单片机串口通信浅谈
单片机双机串口通信
单片机双机串口通信在现代电子技术领域,单片机的应用无处不在。
而单片机之间的通信则是实现复杂系统功能的关键之一。
其中,双机串口通信是一种常见且重要的通信方式。
什么是单片机双机串口通信呢?简单来说,就是让两个单片机能够通过串口相互交换数据和信息。
想象一下,两个单片机就像是两个小伙伴,它们需要交流分享彼此的“想法”和“知识”,串口通信就是它们交流的“语言”。
串口通信,顾名思义,是通过串行的方式来传输数据。
这和我们日常生活中并行传输数据有所不同。
在并行传输中,多个数据位同时传输;而在串行传输中,数据一位一位地按顺序传送。
虽然串行传输速度相对较慢,但它所需的硬件连线简单,成本较低,对于单片机这种资源有限的设备来说,是一种非常实用的通信方式。
在进行单片机双机串口通信时,我们首先要了解串口通信的一些基本参数。
比如波特率,它决定了数据传输的速度。
就像两个人说话的快慢,如果波特率设置得不一致,那么双方就无法正常理解对方的意思,数据传输就会出错。
常见的波特率有 9600、115200 等。
还有数据位、停止位和校验位。
数据位决定了每次传输的数据长度,常见的有 8 位;停止位表示一个数据帧的结束,通常是 1 位或 2 位;校验位则用于检验数据传输的正确性,有奇校验、偶校验和无校验等方式。
为了实现双机串口通信,我们需要在两个单片机上分别进行编程。
编程的主要任务包括初始化串口、设置通信参数、发送数据和接收数据。
初始化串口时,我们要配置好相关的寄存器,使其工作在我们期望的模式下。
比如设置波特率发生器的数值,以确定合适的波特率。
发送数据相对来说比较简单。
我们将要发送的数据放入特定的寄存器中,然后启动发送操作,单片机就会自动将数据一位一位地通过串口发送出去。
接收数据则需要我们不断地检查接收标志位,以确定是否有新的数据到来。
当有新数据时,从接收寄存器中读取数据,并进行相应的处理。
在实际应用中,单片机双机串口通信有着广泛的用途。
比如在一个温度监测系统中,一个单片机负责采集温度数据,另一个单片机则负责将数据显示在屏幕上或者上传到网络。
基于单片机的数据串口通信
基于单片机的数据串口通信随着科技的不断进步,我们生活中越来越多的设备需要进行数据传输和通信。
而技术成为了我们日常生活中无法忽视的一部分。
本文将从单片机的基本原理、串口通信的工作原理以及应用案例三个方面来详细介绍。
一、单片机的基本原理单片机,是一种集成电路芯片,具有微处理器、内存、输入输出设备以及其他辅助功能电路等一系列电子元件。
单片机通常包含中央处理器(CPU)、存储器、定时器/计数器、输入/输出接口等功能单元。
它的特点是集成度高、体积小、功耗低,适合嵌入式应用。
二、串口通信的工作原理串口通信是指通过串行接口进行的数据传输方式。
串口通信中使用的串行通信接口有RS-232、RS-485等。
在单片机中实现串口通信,需要通过串口通信芯片与外部设备进行交互。
在串口通信中,数据通过逐位传输的方式进行传输。
发送端通过发送器将数据位、起始位、停止位以及校验位等信息编码成串行数据,通过串口发送出去。
接收端通过接收器解码接收到的串行数据,将其还原成数据位、起始位、停止位以及校验位等信息,供单片机进行处理。
三、应用案例技术在现实生活中有着广泛的应用。
下面将介绍几个常见的应用案例。
1. 远程监控系统技术可以用于远程监控系统,如智能家居、安防系统等。
通过单片机和传感器建立连接并实现数据采集,再通过串口与中央服务器进行通信,实现信息传输和远程控制。
2. 工业自动化在工业自动化领域中,技术被广泛应用于控制系统。
通过串口连接各种传感器和执行器,收集和传输数据,实现自动控制。
例如,监测温度、湿度、气压等信息,并根据预设条件自动控制设备的开关。
3. 移动设备数据传输技术也可以用于移动设备的数据传输。
例如,通过串口与智能手机进行连接,将单片机中收集到的数据传输到智能手机上,便于用户实时获取数据并进行分析。
总结:技术在现代生活中扮演着重要的角色。
通过串口通信,单片机可以与其他设备进行数据传输和通信,实现各种应用需求。
从远程监控到工业自动化,再到移动设备数据传输,技术正越来越广泛地应用于各个领域,为我们的生活带来了更多便利与可能性技术在现实生活中的广泛应用为我们的生活带来了许多便利和可能性。
单片机串口通信原理
单片机串口通信原理
单片机串口通信原理是指通过串口进行数据的发送和接收。
串口通信是一种异步通信方式,它使用两根信号线(TXD和RXD)进行数据的传输。
在发送数据时,单片机将待发送的数据通过串口发送数据线(TXD)发送出去。
发送的数据会经过一个串口发送缓冲区,然后按照一定的通信协议进行处理,并通过串口传输线将数据发送给外部设备。
在接收数据时,外部设备将待发送的数据通过串口传输线发送给单片机。
单片机接收数据线(RXD)会将接收到的数据传
输到一个串口接收缓冲区中。
然后,单片机会根据通信协议进行数据的解析和处理,最后将数据保存在内部的寄存器中供程序使用。
串口通信协议通常包括数据位、停止位、校验位等信息。
数据位指的是每个数据字节占据的位数,常见的有8位和9位两种。
停止位用于表示数据的结束,常用的有1位和2位两种。
校验位用于检测数据在传输过程中是否发生错误,常见的校验方式有奇偶校验和无校验。
总的来说,单片机串口通信原理是通过串口发送数据线和接收数据线进行数据的传输和接收,并通过一定的通信协议进行数据的解析和处理。
这种通信方式可以实现单片机与外部设备的数据交换,广泛应用于各种嵌入式系统和物联网设备中。
单片机串口通信协议
单片机串口通信协议1. 引言单片机串口通信是一种常见的数据通信方式,它允许单片机与其他外部设备进行通信。
串口通信协议定义了数据传输的格式、波特率等参数,确保通信的稳定和可靠性。
本文将介绍单片机串口通信协议的基本原理和常用协议。
2. 串口通信基础串口通信是通过串行数据传输来实现的。
其中,UART(通用异步收发传输器)是实现串口通信的重要组件。
UART将并行数据转换为串行数据,并通过串口进行传输。
在单片机中,常用的串口通信引脚是TX(发送)和RX(接收)。
3. 串口通信协议串口通信协议定义了数据传输时各个数据包的格式和规则。
常见的串口通信协议有以下几种:3.1. RS-232RS-232是最早出现的串口通信协议之一。
它定义了数据传输的电气特性和信号级别。
RS-232使用9个引脚进行数据传输,包括发送和接收数据线、数据控制线等。
该协议具有较长的最大传输距离和可靠性,但通信速率相对较慢。
3.2. RS-485RS-485是一种多点通信的串口协议。
相比于RS-232,RS-485支持多个设备之间的通信。
它使用不同的信号级别和电气特性,可实现更远的传输距离和更高的通信速率。
RS-485通信中设备分为主设备和从设备,主设备负责控制通信流程。
3.3. SPISPI(Serial Peripheral Interface)是一种同步串口通信协议,常用于单片机与外部设备之间的通信。
SPI使用四条引脚进行通信,包括时钟线、数据线、主设备输出从设备输入线和主设备输入从设备输出线。
SPI通信速率较快,适用于高速数据传输。
3.4. I2CI2C(Inter-Integrated Circuit)是一种多主从通信的串口协议。
I2C使用两条引脚进行通信,包括时钟线和数据线。
在I2C总线上,可以连接多个设备,实现多个设备之间的通信和数据交换。
I2C通信速率较慢,但具有较简单的硬件设计和较低的功耗。
4. 协议选择和配置选择合适的串口通信协议需要考虑通信距离、通信速率、设备数量等因素。
单片机串口通讯协议
单片机串口通讯协议在现代电子技术领域中,单片机的应用越来越广泛。
而串口通讯作为单片机与外部设备进行数据交换的重要方式之一,其通讯协议的理解和掌握对于单片机系统的开发至关重要。
什么是串口通讯呢?简单来说,串口通讯就是指数据一位一位地顺序传送。
这种方式就像是一个人在一条窄窄的通道上,依次把东西传递给另一个人。
在单片机中,串口通讯通常使用两根线来实现,一根用于发送数据(TXD),另一根用于接收数据(RXD)。
单片机串口通讯协议主要包含了以下几个关键的要素。
首先是波特率。
波特率就好比是数据传递的速度,它决定了每秒钟传输的比特数。
常见的波特率有 9600、115200 等等。
打个比方,如果把数据比作货物,波特率就是运输货物的车辆速度。
选择合适的波特率非常重要,如果波特率设置不正确,接收方就无法正确地解析发送方传来的数据,就像货物运输速度不匹配,导致接收方无法及时收到或者收到错误的货物。
其次是数据位。
数据位指的是每次传输数据的实际有效位数。
通常有 5 位、6 位、7 位和 8 位等选择。
这就好比是每次运输货物的数量,选择合适的数据位取决于要传输的数据类型和信息量。
然后是停止位。
停止位用于表示一次数据传输的结束。
常见的停止位有 1 位、15 位和 2 位。
停止位就像是运输货物后的一个结束标志,告诉接收方这一批货物已经传输完毕。
还有校验位。
校验位用于检测传输过程中是否出现错误。
常见的校验方式有奇校验、偶校验和无校验。
校验位就像是给货物贴上的一个标签,用于检查货物在运输过程中是否有损坏或者丢失。
在实际的单片机串口通讯中,发送方和接收方需要按照事先约定好的协议设置来进行数据的发送和接收。
比如,发送方设置波特率为9600,数据位为 8 位,停止位为 1 位,无校验位,那么接收方也必须设置相同的参数,才能正确地接收到数据。
为了更好地理解串口通讯协议,我们来看一个简单的例子。
假设我们要通过串口从单片机向电脑发送一个字节的数据 0x55。
单片机中的串口通信技术
单片机中的串口通信技术串口通信技术是指通过串行接口将数据传输和接收的技术。
在单片机领域,串口通信是一种常见的数据交互方式。
本文将介绍单片机中的串口通信技术,并探讨其在实际应用中的重要性。
一、串口通信的原理串口通信是指通过串行接口传输数据的方式,其中包括一个数据引脚和一个时钟引脚。
数据引脚用于传输二进制数据,在每个时钟周期内,数据引脚上的数据会被读取或写入。
时钟引脚则用于控制数据的传输速度。
单片机中的串口通信主要包含两个部分:发送和接收。
发送时,单片机将数据转换为二进制形式,并通过串口发送出去。
接收时,单片机会从串口接收到二进制数据,并将其转换为可识别的格式。
通过发送和接收两个过程,单片机可以与外部设备进行数据交互。
二、串口通信的类型在单片机中,串口通信主要包含两种类型:同步串口和异步串口。
同步串口是指发送和接收两个设备之间使用相同的时钟信号,以保持数据同步。
同步串口通信速度快,但需要额外的时钟信号输入。
异步串口则是通过发送数据前提供起始位和终止位来区分不同数据帧的方式进行通信。
异步串口通信的优势是不需要额外的时钟信号,但速度相对较慢。
在实际应用中,通常使用异步串口通信。
异步串口通信相对简单易用,适合多种应用场景。
三、单片机串口通信的实现单片机中实现串口通信通常需要以下几个方面的内容:1. 串口通信引脚配置:单片机需要连接到一个串口芯片或者其他外部设备,因此需要配置相应的引脚作为串口通信的数据引脚和时钟引脚。
2. 波特率设置:波特率是指单位时间内传输的数据位数。
在进行串口通信时,发送端和接收端的波特率需要相同。
单片机中通常通过寄存器设置波特率,以确保数据传输的稳定性。
3. 数据发送和接收:在单片机中,通过将数据写入发送缓冲器并启动发送操作来发送数据。
接收数据时,单片机会接收到串口中的数据,并将其保存在接收缓冲器中。
4. 中断机制:在进行串口通信时,单片机通常会使用中断机制来处理数据接收和发送。
中断机制可以减轻单片机的负担,提高系统效率。
51单片机串口通信(相关例程)
51单片机串口通信(相关例程) 51单片机串口通信(相关例程)一、简介51单片机是一种常用的微控制器,它具有体积小、功耗低、易于编程等特点,被广泛应用于各种电子设备和嵌入式系统中。
串口通信是51单片机的常见应用之一,通过串口通信,可以使单片机与其他外部设备进行数据交互和通信。
本文将介绍51单片机串口通信的相关例程,并提供一些实用的编程代码。
二、串口通信基础知识1. 串口通信原理串口通信是通过串行数据传输的方式,在数据传输过程中,将信息分为一个个字节进行传输。
在51单片机中,常用的串口通信标准包括RS232、RS485等。
其中,RS232是一种常用的串口标准,具有常见的DB-9或DB-25连接器。
2. 串口通信参数在进行串口通信时,需要设置一些参数,如波特率、数据位、停止位和校验位等。
波特率表示在单位时间内传输的比特数,常见的波特率有9600、115200等。
数据位表示每个数据字节中的位数,一般为8位。
停止位表示停止数据传输的时间,常用的停止位有1位和2位。
校验位用于数据传输的错误检测和纠正。
三、串口通信例程介绍下面是几个常见的51单片机串口通信的例程,提供给读者参考和学习:1. 串口发送数据```C#include <reg51.h>void UART_Init(){TMOD = 0x20; // 设置计数器1为工作方式2(8位自动重装) TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 设置串口工作方式1,允许串行接收TR1 = 1; // 启动计数器1}void UART_SendChar(unsigned char dat){SBUF = dat; // 发送数据while (!TI); // 等待发送完成TI = 0; // 清除发送完成标志}void main(){UART_Init(); // 初始化串口while (1){UART_SendChar('A'); // 发送字母A}}```2. 串口接收数据```C#include <reg51.h>void UART_Init(){TMOD = 0x20; // 设置计数器1为工作方式2(8位自动重装) TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 设置串口工作方式1,允许串行接收TR1 = 1; // 启动计数器1}void UART_Recv(){unsigned char dat;if (RI) // 检测是否接收到数据{dat = SBUF; // 读取接收到的数据 RI = 0; // 清除接收中断标志// 处理接收到的数据}}void main(){UART_Init(); // 初始化串口EA = 1; // 允许中断ES = 1; // 允许串口中断while (1)// 主循环处理其他任务}}```3. 串口发送字符串```C#include <reg51.h>void UART_Init(){TMOD = 0x20; // 设置计数器1为工作方式2(8位自动重装) TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 设置串口工作方式1,允许串行接收TR1 = 1; // 启动计数器1}void UART_SendString(unsigned char *str){while (*str != '\0')SBUF = *str; // 逐个发送字符while (!TI); // 等待发送完成TI = 0; // 清除发送完成标志str++; // 指针指向下一个字符}}void main(){UART_Init(); // 初始化串口while (1){UART_SendString("Hello, World!"); // 发送字符串}}```四、总结本文介绍了51单片机串口通信的基础知识和相关编程例程,包括串口发送数据、串口接收数据和串口发送字符串。
单片机指令的串口通信实现方法
单片机指令的串口通信实现方法串口通信是指通过串行通信接口实现的数据传输方式。
在单片机系统中,串口通信是一种重要的通信方式,可以实现与外部设备(如PC 机、传感器等)的数据交互。
本文将介绍单片机指令的串口通信实现方法,包括硬件连接和软件编程两方面。
一、硬件连接串口通信需要通过发送器和接收器两个设备来完成数据的发送和接收。
在单片机系统中,可使用通用异步收发器(UART)作为串行通信接口。
下面是串口通信的硬件连接步骤:1. 将单片机与UART连接:首先,确保单片机具有UART接口,并根据其引脚定义将UART的发送线(TXD)连接到单片机的接收引脚,接收线(RXD)连接到单片机的发送引脚。
2. 选择波特率:波特率指每秒钟传送的位数,通常使用的波特率有9600、115200等。
在发送和接收数据时,单片机和外部设备需要使用相同的波特率,以保证数据的正确传输。
3. 连接外部设备:根据实际需求,将UART的发送线和接收线分别连接到外部设备的接收引脚和发送引脚。
二、软件编程实现单片机指令的串口通信需要编写相应的软件程序。
下面是基于C语言的软件编程实现方法:1. 初始化串口:在程序开始时,需要对串口进行初始化设置。
通过设置寄存器来配置波特率、数据位、停止位等参数。
2. 发送数据:使用发送指令将待发送的数据写入UART的数据寄存器,等待数据传输完成。
3. 接收数据:通过接收指令读取UART接收到的数据,并进行相应的处理。
可以使用中断或轮询方式进行数据接收。
4. 错误处理:在数据传输过程中,可能会出现错误,例如帧错误、奇偶校验错误等。
需要进行相应的错误处理操作,例如重新发送数据或发出错误提示。
5. 通信协议:根据通信需求,可以制定相应的通信协议。
通信协议包括数据帧结构、数据格式、数据校验等内容,用于确保数据的可靠传输。
三、实例演示下面通过一个简单的示例来演示单片机指令的串口通信实现方法。
假设我们需要实现从单片机向PC机发送一条消息,并接收PC机返回的确认信息。
深入理解51单片机串口通信及通信实例
深入理解51单片机串口通信及通信实例串口通信的原理串口通信(SerialCommunicaTIons)的概念非常简单,串口按位(bit)发送和接收字节。
尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。
它很简单并且能够实现远距离通信。
比如IEEE488定义并行通行状态时,规定设备线总长不得超过20米,并且任意两个设备间的长度不得超过2米;而对于串口而言,长度可达1200米。
典型地,串口用于ASCII码字符的传输。
通信使用3根线完成,分别是地线、发送、接收。
由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。
其他线用于握手,但不是必须的。
串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。
对于两个进行通信的端口,这些参数必须匹配。
a,波特率:这是一个衡量符号传输速率的参数。
指的是信号被调制以后在单位时间内的变化,即单位时间内载波参数变化的次数,如每秒钟传送240个字符,而每个字符格式包含10位(1个起始位,1个停止位,8个数据位),这时的波特率为240Bd,比特率为10位*240个/秒=2400bps。
一般调制速率大于波特率,比如曼彻斯特编码)。
通常电话线的波特率为14400,28800和36600。
波特率可以远远大于这些值,但是波特率和距离成反比。
高波特率常常用于放置的很近的仪器间的通信,典型的例子就是GPIB设备的通信。
b,数据位:这是衡量通信中实际数据位的参数。
当计算机发送一个信息包,实际的数据往往不会是8位的,标准的值是6、7和8位。
如何设置取决于你想传送的信息。
比如,标准的ASCII码是0~127(7位)。
扩展的ASCII码是0~255(8位)。
如果数据使用简单的文本(标准ASCII码),那么每个数据包使用7位数据。
每个包是指一个字节,包括开始/停止位,数据位和奇偶校验位。
由于实际数据位取决于通信协议的选取,术语包指任何通信的情况。
单片机的双机串口通信原理
单片机的双机串口通信原理单片机的双机串口通信原理是通过串口连接两个单片机,使它们能够进行数据的传输和通信。
串口是一种常见的通信方式,它使用两条信号线进行数据的传输:一条是串行数据线(TXD),用于发送数据;另一条是串行接收线(RXD),用于接收数据。
通过串口通信,两个单片机可以进行双向的数据传输,实现信息的互相交流和共享。
在双机串口通信中,一台单片机充当主机(Master),另一台单片机充当从机(Slave)。
主机负责发起通信请求并发送数据,从机负责接收并响应主机发送的数据。
通信过程中,主机和从机需要遵守相同的协议和通信规则,以确保数据的正确和可靠传输。
双机串口通信的主要步骤如下:1. 端口初始化:在双机串口通信开始之前,两台单片机的串口端口需要初始化。
主机和从机需要设置相同的波特率(Baud Rate),数据位数(Data Bits)、停止位数(Stop Bits)和校验方式(Parity Bit),确保两台单片机之间的通信能够正常进行。
2. 数据发送:主机将要发送的数据写入到串口发送寄存器中,然后通过串口发送线路将数据位一位一位地发送给从机。
主机发送完所有数据位后,等待从机的响应。
3. 数据接收:从机通过串口接收线路接收主机发送的数据位,然后将接收到的数据位存放在串口接收寄存器中,等待从机的处理。
4. 数据处理:从机接收到主机发送的数据后,根据通信协议和通信规则进行数据处理。
从机可能需要对数据进行校验、解析和执行相应的操作,然后将处理结果写入到串口发送寄存器中,以供主机进行相应的处理。
5. 响应发送:从机将处理结果写入到串口发送寄存器中,然后通过串口发送线路将数据位一位一位地发送给主机。
从机发送完所有数据位后,等待主机的进一步操作。
6. 数据接收:主机通过串口接收线路接收从机发送的数据位,然后将接收到的数据位存放在串口接收寄存器中,等待主机的处理。
7. 数据处理:主机接收到从机发送的数据后,根据通信协议和通信规则进行数据处理。
串口屏和单片机的通信原理
串口屏和单片机的通信原理串口屏和单片机的通信原理可以分为三个主要步骤:硬件连接、通信协议和数据传输。
首先,硬件连接是实现串口屏和单片机通信的基础。
通常,串口屏有两个主要端口——串口调试口和通信口,而单片机也有相应的串口引脚。
通过将单片机的串口引脚连接到串口屏的通信口,建立起双方之间的物理连接。
在连接过程中,需要注意使用适当的连接线和正确的引脚。
其次,通信协议是串口屏和单片机进行数据交互的规则。
常见的通信协议有UART、SPI和I2C等。
其中,UART最为常用。
UART是一种同步通信协议,它通过串行方式以固定的数据位、校验位和停止位进行数据传输。
在通信开始之前,需要确保单片机和串口屏配置相同的波特率、数据位、校验位和停止位等参数。
协议的选择和设置要根据具体的应用进行决定。
最后,数据传输是串口屏和单片机进行信息交流的核心部分。
单片机通过发送数据帧到串口屏来实现信息传输。
数据帧通常包含一个起始位、数据位、校验位和一个或多个停止位。
单片机将数据帧通过串口引脚逐位地发送给串口屏。
在接收端,串口屏以同样的方式解析数据帧,并将数据传递给屏幕进行显示或其他操作。
同时,单片机也可以通过接收串口屏发送的数据进行交互。
在通信过程中,需要注意的是通信的稳定性和数据的完整性。
通信的稳定性可以通过合理的硬件连接和正确的通信配置来保证。
数据的完整性可以通过校验位来验证。
校验位可以是奇校验、偶校验或无校验。
接收数据时,单片机会对接收到的数据进行校验,如果数据出现错误,则会触发错误处理机制。
总而言之,串口屏和单片机的通信原理是通过硬件连接、通信协议和数据传输来实现的。
合理设置通信参数和保证数据的完整性可以保证通信的正常进行。
同时,应根据具体的应用来选择合适的通信协议和操作方式,以满足不同业务需求。
PLC与单片机串口通信的实现探讨
PLC与单片机串口通信的实现探讨一、引言本文将探讨PLC与单片机之间通过串口通信实现数据传输和控制的方法和技术,希望对工业自动化领域的技术人员和工程师有所帮助。
二、PLC与单片机的通信方式PLC与单片机之间的通信方式有很多种,比如以太网通信、Modbus通信、CAN通信等。
而在工业控制系统中,串口通信是一种常见的方式。
串口通信是利用串行传输的方式,通过串口(RS232、RS485等)将数据从一个设备传输到另一个设备。
在PLC与单片机之间,常见的串口通信方式有RS232串口通信和RS485串口通信。
RS485串口通信具有传输距离远、传输速率高、抗干扰能力强等优点,在工业控制系统中得到广泛应用。
本文将以RS485串口通信为例,探讨PLC与单片机之间的串口通信实现。
1. 硬件连接在实际应用中,PLC和单片机之间的串口通信需要通过RS485模块进行转换。
具体连接方式如下:PLC端:- PLC的串口接口连接RS485模块的TX、RX、GND端子。
- RS485模块的D+和D-端子连接到PLC的串口RX+和RX-端子。
2. 通信协议在PLC和单片机之间的串口通信中,需要使用一种通信协议来规定数据的传输格式、命令和应答等。
常见的通信协议有Modbus协议、自定义协议等。
在本文中,我们以自定义协议为例,来说明PLC与单片机之间的串口通信实现。
自定义协议的格式如下:起始位(1个字节)+ 数据位(n个字节)+ 校验位(1个字节)+ 终止位(1个字节)起始位和终止位用于标识数据传输的起始和结束,校验位用于对数据进行校验。
3. 通信实现在PLC和单片机之间的串口通信实现过程中,需要定义好数据的传输格式和命令。
在PLC端编写相应的通信指令和数据处理程序,以实现数据的发送和接收。
在单片机端编写相应的串口通信程序,以实现对PLC指令的相应和数据的接收处理。
4. 实际应用一个典型的实际应用场景是,PLC通过串口发送控制命令给单片机,单片机接收到命令后执行相应的控制操作,并将执行结果通过串口返回给PLC。
单片机和单片机通信
单片机和单片机通信摘要:一、单片机通信的基本方式1.串口通信2.485通信3.CAN通信二、实现单片机与单片机之间通信的方法1.串口通信的实现2.RS232连接通信3.RS485连接通信三、适用于单片机通信的场景和距离1.短距离通信2.中距离通信3.长距离通信四、一个单片机与多个单片机通信的解决方案1.串口通信2.网络通信正文:随着科技的不断发展,单片机在各类工程应用中越发广泛。
在实际应用中,单片机之间的通信至关重要。
本文将详细介绍单片机通信的基本方式、实现方法以及适用于不同场景的通信方案。
一、单片机通信的基本方式1.串口通信:串口通信是最常用的单片机通信方式。
常用的串口通讯有三种,分别是TTL、RS232和RS485。
TTL通信电平编码为1时为5V,0时为0V;RS232电平编码为1时为负电压,0时为正电压。
2.485通信:485通信是一种串行通信方式,具有较高的传输速度,适用于远距离通信。
一般情况下,485通信的速度可以达到1200波特率。
3.CAN通信:CAN通信是一种多主控制器的串行通信协议,具有较高的抗干扰性和可靠性。
CAN通信的速度可以达到4800波特率,适用于较高要求的通信场景。
二、实现单片机与单片机之间通信的方法1.串口通信的实现:使用串行总线进行通信,交叉连接两个单片机的RXD 和TXD即可。
若采用Proteus仿真,可轻松实现两个单片机之间的串口通信。
2.RS232连接通信:通过RS232接口实现单片机之间的通信,适用于短距离通信。
通信距离可以达到几十米。
3.RS485连接通信:通过RS485接口实现单片机之间的通信,适用于长距离通信。
通信距离可以达到几百米甚至更远。
三、适用于单片机通信的场景和距离1.短距离通信:例如同一设备内的不同模块之间,或相邻设备之间的通信。
2.中距离通信:如同一建筑物内的设备之间,或相邻建筑物内的设备之间的通信。
3.长距离通信:如跨越城市、乡村等较远距离的设备之间的通信。
单片机指令的串口通信学习如何使用单片机指令进行串口通信
单片机指令的串口通信学习如何使用单片机指令进行串口通信单片机指令的串口通信学习:如何使用单片机指令进行串口通信一、引言在嵌入式系统中,单片机是一种常见的核心控制部件。
而单片机的串口通信技术则是实现各种外设与单片机之间相互通信的基础。
本文将介绍如何使用单片机指令进行串口通信的学习。
二、串口通信原理串口通信是一种将数据一位一位地连续传输的通信方式,通常使用一对数据线(TX和RX)进行双向传输。
其中,TX(Transmit)线用于发送数据,RX(Receive)线用于接收数据。
在串口通信中,数据通过串行方式传输,即逐位发送和接收,由此可实现稳定和可靠的数据传输。
三、单片机指令的串口通信为了实现单片机的串口通信,我们需要掌握相应的指令和设置寄存器的方法。
以下是常用的单片机指令:1. 串口初始化指令在使用串口通信功能之前,需要对单片机的串口进行初始化配置。
不同型号的单片机可能会有差异,但一般包括以下内容:- 设置波特率:波特率是指单位时间内传输的数据位数。
常见的波特率有9600、115200等。
通过设置相应的寄存器,可以指定串口的波特率。
- 设置数据位、停止位和校验位:数据位指每个数据包含的位数,常见的有8位和9位;停止位用于标记一个数据包的结束,通常为1位;校验位用于检验数据的正确性和完整性。
- 启动串口:初始化配置完成后,通过启动串口指令,使串口开始工作。
2. 发送数据指令发送数据指令用于向外设发送数据。
主要包括以下步骤:- 检查发送缓冲区是否为空:在发送数据之前,需要先检查发送缓冲区是否为空,以确保前一次发送的数据已经被外设处理完毕。
- 写入发送数据:将待发送的数据写入发送寄存器中,等待发送完成。
- 等待发送完成:等待发送完成标志位的置位,表示数据已经发送完成。
3. 接收数据指令接收数据指令用于接收外设发送的数据。
主要包括以下步骤:- 检查接收缓冲区是否非空:在接收数据之前,需要先检查接收缓冲区是否非空,以确保有数据可以接收。
单片机串口通信原理及实现方法
单片机串口通信原理及实现方法串口通信是指电脑或其他设备通过串行通信接口与外部设备进行数据传输的方式。
在单片机应用中,串口通信是一种常用的方式,能够实现与外部设备的数据交互和控制。
本文将介绍单片机串口通信的原理和实现方法。
一、串口通信原理串口通信采用串行传输方式,即逐位(bit)地传输数据,其中包括一个起始位、一个或多个数据位、一个或多个校验位和一个停止位。
常用的串口通信协议有RS-232、RS-485等。
在单片机串口通信中,主要包括以下几个部分:1. 时钟信号:单片机通过时钟信号来同步数据的传输,确保发送和接收的数据在同一时间段内互相对应。
2. 波特率:波特率是指每秒钟传送的比特数,也称为传输速率。
单片机与外部设备通信时,需要设置相同的波特率,以保证数据传输的准确性。
3. 数据格式:包括起始位、数据位、校验位和停止位。
起始位用于标识数据的开始,通常为逻辑低电平;数据位表示传输的数据长度,常用的有8位和9位;校验位用于检查数据的准确性,常用的有奇偶校验和检验等;停止位表示数据传输的结束,常用的为一个或两个停止位。
4. 控制信号:单片机通过控制信号来控制数据的发送和接收。
常用的控制信号有数据发送使能信号、数据接收使能信号、复位信号等。
二、单片机串口通信的实现方法单片机串口通信的实现方法主要包括以下几个步骤:1. 设置引脚功能:确定单片机的引脚功能,将其配置为串口通信功能。
不同的单片机芯片有不同的引脚功能设置方法,可以参考芯片手册进行配置。
2. 设置波特率:根据通信需求,设置单片机的波特率。
波特率的设置包括计算波特率产生所需的时钟频率和设置相应的控制寄存器。
3. 配置数据格式:根据通信协议,设置数据的格式,包括起始位、数据位、校验位和停止位。
这些设置通常是通过控制寄存器来实现的。
4. 数据发送与接收:通过单片机的串口发送寄存器和接收寄存器进行数据的发送与接收。
发送数据时,将需要发送的数据写入发送寄存器;接收数据时,通过读取接收寄存器获取接收的数据。
单片机与pc机串口通信
单片机与pc机串口通信单片机与 PC 机串口通信在现代电子技术领域,单片机与 PC 机之间的串口通信是一项非常重要的技术。
它为各种应用场景提供了便捷的数据传输方式,使得单片机系统能够与强大的 PC 机进行有效的信息交互。
首先,让我们来了解一下什么是单片机。
单片机,也被称为微控制器(MCU),是一种集成了 CPU、内存、I/O 接口等多种功能于一体的小型芯片。
它在各种电子设备中扮演着“大脑”的角色,负责控制和协调设备的运行。
而 PC 机,作为功能强大的通用计算机,拥有丰富的资源和强大的处理能力。
那么,为什么要实现单片机与 PC 机的串口通信呢?原因有很多。
一方面,通过串口通信,PC 机可以向单片机发送控制指令,实现对单片机所控制设备的远程操作。
另一方面,单片机可以将其采集到的数据实时传输给 PC 机,以便在 PC 机上进行进一步的处理、分析和存储。
串口通信的原理其实并不复杂。
它是一种基于串行数据传输的通信方式,通过发送和接收一系列的二进制位来实现信息的传递。
在串口通信中,数据以一位一位的顺序依次传输,相比于并行通信,虽然速度较慢,但具有线路简单、成本低、可靠性高等优点。
要实现单片机与 PC 机的串口通信,需要一些硬件和软件的支持。
在硬件方面,通常需要一个串口转换芯片,将单片机的 TTL 电平(通常为 0 5V)转换为 PC 机所使用的 RS232 电平(通常为-10V 到+10V)。
常见的串口转换芯片有 MAX232 等。
此外,还需要连接相应的数据线,将单片机的串口引脚与 PC 机的串口接口相连。
在软件方面,对于单片机来说,需要编写相应的串口通信程序,设置串口的工作模式、波特率、数据位、停止位等参数,并实现数据的发送和接收功能。
而对于 PC 机,通常可以使用各种编程语言,如 C++、C、Python 等,通过调用操作系统提供的串口通信库来实现与单片机的通信。
```cinclude <reg52h>void initUART(){TMOD = 0x20; //设置定时器 1 为模式 2TH1 = 0xfd; //波特率 9600TL1 = 0xfd;TR1 = 1; //启动定时器 1SCON = 0x50; //工作方式 1,允许接收}void sendByte(unsigned char dat){SBUF = dat;while (!TI);//等待发送完成TI = 0; //清除发送标志}void main(){initUART();while (1){sendByte('A');delay_ms(1000);}}```在这个示例中,首先通过`initUART` 函数对串口进行初始化设置,包括波特率等参数。
单片机串口通信协议
单片机串口通信协议单片机串口通信是指通过串行通信接口实现的一种数据传输方式,它在嵌入式系统中具有广泛的应用。
串口通信协议是指在串口通信中规定的数据传输格式和通信规则,它决定了数据的传输方式、数据的帧格式、数据的校验方式等重要参数,是保证串口通信正常进行的基础。
本文将介绍单片机串口通信协议的相关知识,帮助大家更好地理解和应用串口通信技术。
首先,我们来了解一下单片机串口通信的基本原理。
单片机的串口通信是通过串行通信接口实现的,它包括发送端和接收端两部分。
发送端将要发送的数据按照一定的格式发送出去,接收端接收到数据后进行解析和处理。
串口通信中的数据传输是按照一定的时序和规则进行的,发送端和接收端必须遵守相同的通信协议才能正常进行数据交换。
在单片机串口通信中,通信协议的制定非常重要。
通信协议包括数据帧格式、波特率、数据位、停止位、校验位等参数。
其中,数据帧格式决定了数据的传输格式,包括起始位、数据位、停止位和校验位等;波特率是指数据传输的速率,常用的波特率有9600、115200等;数据位是指每个数据字节中的数据位数,通常为8位;停止位是指每个数据字节后面的停止位数,通常为1位;校验位用于检验数据传输的正确性,常见的校验方式有奇偶校验、偶校验和无校验等。
这些参数的选择需要根据具体的应用场景来确定,不同的应用场景可能需要不同的通信协议参数。
在实际的单片机串口通信中,需要根据具体的应用需求来选择合适的通信协议。
通信协议的选择既要考虑数据传输的可靠性,又要考虑数据传输的效率。
通常情况下,波特率越高,数据传输的速率越快,但是对硬件要求也越高;数据位、停止位和校验位的选择要根据实际的数据格式和传输距离来确定,以保证数据的正确传输;同时,还需要考虑通信协议的兼容性和稳定性,以确保通信的可靠性和稳定性。
总之,单片机串口通信协议是保证串口通信正常进行的基础,它决定了数据的传输方式、数据的帧格式、数据的校验方式等重要参数。
51单片机串口通信
51单片机串口通信串行口通信是一种在计算机和外部设备之间进行数据传输的通信方式,其中包括了并行通信、RS-232通信、USB通信等。
而在嵌入式系统中,最常见、最重要的通信方式就是单片机串口通信。
本文将详细介绍51单片机串口通信的原理、使用方法以及一些常见问题与解决方法。
一、串口通信的原理串口通信是以字节为单位进行数据传输的。
在串口通信中,数据传输分为两个方向:发送方向和接收方向。
发送方将待发送的数据通过串行转并行电路转换为一组相对应的并行信号,然后通过串口发送给接收方。
接收方在接收到并行信号后,通过串行转并行电路将数据转换为与发送方发送时相对应的数据。
在51单片机中,通过两个寄存器来实现串口通信功能:SBUF寄存器和SCON寄存器。
其中,SBUF寄存器用于存储要发送或接收的数据,而SCON寄存器用于配置串口通信的工作模式。
二、51单片机串口通信的使用方法1. 串口的初始化在使用51单片机进行串口通信之前,需要进行串口的初始化设置。
具体的步骤如下:a. 设置波特率:使用波特率发生器,通过设定计算器的初值和重装值来实现特定的波特率。
b. 串口工作模式选择:设置SCON寄存器,选择串行模式和波特率。
2. 发送数据发送数据的过程可以分为以下几个步骤:a. 将要发送的数据存储在SBUF寄存器中。
b. 等待发送完成,即判断TI(发送中断标志位)是否为1,如果为1,则表示发送完成。
c. 清除TI标志位。
3. 接收数据接收数据的过程可以分为以下几个步骤:a. 等待数据接收完成,即判断RI(接收中断标志位)是否为1,如果为1,则表示接收完成。
b. 将接收到的数据从SBUF寄存器中读取出来。
c. 清除RI标志位。
三、51单片机串口通信的常见问题与解决方法1. 波特率不匹配当发送方和接收方的波特率不一致时,会导致数据传输错误。
解决方法是在初始化时确保两端的波特率设置一致。
2. 数据丢失当发送方连续发送数据时,接收方可能会出现数据丢失的情况。
谈PLC与单片机串口通信的实现
谈PLC与单片机串口通信的实现提纲:1. PLC与单片机串口通信的概述2. 串口通信协议的选择和实现3. 建筑自控系统PLC与单片机串口通信实现的具体过程4. 使用PLC与单片机串口通信的应用案例5. 未来发展趋势及建议提纲1:PLC与单片机串口通信的概述PLC与单片机串口通信是建筑自控系统中常用的控制方式之一。
PLC和单片机都是控制器,在许多场合中需要它们之间进行通信和配合。
通过串口通信方式,让PLC和单片机相互传递信息,使建筑自控系统实现更加高效、合理、自动化的控制。
本文将通过分析串口通信协议的选择和实现、建筑自控系统PLC与单片机串口通信实现的具体过程、使用PLC与单片机串口通信的应用案例、未来发展趋势及建议等方面,来详细阐述PLC与单片机串口通信的实现。
提纲2:串口通信协议的选择和实现串口通信协议是PLC与单片机串口通信的核心部分。
在选择串口通信协议的时候,需要考虑通信内容、通信速率、通信距离、通信稳定等方面。
目前较为常用的通信协议有Modbus协议、Profibus协议、Can协议等。
在实现串口通信的过程中,需要在两个控制器中分别编写对应的程序,并通过串口将信息传递出去。
通信的程序需要考虑精度、稳定性、错误处理等方面,以确保信息的准确性和稳定性。
提纲3:建筑自控系统PLC与单片机串口通信实现的具体过程建筑自控系统PLC与单片机串口通信是建筑中常见的自控方式。
实现这种控制方式的具体过程是,通过相应的硬件电路连接PLC与单片机,编写PLC和单片机的控制程序,并通过串口通信协议进行信息传递和控制。
在这过程中,需要考虑通信协议的选择、程序的编写以及控制的稳定性等因素,以确保实现高效、自动化的建筑自控系统。
提纲4:使用PLC与单片机串口通信的应用案例PLC与单片机串口通信在建筑自控方面具有广泛应用。
在智能楼宇系统、厂房自动化系统、暖通空调系统等多个场合中,均有着重要的应用。
例如,在智能楼宇系统中,通过PLC与单片机的串口通信可以实现对楼宇内部各部件的控制和监控;在厂房自动化系统中,可以通过这种方式实现对生产线上各种设备的控制和监测;在暖通空调系统中,可以通过这种方式实现对温度、湿度等各项参数的自动控制和调节。
单片机串口通信原理及应用实例分享
单片机串口通信原理及应用实例分享串口通信是一种常见的通信方式,它被广泛应用于单片机与外设、单片机与计算机等设备之间的数据传输。
本文将介绍单片机串口通信的原理和一些典型的应用实例。
首先,我们来了解一下单片机串口通信的原理。
串口通信是通过串行数据传输完成的,即数据一位位地按照固定的顺序传输。
单片机通常会使用UART(通用异步收发传输器)芯片来实现串口通信。
UART芯片中有两个寄存器,分别为发送寄存器和接收寄存器。
发送寄存器用于存放待发送的数据,而接收寄存器用于存放接收到的数据。
在单片机串口通信中,发送和接收的数据通过引脚进行传输。
其中,一个引脚称为TXD(发送数据线),负责将数据发送给外设或计算机;另一个引脚称为RXD(接收数据线),负责接收外设或计算机发送过来的数据。
数据的传输是通过一定的通信协议进行的,如常用的有RS232、RS485等。
下面,我们来讲解一些单片机串口通信的应用实例,以便更好地理解和应用该技术。
1. LED灯控制假设我们想要通过串口通信来控制一个LED灯的开关状态。
首先,我们需要连接单片机的TXD引脚和LED控制引脚,以便通过串口发送命令给LED灯控制。
然后,在单片机程序中,通过串口接收数据的中断服务程序接收外部发送过来的命令,根据命令的内容来控制LED灯的开关状态。
例如,当接收到字符"ON"时,将LED灯的控制引脚拉高,使其点亮;当接收到字符"OFF"时,将LED灯的控制引脚拉低,使其熄灭。
2. 温度监测与控制我们可以利用串口通信来监测和控制温度。
首先,我们需要连接温度传感器和单片机的RXD引脚,以便将温度数据传输给单片机。
然后,在单片机程序中,通过串口发送数据的函数周期性地向外部发送命令请求温度数据。
接收到温度数据后,可以根据预设的温度阈值来判断是否需要控制附加设备进行温度调节。
例如,当温度超过设定的上限值时,通过串口发送命令给风扇或空调,使其自动调整温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机串口通信浅谈一、准备知识1.什么是串口?串即串行的意思,是指数据在一根数据线上按照二进制数的数位一位接一位的传输,例如要传输一个字节的数据10110010,先将最低位的0 通过数据线传送过去,然后是下一位的1(两次传送时间间隔很小),依次将8 位数据(1 字节)传送过去。
在此对比一下并口的传输方式,并就是并行的意思,就是说数据是并行传过去的,假如一个并口有8 根数据线,那么它一次可以传送8 位即一个字节,仍以刚才的数据为例,在某一时刻,通过并口传送此数据,那么此并口的一根线上传的是0 信号,另一根是1 信号,以此类推,每根线上在同一时刻传的数据不一样,这样就达到一次传送多位的目的。
初次接触的同学可能会很自然地认为并口比串口速度快,但其实不是这样的,首先,并口需要不只一根线,成本相对较高,多根线也造成线路阻抗、噪声等问题更加突出,不适合长距离传输。
而串口只需两根线(一根发送,一根接收)即可完成通讯的功能,目前串口的速度以比并行端口传输速率快,rs232 (即通常所说的串口)、USB、1394 等都属于串口。
以下是串口的照片:需要注意的是,串口是2 排共9 针(每针具体功能见下文),而我们常用的显示器接口VGA 用的则是3 排共15 针,需要将两者区分开来。
2.什么是波特率?波特率又称比特率,单位bps(bit/s),指的是每秒传输的二进制位数,8 个二进制位即1 个字节。
Rs232 常用的波特率有19200、9600、4800,其中9600 最常用。
3.什么是单片机的寄存器?寄存器是单片机内的重要组成部分,在初学51 时通过控制相应寄存器的值来告诉单片机你要使用他的什么功能。
例如,我在代码中输入SCON=0x50,就告诉单片机我要使用它的串行端口,使用的是模式1(模式的讲解见下文)。
二、单片机端准备工作1.需要用到的元器件或模块:单片机最小系统模块×1,max232×1,10uF 电容×4,串口接头×12.串口接头各引脚说明3.电路图4.51 单片机串口通信需要用到的寄存器及讲解 需要用到的几个寄存器:TMOD (定时器/计数器模式寄存器)、TCON (定时器/计数器控制寄存器)、SCON (串行端口寄存器)、PCON (电源控制寄存器)。
本文串口通信所使用的波特率为 9600,要想单片机能够得到一个准确的频率就必须使用到单片机的定时器/计数器功能,当定时器走了一定秒数时就会让单片机发一个脉冲,脉 冲上就承载着此次传输的一位数据,TMOD 用来告诉单片机定时器是如何工作的,SCON 用 来在串口进行通讯时告诉单片机一些注意事项,如什么时候开始传送、什么时候开始接收等。
PCON 告诉单片机怎么通过计算知道定时器具体走了多久来发让单片机发送脉冲。
下面来具体说下如何设置各个寄存器来实现串口通信:以下寄存器均位 8 位寄存器,从右到左依次是从二进制低位到高位,第一行表格每一个 代表一个二进制位,表格里的内容代表此二进制位的名字,最后一行为本文所使用的配置, 第一个表格中间一行表示高四位用来控制 Timer1,低四位控制 Timer2。
紧跟表格下方的第 一行为此文配置,第二行为配置说明,剩下的为各二进制位的功能讲解。
连 51 单片机 P3.1 口 连 51 单片机 P3.0 口TMOD=0x20; 此配置作用:使用 Timer 1 的 mode2 工作模式,提供自动加载的 8 位定时器/计数器→TH1GATE 位:为 Timer 的控制开关,为 0 时只要 TCON 寄存器的 TR 位为 1 即可启动定时器,称 为内部启动,为 1 时则需要 TR 位为 1,同时外部给 INT0 引脚一个高电平,称为外部启动, 我们只用内部启动,外部启动作为了解。
C/T 位:为 0时使用单片机内部的计数器,为 1 时使用外部的计数器。
非特殊情况下都使用 内部计数器。
另一个 Timer 的各位功能同上。
TCON (只使用 TR )作用:TR=1, 启动 Timer1此寄存器只需了解 TR1 控制 Timer1,TR0 控制 Timer0,详细见 TMOD 寄存器 GATE 位讲解。
SCON=0x50;此配置作用:使用串行端口的 mode1 SM0、SM1 组合设置串行端口的模式SM2: Mode 0 时,SM2=0;Mode 1 时,若 SM2=1,且收到有效的停止位,则 RI=1,(产生 RI 中断),否则 RI=0; Mode 2 或 3 时,若 SM2=1,且收到的第 9 位为 1,则 RI=1(产生 RI 中断)。
REN :为 1,开始接收,为 0,停止接收。
TB8:mode2 或 3 传送数据时,本位为第 9 位传送位,可通过写代码来设定或清除。
RB8:mode2 或 3 接收数据时,本位为第 9 位接收位;mode1 时,若 SM2=0,则本位为停止位; mode0 时,本位无作用。
TI :本位为传送中断标志位,当中断结束时,本位并不会恢复为 0,必须在代码中清除。
Mode1、2、3 时,若完成传送停止位,则本位自动设定为 1,并产生 TI 中断。
Mode0 时,若完成传送第 8 位,则本位自动设定为 1,产生 TI 中断。
RI :本位为接收中断标志位,当中断结束时,本位并不会恢复为 0,必须在代码中清除。
Mode1、2、3 时,若完成接收停止位,则本位自动设定为 1,并产生 RI 中断。
Mode0 时,若完成接收第 8 位,则本位自动设定为 1,产生 RI 中断。
此配置作用:使 SMOD=1,计算比特率 此寄存器不作理解,只需知道设置 SMOD 值可影响波特率计算即可。
比特率计算公式(串行端口 mode1): 比特率=(2SMOD /32)*(OSC/(12*(256‐TH1)))5.代码编写Main 函数开始对寄存器进行初始化操作: TMOD = 0x20; TMOD = 0x20; SCON = 0x50; SCON = 0x50; TH1 = 0xFA; 或者 TH1 = 0xFD; PCON = 0x80; PCON = 0x00; TR1 = 1; TR1 = 1; 发送数据代码(在程序相应位置写上): SBUF=变量; //在相应的位置写上此代码,讲需要发送的数据先送到 SBUF 寄存器中 while(TI==0); //等到数据发送完再进行下一句代码 TI=0; //TI 为传送结束标志,必须软件置零起始位 停止位 (低电平)(高电平)二、PC 机端编程(使用VB)Private Sub Form_Load()MSComm1.Settings = "9600,n,8,1" ' 设置波特率和发送字符格式mPort = 4 ' 设置通讯串口MSComm1.InputLen = 0 ' 设置或返回一次从接收缓冲区中读取字节数,0 表示一次读取所有数据MSComm1.InBufferSize = 512 ' 设置接收缓冲区512ByteMSComm1.InBufferCount = 0MSComm1.OutBufferSize = 512 ' 设置发送缓冲区512ByteMSComm1.OutBufferCount = 0MSComm1.RThreshold = 1 ' 每个字符到接收缓冲区都触发接收事件MSComm1.SThreshold = 1MSComm1.PortOpen = True ' 打开串口End SubPrivate Sub MSComm1_OnComm()Select Case mEvent ' 设置oncomm 事件,读取片机内存的值Case comEvReceiveinputsignal = MSComm1.InputText13.Text = Asc(inputsignal) ' 单片机内存的值用Text 显示出Case ElseEnd Selectr = Val(Text13.Text) '将得到的数据赋给需要的变量,val 为数值转换函数,将text 内的内容转换成数值类型End Sub如果只是对单片机串口通信功能进行测试,可从网上下载测试工具,如:comdebug.exe,commix.exe,scomv21.exe ,Terminal.exe,将单片机与PC 通过rs232 串口线连接即可测试。
三、结束语串口通信并没有大家想像的那么困难,在熟练使用单片机的前提下,稍微看些相应的资料即可自己做出来,希望大家不要被吓到,只要努力学,这些都不会成太难的问题的。
以下附上作者写的一段源代码,实现的功能为扫描4*4 键盘(编号0~9,a~f),按下键后将相应的编号通过串口传送出去。
#include <reg52.h>#define rowkey (~P2)&0x0funsigned char keycode;void scanner();void delay(unsigned char ms);void put(char str);void main(){//寄存器初始化SCON = 0x50;TMOD = 0x20;TH1 = 0xFA;TR1 = 1;PCON = 0x80;while(1){scanner();}}void scanner() //扫描键盘函数{char col,row;char scan,keyin;scan=0xef;for(col=0;col<4;col++){P2=scan;keyin=rowkey;if(keyin!=0){delay(100);for(row=0;row<4;row++)if(keyin==(0x01<<row)){keycode=row+4*col;SBUF=keycode; //以下3 行为发送代码while(TI==0);TI=0;}while(rowkey!=0); //键盘防抖delay(100);}scan=(scan<<1)|0x01;}}void delay(unsigned char ms){unsigned char i;while(ms‐‐)for(i=0;i<124;i++);}本文完成后未来得及校对,肯定有错误之处,实在影响阅读欢迎发邮件讨论luxiakun@。