处(降低C C和热效应以及有大的击穿电压和好的线性度)也超过了使fT下降的不良影响。

在一般情况下,SiGe微波功率HBT的基区掺杂浓度在1020cm3数量级,集电区掺杂浓度在3×1016cm3左右。

Ge的含量在合金中占30 at%。

2 MESFET功率微波器件的特性及设计要点2.1 材料的选取及特性在上个世纪70年代后期,GaAs单晶及外延技术获得突破,GaAs肖特基势垒栅场效应晶体管(MESFET)得以成功制成。

GaAs材料的电子迁移率比Si的高7倍,且漂移速度快,所以GaAs比Si具有更好的高频特性,并具有电路损耗小、噪声低、频带宽、动态范围大、功率大、附加效率高等特点,而且GaAs是直接带隙,禁带宽度大,因而器件的抗电磁辐射能力强,工作温度范围宽,更适合在恶劣的环境下工作。

由于GaAs器件具有以上优点,GaAs MESFET已几乎占领了微波应用的各个领域。

20世纪90年代中后期对于SiC材料的研究表明,它的性能指标比GaAs器件还要高一个数量级。

SiC具有下列优异的物理特点:高的禁带宽度(4H-SiC,3.2eV),高的饱和电子漂移速率(2×107cm/s),高的击穿强度(4×106V/cm),低的介电常数和高的热导率(4.9W/cm·k)。

上述这些优异的物理特性,决定了SiC在高温、高频率、高功率的应用场合是极为理想的半导体材料。

在同样的耐压和电流条件下,SiC器件的漂移区电阻要比Si低200倍。

其功率密度是Si和GaAs的3~4倍,热导性能是Si的3倍,是GaAs的10倍。

用SiC材料制造的MESFET的射频(RF)功率密度达到4.6W/mm,功率效率(PAE)达到65.7%,击穿电压超过100V,SiC的型体非常多,在半导体应用时4H-SiC和6H-SiC由于单晶生长工艺的成熟以及较好的重复性而应用较广,目前已商品化,尺寸也由25mm增大到50mm,75mm的晶元也有样品展出,产品目前主要来自于美国的Cree公司。

2.2 器件的设计SiC器件由于过去缺乏高质量的大SiC衬底而受到限制,体SiC的最大缺陷是微管 (材料中0.5~lμm直径的空洞)。

Cree公司在这方面取得了大的进展,制造出4H-SiC晶片微管密度<lcm-2。

并已报道SiC MESFET已达到f max=50GHz,功率密度为4.6W/mm。

而目前最大功率SiC器件已由Cree公司研制出,其工作频率在3.1GHz时功率为80W,PAE为31%,栅长0.7μm,栅宽48mm,工作电压58V(f T=9GHz,f max=20GHz)。

其设计目前已可采用多指栅,由于器件有超过2个的栅,因此需要空中桥 (air bridge),Chalmers大学报道了一种制造空中桥的多指栅高功率SiC MESFET 工艺,空中桥是用纯金形成,器件是建立在Cree 公司半绝缘4H-SiC的3层同质外延结构,从上到下的层结构为0.15μmN型覆盖层(N D=1×1019cm3),0.5μmN型沟道层(ND=1×1017cm3)和0.5μm的P型缓冲层(N A=5 ×1015cm3),栅下沟道厚度是0.35μm,栅长0.5μm,栅源间隙0.5μm,栅漏间隙为1.0μm,栅接触由多层金属结构(Ti/Pt/Au)构成。

相关文档
最新文档