数列综合应用(放缩法)

合集下载

(完整版)放缩法典型例题

(完整版)放缩法典型例题

放缩法典型例题数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和.一.先求和后放缩例1.正数数列的前项的和,满足,试求:(1)数列的通项公式;(2)设,数列的前项的和为,求证:解:(1)由已知得,时,,作差得:,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以(2),所以注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和.二.先放缩再求和1.放缩后成等差数列,再求和例2.已知各项均为正数的数列的前项和为,且.(1) 求证:;(2)求证:解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得∴所以,,所以(2)因为,所以,所以;2.放缩后成等比数列,再求和例3.(1)设a,n∈N*,a≥2,证明:;(2)等比数列{a n}中,,前n项的和为A n,且A7,A9,A8成等差数列.设,数列{b n}前n项的和为B n,证明:B n<.解:(1)当n为奇数时,a n≥a,于是,.当n为偶数时,a-1≥1,且a n≥a2,于是.(2)∵,,,∴公比.∴..∴.3.放缩后为差比数列,再求和例4.已知数列满足:,.求证:证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:.令,所以,两式相减得:,所以,所以,故得.4.放缩后为裂项相消,再求和例5.在m(m≥2)个不同数的排列P1P2…P n中,若1≤i<j≤m时P i>P(即前面某数大于后面某数),则称P i与P j构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数.记排列的逆序数为a n,如排列21的逆序数,排列321的逆序数.j(1)求a4、a5,并写出a n的表达式;(2)令,证明,n=1,2,….(2)因为,所以.又因为,所以=.综上,.注:常用放缩的结论:(1)(2).在解题时朝着什么方向进行放缩,是解题的关键,一般要看证明的结果是什么形式.如例2要证明的结论、为等差数列求和结果的类型,则把通项放缩为等差数列,再求和即可;如例3要证明的结论为等比数列求和结果的类型,则把通项放缩为等比数列,再求和即可;如例4要证明的结论为差比数列求和结果的类型,则把通项放缩为差比数列,再求和即可;如例5要证明的结论为裂项相消求和结果的类型,则把通项放缩为相邻两项或相隔一项的差,再求和即可.。

高中数学课程数列中的放缩法

高中数学课程数列中的放缩法

数列中的放缩法
在全国卷高考中,数列已经远远降低了难度,再也不会出现那种丧心病狂,虐死人不犯罪的压轴题了。

相应的放缩技巧,在数列考查中也几乎绝迹了,就算偶尔出现意外,也不会太难,掌握下面这几类,完全可以搞定。

一·放缩法
1·放缩法的步骤:
【注意】
放缩法在很多时候会保留第一项或前几项不放缩,这样才不至于使得结果过大或者过小。

2·放缩成等比数列模型:
3·放缩成裂项相消模型:
二·放缩法的应用 1·直接可求和放缩:
2·放缩成等比数列:
3·错位相减法放缩:
4·裂项相消放缩:。

数列放缩法技巧全总结

数列放缩法技巧全总结

数列放缩法技巧全总结引言数列放缩法(Sequence Squeezing Method)是指在解决数学问题时,通过限制或放缩数列的取值范围,从而简化问题的求解过程。

数列放缩法是数学竞赛和高等数学中常见的一种技巧,本文将总结数列放缩法常用的技巧和应用场景。

1. 加减不等式放缩法加减不等式放缩法是通过对等式进行加减操作,使得所得不等式比原来的不等式更易于求解。

常见的加减不等式放缩技巧有如下几个:1.1. 约束条件加减法设原不等式为A<B,通过针对不等式的约束条件进行加减操作,将原不等式放缩为C<D。

常见的约束条件包括正整数、正实数等。

1.2. 平方项加减法对于不等式中的平方项,可以通过改变平方项的系数进行加减操作,从而得到一个更易于处理的不等式。

例如,对于a2+b2<2ab,可以将不等式变换为(a−b)2>0,从而得到更容易求解的形式。

1.3. 倒数项加减法对于不等式中的倒数项,可以通过改变倒数项的系数进行加减操作,从而放缩不等式。

例如,在2ab<a2+b2中,可以将不等式变换为$\\frac{1}{a}+\\frac{1}{b} > \\frac{2}{a+b}$,从而得到更容易处理的形式。

2. 乘除不等式放缩法乘除不等式放缩法是通过对等式进行乘除操作,使得所得不等式比原来的不等式更易于求解。

常见的乘除不等式放缩技巧有如下几个:2.1. 约束条件乘除法设原不等式为A<B,通过针对不等式的约束条件进行乘除操作,将原不等式放缩为C<D。

常见的约束条件包括正整数、正实数等。

2.2. 平方项乘除法对于不等式中的平方项,可以通过改变平方项的系数进行乘除操作,从而得到一个更易于处理的不等式。

例如,在a2+b2<2ab中,可以将不等式变换为a2−2ab+b2<0,从而得到更容易求解的形式。

2.3. 倒数项乘除法对于不等式中的倒数项,可以通过改变倒数项的系数进行乘除操作,从而放缩不等式。

放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)

放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)

47
3n 2
04、分类放缩
15.求证:1 1 1
23
1 2n 1
n 2
.
16.在平面直角坐标系 xoy 中, y 轴正半轴上的点列An 与曲线 y 2x x 0 上的点列Bn 满足
OAn
OBn
1 n
,直线
An Bn

x
轴上的截距为
an
.点
Bn
的横坐标为
bn

n N
.
(1)证明 an > an1 >4, n N ;
1 a2n
7n 11 36 .
05、迭代放缩
19.已知 xn1
xn xn
4 1

x1
1 ,求证:当
n
2
时,
n i 1
xi 2
2 21n .
20.设
Sn
sin1! 21
sin 2! 22
sin n! 2n
,求证:对任意的正整数
k,若
k≥n
恒有:|Sn+k-Sn|<
1 n
.
06、借助数列递推关系
21.求证: 1 13 135 135 (2n 1) 2n 2 1 .
2 24 246
246 2n
22.求证: 1 13 135 135 (2n 1) 2n 1 1
2 24 246
2 46 2n
(一)、经典试题
01、裂项放缩
1.(1)求
n k 1
4k
2 2 1
的值;
(2)求证:
n k 1
1 k2
5 3
.
2.求证:1
1 32
1 52

放缩法在数列求和中的基本策略

放缩法在数列求和中的基本策略

“放缩法”在数列求和中的基本策略放缩法:为放宽或缩小不等式的范围的方法。

常用在多项式中“舍掉一些正(负)项”而使不等式各项之和变小(大),或“在分式中放大或缩小分式的分子分母”,或“在乘积式中用较大(较小)因式代替”等效法,而达到其证题目的。

所谓放缩的技巧:即欲证B A ≤,欲寻找一个(或多个)中间变量C ,使B C A ≤≤,由A 到C 叫做“放”,由B 到C 叫做“缩”。

常用的放缩技巧有:(1)若,A t A ,A t A ,0t <->+>(2,n 1n <-n n 2>,1n 11n ,1n ->-+-+),0n (n n )1n (n 2>=>+<<+=+-2n 1)1n (n 11n 1n 1).1n n (2n1n n 21n n 2)n 1n (2),1n (n 11n 1)1n (n 1--<=+<++=-+>--=-(3)若,R m b a +∈、、则.b ma ba ,mb a b a +<+>(4)+++<++++221211!n 1!31!211 .211n -+ (5).n 12n 11n 1()3121()211(1n131211222-=--++-+-+<++++ (6)11n n 1n 11n 11n 1n 212n 11n 1<+=++++++≤+++++ 或≥+++++n 212n 11n 1 .21n 2n n 21n 21n 21==++ (7)nn n n 1n 1n 1n 131211==+++>++++ 等等。

注:1、放缩法的理论依据,是不等式的传递性,即若,D C ,C B ,B A >>>则D A >。

2、使用放缩法时,“放”、“缩”都不要过头。

3、放缩法是一种技巧性较强的不等变形,一般用于两边差别较大的不等式。

数列中的放缩法解题策略

数列中的放缩法解题策略

数列中的放缩法解题策略1、明确放缩的方向:即是放大还是缩小,看证明的结论,是小于某项,则放大,是大于某个项,则缩小。

2、放缩的项数:有时从第一项开始,有时从第三项,有时第三项,等等,即不一定是对全部项进行放缩。

3、放缩法的常见技巧及常见的放缩式:(1)根式的放缩:;=<<= (2)在分式中放大或缩小分子或分母:2111(2)(1)(1)k k k k k k <<≥+-; 211111()1211k k k <=---+2k ;11n n n n -<+;212221n n n n +>-; >31n 1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦(3)应用基本不等式放缩:222n n n n ++>=+; 4、把握放缩的尺度、精度的控制5、典型问题(一) 放缩为可求和型(1) 等差数列型1、证明:2)2()1(32212)1(+<+⨯+⨯+⨯<+n n n n n n )(*∈N n(2) 等比数列型1、证明:44371211211212<+++++n )(*∈N n (3)裂项相消型1、证明:2121122<++n)(*∈N n 变式:调整放缩度 证明:35121122<++n )(*∈N n 2、证明: 23)12(151311222<-++++n )(*∈N n 变式:调整放缩度 证明:45)12(151311222<-++++n )(*∈N n3、证明:45121133<++n)(*∈N n 4、证明:351211211212<-+-+-n )(*∈N n 5、已知121+<n b n ,求证:11221-+<+++n b b b n(4)错位相减法型1、证明:222221212<+++++nn n )(*∈N n(二) 放缩为可求积型1、证明:1212124321+<-⨯⨯⨯n n n )(*∈N n 2、证明:1212674523+<-⨯⨯⨯n n n )(*∈N n 综合应用:1、正项数列{}n a 前n 项和为n S ,满足)1(21nn n a a S +=, (1)求n a ,(2)求10021111S S S S +++=的整数部分 2、已知数列{}n a 的前n 项和为n S ,且满足111,20(2)2n n n a a S S n -=+=≥。

数列放缩法的应用技巧总结

数列放缩法的应用技巧总结

数列放缩法的应用技巧总结数列放缩法是一种在解决数学问题中常用的技巧和方法。

它的核心思想是对给定的数列进行适当的放缩,以便更好地理解和分析数列的性质和规律。

数列放缩法在各个数学领域都有广泛的应用,包括数论、代数、几何、概率论等。

下面将总结数列放缩法的应用技巧。

1. 数列变形:在使用数列放缩法解决问题时,常常需要对原始数列进行变形。

通过将数列中的项重新排列或重新组合,可以使问题变得相对简单。

数列变形的关键是发现数列中的规律和性质,在此基础上进行合理的变形,从而达到更好地解决问题的目的。

2. 数列放缩:数列放缩是数列放缩法的核心步骤。

通过对数列进行加减乘除等运算,可以使数列的项之间的关系更加明确和简单。

数列放缩的关键在于找到合适的变换方法和变换因子,保持等价性的同时使问题变得更容易解决。

3. 利用不等式:数列放缩法常常利用不等式来进行数列的放缩。

通过添加合适的不等式或利用已知的不等式性质,可以对数列的项进行限制和界定。

不等式的选择和使用需要根据具体的问题和数列的性质进行判断,常用的不等式有柯西-施瓦兹不等式、均值不等式、特殊不等式等。

4. 利用递推关系:对于递推数列,数列放缩法常常利用递推关系进行变形和放缩。

通过寻找递推数列的通项公式,可以将原始问题转化为求解通项公式的问题。

在这个过程中,数列的放缩往往是不可缺少的一步,它可以将复杂的递推关系简化为更简单的形式。

5. 利用数列的性质:数列放缩法还常常利用数列的性质来解决问题。

例如,对于等差数列,可以利用其性质求解等差数列的和、推导等差数列的通项公式等。

对于等比数列,也可以利用等比数列的性质来解决等比数列的问题。

6. 利用极限思想:数列放缩法常常利用极限思想来求解数列的极限或证明数列的性质。

通过适当的放缩和变形,可以从数列中找到趋于极限的子数列,从而进一步研究数列的性质和规律。

7. 利用对称性:数列放缩法还常常利用数列的对称性进行变形和放缩。

通过对称性的利用,可以简化数列的形式,从而更好地理解和分析数列的性质和规律。

浅谈放缩法在数列中的应用

浅谈放缩法在数列中的应用

浅谈放缩法在数列中的应用任艳【期刊名称】《高中数理化》【年(卷),期】2016(000)019【总页数】2页(P8-9)【作者】任艳【作者单位】安徽省灵璧中学【正文语种】中文放缩法在数列中的应用往往是证明不等式,解题的关键是放缩的方向和程度的把握.一般情况下把所要证明的不等式的一侧放大或缩小成一个特殊数列,然后再求解.但放大或缩小的程度有时需要不断地尝试才能达到.下面通过几个例题来详细阐述放缩法在证明不等式中的应用.例1 已知数列{an}的通项公式an=3n-2n,证明:对一切正整数n,都有思路1 因为an=3n-2n,所以,既不是等差数列也不是等比数列,这个数列的求和无法用所学的几种求和方法求出,故可以采用放缩法.证法1 因为an+1=3n+1-2n+1>2×3n-2n+1=2an,所以.所以当n≥2时,两边相乘则有所以思路2 我们观察an=3n-2n是2个等比数列的差,若能放大成一个特殊数列即等比数列,据此找到放缩的突破口.证法2 3n-2n>2n,当n≥2时,思路中小于号的左边可视为的形式,再将看成形式,即某个等比数列的求和.设其公比为,即证,只需证3n-2n>3n-1,即3n-3n-1>2n,3n-1>2n-1显然成立.证法3 因为当n≥2时,3n-1>2n-1成立,即有3n-3n-1>2n成立,所以有3n-2n>3n-1成立,则成立,故从要证明的结果开始入手分析,总体思路是把放大成一个等比数列,然后再求和,若放大的结果比证明的结果大,则保留前1项或2项不变,从它的后一项放大.例2 已知数列{an}、{bn}的每一项都是正数,a1=4,b1=8,且an、bn、an+1成等差数列,bn、an+1、bn+1成等比数列,n是正整数.(1) 求数列{an}的通项公式.(2) 证明:对一切正整数n,都有(1)an=2n(n+1) (过程略).(2)由(1)得,按照上述方法并不能放缩成特殊的等比数列,所以想办法放大成2项乘积倒数的形式,最后能拆成2项之差的形式,再利用裂项相消法证明.思路1 因an=2n(n+1),所以,要想证明此不等式,只需先证明,即证,亦证明n2+n-2>0,此不等式显然成立.证法1 因为,所以思路2 an-1=2n(n+1)-1=2n2+2n-1,尝试将此式不断的缩小,每缩小一步就观察一下是否能分解成2项乘积的形式,若能,就得到问题求解的关键的一步.如证法2 因为an-1=2n2+2n-1>2n2+2n-4=2(n-1)(n+2) (n≥2), 所以从上面例题可以看出,在解题过程中首先应学会观察题目的结构特征,若此不等式结构特征不明显,可以施行各种不同形式的放缩法.在证明上述类型的数列不等式时,需要观察的通项公式,若此通项公式是特殊的等差数列或等比数列,其求和可以直接代入求和公式,则不等式就容易证明了.若此通项公式不是特殊数列,就需要化难为易、变繁为简,根据通项公式的特点把它放大成等比数列或拆成2项之差的形式,这样问题就变得简单了.这里需要不断地尝试放大的程度.。

2023年新高考数学一轮复习7-5 数列的综合应用(知识点讲解)含详解

2023年新高考数学一轮复习7-5 数列的综合应用(知识点讲解)含详解

专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n -B .12n -C .21n -D .32n -例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( )A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法”例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32 B .33 C .34 D .35例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258B .264C .642D .636例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明); (2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-.【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解. 题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( ) A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2 (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.题型六:数列与传统文化例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何?”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( ) A .10B .14C .23D .26例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金n T几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( )A .5-B .7C .13D .26例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏【总结提升】理解题意,构造数列,应用数列模型解题.专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n - B .12n -C .21n -D .32n -【答案】C 【解析】 【分析】由奇偶性定义可判断出()f x 为偶函数,由此可确定唯一零点为0x =,从而得到递推关系式;利用递推关系式可证得数列{}1n a +为等比数列,由等比数列通项公式可推导得到n a . 【详解】()()()()()()4411cos 221cos221n n n n f x x a x a x a x a f x ++-=-+--+=+-+=,()f x ∴为偶函数,图象关于y 轴对称,()f x ∴的零点关于y 轴对称,又()f x 有唯一零点,()f x ∴的零点为0x =,即()()10210n n f a a +=-+=,121n n a a +∴=+,即()1121n n a a ++=+,又112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列,12n n a ∴+=,则21n n a =-.故选:C. 【点睛】关键点点睛:本题考查函数与数列的综合应用问题;解题关键是能够根据奇偶性的性质确定函数的唯一零点为0x =,从而结合零点确定数列的递推关系式,由递推关系式证得数列{}1n a +为等比数列. 例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 【答案】2n n 1-+ 【解析】 【分析】由题设11()()4n f f n n-+=,讨论n 的奇偶性求{}n a 的通项公式,再求n S . 【详解】由题设,111()()4ln(1)ln 41n f f n n n n -+=+-+=-, 所以()()**14121,2,N 221421,21,N 2n n f n n k k a n n n k k ⎧⎛⎫⎛⎫⨯-+=-=∈ ⎪ ⎪⎪⎪⎝⎭⎝⎭=⎨-⎪⨯=-=+∈⎪⎩,即2(1)n a n =-且n ≥ 2, 当1n =时,11S =,当2n ≥时,21242(1)1n S n n n =+++⋅⋅⋅+-=+-,所以21n S n n =-+,n *∈N故答案为:2n n 1-+.例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 【答案】(1)935;(2)见解析. 【解析】 【详解】试题分析:(1)计算{}n a 和{}n b 的前4项和的差即可得出答案;(2)令n n a b ≥得出42n ≤,再计算第42个月底的保有量和容纳量即可得出结论. 试题分析:(1)()()1234123496530935a a a a b b b b +++-+++=-=(2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大()()()()12341234420503864742965878222a a a ab b b b ⎡⎤+⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=⎢⎥⎣⎦()2424424688008736S =--+=,∴此时保有量超过了容纳量.【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33()4nn a =-⋅;(2)31λ-≤≤.【解析】【分析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解. 【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-②,①-②得143n n a a += 122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列, 1933()3()444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-, 所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭,2413333333321(5)(4)444444nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得234113333333(4)4444444nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以134()4n n T n +=-⋅,由n n T b λ≤得1334()(4)()44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤; 4n >时,312344n n n λ≥-=----,得3λ≥-; 所以31λ-≤≤.【点睛】易错点点睛:(1)已知n S 求n a 不要忽略1n =情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中(4)30n n λ-+≥恒成立,要对40,40,40n n n -=->-<讨论,还要注意40n -<时,分离参数不等式要变号.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 【答案】(I )21,n a n n N *=-∈,4,n n N b n *=∈;(II )(i )证明见解析;(ii )证明见解析.【解析】 【分析】(I )由等差数列的求和公式运算可得{}n a 的通项,由等比数列的通项公式运算可得{}n b 的通项公式;(II )(i )运算可得2224nn n c c =⋅-,结合等比数列的定义即可得证;(ii )放缩得21222422n n n n n a n c a c +<-⋅,进而可得112n n k k k-==,结合错位相减法即可得证. 【详解】(I )因为{}n a 是公差为2的等差数列,其前8项和为64. 所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =, 所以()12121,n n n n N a a *=+-=-∈;设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去), 所以114,n n n b q n N b -*==∈;(II )(i )由题意,221441n n nn n b c b =++=,所以22224211442444n n nn nnn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-,所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--, 所以数列{}22nn c c -是等比数列; (ii )由题意知,()()22122222121414242222n n n n n n n n n a n n c c a +-+-==<-⋅⋅⋅,12n n-,所以112nn k k k k-==, 设10121112322222nn k n k k nT --===+++⋅⋅⋅+∑, 则123112322222n n n T =+++⋅⋅⋅+, 两式相减得21111111122121222222212nn n n nn n n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--, 所以1242n n n T -+=-,所以1112422nn k n k k n --==+⎫-<⎪⎭ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ⑧ 则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--, 211213333n n nn n T --=++++,①231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n nn n ----=-<⋅⋅,所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( ) A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法” 【答案】BD 【解析】 【分析】因为小郭每年还款钱数相等,所以小郭选择为“等额本息还款法”,所以利用等比数列前n 项和公式求出X ,再设小郭第3年还款的现值为y ,根据复利规则求出y . 【详解】解:小郭与银行约定,每年还一次欠款,并且每年还款的钱数都相等,∴小郭靖选择的还款方式为“等额本息还款法”,故D 正确,C 错误, 设每年应还X 元,还款10次,则该人10年还款的现金与利息和为29[1(1)(1)(1)]X r r r +++++⋯++, 银行贷款A 元10年后的本利和为10(1)A r +.2910[1(1)(1)(1)](1)X r r r A r ∴+++++⋯++=+, ∴10101[1(1)](1)1(1)r X A r r ⨯-+⋅=+-+, 即1010(1)(1)1Ar r X r +=+-,故A 错误.设小郭第三年还款的现值为y ,则3(1)y r X ⋅+=,所以()31Xy r =+,故B 正确;例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【答案】BC 【解析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案. 【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-,第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误;第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确;因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+,所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t t a a a t a a t t --+-=--=-=-+-=-, 因为800t <,所以7280002t->, 所以11277()(2800)0552n n n ta a -+-=->,即1n n a a +>,故C 正确;当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误;【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦【答案】A 【解析】 【分析】根据n A 与n a 的关系求出n a ,再根据等差数列的求和公式求出n T ,将5≤n T T 化为216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,分类讨论n 可求出结果. 【详解】 由1112222n n n n A a a a n -+=+++=⋅,∴2n ≥时,212122(1)2n n n a a a n --+++=-⋅,∴1122(1)2-+⋅=⋅--⋅n n n n a n n ,∴22n a n =+,1n =时,14a =也成立,∴22n a n =+,∴数列{}+n a pn 的前n 项和为:12(12)n n T a a a p n =+++++++2(422)(1)(1)3222++++=+⋅=++⋅n n n n n n p n n p ,∵5≤n T T 对任意的n *∈N 恒成立,∴225(1)56353522+⨯++⋅≤=+⨯+⨯n n n n p T p , 即225335(1)5(51)022p pn n n n -+-⨯++-⨯⨯+≤, 即22225335(5)(5)022p p n n n n -+-⨯+-+-≤,即5(5)(53)0222pn p p n n -+++++≤, 即(6)(5)(8)02p n n n +-++≤, 即216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,当14n ≤≤时,2164266+-≤=+++n p n n 对任意的n *∈N 恒成立, 因为4412226465n +≥+=++,∴125-≤p ,所以125p ≥-,当5n =时,216(5)06n n p n +⎛⎫-+= ⎪+⎝⎭恒成立,R p ∈,当6n ≥时,2164266+-≥=+++n p n n 对任意的n *∈N 恒成立, 因为447226663n +≤+=++,∴73-≥p ,所以73p ≤-,综上可得:实数p 的取值范围为127,53⎡⎤--⎢⎥⎣⎦.故选:A .例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32B .33C .34D .35【答案】B 【解析】 【分析】根据分裂数的定义,求出从32到()31m -、从32到3m 分裂数个数,再根据所有分裂数成等差数列求出1111对应的位置,进而根据不等式求m 值. 【详解】由题意,对于332,...,m ,它们依次对应2、3、…、m 个分裂数,则从32到()31m -各分裂数个数的和为(2)(1)2m m -+,从32到3m 各分裂数个数和为(1)(2)2m m -+,又332,...,m 的分裂数{}n a ,构成首项为3,公差为2的等差数列,所以21n a n =+,令211111n +=,可得555n =,所以(2)(1)(1)(2)55522m m m m -+-+<≤,当32m =时,(1)(2)5275552m m -+=<不符合; 当33m =时,(1)(2)5605552m m -+=>,(2)(1)5275552m m -+=<符合; 当34m =时,(2)(1)5605552m m -+=>不符合; 综上,33m =. 故选:B例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258 B .264 C .642 D .636【答案】A 【解析】 【分析】分析可知对任意的N k *∈,当)12,2k k m +⎡∈⎣,满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,进而可求得63S 的值.【详解】因为562632<<,由题中定义,对任意的N k *∈,当)12,2k k m +⎡∈⎣, 满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,当1m =时,0m b =,当)122,2m ⎡∈⎣时,1m b =,此时满足条件的m 的个数为12,当)232,2m ⎡∈⎣时,2m b =,此时满足条件的m 的个数为22,当)562,2m ⎡∈⎣时,5m b =,此时满足条件的m 的个数为52, 因此,01234563021222324252258S =⨯+⨯+⨯+⨯+⨯+⨯=.故选:A.例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明);(2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-. 【答案】(1)21263=+⨯S ,()12312633=+⨯+S ,133n n S +=+ (2)1122=-+n T n ,证明见解析 【解析】【分析】(1)根据定义求出{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,由此归纳出n S ,(2)由(1)化简n c ,再由裂项相消法求其前n 项和,并完成证明.(1)由题意得,116512S =++=,217611512181263S =++++=+=+⨯,()2123187136171116512185412636312633S =++++++++=++=+⨯+⨯=+⨯+,41981572013196231728112716215S =++++++++++++++++121854162=+++2312636363=+⨯+⨯+⨯()123126333=+⨯++, …()12311263333(1)n n S n -=+⨯++++≥,由等比数列的前n 项和公式可得,()113131263313n n n S -+-=+⨯=+-, 所以{}n S 的通项公式133n n S +=+.(2)由于133n n S +=+,所以()()33111111log 3log 31221n n n c S S n n n n +⎛⎫=-=--=- ⎪-⋅-++++⎝⎭, 则1111111132432122n T n n n =-+-++-=-+++, 因为n *∈N ,所以102n >+,所以111222n ->-+, 又n T 随n 的增大而减小,所以当1n =时,n T 取得最大值16-,故1126n T -<≤-. 【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解.题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( )A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线【答案】C 【解析】【分析】首先利用等比数列得到等式,然后对所得的等式进行恒等变形即可确定其轨迹方程.【详解】由题意得2()()[()]f s t f s t f s -+=,即()2222()()a s t b a s t b as b ⎡⎤⎡⎤-+++=+⎣⎦⎣⎦, 对其进行整理变形:()()()22222222asat ast b as at ast b as b +-++++=+, ()()222222(2)0as at b ast as b++--+=, ()2222222240as at b at a s t ++-=, 222242220a s t a t abt -++=,所以22220as at b -++=或0=t ,其中2212s t b b a a-=为双曲线,0=t 为直线.故选:C.例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2(Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.【答案】(I)(II )(II )过……向轴作垂线,垂足分别为……, 由(I)得记梯形的面积为.由题意, 所以 ……+n T 12.n n x -=(21)21.2n n n T -⨯+=123,,,P P P 1n P +x 123,,,Q Q Q 1n Q +111222.n n n n n x x --+-=-=11n n n n P P Q Q ++n b 12(1)2(21)22n n n n n b n --++=⨯=+⨯123n T b b b =+++n b=……+ ①又……+ ②①-②得= 所以题型六:数列与传统文化 例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( )A .10B .14C .23D .26【答案】D【解析】【分析】设大夫、不更、簪裹、上造、公士所出的钱数依次构成等差数列{}n a ,根据217a =,前5项和为100求解.【详解】解:设大夫、不更、簪裹、上造、公士所出的钱数依次排成一列,构成数列{}n a .由题意可知,等差数列{}n a 中217a =,前5项和为100,设公差为(0)d d >,前n 项和为n S ,则535100S a ==,解得320a =,所以323d a a , 所以公士出的钱数为532202326a a d =+=+⨯=,故选:D .例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金101325272-⨯+⨯+⨯+32(21)2(21)2n n n n ---⨯++⨯0122325272n T =⨯+⨯+⨯+21(21)2(21)2n n n n ---⨯++⨯121132(22......2)(21)2n n n T n ----=⨯++++-+⨯1132(12)(21)2.212n n n ---+-+⨯-(21)21.2n n n T -⨯+=几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( ) A .5-B .7C .13D .26【答案】C 【解析】【分析】 根据题意求得每次收的税金,结合题意得到111111223344556a a a a a ++++=⨯⨯⨯⨯,求得a 的值,代入函数的解析式,即可求解.【详解】由题意知:这个人原来持金为a 斤,第1关收税金为:12a 斤;第2关收税金为111(1)3223a a ⋅-⋅=⋅⨯斤; 第3关收税金为1111(1)42634a a ⋅--⋅=⋅⨯斤, 以此类推可得的,第4关收税金为145a ⋅⨯斤,第5关收税金为156a ⋅⨯斤, 所以111111223344556a a a a a ++++=⨯⨯⨯⨯, 即1111111111(1)(1)12233445566a a -+-+-+-+-⋅=-⋅=,解得65a =, 又由()101,115,01x x f x x x +>⎧=⎨-<≤⎩,所以66()1011355f =⨯+=. 故选:C.例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏【答案】B【解析】【详解】。

数列综合应用放缩法

数列综合应用放缩法

数列综合应用1————用放缩法证明与数列和有关的不等式一、备考要点数列与不等式的综合问题常常出现在高考的压轴题中, 是历年高考命题的热点,这类问题能有效地考查学生 综合运用数列与不等式知识解决问题的能力.解决 这类问题常常用到放缩法,而求解途径一般有两条: 一是先求和再放缩,二是先放缩再求和.二、典例讲解1.先求和后放缩例1.正数数列{}n a 的前n 项的和n S ,满足 12+=n n a S ,试求:1数列{}n a 的通项公式;2设11+=n n n a a b ,数列{}n b 的前n 项的和 为n B ,求证:21<nB 2. 先放缩再求和①.放缩后成等差数列,再求和例2.已知各项均为正数的数列{}n a 的前n 项和为n S , 且22n n n a a S +=.1 求证:2214n n n a a S ++<; 2<⋅⋅⋅< ②.放缩后成等比数列,再求和例3.1设a ,n ∈N ,a ≥2,证明:n n n a a a a ⋅+≥--)1()(2;2等比数列{a n }中,112a =-,前n 项的和为A n , 且A 7,A 9,A 8成等差数列.设nn n a a b -=12,数列{b n } 前n 项的和为B n ,证明:B n <13.③.放缩后为差比数列,再求和例4.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a n a n n n .求证: 11213-++-≥>n n n n a a ④.放缩后为裂项相消,再求和例5.在mm ≥2个不同数的排列P 1P 2…P n 中, 若1≤i <j ≤m 时P i >P j 即前面某数大于后面某数, 则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的 逆序数63=a .1求a 4、a 5,并写出a n 的表达式;2令nn n n n a a a a b 11+++=,证明: 32221+<++<n b b b n n ,n =1,2,….高考真题再现:1.06浙江卷已知函数32()f x x x =+,数列{}n x n x >0的第一项1x =1,以后各项按如下方式取定: 曲线()y f x =在))(,(11++n n x f x 处的切线与经过0,0和n x ,()n f x 两点的直线平行如图求证:当*n N ∈时,Ⅰ221132n n n n x x x x +++=+; Ⅱ21)21()21(--≤≤n n n x ;2.06福建卷已知数列{}n a 满足*111,21().n n a a a n N +==+∈I 求数列{}n a 的通项公式;II 证明:*122311...().232n n a a a n n n N a a a +-<+++<∈3.07浙江已知数列{}n a 中的相邻两项212k k a a -, 是关于x 的方程023)23(2=⋅++-k k k x k x 的两个根,且212(123)k k a a k-=≤,,,. I 求1a ,2a ,3a ,7a ;II 求数列{}n a 的前2n 项和2n S ;Ⅲ记sin 1()32sin n f n n ⎛⎫=+ ⎪⎝⎭, (2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++…, 求证:15()624n T n ∈*N ≤≤.4.07湖北已知m n ,为正整数,I 用数学归纳法证明:当1x >-时, (1)1m x mx ++≥;II 对于6n ≥,已知11132m n ⎛⎫-< ⎪+⎝⎭, 求证1132m m m n ⎛⎫⎛⎫-< ⎪ ⎪+⎝⎭⎝⎭,12m n =,,,; III 求出满足等式34(2)(3)n n n m n n ++++=+ 的所有正整数n .5. 08辽宁在数列{}{},n n a b 中,112,4a b ==, 且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. ⑴求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项 公式,并证明你的结论;⑵证明:1122111512n n a b a b a b +++<+++.数列综合应用1————用放缩法证明与数列和有关的不等式一、备考要点数列与不等式的综合问题常常出现在高考的压轴题中, 是历年高考命题的热点,这类问题能有效地考查学生 综合运用数列与不等式知识解决问题的能力.解决 这类问题常常用到放缩法,而求解途径一般有两条: 一是先求和再放缩,二是先放缩再求和.二、典例讲解1.先求和后放缩例1.正数数列{}n a 的前n 项的和n S ,满足 12+=n n a S ,试求:1数列{}n a 的通项公式;2设11+=n n n a a b ,数列{}n b 的前n 项的和 为n B ,求证:21<nB2. 先放缩再求和①.放缩后成等差数列,再求和例2.已知各项均为正数的数列{}n a 的前n 项和为n S , 且22n n n a a S +=.1 求证:2214n n n a a S ++<;2<⋅⋅⋅<②.放缩后成等比数列,再求和例3.1设a ,n ∈N ,a ≥2,证明:n n n a a a a ⋅+≥--)1()(2;2等比数列{a n }中,112a =-,前n 项的和为A n , 且A 7,A 9,A 8成等差数列.设nn n a a b -=12,数列{b n } 前n 项的和为B n ,证明:B n <13.③.放缩后为差比数列,再求和例4.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a n a n n n .求证: 11213-++-≥>n n n n a a④.放缩后为裂项相消,再求和例5.在mm ≥2个不同数的排列P 1P 2…P n 中, 若1≤i <j ≤m 时P i >P j 即前面某数大于后面某数, 则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的 逆序数63=a .1求a 4、a 5,并写出a n 的表达式;2令nn n n n a a a a b 11+++=,证明: 32221+<++<n b b b n n ,n =1,2,….高考真题再现:1.06浙江卷已知函数32()f x x x =+,数列{}n x n x >0的第一项1x =1,以后各项按如下方式取定: 曲线()y f x =在))(,(11++n n x f x 处的切线与经过0,0和n x ,()n f x 两点的直线平行如图求证:当*n N ∈时,Ⅰ221132n n n n x x x x +++=+; Ⅱ21)21()21(--≤≤n n n x ;2.06福建卷已知数列{}n a 满足*111,21().n n a a a n N +==+∈I 求数列{}n a 的通项公式;II 证明:*122311...().232n n a a a n n n N a a a +-<+++<∈3.07浙江已知数列{}n a 中的相邻两项212k k a a -, 是关于x 的方程023)23(2=⋅++-k k k x k x 的两个根,且212(123)k k a a k-=≤,,,. I 求1a ,2a ,3a ,7a ;II 求数列{}n a 的前2n 项和2n S ; Ⅲ记sin 1()32sin n f n n ⎛⎫=+ ⎪⎝⎭, (2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++…, 求证:15()624n T n ∈*N ≤≤.4.07湖北已知m n ,为正整数,I 用数学归纳法证明:当1x >-时, (1)1m x mx ++≥;II 对于6n ≥,已知11132m n ⎛⎫-< ⎪+⎝⎭, 求证1132m m m n ⎛⎫⎛⎫-< ⎪ ⎪+⎝⎭⎝⎭,12m n =,,,; III 求出满足等式34(2)(3)n n n m n n ++++=+ 的所有正整数n .5. 08辽宁在数列{}{},n n a b 中,112,4a b ==, 且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. ⑴求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项公式,并证明你的结论; ⑵证明:1122111512n n a b a b a b +++<+++.。

高中数列放缩法技巧

高中数列放缩法技巧

高中数列放缩法技巧
高中数列放缩法是一种用于求解数列问题的技巧。

通过适当的方法对数列进行放缩,可以简化问题的求解过程,提高解题效率。

在高中数学中,数列是一个非常重要的概念。

通过研究数列的性质和规律,可以帮助学生培养数学思维和分析问题的能力。

数列放缩法的基本思想是通过一系列变换将原始数列转化为一个更
加简单或者更加易于处理的数列,从而使问题的求解变得更加容易。

下面介绍几种常用的数列放缩方法:
1. 数列的倍数放缩:如果一个数列的每一项都乘以一个相同的常数,那么这个数列的性质和规律不会改变。

这种放缩方法常用于求解具有明显倍数关系的数列问题,可以通过放缩将数列转化为一个等比数列,从而更加方便地求解。

2. 数列的平移放缩:如果一个数列的每一项都加上或者减去一个相
同的常数,那么这个数列的性质和规律不会改变。

这种放缩方法常用于求解具有明显递推关系的数列问题,可以通过放缩将数列转化为一个等差数列,从而更加方便地求解。

3. 数列的递推放缩:如果一个数列的每一项都是前一项的某个函数,
那么这个数列的性质和规律不会改变。

这种放缩方法常用于求解具有复杂递推关系的数列问题,可以通过放缩将数列转化为一个递推公式,从而更加方便地求解。

除了以上几种基本的放缩方法,还可以根据具体问题的特点进行其他类型的放缩。

数列放缩法在高中数学中有着广泛的应用,可以帮助学生解决各种数列问题,提高数学分析和推理能力。

总之,高中数列放缩法是一种重要的解题技巧,通过适当的放缩方法可以简化数列问题的求解过程,提高解题效率。

掌握数列放缩法对于高中数学的学习和应试都具有重要的意义。

数列的放缩法总结

数列的放缩法总结

数列的放缩法总结数列的放缩法是一种常用的证明方法,它可以通过对数列进行放缩,从而得到一些有用的结论,进而证明某个定理或命题。

下面是数列的放缩法的详细总结:1. 什么是数列的放缩法?数列的放缩法是一种通过对数列进行放缩,从而得到一些有用的结论,进而证明某个定理或命题的方法。

它通常是通过对数列的每一项进行某种变换,使得变换后的数列具有一些特殊的性质,然后利用这些性质来证明定理或命题。

2. 数列的放缩法的基本思想是什么?数列的放缩法的基本思想是通过对数列的每一项进行某种变换,使得变换后的数列具有一些特殊的性质,然后利用这些性质来证明定理或命题。

这种变换通常是通过对数列的每一项进行乘法或加法变换,从而得到一个新的数列。

3. 数列的放缩法的具体步骤是什么?数列的放缩法的具体步骤如下:(1)确定要证明的定理或命题。

(2)对数列的每一项进行某种变换,使得变换后的数列具有一些特殊的性质。

(3)利用这些特殊的性质来证明定理或命题。

4. 数列的放缩法的常用技巧有哪些?数列的放缩法的常用技巧有以下几种:(1)利用数学归纳法。

(2)利用柯西-施瓦茨不等式。

(3)利用阿贝尔变换。

(4)利用柯西定理。

(5)利用特殊的数列性质,如单调性、凸性等。

5. 数列的放缩法的应用范围有哪些?数列的放缩法可以应用于各种数学领域,如代数、几何、概率等。

它可以用于证明各种定理和命题,如不等式、极限、级数等。

在数学竞赛中,数列的放缩法也是一种常用的证明方法。

总之,数列的放缩法是一种常用的证明方法,它可以通过对数列进行放缩,从而得到一些有用的结论,进而证明某个定理或命题。

在实际应用中,需要根据具体情况选择合适的技巧和方法。

高考数学:数列放缩法

高考数学:数列放缩法

⾼考数学:数列放缩法
数列放缩法需要把握两⽅⾯:
⼀、放缩⽅向
数列放缩的⽅向包含两层意思:
1.放缩成什么形式?
2.放⼤呢还是缩⼩呢?
第2个问题看题⽬要求即可.
对于第1个问题,⾼中阶段,数列放缩主要有两个⽅向.
1.朝等⽐数列去放缩,即把数列放缩为等⽐数列.
看这样⼀个例题:
从解答过程能够看出,本题需要放⼤,原数列⽆法求和,放⼤之后为等⽐数列,顺利实现求和.
2.朝裂项相消去放缩,即把数列放缩为能够采⽤裂项相消法求和的形式.
看这个例题:
数列⽆法求和,需要放缩,⽽且需要放⼤.
注意:为保证n-1有意义,n从2开始取值.
⼆、放缩的度
看个例题,体会放缩的“度”:
先分析通项,貌似能够朝裂项相消去放缩.
从上式结论看出,我们没有达到题⽬的要求,放的过⼤了.
为此,我们需要重新放⼤⼀次,这⼀次要往回收⼀些.
⼩结:
1.根据不等式符号决定放⼤还是放⼩;
2.常⽤的放缩⽅向:朝等⽐放缩和朝裂项相消法放缩;
3.放缩“度”的调节⽅法:不同形式放缩.。

高中数学数列与不等式综合问题放缩法

高中数学数列与不等式综合问题放缩法

高中数学数列与不等式综合问题放缩法Last updated on the afternoon of January 3, 2021数列与不等式综合问题 一裂项放缩放缩法证明与数列求和有关的不等式中,很多时候要留一手,即采用有保留的方法,保留数列第一项或前两项,从数列第二项或第三项开始放缩,这样才不至于结果放得过大或过小。

常见裂项放缩技巧:例1求证(1)变式训练[2016·湖南怀化质检]设数列{a n }的前n 项和为S n ,已知a 1=1,=a n +1-n 2-n -,n ∈N *.(1)求数列{a n }的通项公式;(2)证明:++…+<.[2014·广东高考]设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;证明:对一切正整数n ,有++…+<. (3)二等比放缩(一般的,形如的数列,求证都可以等比放缩)例4 [2014·课标全国卷Ⅱ]已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明是等比数列,并求{a n }的通项公式;(2)证明++…+<.变式训练【2012.广东理】已知数列{a n }满足111221,1n n n s a a ++=-+=(1)求{a n }的通项公式 2311111()21212121n n *++++<∈++++N 例求证:,n n n n n a a b a a b =-=-12111....n k a a a +++<231111+++......+12222n <(2)证明:对一切正整数n ,都有121113 (2)n a a a +++< 三伯努利不等式应用及推广 对任意的实数()()*1,11nx x nx n N >-+≥+∈有伯努利不等式 例:求证()1111+11+1....13521n ⎛⎫⎛⎫⎛⎫++> ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭变式训练【2008,福建理】已知函数()()ln 1f x x x =+-(1)求f (x )的单调区间(2)记f (x )在[]()0,n n N ∈上的最小值是n b ,令()ln 1n n a x b =+-,求证1313211224242......1...n na a a a a a a a a a a a -+++< 伯努利不等式的推广对任意的实数,例,【2006,江西理】已知数列{a n }满足()11133,2221n n n na a a n a n --==≥+- (1)已知数列{a n }满足(2)证明:对于一切正整数n ,不等式123...2!n a a a a n <恒成立。

数列难题放缩法的技巧(精华)

数列难题放缩法的技巧(精华)

数列难题放缩法的技巧一、基本方法1.“添舍”放缩通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。

例1. 设a ,b 为不相等的两正数,且a 3-b 3=a 2-b 2,求证143<+<a b 。

例2. 已知a 、b 、c 不全为零,求证:a ab b b bc c c ac a a b c 22222232++++++++++>()[变式训练]已知*21().n n a n N =-∈求证:*122311...().23n n a a a n n N a a a +-<+++∈2. 分式放缩一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。

例3. 已知a 、b 、c 为三角形的三边,求证:12<++<a b c b a c c a b+++。

3. 裂项放缩若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。

例4. 已知n ∈N*,求n 2n131211<…++++。

例5. 已知*N n ∈且)1n (n 3221a n +++⨯+⨯= ,求证:2)1(2)1(2+<<+n a n n n 对所有正整数n 都成立。

4. 公式放缩利用已知的公式或恒不等式,把欲证不等式变形后再放缩,可获简解。

例6. 已知函数1212)(+-=x x x f ,证明:对于*N n ∈且3≥n 都有1)(+>n n n f 。

例7. 已知2x 1)x (f +=,求证:当a b ≠时f a f b a b ()()-<-。

5. 换元放缩对于不等式的某个部分进行换元,可显露问题的本质,然后随机进行放缩,可达解题目的。

例8. 已知c b a >>,求证0ac 1c b 1b a 1>-+-+-。

例9. 已知a ,b ,c 为△ABC 的三条边,且有222c b a =+,当*N n ∈且3n ≥时,求证:n n n c b a <+。

数列放缩法技巧全总结

数列放缩法技巧全总结

数列放缩法技巧全总结是一种在解决数学问题时常用的技巧,它能够将原问题转化为一个更简单或者更易解决的问题。

在数学竞赛和解题中,这种方法被广泛运用到。

本文将对进行全面总结,介绍其基本思想和几种常见的应用。

一、基本思想的基本思想是通过对数列中的一些项进行放缩或者递推,从而改变问题的形式,使得原问题变得更易解决。

常用的放缩方法包括递归放缩、平均放缩、配对放缩等。

递归放缩是将原数列的每一项都表示为前面一些项的函数形式。

通过找到递推关系,可以用前面的项来递推后面的项,从而得到数列的性质。

递归放缩常用于求解递推数列或者递推关系的问题。

平均放缩是将原数列的每一项都表示为平均值或者近似值。

通过对数列中的项进行平均化处理,可以得到新的数列,从而得到更简单的性质。

平均放缩常用于求解数列的上下界、最值等问题。

配对放缩是将原数列的每一项都与其他项相对应。

通过找到合适的对应关系,可以将原数列分解为多个子数列,从而实现对原问题的转化。

配对放缩常用于求解数列的差分序列、重要性质等问题。

二、应用举例1. 递推数列假设有一个递推数列$a_1, a_2, a_3, \ldots$,已知$a_1=1$,$a_2=2$,且$a_n=a_{n-1}+a_{n-2}$,要求求解$a_n$的通项公式。

我们可以使用递归放缩的方法来求解。

将$a_n$表示为$a_{n-1}+a_{n-2}$,即$a_n=a_n-1+a_{n-2}$,得到递推关系。

根据递推关系,我们可以从已知的$a_1$和$a_2$开始,递推得到后面的项。

通过求解递推关系,我们可以得到$a_n$的通项公式。

2. 数列的上下界假设有一个数列$a_1, a_2, a_3, \ldots$,已知$a_n=\sqrt{n}$,要求证明这个数列的上界和下界。

我们可以使用平均放缩的方法来证明。

注意到对于任意的$n$,有$a_n=\sqrt{n}<\sqrt{n+1}$。

由于数列$a_n$是递增的,所以它的上界是无穷大。

数列放缩法

数列放缩法

数列放缩法数列放缩法是一种常见的数学证明方法,它通常用于证明不等式。

该方法的基本思想是利用已知的不等式将目标不等式转化为一个更容易证明的不等式。

这种方法在数学竞赛和研究中被广泛使用,因为它可以使证明更加简单和直观。

一般来说,数列放缩法可以分为两种类型:基于平均值不等式(AM-GM不等式)的放缩和基于柯西-施瓦茨不等式(Cauchy-Schwarz 不等式)的放缩。

这两种方法都有其独特的优点和适用范围,可以根据具体问题的特点选择合适的方法。

基于平均值不等式的放缩方法通常适用于求证一些简单的不等式,例如求证a+b>=2√ab。

该方法的基本思想是利用AM-GM不等式将目标不等式转化为一个更容易证明的形式。

例如,对于上述不等式,我们可以将其转化为(a+b)/2>=√ab,然后应用AM-GM不等式即可得到证明。

基于柯西-施瓦茨不等式的放缩方法通常适用于求证一些复杂的不等式,例如求证(a+b+c)^2>=3(ab+bc+ca)。

该方法的基本思想是利用柯西-施瓦茨不等式将目标不等式转化为一个更容易证明的形式。

例如,对于上述不等式,我们可以将其转化为(a^2+b^2+c^2)(1+1+1)>= (a+b+c)^2,然后应用柯西-施瓦茨不等式即可得到证明。

除了AM-GM和柯西-施瓦茨不等式外,数列放缩法还可以使用其他的不等式,例如夹逼准则、均值不等式等。

这些不等式都有其独特的优点和适用范围,可以根据具体问题的特点选择合适的方法。

值得注意的是,数列放缩法虽然可以使证明更加简单和直观,但也存在一些限制和注意事项。

首先,该方法只适用于证明不等式,不能用于证明其他类型的数学问题。

其次,该方法需要掌握一定的数学知识和技巧,否则容易出现错误。

最后,该方法只能在特定的条件下使用,不能滥用。

综上所述,数列放缩法是一种常见的数学证明方法,它可以使证明更加简单和直观。

该方法可以分为基于平均值不等式的放缩和基于柯西-施瓦茨不等式的放缩两种类型,还可以使用其他的不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列综合应用(1)————用放缩法证明与数列和有关的不等式一、备考要点数列与不等式的综合问题常常出现在高考的压轴题中, 是历年高考命题的热点,这类问题能有效地考查学生 综合运用数列与不等式知识解决问题的能力.解决 这类问题常常用到放缩法,而求解途径一般有两条: 一是先求和再放缩,二是先放缩再求和.二、典例讲解1.先求和后放缩例1.正数数列{}n a 的前n 项的和n S ,满足 12+=n n a S ,试求:(1)数列{}n a 的通项公式;(2)设11+=n n n a a b ,数列{}n b 的前n 项的和 为n B ,求证:21<nB 2. 先放缩再求和①.放缩后成等差数列,再求和例2.已知各项均为正数的数列{}n a 的前n 项和为n S , 且22n n n a a S +=.(1) 求证:2214n n n a a S ++<; (2)<⋅⋅⋅+ ②.放缩后成等比数列,再求和例3.(1)设a ,n ∈N *,a ≥2,证明:n n n a a a a ⋅+≥--)1()(2;(2)等比数列{a n }中,112a =-,前n 项的和为A n , 且A 7,A 9,A 8成等差数列.设nn n a a b -=12,数列{b n } 前n 项的和为B n ,证明:B n <13.③.放缩后为差比数列,再求和例4.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a n a n n n .求证: 11213-++-≥>n n n n a a ④.放缩后为裂项相消,再求和例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中, 若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数), 则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的 逆序数63=a .(1)求a 4、a 5,并写出a n 的表达式;(2)令nn n n n a a a a b 11+++=,证明: 32221+<++<n b b b n n ,n =1,2,….高考真题再现:1.(06浙江卷)已知函数32()f x x x =+,数列{}n x (n x >0)的第一项1x =1,以后各项按如下方式取定: 曲线()y f x =在))(,(11++n n x f x 处的切线与经过(0,0)和(n x ,()n f x )两点的直线平行(如图) 求证:当*n N ∈时,(Ⅰ) 221132n n n n x x x x +++=+;(Ⅱ)21)21()21(--≤≤n n n x 。

2.(06福建卷)已知数列{}n a 满足*111,21().n n a a a n N +==+∈(I )求数列{}n a 的通项公式;(II )证明:*122311...().232n n a a a n n n N a a a +-<+++<∈3.(07浙江)已知数列{}n a 中的相邻两项212k k a a -, 是关于x 的方程023)23(2=⋅++-k k k x k x 的两个根,且212(123)k k a a k-=≤,,,. (I )求1a ,2a ,3a ,7a ;(II )求数列{}n a 的前2n 项和2n S ; (Ⅲ)记sin 1()32sin n f n n ⎛⎫=+ ⎪⎝⎭, (2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++…, 求证:15()624n T n ∈*N ≤≤.4.(07湖北)已知m n ,为正整数,(I )用数学归纳法证明:当1x >-时, (1)1m x mx ++≥;(II )对于6n ≥,已知11132m n ⎛⎫-< ⎪+⎝⎭, 求证1132m m m n ⎛⎫⎛⎫-< ⎪ ⎪+⎝⎭⎝⎭,12m n =,,,; (III )求出满足等式34(2)(3)n n n m n n ++++=+的所有正整数n .5. (08辽宁)在数列{}{},n n a b 中,112,4a b ==, 且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. ⑴求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项 公式,并证明你的结论;⑵证明:1122111512n n a b a b a b +++<+++.数列综合应用(1)————用放缩法证明与数列和有关的不等式一、备考要点数列与不等式的综合问题常常出现在高考的压轴题中, 是历年高考命题的热点,这类问题能有效地考查学生 综合运用数列与不等式知识解决问题的能力.解决 这类问题常常用到放缩法,而求解途径一般有两条: 一是先求和再放缩,二是先放缩再求和.二、典例讲解1.先求和后放缩例1.正数数列{}n a 的前n 项的和n S ,满足 12+=n n a S ,试求:(1)数列{}n a 的通项公式;(2)设11+=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:21<n B2. 先放缩再求和①.放缩后成等差数列,再求和例2.已知各项均为正数的数列{}n a 的前n 项和为n S , 且22n n n a a S +=.(1) 求证:2214n n n a a S ++<;(2)<⋅⋅⋅+②.放缩后成等比数列,再求和例3.(1)设a ,n ∈N *,a ≥2,证明:n n n a a a a ⋅+≥--)1()(2;(2)等比数列{a n }中,112a =-,前n 项的和为A n , 且A 7,A 9,A 8成等差数列.设nn n a a b -=12,数列{b n } 前n 项的和为B n ,证明:B n <13.③.放缩后为差比数列,再求和例4.已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a n a n n n .求证: 11213-++-≥>n n n n a a④.放缩后为裂项相消,再求和例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中, 若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数), 则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的 逆序数63=a .(1)求a 4、a 5,并写出a n 的表达式;(2)令nn n n n a a a a b 11+++=,证明: 32221+<++<n b b b n n ,n =1,2,….高考真题再现:1.(06浙江卷)已知函数32()f x x x =+,数列{}n x (n x >0)的第一项1x =1,以后各项按如下方式取定: 曲线()y f x =在))(,(11++n n x f x 处的切线与经过(0,0)和(n x ,()n f x )两点的直线平行(如图) 求证:当*n N ∈时,(Ⅰ) 221132n n n n x x x x +++=+; (Ⅱ)21)21()21(--≤≤n n n x 。

2.(06福建卷)已知数列{}n a 满足*111,21().n n a a a n N +==+∈(I )求数列{}n a 的通项公式;(II )证明:*122311...().232n n a a a n n n N a a a +-<+++<∈3.(07浙江)已知数列{}n a 中的相邻两项212k k a a -, 是关于x 的方程023)23(2=⋅++-k k k x k x 的两个根,且212(123)k k a a k-=≤,,,. (I )求1a ,2a ,3a ,7a ;(II )求数列{}n a 的前2n 项和2n S ; (Ⅲ)记sin 1()32sin n f n n ⎛⎫=+ ⎪⎝⎭, (2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++…, 求证:15()624n T n ∈*N ≤≤.4.(07湖北)已知m n ,为正整数, (I )用数学归纳法证明:当1x >-时, (1)1m x mx ++≥;(II )对于6n ≥,已知11132m n ⎛⎫-< ⎪+⎝⎭, 求证1132m m m n ⎛⎫⎛⎫-< ⎪ ⎪+⎝⎭⎝⎭,12m n =,,,; (III )求出满足等式34(2)(3)n n n m n n ++++=+的所有正整数n .11 5. (08辽宁)在数列{}{},n n a b 中,112,4a b ==, 且1,,n n n a b a +成等差数列,11,,n n n b a b ++成等比数列. ⑴求234,,a a a 及234,,b b b ,由此猜测{}{},n n a b 的通项 公式,并证明你的结论; ⑵证明:1122111512n n a b a b a b +++<+++.。

相关文档
最新文档