高中数学知识点口诀
高中数学口诀(知识记忆顺口溜)
两个不会为实数,比较大小要不得。
复数实数很密切,须注意本质区别。
排列、组合、二次项定律
加法乘法两原理,贯穿始终的法则。
与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。
归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。
特殊元素和位置,首先注意多考虑。
先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,
简单三角的方程,化为最简求解集。
不等式
解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。
还有数学归纳法,证明步骤程序化:
首先验证再假定,从 K向着K加1,
推论过程须详尽,归纳原理来肯定。
复数
虚数单位i一出,数集扩大到复数。
一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。
箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。
代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。
其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;
图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;
反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;
函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;
图象第一象限内,函数增减看正负。
高中数学秒杀口诀50条纯干货
高中数学秒杀口诀50条纯干货一:几何初等函数1.古典三角形:角平分线平行,等腰直角比定理。
2.矩形内角和:四个等边,和为全是360°。
3.三角形内角和:三个直角全等,和为180°。
4.外心内接圆:三角的内接圆两条邻边夹,外心即两角平分线夹。
5.等腰三角形:最大角等于中角,最小边等于两边之和。
6.锐角三角形:最大角大于中角,最小圆大于四分之一。
7.平行四边形:两个对角等于边之和,外心则是两角平分线之和。
8.直角三角形:两条直角等腰,直角大于两角小于90°。
9.梯形内角和:三角形的两个角和一个平角,和为180°。
10.直线的垂直交点:两条直线垂直相交,交点即两角平分线夹。
二:代数初等函数11.二次根式:二次根式的解法,一正一负要多除。
12.简化指数:指数运算把它拆,系数即是乘积啊。
13.分类联立:解三元一次方程,联立好可分析情况。
14.一次函数:一次函数的特征,斜率及截距说明。
15.一元二次:一元二次公式的解法,定理及变量要多算。
16.分式简化:分式的约分乘除,最大公因数要多求。
17.分数分母:分数乘除连除化,分母在最后要求。
18.交互消去:线性联立统一求,直接把变量交换消去。
19.完全平方:平方差和完全平方,两者的系数个数差别大。
20.二次方程:二次方程解决比较复,分类讨论得一套。
三:几何欧氏空间21.向量加减:向量加减法则规律,角平分头尾夹定理。
22.点线距离:点线距离公式的用,要知道夹角及长度。
23. 内积外积:内积叉积的多角度,余弦定理及正弦值。
24.向量积:向量积的乘积和,方向及大小要推算。
25.向量坐标:向量坐标的变换,从任意坐标转换。
26.向量的点积:向量的点积公式求,余弦定理和已知参数。
27.平面向量:平面向量的方向角,余弦及正弦定理求。
28.点在直线上:点在直线上确定位置,向量的夹角来判断。
29.直线平行:两直线平行向量点积,结果余弦定理明确。
与高中数学名词有关的顺口溜
与高中数学名词有关的顺口溜
以下是一些与高中数学名词有关的顺口溜:
函数与数列:数列函数子母胎,等差等比自成排。
数列求和几多法?通项递推思路开;变量分离无好坏,函数复合有内外。
同增异减定单调,区间挖隐最值来。
二项式定理:二项乘方知多少,万里源头通项找;展开三定项指系,组合系数杨辉角。
整除证明底变妙,二项求和特值巧;两端对称谁最大?主峰一览众山小。
立体几何:多点共线两面交,多线共面一法巧;空间三垂优弦大,球面两点劣弧小。
线线关系线面找,面面成角线线表;等积转化连射影,能割善补架通桥。
平面解析几何:有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。
方程与不等式:函数方程不等根,常使参数范围生;一正二定三相等,均值定理最值成。
参数不定比大小,两式不同三法证;等与不等无绝对,变量分离方有恒。
高中数学口诀
高中数学口诀高中数学口诀一、代数基础口诀:1. 二次方程求根公式:delta = b^2 - 4ac, x = (-b ± √delta) / 2a。
2. 一元二次方程的解:两根相等,delta = 0,两根相反,delta > 0,无解,delta < 0。
3. 四则运算优先顺序:括号,乘除,加减。
4. 和差化积:(a ± b)² = a² ± 2ab + b²。
5. 因式分解基本公式:a² - b² = (a + b)(a - b)。
二、函数与图像口诀:1. 一次函数的图像:y = kx + b,直线斜率为k,截距为b。
2. 幂函数“开口”:幂指数为正的开口向上,为负的开口向下。
3. 对称轴分析:二次函数的对称轴公式,x = -b /(2a)。
4. 函数图像平移:y = f(x ± a),横向右移a单位,纵向上移a单位。
5. 一次函数与一次函数相交,解得交点;一次函数与二次函数相交,解二次方程。
三、解三角函数口诀:1. 正弦函数正比例,余弦函数余比例,正割函数倒正弦,余割函数倒余弦,负弦余切亦是然。
2. 正弦余弦周期为2π,正切余切周期为π。
3. 锐角三角函数值,必然均在0到1之间;钝角正切值,以后再求再思量。
4. 归一化:将角度转为弧度,范围在[-π, π]之间。
5. 三角函数关系:tan = sin / cos,cot = cos / sin。
四、几何基础口诀:1. 三角形的外角和等于360°,内角和等于180°。
2. 同位角、内错角、同旁内角,两对角相等。
3. 正弦定理:a / sinA = b / sinB = c / sinC。
4. 余弦定理:c² = a² + b² - 2ab*cosC。
5. 平行线相交定理:同位角相等、内错角相等、同旁内角互补。
高中数学常用口诀
高中数学常用口诀
在学习高中数学的过程中,口诀是帮助我们记忆公式和定理的有效
方法。
下面列举了一些高中数学常用口诀,希望对大家的学习有所帮助:
一、三角函数口诀:
1.正弦余弦皆与角,正比负比循规矩。
2.正负所在那一限,正弦正切是正的。
3.根号三只友正弦,二的根号二友余弦。
二、圆的口诀:
1.圆周率尺规法,一圆项。
千千根号重:π=3.14159,记忆个不轻。
2.弧长弧度两相邻,三点为圆中间驻,角度琴键弦用好,角度度数
对应着。
3.圆周角邻直角,同弦近圆交。
外切内稳势精顾,辅角对顶三逢亲。
三、平面几何口诀:
1.同类三角相似法,列比率哥达刮拉。
相似方幅求来比,等比等品
君得跟。
2.圆的曲面独一元,求面积头一招君。
高下残积主罕省,内长径尔
再添。
四、导数与微分口诀:
1.函数雏形列惯例,导则吾友以求之。
增长差变须记证,指事牵牛开辟门。
2.多项减副主法兰,微分为证铺金殿。
商显骤忽元幡摇,商商商手绕十课。
以上是一些高中数学常用口诀,希望同学们在学习数学的过程中能够加以运用,提升记忆效率,轻松掌握知识。
高中(必修一)数学口诀
高中数学口诀人教A 版必修一第一章 集合篇1、集合三个特性:确定性、互异性、无序性(互异性:求出答案记得带回去检验看是否出现重复)2、常见数集表示方法:(1)、N ——自然数数集(自然的英语nature) (2)、Z ——整数集(拼音zheng )(3)、Q ——有理数集 (4)、R ——实数集3、一个集合有n 个元素,则其子集的个数为n 2,真子集个数为12-n ,非空子集个数为12-n ,非空真子集个数为22-n .4、元素与集合之间用∉∈或,集合于集合之间用⊆。
5、空集是任何集合的子集,是任何非空集合的真子集。
6、口诀:看到子集,首先考虑空集,然后才是画数轴列不等式。
7、两个重要公式:∁U (A ∪B )=(∁U A )∩(∁U B );∁U (A ∩B )=(∁U A )∪(∁U B ).(口诀:拆开变号)人教A 版必修一第一章 函数篇1、区间是一种特殊的数集表达形式,只能用于表示数集,而且不管开闭,必须左小右大。
2、形成函数的三个要求:每一性、唯一性、允许多对一不能一对多。
3、函数三要素:定义域、值域和对应关系(函数问题,不管啥题定义域优先)4、函数的表示方法:解析法、图像法、列表法5、判断两个函数是否相等只需要判断定义域和对应关系是否相等即可。
6、求定义域口诀(1)、先求定义域再化简; (2)、分式要求分母不为0.(3)、偶次根式要求被开方数≥0; (4)、0次方和负数次方要求底数不为0;(5)、指数要求底数>0且≠1; (6)、对数(log )要求真数>0,底数>0且≠1;(7)、复合函数定义域的求法:(口诀:简单算复杂“放”,复杂算简单“代”。
) 若()x f 定义域为[]b a , ,则复合函数()[]x g f 定义域由()b x g a ≤≤解出; 若()[]x g f 定义域为[]b a , ,则()x f 定义域相当于[]b a x ,∈时()x g 的值域.7、函数值域的求法(求值域也要先求定义域)(1)、图像法:能画图的坚决画图(2)、单调性法:有增减就可以代两端求最值得到值域;(3)、换元法:(口诀:次方出现两倍关系就可以使用换元法,设低次为t )操作步骤:第一步:求定义域并设t ; 第二步:马上求出t 的范围;第三步:用t 表示出x ; 第四步:求出新函数值域即为原函数的值域。
(完整版)高中数学公式口诀大全
高中数学公式口诀大全一、《集合与函数》内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《三角函数》三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。
?nbsp;变成税角好查表,化简证明少不了。
二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。
两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。
和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。
条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。
公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
高中文科数学知识点口诀记忆
一、《集合》集合概念不定义,属性相同来相聚;内有子交并补集,运算结果是集合。
集合元素三特征,互异无序确定性;集合元素尽相同,两个集合才相等。
书写规范符号化,表示列举描述法;描述法中花括号,对象x y 须看清。
数集点集须留意,点集本是实数对;元素集合讲属于,集合之间谈包含。
0 和空集不相同,正确区分才成功;运算如果有难处,文氏数轴来相助。
二、《常用逻辑用语》真假能判是命题,条件结论很清晰;命题形式有四种,分成两双同真假。
若p则q真命题,p和q 充分条件;q 是p必要条件,原逆皆真称充要。
判断条件有三法,举出反例定义法;由小推大集合法,逆否命题等价法。
逻辑连词或且非,或命题一真即真;且命题一假即假,非命题真假相反。
且命题的否定式,否定式的或命题;或命题的否定式,否定式的且命题。
量词一般有两个,全称量词所有的;存在量词有一个,全称特称两命题。
全称命题否定式,特称命题肯定式;含有量词否定式,改写量词否结论。
三、《函数概念》函数结构三要素,值域法则定义域;函数形式有三法,列表图像解析法。
特殊函数有三种,分段组合和复合;定义域的要求多,分式分母不为0 。
偶次方根须非负,0的次方要为正;底数非1为正数,零和负数无对数。
正切函数脚不直,数列序号正整数;多个函数求交集,实际意义须满足。
函数值域的求法,配方图像定义法;部分整体观察法,换元代入单调法。
分离常数判别式,均值定理不等法;怎样去求解析式,题目常考两性式。
抽象函数解析式,代入换元配凑法,方程思想消元法;指定类型解析式,运用待定系数法。
性质奇偶用单调,观察图像最美妙;若要详细证明它,还须将那定义抓。
组合函数单调性,判断它们有法则,增加上增等于增,增减去减等于增,减加上减等于减,减减去增等于减。
复合函数单调性,同增异减巧判断。
复合函数奇偶性,偶加减偶等于偶,奇加减奇等于奇。
偶加减奇非奇偶,偶乘除偶等于偶,奇乘除奇等于偶,奇乘除偶等于奇。
周期对称两种性,观察结构最可行;内同表示周期性,内反表示对称性。
高中数学口诀(武林秘籍,内功心法)
⾼中数学⼝诀(武林秘籍,内功⼼法)⼀、《集合与函数》内容⼦交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数⾮1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次⽅根须⾮负,零和负数⽆对数;正切函数⾓不直,余切函数⾓不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解⾮常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇⼦奇函数,奇母偶⼦偶函数,偶母⾮奇偶函数;图象第⼀象限内,函数增减看正负。
⼆、《三⾓函数》三⾓函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
同⾓关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割;中⼼记上数字1,连结顶点三⾓形;向下三⾓平⽅和,倒数关系是对⾓,顶点任意⼀函数,等于后⾯两根除。
诱导公式就是好,负化正后⼤化⼩,变成税⾓好查表,化简证明少不了。
⼆的⼀半整数倍,奇数化余偶不变,将其后者视锐⾓,符号原来函数判。
两⾓和的余弦值,化为单⾓好求值,余弦积减正弦积,换⾓变形众公式。
和差化积须同名,互余⾓度变名称。
计算证明⾓先⾏,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。
条件等式的证明,⽅程思想指路明。
万能公式不⼀般,化为有理式居先。
公式顺⽤和逆⽤,变形运⽤加巧⽤;1加余弦想余弦,1减余弦想正弦,幂升⼀次⾓减半,升幂降次它为范;三⾓函数反函数,实质就是求⾓度,先求三⾓函数值,再判⾓取值范围;利⽤直⾓三⾓形,形象直观好换名,简单三⾓的⽅程,化为最简求解集;三、《不等式》解不等式的途径,利⽤函数的性质。
对指⽆理不等式,化为有理不等式。
⾼次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作⽤⼤。
证不等式的⽅法,实数性质威⼒⼤。
高中数学口诀
高中数学口诀高中数学口诀(上)第一章代数基础1. 加减法凑整法:凑整使用,方程等式,快速简化。
2. 高次项凑齐法:幂指数齐,多项式一步搞。
3. 连加连乘法:累次求和,乘积相连,一招攻克全方程。
4. 因式分解法:拆括号秘,公式结构可敲打。
5. 质因数质因式:分解因数速直接,查找素数很实际。
6. 对称轴确定:横纵轴齐,确定坐标真。
7. 根轨迹观察:质数亮点,轨迹变换。
8. 根与系数关系:和、积、乘方,一目了然。
第二章函数与图像1. 函数定性分析:定义域找,单调取,奇偶观,周期求。
2. 函数拓展收缩:加减、倒置,平移缩放队非常。
3. 函数分段讨论:区间函数,条件束缚,得待灵活处理。
4. 典型函数曲线:线性单调直,二次轨迹齐,指数凸上,对数沉下,三角周期短。
第三章概率与统计1. 归纳法法则:观察问题,找规律,归纳推导法。
2. 理论频率法:总频率,个频数,逐个比,并列对比。
3. 期望逼近定律:均值核心,变量重合,独立性和。
4. 抽样指标估计:条件满足,总体估计,抽样调查方法。
第四章解析几何1. 图形基本特征:位移、旋转、对称变换。
2. 直线斜率关系:平行、垂直、相交。
3. 曲线变换规律:平移、伸缩和翻转。
4. 曲线切线性质:一阶导数,求斜率。
5. 图形方程关联:标准、一般、参数。
6. 空间图形投影:轴二等分,点到线垂。
7. 点线关系判定:距离、共面、方位。
高中数学口诀(下)第五章三角函数1. 一二三函数记:弦正双切线。
2. 度和弧的关系:180度等于派。
3. 余弦定理应:角边角乘积调。
4. 三角函数相等:负同,余同,背同,正倒。
5. 标准值计算:三角函数,特殊值。
6. 三角函数变换:加减,倍角,半角。
7. 三角函数扩展:单位圆,科学计算。
第六章高等代数1. 矩阵相乘法:行乘列运算真。
2. 方程组方法:高斯、克莱姆两常规。
3. 行列式性质:交换、抽公因,展开一步求。
4. 向量叉积法:模运算,方向垂直。
第七章导数与微分1. 定义紧记法:限往点,差商极限。
高中数学记忆顺口溜_考试必备
高中数学记忆顺口溜_考试必备
有很多学生觉得很难,其实只要你把这些口诀记住了并运用上,其实也不是很难。
小编为你整理的考生必备的高中数学记忆口诀,欢迎大家阅读。
高中数学记忆顺口溜一
高中数学一线牵,代数几何两珠连;
三个基本记心间,四种能力非等闲。
常规五法天天练,策略六项时时变,
精研数学七思想,诱思导学乐无边。
数形结合千般好,化归转化离不了;
有限自将无限描,或然终被必然表,
特殊一般多辨证,知识交汇步步高。
高中数学记忆顺口溜二
三角定义比值生,弧度互化实数融;
同角三类善诱导,和差倍半巧变通。
解前若能三平衡,解后便有一脉承;
角值计算大化小,弦切相逢异化同。
高中数学记忆顺口溜三
集合逻辑互表里,子交并补归全集。
对错难知开语句,是非分明即命题;
纵横交错原否逆,充分必要四关系。
真非假时假非真,或真且假运算奇。
高中数学记忆顺口溜四
一线:函数一条主线(贯穿教材始终)
二珠:代数、几何珠联璧合(注重知识交汇)
三基:方法(熟) 知识(牢) 技能(巧)
四能力:概念运算(准确)、逻辑推理(严谨)、空间想象(丰富)、分解问题(灵活)
五法:换元法、配方法、待定系数法、分析法、归纳法。
六策略:以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动。
七思想:函数方程最重要,分类整合常用到。
高中数学必背知识点
高中数学必背知识点一、集合与常用逻辑用语1.集合的概念-集合是由一些确定的对象组成的整体。
-元素与集合的关系:属于(∈)或不属于(∈)。
2.集合的表示方法-列举法:将集合中的元素一一列举出来。
-描述法:用确定的条件表示某些对象是否属于这个集合。
3.集合间的关系-子集:若集合A 中的所有元素都属于集合B,则A 是B 的子集,记作A∈B。
-真子集:若A∈B 且A≠B,则A 是B 的真子集,记作A∈B。
-相等:若A∈B 且B∈A,则A = B。
4.集合的运算-交集:A∩B 表示既属于集合A 又属于集合B 的元素组成的集合。
-并集:A∈B 表示属于集合A 或属于集合B 的元素组成的集合。
-补集:∈UA 表示在全集U 中,不属于集合A 的元素组成的集合。
5.常用逻辑用语-命题:可以判断真假的陈述句。
-四种命题:原命题、逆命题、否命题、逆否命题,它们之间的真假关系为:原命题与逆否命题同真同假,逆命题与否命题同真同假。
-充分条件与必要条件:若p∈q,则p 是q 的充分条件,q 是p 的必要条件;若p∈q,则p 是q 的充要条件。
二、函数1.函数的概念-函数是两个非空数集之间的一种对应关系。
-函数的三要素:定义域、值域、对应关系。
2.函数的性质-单调性:若对于定义域内的任意两个自变量x∈,x∈,当x∈<x∈ 时,都有f(x∈)<f(x∈),则函数f(x)在该区间上单调递增;若都有f(x∈)>f(x∈),则函数f(x)在该区间上单调递减。
-奇偶性:若对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),则函数f(x)为偶函数;若都有f(-x)= -f(x),则函数f(x)为奇函数。
-周期性:若存在一个非零常数T,使得对于函数f(x)定义域内的任意x,都有f(x+T)=f(x),则函数f(x)是周期函数,T 为它的一个周期。
3.常见函数-一次函数:y = kx + b(k≠0)。
-二次函数:y = ax² + bx + c(a≠0),其图象是一条抛物线,对称轴为x = -b/2a,顶点坐标为(-b/2a,(4ac - b²)/4a)。
高中数学常考题型答题技巧与方法及顺口溜
高中数学常考题型答题技巧与方法及顺口溜高中的数学学习主要目的是训练学生的思维能力!对于很多数学成绩差的学生来说,学习数学就是一种折磨。
其实,数学在高中的科目中并不是最难的,只要找到正确的学习方法,学习起来就会比较轻松。
今天,小编给大家分享一位数学名师总结的基础知识顺口溜分享给大家,包含了整个高中数学的知识点,运用口诀的方法帮助学生进行记忆。
高中数学重点知识全在这个顺口溜里,轻松掌握!数学思想方法总结中学数学一线牵,代数几何两珠连;三个基本记心间,四种能力非等闲。
常规五法天天练,策略六项时时变,精研数学七思想,诱思导学乐无边。
一线:函数一条主线(贯穿教材始终)二珠:代数、几何珠联璧合(注重知识交汇)三基:方法(熟)知识(牢) 技能(巧)四能力:概念运算(准确)、逻辑推理(严谨)、空间想象(丰富)、分解问题(灵活)五法:换元法、配方法、待定系数法、分析法、归纳法。
六策略:以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动。
七思想:函数方程最重要,分类整合常用到,数形结合千般好,化归转化离不了;有限自将无限描,或然终被必然表,特殊一般多辨证,知识交汇步步高。
数学知识方法口诀集合与函数内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数; 图象第一象限内,函数增减看正负。
三角函数三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
高中数学必背公式大全高中数学公式定理记忆口诀
高中数学必背公式大全高中数学公式定理记忆口诀高中数学必背公式大全高中数学公式定理记忆口诀。
数学记忆不清的同学、喜欢诗词的同学有福气啦,对仗整齐的数学公式记忆口诀,保证让你背的顺口、考的顺利。
一、高中数学公式定理记忆口诀不等式解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。
非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。
图形函数来帮助,画图建模构造法。
二、高中数学公式定理记忆口诀数列等差等比两数列,通项公式N项和。
两个有限求极限,四则运算顺序换。
数列问题多变幻,方程化归整体算。
数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。
归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。
还有数学归纳法,证明步骤程序化:首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。
三、高中数学公式定理记忆口诀立体几何点线面三位一体,柱锥台球为代表。
距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。
线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。
计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。
射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。
公理性质三垂线,解决问题一大片。
四、高中数学公式定理记忆口诀平面解析几何有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者-一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。
高二数学常用公式
高二数学常用公式导语:同学们有没有发现,把数学知识点编成一句句幽默风趣的口诀,学习起来就轻松多了,下文是高考网特为大家整合的高中数学各个知识点的口诀。
有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。
【注】“大”减“小”是指绝对值的大小。
合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n1=-(b-a)2n1(a-b)2n=(b-a)2n平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
小中高数学记忆口诀
小中高数学记忆口诀高中数学一、《集合与函数》内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《三角函数》三角函数是函数,象限符号坐标注。
函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。
正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。
诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。
二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。
两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。
和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。
条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。
公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学知识点口诀
高中数学知识点口诀
有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。
“大”减“小”是指绝对值的大小。
合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n1=-(b-a)2n1(a-b)2n=(b-a)2n
平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)
单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小
(鱼)于(吃)取中间。
分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。
最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
特殊点坐标特征:坐标平面点(某,y),横在前来纵在后;(,),(-,),(-,-)和(,-),四个象限分前后;某轴上y为0,某为0在Y轴。
象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
平行某轴的.直线:平行某轴的直线,点的坐标有讲究,直线平行某轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。
对称点坐标:对称点坐标要记牢,相反数位置莫混淆,某轴对称y相反,Y 轴对称,某前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律:若把一次函数解析式写成y=k(某0)b、二次函数的解析式写成y=a(某h)2k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。
一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,某增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特
别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。
若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。
图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。
巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切。
正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。
三角函数的增减性:正增余减。
特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可。
数字巧记:=1.414(意思意思而已)=1.7321(三人一起商量)=2.236(吾量量山路)=2.449(粮食是酒)=2.645(二流是我)=2.828(二爸二爸)=3.16(山药,六两)
平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行。
对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成。
梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。
添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。
圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定
垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连。
同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。