生物化学知识点总结精简版
生物化学重点整理

生物化学重点整理生物化学是一门研究生物体化学组成和生命过程中化学变化的科学。
它涵盖了广泛的领域,从分子水平揭示生命的奥秘。
以下是对生物化学重点内容的整理。
一、蛋白质化学蛋白质是生物体内最为重要的大分子之一。
1、蛋白质的组成蛋白质主要由碳、氢、氧、氮等元素组成,其基本组成单位是氨基酸。
氨基酸通过肽键相连形成多肽链,进而折叠形成具有特定空间结构的蛋白质。
2、蛋白质的结构蛋白质具有一级、二级、三级和四级结构。
一级结构指的是氨基酸的排列顺序;二级结构包括α螺旋、β折叠等;三级结构是整个多肽链的三维构象;四级结构则是由多个亚基组成的蛋白质的空间排列。
3、蛋白质的性质蛋白质具有两性解离、胶体性质、变性与复性等特性。
变性会导致蛋白质的空间结构破坏,从而失去生物活性,但在一定条件下可以复性。
二、核酸化学核酸包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
1、核酸的组成核酸由核苷酸组成,核苷酸包含碱基、戊糖和磷酸。
DNA 中的碱基有腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C);RNA 中的碱基用尿嘧啶(U)代替了胸腺嘧啶。
2、 DNA 的结构DNA 是双螺旋结构,两条链反向平行,碱基之间遵循互补配对原则(A 与 T 配对,G 与 C 配对)。
3、 RNA 的种类与功能RNA 包括信使 RNA(mRNA)、转运 RNA(tRNA)和核糖体RNA(rRNA)。
mRNA 携带遗传信息,指导蛋白质合成;tRNA 转运氨基酸;rRNA 是核糖体的组成部分。
三、酶酶是生物体内具有催化作用的蛋白质或 RNA。
1、酶的特点酶具有高效性、专一性和可调节性。
高效性使得酶能够大大加快反应速率;专一性保证了酶对特定底物的作用;可调节性使酶的活性能够适应生物体的需求。
2、酶的作用机制酶通过降低反应的活化能来加速反应。
它与底物结合形成酶底物复合物,然后经过一系列的中间步骤完成催化反应。
3、影响酶活性的因素温度、pH 值、底物浓度、酶浓度、抑制剂和激活剂等都会影响酶的活性。
生物化学知识点总结

生物化学知识点总结1. 生物大分子的结构与功能- 蛋白质:氨基酸序列、一级结构、二级结构(α-螺旋、β-折叠)、三级结构、四级结构。
- 核酸:DNA和RNA的化学结构、碱基配对原则、双螺旋结构。
- 糖类:单糖、二糖、多糖的结构和功能。
- 脂质:甘油三酯、磷脂、固醇的结构和生物学功能。
2. 酶学- 酶的定义、催化机制、酶活性的影响因素(pH、温度、底物浓度)。
- 酶动力学:米氏方程、最大速率(Vmax)、米氏常数(Km)。
- 酶抑制:竞争性抑制、非竞争性抑制、不可逆抑制。
3. 代谢途径- 糖酵解:步骤、ATP产量、调节点。
- 柠檬酸循环(TCA循环):反应步骤、能量产生。
- 电子传递链和氧化磷酸化:电子载体、质子梯度、ATP合成。
- 光合作用:光依赖反应、光合电子传递链、ATP和NADPH的生成。
- 氨基酸代谢:脱氨基作用、尿素循环。
- 脂质代谢:脂肪酸的氧化、合成、甘油代谢。
4. 信号传导- 受体类型:G蛋白偶联受体、酪氨酸激酶受体、离子通道受体。
- 第二信使:cAMP、IP3、DAG、Ca2+。
- 信号传导途径:MAPK途径、PI3K/Akt途径、Wnt/β-catenin途径。
5. 基因表达与调控- DNA复制:半保留复制、DNA聚合酶。
- 转录:RNA聚合酶、启动子、增强子、沉默子。
- 翻译:核糖体结构、tRNA作用、密码子、起始和终止密码子。
- 基因调控:表观遗传学、非编码RNA、microRNA。
6. 分子生物学技术- PCR技术:原理、引物设计、扩增过程。
- 克隆技术:载体选择、限制性内切酶、连接酶。
- 基因编辑:CRISPR-Cas9系统、基因敲除、基因敲入。
- 蛋白质组学:质谱分析、蛋白质标记、蛋白质互作。
7. 生物化学研究方法- 分子杂交技术:Southern印迹、Northern印迹、Western印迹。
- 色谱法:离子交换色谱、凝胶渗透色谱、亲和色谱。
- 光谱学方法:紫外光谱、红外光谱、核磁共振(NMR)。
生物化学考试重点总结

生物化学考试重点总结
1. 生物化学基本概念
- 生物大分子:蛋白质、核酸、多糖、脂质
- 酶:催化生化反应的生物催化剂
- 代谢路径:物质在生物体内相互转化的路径
2. 生物大分子的结构与功能
- 蛋白质:结构、功能、种类、合成和降解
- 核酸:DNA和RNA的结构、功能、复制和转录
- 多糖:单糖、二糖、多糖的结构、功能、合成和降解- 脂质:脂肪酸、甘油三酯、磷脂的结构、功能和代谢
3. 代谢途径与调控
- 糖代谢:糖酵解、糖异生、糖原代谢
- 脂肪代谢:脂肪酸氧化、甘油三酯合成、脂肪酸合成- 蛋白质代谢:蛋白质降解、蛋白质合成、氨基酸代谢- 核酸代谢:DNA和RNA的代谢途径及调控机制
4. 其他重点知识点
- 酶动力学:酶的活性、酶动力学参数、酶抑制剂
- 信号转导与调控:细胞信号传导、信号通路、蛋白质磷酸化- 生物膜:细胞膜结构、跨膜转运和信号传导
5. 实验技术
- 分子生物学实验技术:PCR、DNA测序、蛋白质电泳
- 生物化学分离和分析方法:色谱技术、质谱技术、光谱技术
以上是生物化学考试的重点内容总结,希望对你的备考有所帮助。
祝你考试顺利!。
生物化学重点知识点总结

生物化学重点知识点总结第一节蛋白质的结构与功能一、蛋白质的分子组成1.组成蛋白质的元素主要有碳、氢、氧、氮和硫。
各种蛋白质中含氮量相近,平均为16%,因此测定生物样品中的含氮量可得出蛋白质的大致含量:每克样品含氮的克数×6.25=蛋白质的克数/克样品。
2.氨基酸是组成蛋白质的基本单位人体内组成蛋白质的氨基酸共有20种,均为L-α氨基酸(甘氨酸不含手性碳原子,无旋光性)。
氨基酸按侧链的理化性质分为4类:①非极性疏水性氨基酸:色氨酸、缬氨酸、脯氨酸、苯丙氨酸、异亮氨酸、亮氨酸、蛋氨酸(甲硫氨酸)和丙氨酸;②极性中性氨基酸:半胱氨酸、天冬酰胺、甘氨酸、苏氨酸、酪氨酸、谷氨酰胺和丝氨酸;(此处与教材不一致,教材有误,以老师讲解为准)③酸性氨基酸:天冬氨酸、谷氨酸;④碱性氨基酸:赖氨酸、精氨酸和组氨酸。
3.氨基酸属于两性电解质为兼性离子色氨酸和酪氨酸在280nm波长处有最大光吸收,而绝大多数蛋白质都含有色氨酸和酪氨酸,因此紫外吸收法是分析溶液中蛋白质含量的简便方法。
4.肽与肽键一个氨基酸的氨基与另一个氨基酸的羧基脱去1分子水,所形成的酰胺键称为肽键。
氨基酸通过肽键相连而成肽链,少于10个氨基酸的肽链称为寡肽,多于10个氨基酸的肽链称为多肽。
多肽链中氨基末端写在左侧,羧基末端写在肽链的右侧,以氨基末端的氨基酸为1号对多肽链进行编号,从左向右顺序排列。
二、蛋白质的分子结构1.蛋白质的一级结构多肽链中氨基酸的排列顺序称为蛋白质的一级结构,蛋白质一级结构中的主要化学键是肽键。
2.蛋白质的二级结构蛋白质分子中某一段肽链的局部空间结构,也就是该肽链主链骨架原子的相对空间位置。
蛋白质二级结构包括α-螺旋、β-折叠、β-转角和无规则卷曲。
维持蛋白质二级结构的化学键是氢键。
(1)α-螺旋:①多肽链的主链围绕中心轴呈有规律的螺旋式上升,螺旋的走向为顺时针方向,即右手螺旋;②氨基酸侧链伸向螺旋外侧;③每个肽键的亚氨基氢和第四个肽键的羰基氧形成氢键,依此类推,肽链中的全部肽键都形成氢键,以稳固α-螺旋结构;④每3.6个氨基酸残基螺旋上升一圈。
生物化学知识点汇总

第二章[名词解释]1、蛋白质的变性:在某些物理或化学因素作用下,蛋白质特定的空间构象被破坏从而导致其理化性质的改变和生物活性的丧失,称为——2、模序:在许多蛋白质分子中,可发现2个或是3个具有2级结构的肽段,在空间上相互接近,形成一个具有特殊功能的空间结构。
3、结构域:分子量大的蛋白质3级结构常可分割成一个和数个球状或纤维状的区域,折叠得较为紧密,各行其功能。
4、肽:肽是氨基酸残基之间彼此通过酰胺键相连而成的一类化合物,一般来说10个以内氨基酸相连而成的肽称为寡肽,更多的氨基酸相连而成的肽称为多肽。
5、蛋白质的等电点:在某一PH的溶液中,蛋白质解离成阴阳离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为蛋白质的等电点。
6、蛋白质的变构效应:变构剂或效应剂与蛋白质结合后引起蛋白质构象变化,称为蛋白质的变构效应。
7、分子伴侣:是参与蛋白质空间构象正确形成的一类蛋白质,它通过可逆地,与未折叠肽段的疏水部分结合随后松开,如此重复进行可防止错误的聚集,也可与错误的聚集肽段聚合使之解聚后,再诱导其正确的折叠。
同时,它对蛋白质分子中的二硫键形成起到主要的作用。
8、α—螺旋:蛋白质二级结构的主要形式之一,多肽链的主链围绕中心绕成螺旋状,称为α—螺旋。
螺旋的走向为顺时针方向,即为右手螺旋,氨基酸侧链伸向螺旋外侧。
每3.6个氨基酸残基螺旋上升一圈,螺距为0.54nm。
α—螺旋的每个肽键的N—H和第四个肽键的羰基氧化形成氢键,氢键的方向与长轴基本平行。
[问答与思考]1.组成蛋白质的基本单位是什么?其结构上有什么特点?蛋白质的基本组成单位是氨基酸,均为L—α—氨基酸,即在α—碳原子上连有一个氨基,一个羧基,一个氢原子和一个侧链。
每氨基酸的侧链各不相同,是其表现不同性质的结构特征。
2.试述双缩脲法测定蛋白质含量的原理。
(略)3.什么是蛋白质的一、二、三、四级结构。
维持这些结构的键或力是什么?一级结构:蛋白质分子中的aa的排列顺序;肽键、二硫键。
基础生物化学知识点

基础生物化学知识点一、蛋白质1. 蛋白质的组成:-主要由碳、氢、氧、氮等元素组成。
-基本单位是氨基酸,氨基酸通过肽键连接形成多肽链。
2. 氨基酸的结构:-具有一个氨基(-NH₂)、一个羧基(-COOH)、一个氢原子和一个侧链(R 基团)。
-根据侧链的性质不同,可分为不同的氨基酸类型,如酸性氨基酸、碱性氨基酸、中性氨基酸等。
3. 蛋白质的结构层次:-一级结构:指多肽链中氨基酸的排列顺序。
-二级结构:主要有α-螺旋、β-折叠等,是通过氢键维持的局部空间结构。
-三级结构:多肽链在二级结构的基础上进一步折叠形成的三维结构,主要由疏水作用、离子键、氢键等维持。
-四级结构:由多个具有独立三级结构的亚基通过非共价键结合而成。
4. 蛋白质的性质:-两性电离:在不同的pH 条件下,蛋白质可带正电、负电或呈电中性。
-胶体性质:蛋白质分子颗粒大小在胶体范围,具有胶体的一些特性。
-变性与复性:在某些物理或化学因素作用下,蛋白质的空间结构被破坏,导致其生物活性丧失,称为变性;变性的蛋白质在适当条件下可恢复其天然构象和生物活性,称为复性。
-沉淀反应:在适当条件下,蛋白质可从溶液中沉淀出来,如加入盐、有机溶剂等。
二、核酸1. 核酸的分类:-脱氧核糖核酸(DNA):是遗传信息的携带者。
-核糖核酸(RNA):参与遗传信息的表达。
2. 核酸的组成:-由核苷酸组成,核苷酸由磷酸、戊糖(DNA 为脱氧核糖,RNA 为核糖)和含氮碱基组成。
-含氮碱基有腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)、胸腺嘧啶(T,DNA 特有)和尿嘧啶(U,RNA 特有)。
3. DNA 的结构:-双螺旋结构:两条反向平行的多核苷酸链围绕同一中心轴相互缠绕,由氢键和碱基堆积力维持稳定。
-特点:右手螺旋、碱基互补配对(A 与T 配对,G 与C 配对)。
4. RNA 的种类和结构:-mRNA(信使RNA):携带遗传信息,从DNA 转录而来,作为蛋白质合成的模板。
- tRNA(转运RNA):呈三叶草形结构,在蛋白质合成中负责转运氨基酸。
生物化学知识点总整理

生物化学知识点总整理一、蛋白质1.蛋白质的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合物,由C、H、O、N、S元素组成,N的含量为16%。
2.氨基酸共有20种,分类:非极性疏水R基氨基酸、极性不带电荷R基氨基酸、带正电荷R基氨基酸(碱性氨基酸)、带负电荷R基氨基酸(酸性氨基酸)、芳香族氨基酸。
3.氨基酸的紫外线吸收特征:色氨酸和酪氨酸在280纳米波长附近存在吸收峰。
4.氨基酸的等电点:在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的净电荷为零,此时溶液的PH值称为该氨基酸的等电点;蛋白质等电点:在某一PH值下,蛋白质的净电荷为零,则该PH值称为蛋白质的等电点。
5.氨基酸残基:氨基酸缩合成肽之后氨基酸本身不完整,称为氨基酸残基。
6.半胱氨酸连接用二硫键(—S—S—)7.肽键:一个氨基酸的α-羧基与另一个氨基酸α-氨基脱水缩合形成的化学键。
8.N末端和C末端:主链的一端含有游离的α氨基称为氨基端或N端;另一端含有游离的α羧基,称为羧基端或C端。
9.蛋白质的分子结构:(1)一级结构:蛋白质分子内氨基酸的排列顺序,化学键为肽键和二硫键;(2)二级结构:多肽链主链的局部构象,不涉及侧链的空间排布,化学键为氢键,其主要形式为α螺旋、β折叠、β转角和无规则卷曲;(3)三级结构:整条肽链中,全部氨基酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置,化学键为疏水键、离子键、氢键及范德华力;(4)四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用。
10.α螺旋:(1)肽平面围绕Cα旋转盘绕形成右手螺旋结构,称为α螺旋;(2).螺旋上升一圈,大约需要 3.6个氨基酸,螺距为0.54纳米,螺旋的直径为0.5纳米;(3).氨基酸的R基分布在螺旋的外侧;(4).在α螺旋中,每一个肽键的羰基氧与从该羰基所属氨基酸开始向后数第五个氨基酸的氨基氢形成氢键,从而使α螺旋非常稳定。
生物化学复习重点

生物化学复习重点第一章蛋白质1.蛋白质的元素组成:C、H、O、N、S及其他微量元素,N为特征性元素2.氨基酸通式特点:α-L -氨基酸,只有甘氨酸没有手性(旋光性),脯氨酸为亚氨基酸。
3.氨基酸分类:(1)、酸性氨基酸:一氨基二羧基氨基酸,有天冬氨酸、谷氨酸,带负电荷(2)、碱性氨基酸:二氨基一羧基氨基酸,有赖氨酸、精氨酸、组氨酸,带正电荷(3)、中性氨基酸:一氨基一羧基氨基酸,有甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甲硫氨酸、半胱氨酸、苯丙氨酸、色氨酸、酪氨酸、脯氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸。
不带电荷。
4.两性解离:氨基酸是两性电解质是指在溶液中既可以给出H+而表现酸性,其氨基可以结合H+而表现碱性。
在一定条件下,氨基酸是一种既带正电荷,又带负电荷的离子,这种离子称为兼性离子。
5.等电点:在某一pH值条件下,氨基酸解离成阳离子和阴离子的程度相等,溶液中的氨基酸以兼性离子的形式存在,且净电荷为0 此时溶液的pH值称为该氨基酸的等电点。
肽键:存在于蛋白质和肽分子中,是由一个氨基酸的α羧基与另一个氨基酸的α氨基缩合形成的化学键。
肽键:一个氨基酸的a-COOH 和相邻的另一个氨基酸的a-NH2脱水形成共价键。
氨基酸通过钛键连接成肽,根据所含氨基酸的多少分为寡肽和多肽;根据结构功能分为生物活性肽和蛋白质。
肽键结构的六个原子构成一个钛单元,六个原子处于同一个平面上称为肽平面pI=(pK1,+pK2,)/25.氨基酸紫外吸收:280nm,苯丙氨酸、色氨酸、酪氨酸有紫外吸收6.蛋白质的一级结构(Primary structure):它是指蛋白质中的氨基酸按照特定的排列顺序通过肽键连接起来的多肽链结构。
7.蛋白质二级结构的概念:是指蛋白质多肽链局部片段的构象该片段的氨基酸序列是连续的,而主链构象通常是规则的的基础上,按照一定的方式有规律的旋转或折叠形成的空间构象。
其实质是多肽链在空间的排列方式蛋白质二级结构主要类型有:a-螺旋、β-折叠、β-转角维持二级结构的作用力:氢键a-螺旋(a-Helix):是指蛋白质多肽通过肽平面旋转盘绕形成的一种右手螺旋结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物化学知识点总结第一章蛋白质化学1、氨基酸的分类:记住:20种蛋白质氨基酸的结构式,三字母符号。
例题:1、请写出下列物质的结构式:赖氨酸,组氨酸,谷氨酰胺。
2、写出下列缩写符号的中文名称:Ala Glu Asp Cys3、是非题:1)天然氨基酸都有一个不对a-称碳原子。
2)自然界的蛋白质和多肽类物质均由L—氨基酸组成。
2、氨基酸的酸碱性质3、氨基酸的等电点(pI):使氨基酸处于净电荷为零时的pH4、紫外光谱性质:三种氨基酸具有紫外吸收性质。
最大吸收波长:酪氨酸一一275nm ;苯丙氨酸——257nm ;色氨酸——280nm。
一般考选择题或填空题。
5、化学反应:与氨基的反应:6、蛋白质的结构层次一级(10)结构(primary structure ):指多肽链中以肽键相连的氨基酸序列。
二级(20)结构(secondary structure ):指多肽链借助氢键排列成一些规则片断,a-螺旋,B -折叠,B -转角及无规则卷曲。
超二级结构:在球状蛋白质中,若干相邻的二级结构单元如a-螺旋,B -折叠,B -转角组合在一起,彼此相互作用,形成有规则的在空间上能辨认的二级结构组合体,并充当三级结构的构件,基本组合有:aa,BaB,BBB。
结构域:结构域是多肽链在二级结构或超二级结构的基础上形成三级结构的局部折叠区,它是一个相对独立的紧密球状实体7、维持蛋白质各级结构的作用力:一级结构:肽键二,三,四级结构:氢键,范德华力,疏水作用力,离子键和二硫键。
胰蛋白酶:Lys和Arg羧基所参加的反应糜蛋白酶:Phe,Tyr,Trp羧基端肽键。
梭菌蛋白酶:Arg的羧基端溴化氰:只断裂Met的羧基形成的肽键。
波耳效应:当H+离子浓度增加时,pH值下降,氧饱和度右移,这种pH对血红蛋白对氧的亲和力影响被称为波耳效应(Bohr效应)。
第二章核酸化学1、核苷酸:四种碱基的结构式,四种核苷酸的结构式,四种脱氧核苷酸的结构式,假尿嘧啶核苷酸的结构式,环腺苷酸的结构式。
2、核酸的一级结构:核苷酸是核酸的基本结构单位。
核苷酸以磷酸二酯键连接。
例题:核酸的基本结构单位是______________ 。
3、D NA的二级结构:双螺旋Watson双螺旋的结构特点,双螺旋类型,双螺旋的维持力4、t RNA的二级结构和三级结构二级结构:三叶草形结构三级结构:倒L形。
5、原核生物和真核生物mRNA的区别原核生物mRNA为多顺反子mRNA。
真核生物mRNA具5' 端帽子和3'端多聚腺苷酸结构,是单顺反子。
6、限制性内切酶:在细菌中发现的,具有严格的碱基序列专一性,主要是降解外源的DNA一类酶。
第三章酶1、酶的概念经典概念:是一类由活细胞产生的,具有特殊催化能力,高度专一性的蛋白质。
目前的定义:是生物体内一类具有催化能力和特定空间构象的生物大分子。
4、全酶=酶蛋白+辅助因子5、酶的系统命名法例题:写出下列反应酶的国际系统命名6、酶的分类1)氧化还原酶2)转移酶3)水解酶4)裂合酶5)异构酶6)合成酶7、酶活力的概念,酶活力单位,比活力,总活力酶活力是指酶催化某一化学反应的能力。
用一定条件下所催化的某一反应的速率来表示。
酶活力单位:在一定条件下,一定时间内将一定量的底物转化为产物所需的酶量(unit, U)。
8、酶的专一性假说:锁钥学说,诱导契合假说9、酶的专一性分为结构专一性和立体异构专一性。
10、酶的活性部位:酶分子中能和底物结合并起催化作用的空间部位,分为结合部位和催化部位。
11、米氏方程米氏常数的意义:米氏常数Km是当酶的反应速率达到最大反应速率一半时的底物浓度,单位是浓度单位(mol/L )。
Km是酶的一个特性常数,只与酶的性质有关。
12、温度系数(Q10):反应提高10C,其酶促反应速率与原来反应速率之比。
13、酶的抑制作用:酶的必需基团受到某种物质影响发生改变,导致酶活性降低或丧失。
可逆抑制作用:抑制剂与酶以非共价键结合,引起酶活性丧失或者降低,可以用物理化学方法除去抑制剂,使酶复活。
分为三类:①竞争性抑制作用②非竞争性抑制作用③反竞争性抑制作用①竞争性抑制作用:抑制剂(I)与底物(S)有相似的结构,它们竞争酶的活性部位,从而影响底物与酶的正常结合,使酶的活性降低,这种抑制作用可以通过增加底物浓度解除。
②非竞争性抑制作用:抑制剂与酶活性中心以外的部位结合,不妨碍酶与底物的结合,可以形成ES复合物,这种复合物不能进一步转变为产物。
这种抑制作用不能用增加底物的方式解除。
③反竞争性抑制作用:酶与底物结合后才能与抑制剂结合形成ES复合物,这种复合物不能分解为产物,从而抑制了酶的活性。
16、决定酶高效率的机制:邻近效应和定向效应;诱导契合;酸碱催化;共价催化;局部微环境的影响。
17、酶的别构调节:酶分子的非催化部位与某些化合物可逆的非共价结合,使酶发生构象的改变,进而改变酶活性状态,称为酶的别构调节。
效应物:能使酶分子发生别构作用的物质,又分为正效应物和负效应物。
第四章维生素1、维生素:是维持机体正常生命活动不可缺少的小分子有机物。
分为脂溶性维生素和水溶性维生素2、维生素A缺乏症:夜盲症3、维生素D缺乏症:佝偻病4、维生素B1:是TPP勺前体;TPP是丙酮酸脱羧酶,乙酰乳酸合成酶,戊糖磷酸途径中转酮酶的辅酶。
缺乏症是脚气病。
5、维生素PP:是NAD= NADP+的组成成分。
6、维生素B2是FAD, FMN的组成成分7、泛酸是辅酶A的组成成分&维生素B6是磷酸吡哆胺和磷酸吡哆醛的前体,这两种物质主要作为转氨酶和脱羧酶的辅酶9、维生素B12的缺乏症:恶性贫血10、叶酸:是四氢叶酸的前体,四氢叶酸是体内一碳单位的载体。
11、硫辛酸作为丙酮酸脱氢酶系中的一个辅酶。
第五章糖代谢1、糖酵解:发生场所,反应过程,酶,调控酶,限速反应,能量变化及生理意义场所:细胞质调控酶:己糖激酶,磷酸果糖激酶,丙酮酸激酶净产生2个ATP2、三羧酸循环:场所,反应过程,酶,调控酶,能量产生,生理意义产所:线粒体调控酶:柠檬酸合成酶、异柠檬酸脱氢酶和a -酮戊二酸脱氢酶能量产生:10个ATP3、糖原合成和分解:场所和过程4、糖异生:三个迂回措施5、磷酸戊糖途径的生理意义是细胞产生还原力(NADPH)的主要途径。
是细胞内不同结构糖分子的重要来源,并为各种单糖的相互转变提供条件6、乙醛酸途径中两个特有的酶:异柠檬酸裂合酶和苹果酸合酶7、胰岛素,胰高血糖素,肾上腺素,糖皮质激素对血糖的作用。
第六章生物氧化1、生物氧化的概念:是有机物在活细胞中进行氧化分解生成二氧化碳和水,并释放出能量的过程。
2、呼吸链:在生物氧化过程中,基质脱下的氢经过一系列传递体传递,最后与氧结合生成水的电子传递系统,在具有线粒体的生物中,呼吸链分为NADH链和FADH2链两种。
4、呼吸链的组成:NADH链:NADH —辅酶Q还原酶,辅酶Q,辅酶Q —细胞色素c 还原酶,细胞色素c,细胞色素氧化酶。
FADH2链:FADH2—辅酶Q还原酶,辅酶Q,辅酶Q—细胞色素c 还原酶,细胞色素c,细胞色素氧化酶。
5、底物水平磷酸化:在代谢过程中,由于底物分子内部能量重新分布产生的高能磷酸键转移给ADP,产生ATP或GTP勺反应。
6、氧化磷酸化:电子在呼吸链传递过程中释放的能量,在ATP合成酶催化下,促使ADP生成ATP,这是氧化与磷酸化相偶联的反应,称为氧化磷酸化,是生物合成ATP的主要方式。
7、氧化作用和磷酸化作用相偶联的部位&呼吸抑制剂阻断呼吸链的部位:计算当一对电子从NADH转移到细胞色素C的反应中,标准自由能的变化。
(pH=,250C, NAD+/NADH+H+ E0,=, Cyt C Fe3+/Fe2+ E0,=+ )答案:△ G0 = - nF A E=—2xx【+ —(—)】=—Kcal/mol第七章脂类代谢B -氧化:脂肪酸氧化从羧基端的B位碳原子开始,每次分解出一个2碳片断,生成一个乙酰CoA的过程,是脂肪酸氧化的主要方式。
1、脂肪酸的氧化分解——B-氧化1) 脂肪酸的活化部位:细胞质;酶:脂酰辅酶A合成酶需要消耗1个ATP, 2个高能磷酸键。
不可逆反应。
2) 长链脂肪酸的转运:脂酰肉碱转运机制3)B—氧化部位:线粒体反应过程:脱氢,水化,脱氢,硫解酶:脂酰辅酶A脱氢酶(FAD辅酶),烯酰辅酶A水合酶,3 —羟脂酰辅酶A脱氢酶(NAD+辅酶),硫解酶能量产生:乙酰辅酶A进入TCA循环,NADH和FADH2进入呼吸链。
B -氧化过程4步反应:脱氢,加水,脱氢,硫解2、磷脂酶A1,磷脂酶A2,磷脂酶C,磷脂酶D的作用位点。
3、酮体产生酮体:是一类小分子有机物,脂肪酸分解代谢产生的特有中间产物,包括乙酰乙酸,羟丁酸,丙酮。
产所:肝脏线粒体原料:乙酰辅酶 A 关键酶:B羟甲基戊二酸单酰辅酶A合成酶4、酮体的利用:解酮作用(ketolysis )由于肝内缺乏分解酮体所需要的硫激酶,酮体的分解须在肝外组织中进行(转硫酶的作用相当于硫激酶),最终转变成乙酰CoA进入三羧酸循环途径氧化供能。
5、脂肪酸的合成分为从头合成途径和延长途径从头合成途径的产所:细胞质原料:乙酰辅酶A乙酰辅酶A的转运:柠檬酸-丙酮酸循环酰基载体蛋白(ACP)的作用:脂肪酸合成酶系中的酰基载体。
合成氢源:NADPH+H+第八章氨基酸的代谢1、氮的平衡:氮的总平衡;氮的正平衡;氮的负平衡2、必需氨基酸:8种,缬氨酸,亮氨酸,异亮氨酸,苏氨酸,甲硫氨酸,苯丙氨酸,色氨酸,赖氨酸3、氨基酸共同代谢途径脱氨基作用:转氨,脱氨,联合脱氨转氨作用的酶:转氨酶(辅酶是磷酸吡哆醛,维生素B6的衍生物)转氨作用的机制:乒乓机制脱氨基作用的酶:L-氨基酸氧化酶,谷氨酸脱氢酶(辅酶NAD+NADP+)联合脱氨基作用:以谷氨酸为中心的联合脱氨基作用,天冬氨酸的联合脱氨基作用联合脱氨基作用:氨基酸与a -酮戊二酸经转氨作用生成a -酮酸和谷氨酸,后者经L谷氨酸脱氢酶作用生成游离氨和a -酮戊二酸的过程。
是转氨基作用和L-谷氨酸氧化脱氨基作用联合反应。
骨骼肌中氨基转运:葡萄糖-丙氨酸循环氨基的去路一一尿素循环产所:线粒体和细胞质限速酶:精氨酸代琥珀酸合成酶尿素循环:是路生动物排氨的主要途径,氨基酸氧化时产生的氨,在肝脏细胞线粒体和胞质中,经过谷氨酸,瓜氨酸,精胺琥珀酸,精氨酸,鸟氨酸循环,生成尿素的过程氨基的脱羧反应:产物是一级胺,大部分一级胺有毒,少数作为生物活性物质。
Y -氨基丁酸:抑制性神经递质组胺:强烈的血管舒张剂,能增加毛细血管的通透性。
5-羟色胺:脑内5-羟色胺可作为抑制性神经递质。
在外周组织,5-羟色胺有收缩血管的作用第九章核酸代谢1、核酸的降解:蛇毒磷酸二酯酶和牛脾磷酸二酯酶的作用位点八、、2、核苷酸的合成:从头合成途径和补救途径从头途径中元素来源3、DNA的生物合成半保留复制:即新的双链DNA中,一股链来自模板,一股链为新合成的。