有理数的意义-知识讲解
第一讲《有理数》《数轴》
第一讲《有理数》《数轴》引言有理数是我们常见的一类数,包括整数和分数。
它们在数学中具有重要的地位,因为它们可以覆盖我们日常生活中的绝大部分数量关系。
在本讲中,我们将介绍有理数的定义、性质和表示方法,以及数轴的概念和使用方法。
一、有理数的定义和性质1.1 定义有理数是可以表示为两个整数的比值的数,其中分母不为零。
整数是有理数的特殊情况,可以看作分母为1的有理数。
有理数可以是正数、负数或零。
1.2 性质有理数有以下性质:•有理数的加法、减法和乘法运算仍然得到有理数。
•有理数的除法运算结果可能是有理数,也可能是无理数(不能表示为两个整数的比值)。
二、有理数的表示方法有理数可以用分数、整数或小数形式表示。
2.1 分数表示法分数是有理数最常见的表示形式,它由一个分子和一个分母组成,分子表示被分割的份数,分母表示总共的份数。
分数可以是正数、负数或零。
2.2 整数表示法整数是没有小数部分的有理数。
它可以是正整数、负整数或零。
2.3 小数表示法小数是有理数的一种特殊表示形式。
它可以有有限的数字部分和无限的循环部分,也可以是有限的数字部分。
三、数轴的概念和使用方法3.1 数轴的定义数轴是由一条直线和一个固定原点组成的图形,用来表示数的大小和位置关系。
原点通常表示零,正方向表示正数,负方向表示负数。
3.2 数轴的使用方法数轴可以用来表示有理数的位置和大小关系。
我们可以通过在数轴上画点、画线段等方式来表示有理数的位置。
数轴上两个数之间的距离,即两个数的差的绝对值,表示它们之间的差别大小。
有理数是我们日常生活中非常重要的数,它包括整数和分数。
有理数可以用分数、整数或小数形式表示,可以在数轴上表示它们的位置和大小关系。
了解和掌握有理数的定义、性质和表示方法,以及数轴的概念和使用方法,对我们的数学学习和实际应用都非常有帮助。
参考文献:•《数学教学参考书》•《高中数学学科教学大纲》。
七年级上册第二章有理数知识点汇总
第二章有理数及其运算一、有理数的意义1.有理数的分类知识点:大于零的数叫正数,在正数前面加上“﹣”(读作负)号的数叫负数;如果一个正数表示一个事物的量,那么加上“﹣”号后这个量就有了完全相反的意义;3, 5.2也可写作+3,+5.2;零既不是正数,也不是负数。
或2.数轴知识点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线; 数轴的三元素:原点、正方向、单位长度,这三元素缺一不可,是判断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(因为所有的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地解释相反数,帮助理解绝对值的意义,3)比较有理数的大小:a )右边的数总比左边的数大,b )正数都大于零,c )负数都小于零,d )正数大于一切负数3. 相反数知识点:只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。
4. 绝对值知识点:数a 的绝对值就是数轴上表示数a 的点与原点的距离,数a 的绝对值记作∣a ∣;绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,即若a>0,则∣a∣=a. 若a=0,则∣a∣=0. 若a<0,则∣a∣=﹣a ;绝对值越大的负数反而小;两个点a与b之间的距离为:∣a-b∣。
二、有理数的运算1. 有理数的加法知识点:有理数的加法法则:1)同号两数相加,取相同的符号,并把绝对值相加;2)异号两数相加,①绝对值相等时,和为零(即互为相反数的两个数相加得0);②绝对值不相等时,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3)一个数和0相加仍得这个数。
加法交换律:a+b=b+a;加法结合律:a+b+c=a+(b+c)多个有理数相加时,把符号相同的数结合在一起计算比较简便,若有互为相反的数,可利用它们的和为0的特点。
有理数的意义分析
有理数单元教学目标1了解有理数的意义。
会用正数与负数表示相反意义的量,会按要求把给出的有理数归类。
2了解数轴、相反数、绝对值的概念。
会画数轴,会用数轴上的点表示整数或分数(以刻度尺为工具),会求有理数的相反数与绝对值(绝对值符号内不含字母)。
3掌握有理数大小比较的法则。
会用不等号连接两上或两个以上不同的有理数。
单元教学重点1有理数(特别是负数)和绝对值的意义。
2数形结合的思想方法。
单元教学策略有理数是根据学生熟悉的实际需要,对小学学过的数的进一步护展。
对于本单元的学习,学生已有一定的知识基础和生活体验。
教学时教师应注意避免多讲,要从学生已有的知识和熟知的实例出发,引导学生认真阅读、思考、讨论,形成新的认知结构。
同时还要注意为后面的学习做好准备。
教学手段和方法1引导学生把学过的知识和熟悉的事例与新的学习内容联系起来2指导学生阅读、讨论、练习、总结。
3使用投影仪。
第1、2课时正数与负数一、学习目标1了解正数与负数是由于实际需要而产生的,会初步应用正负数表示实际生活中的有关量。
2了解有理数的概念,会判断一个数是正数还是负数,是整数还是分数。
二、教学过程师:同学们先回顾一下我们在小学学过哪些数(小学六年级就接触了负数)填空1在数物体时,物体的个数用 ___________________________ 示;一个物体也没有,就用_________________________ 示。
2测量和计算有时得不到整数的结果,就要用 ______________________________ 示。
3北京冬季里的一天,白天最高气温比0C高10C,记作10C ;夜晚最低气温比0C低5C,记作_______________________________________ 。
在中国地形图上,珠穆朗玛峰处标着8848,表示不打珠穆朗玛峰比海平面高8848米;叶鲁番盆地处标着-155,表示叶鲁番盆地比海平面低21 2 8848、-155,21师:在黑板上写出11、2、3、0、-5、21、1.5、-1、1.5、2请同学们认真观察教师写出的数,以四个小组为单位,讨论下面的问题1哪些数是我们在小学已经学过的?自然数包括0吗?2哪些数我们还没有学过?试说明它们都是在实际需要中产生的。
七年级数学有理数知识点章节复习与练习题
A. B. C. D.
三、相反数
1.概念:只有符号不同的两个数叫做互为相反数。0的相反数仍是0.
2.几何定义:在数轴上原点的两侧,到原点的距离相等的两点所表示数为相反数。
3.任何一个数都有它的相反数
4.相反数性质:a与b互为相反数,则a+b=0.
1.如果a和b是符号相反的两个数,在数轴上a所对应的数和b所对应的点相距6个单位长度,如果a=-2,则b的值为_________________.
2.已知x、y互为相反数,则-15(x+y)=__________________.
3.如果a的相反数是最大的负整数,b的相反数是最小的正整数,a+b=___________.
注意:循环小数是无限小数,也称作无限循环小数。整数和分数都可以写成有限小数或无限循环小数,所以有理数也可以分类为有限小数和无限循环小数。
1.下列说法中正确的是( )
A、一个有理数,不是正数就是负数 B、一个有理数,不是整数就是分数
C、有理数可分为非负有理数和非正有理数 D、整数和小数统称有理数
2.若两个有理数的和是正数,那么一定有结论( )
2.计算:
3.计算
七、科学计数法
将一个大于10的数字表示成 的形式(其中1≤a<10,n表示正整数),这种记数方法叫科学记数法.
1.某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是( )
A.2.3×105辆 B.3.2×105辆 C.2.3×106辆 D.3.2×106辆
四、绝对值
在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的意义包括知识点与配合练习
有理数的意义、数轴、绝对值第一部分:有理数1、正负数的概念:比0大的数是正数,比0小的数是负数。
“—”用正数和负数表示相反意义的量Ⅰ. 相反意义的量必须包含两个因素:1、它们的意义相反;2、它们都具有数量,而且一定是同类量。
Ⅱ.相反意义的量可以人为的规定其正负。
在实际生活中,习惯把零以上的温度、上升的高度、收入、买入物品等规定为正数,而把它们相反意义的量规定为负的,用负数表示。
2、对“0”的理解:0不在正、负数的范围内,它是正数和负数的分水岭。
它的意义非常特殊,它既可以表示无意义,也可以表示其他特殊的意义。
3、有理数的概念:整数和分数统称为有理数;正数、负数、零都是有理数。
4、有理数的分类:例1:(1)如果把收入50元记做50元,那么下列各数分别表示什么意义?20元 2.5元 -80元 0元(2)如果6摄氏度用6C︒表示,那么零下4摄氏度如何表示?例2:把13121271 2.80734%0.67247--、、、、、、、、、、、、、、-、、分别填在表示正数和负数的圈内。
正数负数巩固练习:1、如果规定向南走为正,那么﹣100米表示向________走100米。
2、某公司股票上周五的收盘价是27元,下表为本周内每日该股票的涨跌情况(上涨为正):由上表知,星期一收盘时,每股价格是元,星期四收盘时,每股价格是元。
3、下列说法正确的是()A.一个有理数不是正数就是负数B.一个有理数不是正数就是分数C.有理数是指整数、分数(正有理数、0、负有理数)D.以上说法都正确4、把下列各数填入相应的大括号内:-7,3.01,300%,-0.142,0.1,0,5/3,-355/113,12 (1)正整数集:{ };(2)分数集:{ } (3)负数集:{ };(4)非负整数集:{ }5、下列判断正确的是( )A.所有的整数都是正数B.正整数,负整数统称为整数C.分数一定是有理数D.有理数包括小数和整数6、某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()A.-10℃ B.-6℃ C.6℃ D.10℃第二部分:数轴的再认识与相反数1、数轴的再认识(1)数轴的三要素:原点、正方向、长度单位。
有理数知识点总结
有理数知识点总结有理数是数学中的一个重要概念,它是整数和分数的统称。
有理数的学习对于我们理解数学运算、解决实际问题都具有重要意义。
接下来,让我们一起详细地总结一下有理数的相关知识点。
一、有理数的定义有理数包括正整数、零、负整数和正分数、负分数。
可以写成两个整数之比的数就是有理数。
例如,5 可以写成 5/1,-3/4 等都是有理数。
需要注意的是,无限不循环小数不是有理数,比如圆周率π。
二、有理数的分类(一)按定义分类1、整数:包括正整数、零和负整数。
例如 3、0、-5 等。
2、分数:包括正分数和负分数。
比如 1/2、-7/8 等。
(二)按性质分类1、正有理数:包括正整数和正分数。
像2、3/4 等。
2、零:单独的一个数字 0。
3、负有理数:包括负整数和负分数。
例如-1、-5/6 等。
三、有理数的数轴表示数轴是一条规定了原点、正方向和单位长度的直线。
任何一个有理数都可以在数轴上找到对应的点。
例如,数字 2 在原点右边 2 个单位长度的位置,-3 则在原点左边 3 个单位长度的位置。
数轴上,右边的数总比左边的数大。
正数都大于0,负数都小于0,正数大于负数。
四、有理数的相反数只有符号不同的两个数叫做互为相反数。
例如,5 的相反数是-5,-1/3 的相反数是 1/3。
0 的相反数是 0。
互为相反数的两个数之和为 0。
即如果 a 和 b 互为相反数,那么 a+ b = 0 。
五、有理数的绝对值绝对值的定义:数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作|a| 。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是 0 。
即:如果 a > 0,那么|a| = a ;如果 a = 0,那么|a| = 0 ;如果 a < 0,那么|a| = a 。
绝对值具有非负性,即|a| ≥ 0 。
六、有理数的比较大小1、正数大于 0,0 大于负数,正数大于负数。
2、两个负数比较大小,绝对值大的反而小。
有理数知识点梳理
第一部分有理数知识点梳理一、有理数的意义1、正数和负数知识点1 负数的引入正数和负数是根据实际需要而产生的,随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,比如一些有相反意义的量:收入200元和支出100元、零上6和零下等等,它们不但意义相反,而且表示一定的数量,怎样表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的的量规定为负的,这样就产生了正数和负数。
用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的,但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负。
知识点2 正数和负数的概念(1)像3、1.5、、584等大于0的数,叫做正数,在小学学过的数,除0以外都是正数,正数比0大。
(2)像-3、-1.5、、-584等在正数前面加“-”(读作负)号的数,叫做负数。
负数比0小。
(3)零即不是正数也不是负数,零是正数和负数的分界。
注意:(1)为了强调,正数前面有时也可以加上“+”(读作正)号,例如:3、1.5、也可以写作+3、+1.5、+。
(2)对于正数和负数的概念,不能简单理解为:带“+”号的数是正数,带“-”号的数是负数。
例如:-a一定是负数吗?答案是不一定。
因为字母a可以表示任意的数,若a表示的是正数,则-a是负数;若a表示的是0,则-a仍是0;当a表示负数时,-a就不是负数了(此时-a是正数)。
知识点3 有理数的有关概念(1)有理数:整数和分数统称为有理数。
注:(1)有时为了研究的需要,整数也可以看作是分母为1的数,这时的分数包括整数。
但是本讲中的分数不包括分母是1的分数。
(2)因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看作分数。
(3)“0”即不是正数,也不是负数,但“0”是整数。
(2)整数包括正整数、零、负整数。
例如:1、2、3、0、-1、-2、-3等等。
有理数的概念及使用知识点整理
(一)有理数的基本概念1、正数和负数(1)、大于0的数叫做正数。
(2)、在正数前面加上负号“-”的数叫做负数。
(3)、数0既不是正数,也不是负数,0是正数与负数的分界。
(4)、在同一个问题中,分别用正数与负数表示的量具有相反的意义。
2、有理数(1)凡能写成分数形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,如:-(-2)=4,这个时候的a=-2。
π不是有理数;(2)有理数的分类:①⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)自然数<====>0和正整数;a >0 <====>a 是正数; a <0 <====>a 是负数; a ≥0<====>a 是正数或0<====>a 是非负数; a ≤0<====>a 是负数或0<====>a 是非正数.3、数轴【重点】(1)、用一条直线上的点表示数,这条直线叫做数轴。
它满足以下要求:① 在直线上任取一个点表示数0,这个点叫做原点;② 通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向; ③ 选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示 1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…(2)、数轴的三要素:原点、正方向、单位长度。
(3)、画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。
数轴的规范画法:是条直线,数字在下,字母在上。
注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。
(4)、一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是a 个单位长度。
4、相反数(1)、只有符号不同的两个数叫做互为相反数。
初一数学@有理数的概念
第一章 有理数一、全章知识结构二、回顾正数、负数的意义及表示方法1、大于0的数叫做正数;正数的表示方法:a>0,2、在正数前面加上“-”号,表示比0小的数叫做负数;负数的表示方法:a<03、0即不是正数也不是负数。
正数,负数表示具有相反意义的量。
三、有理数的分类1、定义:整数和分数统称为有理数有限小数和无限循环小数都是有理数而无限不循环小数却不是有理数 2、有理数的分类:(1)按定义分类: (2)按性质符号分类:3、数轴:规定了原点,正方向和单位长度的直线叫做数轴。
数轴的作用:(1)用数轴上的点表示有理数; (2)在数轴上比较有理数的大小;(3)可用数轴揭示一个数的绝对值和互为相反数的几何意义;(4)在数轴上可求任意两点间的距离:两点间的距离=|x -y|=|y -x|四、有理数中具有特殊意义的数:相反数、倒数、绝对值、非负数 1、相反数:只有符号不同的两个数互为相反数。
(1)几何意义:在数轴上表示一对相反数的两个点与原点的距离相等。
(2)代数意义:只有符号不同的两个数。
(3)互为相反数的特性:a+b=0,0的相反数是0。
(4)会求一个数的相反数:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数a 的相反数为 a-b 的相反数为 2、倒数:(1)乘积是1的两个数互为倒数 (2)互为倒数的特性: ab=1, (3)0没有倒数(4)互为负倒数: 乘积是-1的两个数互为负倒数; ab=-1 3、非负数:(1)就是大于或等于0的数:a 0(2)数轴上,在原点的右边包括原点的点表示的数 (3)任何数的平方数都是非负数(4)非正数:就是小于或等于0的数:a 0(5)数轴上,在原点的左边包括原点的点表示的数 4、绝对值:(1)几何意义:一个数的绝对值就是它到原点的距离。
(2)代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零。
【数学知识点】有理数的定义和运算法则分享
【数学知识点】有理数的定义和运算法则分享有理数是指两个整数的比。
有理数为整数(正整数、0、负整数)和分数的统称。
正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。
有理数的定义有理数是指两个整数的比。
有理数是整数和分数的集合。
整数也可看做是分母为一的分数。
有理数的小数部分是有限或为无限循环的数。
正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。
因而有理数集的数可分为正有理数、负有理数和零。
有理数的加法运算法则1.同号两数相加,取与加数相同的符号,并把绝对值相加。
2.异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3.互为相反数的两数相加得0。
4.一个数同0相加仍得这个数。
5.互为相反数的两个数,可以先相加。
6.符号相同的数可以先相加。
7.分母相同的数可以先相加。
8.几个数相加能得整数的可以先相加。
有理数的减法运算法则减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。
有理数的乘法运算法则1.同号得正,异号得负,并把绝对值相乘。
2.任何数与零相乘,都得零。
3.几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。
4.几个数相乘,有一个因数为零,积就为零。
5.几个不等于零的数相乘,首先确定积的符号,然后后把绝对值相乘。
有理数的除法运算法则1.除以一个不等于零的数,等于乘这个数的倒数。
2.两数相除,同号得正,异号得负,并把绝对值相除。
零除以任意一个不等于零的数,都得零。
注意:零不能做除数和分母。
有理数的乘方运算法则1.负数的奇数次幂是负数,负数的偶数次幂是正数。
例如:(-2)³(-2的3次方)=-8,(-2)²(-2的2次方)=4。
2.正数的任何次幂都是正数,零的任何正数次幂都是零。
例如:2(2的2次方)=4,2 (2的3次方)=8,0(0的3次方)=0。
有理数的概念
有理数的概念有理数是数学中的一个重要概念,指的是可以用两个整数的比例来表示的数。
在数学中,有理数包括整数、分数和小数。
有理数的概念对我们在日常生活中的计算和理解数字有着重要的意义。
本文将介绍有理数的定义及其性质。
一、有理数的定义有理数是指可以由两个整数的比例来表示的数。
它们可以用分数的形式表示,形如a/b,其中a和b都是整数,且b不等于0。
例如,2/3、-4/5、7/2都是有理数。
有理数可以是正数、负数或零。
二、有理数的性质1. 有理数的四则运算有理数的加法、减法、乘法和除法都能够应用于有理数。
例如,当我们对两个有理数进行加法运算时,只需将它们的分子相加,分母保持不变。
例如,1/2 + 1/3 = (1+1) / 2 = 2/3。
同样地,减法、乘法和除法也可按照相应的规则进行。
2. 有理数的比较我们可以利用有理数的大小来进行比较。
如果两个有理数的分数形式的分子和分母满足一定的大小关系,那么这两个有理数的大小关系也相同。
例如,2/3 > 1/2,因为2乘以2大于1乘以3。
3. 有理数的绝对值有理数的绝对值是该数到0的距离,总是非负的。
对于正数,它的绝对值等于这个数本身;对于负数,它的绝对值等于这个数去掉负号。
例如,|-5| = 5,|3| = 3。
4. 有理数的相反数有理数的相反数是指与其绝对值相等但符号相反的数。
例如,3的相反数是-3,-5的相反数是5。
有理数的相反数与原有理数相加等于0。
三、有理数在实际生活中的应用有理数在实际生活中有着广泛的应用。
例如,在商业交易中,我们需要计算利润和亏损,这时就需要用到有理数的加法和减法运算。
在日常生活中,我们也常常使用有理数来表示时间、温度、海拔高度等。
有理数的概念帮助我们理解和处理这些实际问题。
总结:有理数是可以用两个整数的比例来表示的数,包括整数、分数和小数。
有理数的四则运算、比较、绝对值和相反数都有着相应的规则。
有理数在实际生活中有着广泛的应用。
有理数的概念知识点归纳及练习题
有理数的概念知识梳理有理数的概念一、目标认知学习目标:了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量。
掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小。
掌握一个数的绝对值的求法和性质,进一步学习使用数轴,借助数轴理解绝对值的几何意义。
重点:有理数的概念及其分类,相反数的概念及求法,绝对值的概念及求法,数轴的概念及应用;有理数比较大小难点:绝对值的概念及求法,尤其是用字母表示的时候的意义。
运用数轴理解绝对值的几何意义。
有理数比较大小的方法的掌握。
二、知识要点梳理知识点一:负数的引入要点诠释:正数和负数是根据实际需要而产生的,随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,比如一些有相反意义的量:收入200元和支出100元、零上6℃和零下6℃等等,它们不但意义相反,而且表示一定的数量,怎样表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的的量规定为负的,这样就产生了正数和负数。
用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的,但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负。
知识点二:正数和负数的概念要点诠释:(1)像3、1.5、、584等大于0的数,叫做正数,在小学学过的数,除0以外都是正数,正数比0大。
(2)像-3、-1.5、、-584等在正数前面加“-”(读作负)号的数,叫做负数。
负数比0小。
(3)零既不是正数也不是负数,零是正数和负数的分界。
注意:(1)为了强调,正数前面有时也可以加上“+”(读作正)号,例如:3、1.5、也可以写作+3、+1.5、+。
(2)对于正数和负数的概念,不能简单理解为:带“+”号的数是正数,带“-”号的数是负数。
例如:-a一定是负数吗?答案是不一定。
因为字母a可以表示任意的数,若a表示的是正数,则-a是负数;若a表示的是0,则-a仍是0;当a表示负数时,-a就不是负数了(此时-a 是正数)。
有理数的定义及相关概念
拓展题
0是整数吗?自然数一定是整数吗?0一定是正整数 吗?整数一定是自然数吗?
2、下列说法正确的是( ) A.正整数和正分数统称为正有理数。 B.正整数和负分数统称为整数。 C.正整数、负整数、正分数、负分数统称为有理数。 D.0不是有理数。
3、既不是正数又不是整数的有理数是( )
A.0和正分数
B.只有负分数
C.负整数和负分数
D.正整数和正分数
4、下列不是有理数的有( )
1、数集可以用大括号表示,也可以用圆圈表示。
2、一个数集内的数有无限多个时,我们不能全部写 出,要用“…”,如非负整数集{0,1,2,3,4…}。
3、一个数集内不能有两个一样的数。 4、所有的有理数组成的数集叫做有理数集;
那么,什么叫做整数集,正数集, 自然数集,非负 整数集?
知 1、把下列各数填入相应的集合
A.3.1415926 B.0
C.0.666……
D.π
5、下列说法错误的是( A.自然数一定是有理数 C.自然数一定是非负数
) B.自然数一定是整数 D.整数一定是自然数
6.说出下列生活情景中用到的数所属的集合. ⑴摩托车的里程表上读出的数;
⑵中央电视台播放的天气预报中,播报各地的 气温所用到的数; ⑶老师批改试卷时用到的数; ⑷烤鸭店的柜台上的电子秤上读出的数; ⑸表示某关概念 整数和分数统称为有理数。
正整数、零和负整数统称为整数,正分数和 负分数统称为分数。
非负数:大于等于0的数叫非负数即a≥0 非正数:小于等于0的数叫非正数即a≤0
非正整数: 小于等于0的整数; 非负整数: 大于等于0的整数
2:数的分类
按定义来分
正整数
整数零
…0.…67
有理数的意义-知识讲解
有理数的意义-知识讲解有理数是数学中一类重要的数,它可以用整数作为分子和分母的比值表示。
有理数的意义体现在其在实际生活中的广泛应用,以下从有理数的定义、特点以及实际应用等方面进行讲解。
首先,有理数的定义是指可以写成两个整数的比值形式的数,其中分母不为零。
有理数包括整数、正整数、负整数、分数等。
例如,2,-3,1/4等都是有理数。
有理数的特点主要体现在以下几个方面:1.有理数包括整数和分数两个主要部分,整数由负整数、零和正整数组成,而分数可以写成两个整数的比值形式。
2.有理数可以进行加减乘除等基本运算,运算结果也仍然是有理数。
这一点在实际应用中十分重要,可以简化运算过程。
3.有理数可以用分数表示小数,并且保持有效位数,在实际应用中更加便于计算和表示。
4.有理数具有有限循环小数和无限循环小数两种形式。
循环小数是指在小数部分中有从一些位置开始重复的数字序列。
有理数在实际生活中有广泛的应用,主要体现在以下几个方面:1.金融领域:有理数广泛应用于金融领域,如贷款利率、股票涨跌等计算中。
利率、股票涨跌等都可以用有理数来表示,便于计算和比较。
2.商业领域:商业中的销售额、成本、利润等也可以用有理数来表示。
商业决策涉及到大量的数值计算,有理数的应用可以方便快捷地进行计算和分析。
3.工程领域:在工程测量和设计中,有理数也有着重要的应用。
例如,建筑物的尺寸、管道的长度等都需要进行精确的测量和计算,有理数可以提供准确的数值。
4.科学领域:有理数常常出现在科学实验和数值模拟中。
例如,在物理实验中,测量得到的各种物理量可以用有理数表示,更方便进行分析和比较。
总结起来,有理数作为一类重要的数,具有重要的意义。
它不仅在数学学科中有着重要的地位,而且在实际生活中也有广泛应用。
通过有理数,我们可以方便地进行各种数值计算,解决实际问题,进一步提高数学能力和解决实际问题的能力。
因此,对有理数的学习和掌握对于每个学生来说都是十分重要的。
有理数与无理数 知识讲解
(2)混循环小数化分数也可以先化为纯循环小数,然后再化为分数. 【典型例题】 类型一、有理数
1.下列说法正确的是( )
A.整数就是正整数和负整数
B.分数包括正分数、负分数
C.正有理数和负有理数统称有理数
D.无限小数叫做无理数
【答案】B
【解析】A 选项整数包括正整数、负整数和 0;C 选项正有理数、负有理数和 0 统称有理数;
2
7
整数集合:
分数集合:
负有理数集合:
无理数集合:
【答案与解析】
整数集合: -2, 0,-(-2),2012
分数集合: - 1 , 22 ,- 0.23
27
负有理数集合: -2, - 1 ,- 0.23
2
无理数集合: 3 ,3.020020002…,
【总结升华】本题考查了对有理数的有关概念的理解和应用,关键是能区分有关定义,注意: 整数包括正整数、0、负整数;有理数包括正有理数、0、负有理数;无理数是指无限不循环 小数. 类型三、循环小数化分数
有理数与无理数 知识讲解
【学习目标】 1、 理解有理数的意义,知道无理数是客观存在的,了解无理数的概念. 2、 会判断一个数是有理数还是无理数. 【要点梳理】 要点一、有理数
我们把能够写成分数形式 m (m,n 是整数,n≠0)的数叫做有理数. n
要点诠释:(1)有限小数和循环小数都可以化为分数,他们都是有理数. (2)所有整数都可以写成分母是 1 的分数,因此可以理解为整数和分数统称为 有理数.
要点二、无理数 1.定义:
无限不循环小数叫做无理数. 要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,
不能表示成分数的形式.
有理数的意义-知识讲解
有理数的意义【学习目标】1.掌握用正负数表示实际问题中具有相反意义的量;2.理解正数、负数、有理数的概念;3. 掌握有理数的分类方法,初步建立分类讨论的思想.【要点梳理】要点一、正数与负数像+3、+1.5、12+、+584等大于0的数,叫做正数;像-3、-1.5、12-、-584等在正数前面加“-”号的数,叫做负数.要点诠释:(1)一个数前面的“+”“-”是这个数的性质符号,“+”常省略,但“-”不能省略.(2)用正数和负数表示具有相反意义的量时,哪种为正可任意选择,但习惯把“前进、上升”等规定为正,而把“后退、下降”等规定为负.(3)0既不是正数也不是负数,它是正数和负数的“分水岭”.要点二、有理数的分类(1)按整数、分数的关系分类:(2)按正数、负数与0的关系分类:要点诠释:(1)有理数都可以写成分数的形式,整数也可以看作是分母为1的数.(2)分数与有限小数、无限循环小数可以互化,所以有限小数和无限循环小数可看作分数,但无限不循环小数不是分数,例如 .(3)正数和零统称为非负数;负数和零统称为非正数;正整数、0、负整数统称整数.【典型例题】类型一、正数与负数1.若把向北走7km记为-7km,则+10km表示的含义是().A.向北走10km B.向西走10km C.向东走10km D.向南走10km【答案】D【解析】“正”和“负”相对,-7km表示向北走7km,则+10km表示向南走10 km,所以答案D【总结升华】正负数表示具有相反意义的量.如果一个量为“正数”,则与其相反意义的量就是负数.反之,当如果一个量为“负数”,则与其相反意义的量就是正数,且这两个量的单位相同.举一反三:【变式1】(2015•太仓市模拟)一种大米的质量标识为“(50±0.5)千克”,则下列各袋大米中质量不合格的是()A.50.0千克B.50.3千克C.49.7千克D.49.1千克【答案】D.解:“50±0.5千克”表示最多为50.5千克,最少为49.5千克.【变式2】(1)如果收入300元记作+300元,那么支出500元用___________ 表示,0元表示__________ .(2)若购进50本书,用-50本表示,则盈利30元如何表示?【答案】(1)-500元;既没有收入也没有支出. (2)不是一对具有相反意义的量,不能表示. 【变式3】如果60m表示“向北走60m”,那么“向南走40m”可以表示为().A.-20m B.-40m C.20m D.40m【答案】B2.体育课上,华英学校对九年级男生进行了引体向上测试,以能做7个为标准,超过的次数记为正数,不足的次数记为负数,其中8名男生的成绩如下:2,-1,0,3,-2,-3,1,0(1)这8名男生有百分之几达到标准?(2)他们共做了多少引体向上?【答案与解析】(1)由题意可知:正数或0表示达标,而正数或0的个数共有5个,所以百分率为:5100%62.5% 8⨯=;答:这8名男生有62.5%达到标准.(2)(7+2)+(7-1)+7+(7+3)+(7-2)+(7-3)+(7+1)+7=56(个)答:他们共做了引体向上56个.【总结升华】一定要先弄清“基准”是什么.类型二、有理数的分类3.下面说法中正确的是( ).A.非负数一定是正数.B.有最小的正整数,有最小的正有理数.C.a-一定是负数.D .正整数和正分数统称正有理数.【答案】D【解析】(A)不对,因为非负数还包括0;(B) 最小的正整数为1,但没有最小的正有理数;(C)不对,当a为负数或0时,则a-为正数或0,而不是负数;(D)对【总结升华】一个有理数既有性质符号,又有除性质符号外的数值部分,两者合在一起才表示这个有理数.举一反三:【变式1】判断题:(1)0是自然数,也是偶数.()(2)0既可以看作是正数,也可以看成是负数.()(3)整数又叫自然数.()(4)非负数就是正数,非正数就是负数.()【答案】√,⨯,⨯,⨯【变式2】下列四种说法,正确的是( ).(A)所有的正数都是整数(B)不是正数的数一定是负数(C)正有理数包括整数和分数(D)0不是最小的有理数【答案】D4.请把下列各数填入它所属于的集合的大括号里.1, 0.0708, -700, -3.88, 0, 3.14159265,723-,.正整数集合:{ …},负整数集合:{ …},整数集合:{ …},正分数集合:{ …},负分数集合:{ …},分数集合:{ …},非负数集合:{ …},非正数集合:{ …}.【答案】正整数:1;负整数:-700;整数:1,0,-700;正分数:0.0708,3.14159265,;负分数:-3.88,7 23 -;分数:0.0708,3.14159265,,-3.88,7 23 -;非负数:1,0.0708,3.14159265,0,;非正数:-700, -3.88, 0,7 23 -【解析】【总结升华】填数的方法有两种:一种是逐个考察,一一进行填写;二是逐个填写相关的集合,从给出的数中找出属于这个集合的数.此外注意几个概念:非负数包括0和正数;非正数包括0和负数.举一反三:【变式】(2014秋•惠安县期末)在有理数、﹣5、3.14中,属于分数的个数共有 个.【答案】2. 类型三、探索规律5.某校生物教师李老师在生物实验室做实验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,.按此规律,那么请你推测第n 组应该有种子是 粒.【答案】(12+n )【解析】第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,,由此我们观察到的粒数与组数之间有一定关系:1123+⨯=,1225+⨯=,1327+⨯=,1429+⨯=,,按此规律,第n 组应该有种子数(12+n )粒.【总结升华】研究一列数的排列规律时,其中的数与符号往往都与序数有关.举一反三:【变式1】有一组数列:2,-3,2,-3,2,-3,,根据这个规律,那么第2010个数是: 【答案】-3【变式2】观察下列有规律的数:,,301,201,121,61,21 根据其规律可知第9个数是: 【答案】901。
第一章有理数
第一章 有理数知识框架知识要点1.正数和负数正数:像3、1、+0.33等的数,叫做正数。
负数:像-1、-3.12、-2008等在正数前加上“ - ”(读作负)号的数,叫做负数。
0既不是正数,也不是负数。
生活中到处都存在具有相反意义的量,我们把某一意义的量规定为正,那么其相反意 义的量就是负。
2.有理数:整数和分数统称有理数。
()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数 ()()⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数负数 <0 <正数3.数轴:规定了原点、正方向和单位长度的直线叫做数轴。
作用:(1)用数轴上的点表示数; (2)用数轴来比较两个数的大小;(3)用数轴表示相反数和绝对值的几何意义。
4.相反数:像2和2-,4和4-这样,只有符号不同的两个数叫作互为相反数。
一般来说,a 的相反 数是a -,0的相反数是0。
数轴上互为相反数的两个点关于原点对称。
当0>a 时,0<-a (正数的相反数是负数); 当0<a 时,0>-a (负数的相反数是正数); 当0=a 时,0=-a (0的相反数是0) 5.绝对值:几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a .⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a绝对值的性质:(1)0≥a (2)a a -= (3)a a ≥,a a -≥ (4)222a a a ==6.倒数:若a 与b 的乘积是1,则称a 与b 互为倒数;反之,若a 与b 互为倒数,则1=ab7.有理数运算:有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 有理数乘法法则:(1) 两数相乘,同号为正,异号为负,并把绝对值相乘。
有理数的定义与性质
有理数的定义与性质有理数是指可以表示为两个整数的比值的数,包括整数、分数以及它们的代数和。
有理数通常用符号Q表示,它们可以表示为a/b的形式,其中a和b是整数,且b不等于0。
有理数是一种非常重要的数学概念,在数学中占据着重要的地位。
下面将介绍有理数的定义及其性质。
一、有理数的基本概念在数学中,有理数包括整数、正分数、负分数以及它们的负数。
整数可以用来表示没有小数部分的数,正分数可以表示一个数除以另一个数的商,负分数可以表示一个数除以另一个数的商且小于0。
有理数可以进行加减乘除等运算,并且有性质与运算法则。
二、有理数的性质1. 加法性质:对于任意两个有理数a和b,它们的和a+b也是一个有理数。
2. 减法性质:对于任意两个有理数a和b,它们的差a-b也是一个有理数。
3. 乘法性质:对于任意两个有理数a和b,它们的乘积a*b也是一个有理数。
4. 除法性质:对于任意两个有理数a和b(其中b不等于0),它们的商a/b也是一个有理数。
5. 相反数性质:对于任意一个有理数a,它的相反数-b也是一个有理数,并且有a+(-a)=0的性质。
6. 分配律性质:对于任意三个有理数a、b和c,满足a*(b+c)=a*b+a*c和(a+b)*c=a*c+b*c的分配律性质。
7. 结合律性质:对于任意三个有理数a、b和c,满足(a+b)+c=a+(b+c)和(a*b)*c=a*(b*c)的结合律性质。
有理数的性质是数学中常见的性质,很多数学问题都可以通过有理数的性质来解决。
在数学教育中,有理数是学习的基础,对于学生来说,掌握有理数的定义及其性质是非常重要的。
因此,有理数在数学教学中具有不可替代的地位。
总之,有理数是数学中的基本概念之一,它包括整数、分数以及它们的代数和。
有理数可以进行加减乘除等运算,具有各种性质和运算法则。
掌握有理数的定义及其性质对于数学学习和解决实际问题具有重要意义。
希望本文能对读者有所帮助,加深对有理数的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的意义
【学习目标】
1.;
2.理解正数、负数、有理数的概念;
3. 掌握有理数的分类方法,初步建立分类讨论的思想.【要点梳理】
要点一、正数与负数
像+3、+1.5、
1
2
+、+584等大于0的数,叫做正数;像-3、-1.5、
1
2
-、-584等
在正数前面加“-”号的数,叫做负数.
要点诠释:
(1)一个数前面的“+”“-”是这个数的性质符号,“+”常省略,但“-”不能省略. (2)用正数和负数表示具有相反意义的量时,哪种为正可任意选择,但习惯把“前进、上升”等规定为正,而把“后退、下降”等规定为负.
(3)0既不是正数也不是负数,它是正数和负数的“分水岭”.
要点二、有理数的分类
(1)按整数、分数的关系分类:(2)按正数、负数与0的关系分类:
要点诠释:
(1)有理数都可以写成分数的形式,整数也可以看作是分母为1的数.
(2)分数与有限小数、无限循环小数可以互化,所以有限小数和无限循环小数可看作分数,但无限不循环小数不是分数,例如π.
(3)正数和零统称为非负数;负数和零统称为非正数;正整数、0、负整数统称整数.
【典型例题】
类型一、正数与负数
1.若把向北走7km记为-7km,则+10km表示的含义是().
A.向北走10km B.向西走10km C.向东走10km D.向南走10km 【答案】D
【解析】“正”和“负”相对,-7km表示向北走7km,则+10km表示向南走10 km,所以答案D
【总结升华】正负数表示具有相反意义的量.如果一个量为“正数”,则与其相反意义的量就是负数.
反之,当如果一个量为“负数”,则与其相反意义的量就是正数,且这两个量的单位相同.
举一反三:
【变式1】一种大米的质量标识为“(50±0.5)千克”,则下列各袋大米中质量不合格的是()
A.50.0千克 B.50.3千克 C.49.7千克 D.49.1千克
【答案】D.
解:“50±0.5千克”表示最多为50.5千克,最少为49.5千克.
【变式2】(1)如果收入300元记作+300元,那么支出500元用___________ 表示,0元表示__________ .
(2)若购进50本书,用-50本表示,则盈利30元如何表示?
【答案】(1)-500元;既没有收入也没有支出. (2)不是一对具有相反意义的量,不能表示. 【变式3】如果60m表示“向北走60m”,那么“向南走40m”可以表示为().A.-20m B.-40m C.20m D.40m
【答案】B
2.体育课上,华英学校对九年级男生进行了引体向上测试,以能做7个为标准,超过的次数记为正数,不足的次数记为负数,其中8名男生的成绩如下:2,-1,0,3,-2,-3,1,0
(1)这8名男生有百分之几达到标准?
(2)他们共做了多少引体向上?
【答案与解析】(1)由题意可知:正数或0表示达标,
而正数或0的个数共有5个,所以百分率为:5
100%62.5% 8
⨯=;
答:这8名男生有62.5%达到标准.
(2)(7+2)+(7-1)+7+(7+3)+(7-2)+(7-3)+(7+1)+7=56(个)答:他们共做了引体向上56个.
【总结升华】一定要先弄清“基准”是什么.
类型二、有理数的分类
3.下面说法中正确的是( ).
A.非负数一定是正数.
B.有最小的正整数,有最小的正有理数.
C.
a
-一定是负数.
D .正整数和正分数统称正有理数.
【答案】D
【解析】(A)不对,因为非负数还包括0;(B) 最小的正整数为1,但没有最小的正有理数;
(C)不对,当a为负数或0时,则a
-为正数或0,而不是负数;(D)对
【总结升华】一个有理数既有性质符号,又有除性质符号外的数值部分,两者合在一起才表示这个有理数.
举一反三:
【变式1】判断题:
(1)0是自然数,也是偶数.( ) (2)0既可以看作是正数,也可以看成是负数.( )
(3)整数又叫自然数.( ) (4)非负数就是正数,非正数就是负数.( )
【答案】√, ⨯,⨯,⨯
【变式2】下列四种说法,正确的是( ).
(A)所有的正数都是整数 (B)不是正数的数一定是负数
(C)正有理数包括整数和分数 (D)0不是最小的有理数
【答案】D
4.请把下列各数填入它所属于的集合的大括号里.
1, 0.0708, -700, -3.88, 0, 3.14159265, 723-, .
正整数集合:{ …}, 负整数集合:{ …}, 整数集合:{ …}, 正分数集合:{ …},
负分数集合:{ …},分数集合:{ …},
非负数集合:{ …},非正数集合:{ …}.
【答案】正整数: 1;负整数:-700;整数:1,0,-700;正分数:0.0708,3.14159265,
;
负分数: -3.88,723
-; 分数:0.0708,3.14159265,,-3.88,723
-; 非负数: 1,0.0708, 3.14159265,0,
; 非正数:-700, -3.88, 0, 723
-
【解析】
【总结升华】填数的方法有两种:一种是逐个考察,一一进行填写;二是逐个填写相关的集合,从给出的数中找出属于这个集合的数.此外注意几个概念:非负数包括0和正数;非正数包括0和负数.
举一反三:
【变式】在有理数、﹣5、3.14中,属于分数的个数共有 个.
【答案】2.
类型三、探索规律
5.某校生物教师李老师在生物实验室做实验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,
.按此规律,那么请你推测第n 组应该有种子是 粒.
【答案】12+n
【解析】第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,,由此我们观察到的粒数与组数之间有一定关系:1123+⨯=,1225+⨯=,1327+⨯=,1429+⨯=,,按此规律,第n 组应该有种子数(12+n )粒.
【总结升华】研究一列数的排列规律时,其中的数与符号往往都与序数有关.
举一反三:
【变式1】有一组数列:2,-3,2,-3,2,-3,
,根据这个规律,那么第2010个数是: 【答案】-3
【变式2】观察下列有规律的数:
,,301,201,121,61,21 根据其规律可知第9个数是: 【答案】
901。