一次函数应用题(习题及答案)
一次函数应用题专项练习(含答案).docx
次函数型应用题:1、我市某乡A 、B 两村盛产柑橘,A 村有柑橘200吨,B 村有柑橘300吨。
先将这些柑橘运到C 、D 两个冷藏仓库。
已知 C 仓库可储存240吨,D 仓库可储存260吨。
从A 村运往C 、D 两处的费用分别为每吨20元和25元,从B 村运往C 、D 两处的费用分别为每吨15元和18元。
设从A 村运往C 仓库的柑橘重量为x 吨,A 、B 两村运往两仓库的柑橘运输费 用分别为y A 元和y B 元.A B (2)、试讨论A 、B 两村中,哪个村的运费最少?(3)、考虑到B 村的经济承受能力,B 村的柑橘运费不得超过4830元,在 这种情况下,怎样调运,才使两村运费之和最小 ?求出这个最小值。
1、解:⑴:⑵:当 Y A = Y B 时,—5x+5000= 3X +4680 A X =40当 Y A > Y B 时,—5x+5000>3X +4680 A x v 40当 Y A v Y B 时,—5X +5000) v 3X +4680 A X >40 A 当X =40时, 两村运费相同;当0W x v 40时,B 村运费较少;【表中运费栏“元/吨.千米”表示每吨水泥运送1千米用的人民币】(1) 设甲库运往A 地水泥X 吨,用X 表示总运费y (元)。
(2) 当甲乙两库各运往A 、B 两地多少吨水泥时,总运费最省?最省是多少?2、解:⑴:y = 20X 12x 2510 100-X 1512 70-X 208 X +10 =—30X + 39200\>0 70 — X A 0⑵:由题意得:A 0< X < 70500-x 兰 0 x 10一 0•/ y = — 30X + 39200又••• k=-2 v 0 A y 随X 增大而减小;A 当 X = 70 时,y 最小。
y = -30 X 70+ 3920= 37100.答:甲库调往A 地70吨、B 地30吨;乙库调往A 地0吨、B 地80吨 (或乙库80吨全部调往B 地)。
一次函数应用题精编(附答案)
一次函数应用题专题训练1.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x 之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)2.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y(人)与售票时间x(分钟)的关系如图所示,已知售票的前a分钟只开放了两个售票窗口(规定每人只购一张票).(1)求a的值.(2)求售票到第60分钟时,售票听排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?3.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为 km , a ;(2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.4.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?⑵如果先进行精加工,然后进行粗加工.①试求出销售利润W 元与精加工的蔬菜吨数m 之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?小时)5.某物流公司的甲、乙两辆货车分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途径配货站C ,甲车先到达C 地,并在C 地用1小时配货,然后按原速度开往B 地,乙车从B 地直达A 地,图16是甲、乙两车间的距离y (千米)与乙车出发x (时)的函数的部分图像(1)A 、B 两地的距离是 千米,甲车出发 小时到达C 地;(2)求乙车出发2小时后直至到达A 地的过程中,y 与x 的函数关系式及x 的取值范围,并在图16中补全函数图像;(3)乙车出发多长时间,两车相距150千米6.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示.请根据图象回答下列问题:(1)汽车行驶 小时后加油,中途加油 升;(2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式;(3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.7.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?8.自20XX年6月1日起我省开始实施家电以旧换新政策,消费者在购买政策限定的新家电时,每台新家电用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴部分由政府提设购进的电视机和洗衣机数量均为x台,这100台家电政府需要补贴y元,商场所获利润w元(利润=售价-进价)(1)请分别求出y与x和w与x的函数表达式;(2)若商场决定购进每种家电不少于30台,则有几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴多少元钱?。
一次函数的应用练习题及答案
一次函数的应用练习题及答案一次函数是数学中一个非常基础且常见的函数类型,其形式为 y = ax + b。
在现实生活中,我们经常会遇到一次函数的应用场景。
本文将提供一些基于一次函数的应用练习题,并附带答案,希望能够帮助读者更好地理解一次函数的概念和应用。
练习题1:某公司的年工资总额与员工人数之间存在一次函数关系。
已知当公司的员工人数为100人时,年工资总额为500万元;当员工人数为200人时,年工资总额为800万元。
求该公司年工资总额与员工人数的一次函数表达式,并根据该函数回答以下问题:a) 当员工人数为300人时,年工资总额是多少?b) 当员工人数为0人时,年工资总额是多少?解答:设年工资总额为 y,员工人数为 x。
根据题意,我们可以列出两个方程:100a + b = 500200a + b = 800通过解这个方程组,我们可以得到 a 的值为 1.5,b 的值为 350。
因此,该公司的年工资总额与员工人数的一次函数表达式为 y = 1.5x + 350。
a) 当员工人数为 300 人时,将 x = 300 代入函数表达式中,可得年工资总额为 1.5 * 300 + 350 = 850 万元。
b) 当员工人数为 0 人时,将 x = 0 代入函数表达式中,可得年工资总额为 1.5 * 0 + 350 = 350 万元。
练习题2:某手机品牌的某款手机的售价与销量之间存在一次函数关系。
已知当该手机的销量为3000部时,售价为2000元/部;当销量为5000部时,售价为1500元/部。
求该手机的售价与销量的一次函数表达式,并根据该函数回答以下问题:a) 当销量为4000部时,售价是多少?b) 当销量为0部时,售价是多少?解答:设售价为 y,销量为 x。
根据题意,我们可以列出两个方程:3000a + b = 20005000a + b = 1500通过解这个方程组,我们可以得到 a 的值为 -0.1,b 的值为 500。
一次函数综合应用(习题及解析)精选全文
精选全文完整版(可编辑修改)一次函数综合应用(习题及解析)例题示范例 1:一次函数 y=kx+b 的图象经过点 A(0,3),且与正比例函数y=-x 的图象相交于点 B,点 B 的横坐标为-1,求一次函数的表达式.思路分析:从完整的表达式入手,由正比例函数过点 B,可得 B 点坐标,然后由一次函数 y=kx+b 的图象经过点 A,B,待定系数法求解.解:∵点 B 在正比例函数 y=-x 的图象上,且点 B 的横坐标为-1∴B(-1,1)将 A(0,3),B(-1,1)代入 y=kx+b,得b 3k b 1k 2b 3∴一次函数的表达式为 y=2x+3.巩固练习一次函数 y=2x+a 和 y=-x+b 的图象都经过点 A(-2,0),且与 y 轴分别交于点 B,C,那么△ABC 的面积为.直线 y=kx+b 和直线 y 1 x 3 与 y 轴的交点相同,且经2过点(2,-1),那么这个一次函数的表达式是.一次函数 y=kx-3 经过点 M,那么此直线与 x 轴、y 轴围成的三角形的面积为.在平面直角坐标系中,O 为原点,直线 y=kx+b 交 x 轴于点A(-2,0),交 y 轴于点 B、假设△AOB 的面积为 8,那么 k 的值为直线 y=kx+1,y 随 x 的增大而增大,且与直线 x=1,x=3以及 x 轴围成的四边形的面积为 10,那么 k 的值为.一次函数 y=kx+b 的图象经过点(0,2),且与坐标轴围成的三角形的面积为 2,那么这个一次函数的表达式是如图,在平面直角坐标系中,一次函数 y 1 x 6 的图象与2x 轴、y 轴分别交于点 A,B,与正比例函数 y=x 的图象交于第一象限内的点 C、〔1〕求 A,B,C 三点的坐标;〔2〕S△AOC= .如图,直线 y=2x+3 与直线 y=-2x-1 相交于 C 点,并且与 y 轴分别交于 A,B 两点.〔1〕求两直线与 y 轴交点 A,B 的坐标及交点 C 的坐标;〔2〕求△ABC 的面积.一次函数 y=2x-3 的图象与 y 轴交于点 A,另一个一次函数图象与 y 轴交于点 B,两条直线交于点 C,C 点的纵坐标为 1,且 S△ABC=5,求另一条直线的解析式.一次函数 y=kx+b 的图象经过点(0,10),且与正比例函数y 1 x 的图象相交于点(4,a).2〔1〕求一次函数 y=kx+b 的解析式;〔2〕求这两个函数图象与 y 轴所围成的三角形的面积.如图,直线 y=kx+4 与 x 轴、y 轴分别交于点 A,B,点 A的坐标为(-3,0),点 C 的坐标为(-2,0).〔1〕求 k 的值;〔2〕假设 P 是直线 y=kx+4 上的一个动点,当点 P 运动到什么位置时,△OPC 的面积为 3?请说明理由.【参考答案】巩固练习1.6 2.y=-2x+3 3.9 44.4 或-4 5.2 6. y x 2或y ﹣x 2 7.〔1〕A(12,0),B(0,6),C(4,4) 〔2〕24 8.〔1〕A(0,3) B(0,-1) C(-1,1);〔2〕2 9. y 1 x 2 或 y 9 x 8 2 210. 〔1〕 y 2x 10 〔2〕2011. 〔1〕 k 在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。
(完整版)一次函数应用题及答案
(完整版)一次函数应用题及答案一次函数应用题(讲义)一、知识点睛1.理解题意,结合图象依次分析___轴、点、线__________的实际意义,把函数图象与_实际场景____________对应起来;2.利用__函数图象__________解决问题,关注k、b以及特殊点坐标;3.结合实际场景解释所求结果.二、精讲精练1.一辆快车和一辆慢车分别从A,B两站同时出发,相向而行.快车到达B站后,停留1小时,然后原路原速返回A站,慢车到达A站即停运休息.下图表示的是两车之间的距离y(千米)与行驶时间x(小时)的函数图象.请结合图象信息,解答下列问题:(1)直接写出快、慢两车的速度及A,B两站间的距离;(2)求快车从B站返回A站时,y与x之间的函数关系式;(3)出发几小时,两车相距200千米?请直接写出答案.2.某加油站九月份某种油品的销售利润y(万元)与销售量x(万升)之间的函数图象如图中折线所示,该加油站截止至13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元(销售利润=(售价-成本价)×销售量),九月份的销售记录如下:请你根据图象及加油站九月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x 为多少时,销售利润为4万元;(2)求出线段BC 所对应的函数关系式.3. 如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块(圆柱形铁块的下底面完全落在水槽底面上).现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y (厘米)与注水时间x (分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC 表示槽中水的深度与注水时间之间的关系,线段DE 表示槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B 的纵坐标表示的实际意义是.(2)注水多长时间时,甲、乙两个水槽中水的深度相同?元/件)(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积.(4)若乙槽中铁块的体积为112立方厘米(壁厚不计),求甲槽底面积(直接写结果).甲槽4. 2012年夏,北京发生特大暴雨灾害,受其影响,某药品的需求量急增.如图所示,平常对某种药品的需求量y 1(万件)、供应量y 2(万件)与价格x (元/件)分别近似满足下列函数关系式:y 1=-x +70,y 2=2x -38,需求量为0时,即停止供应.当y 1=y 2量称为稳定需求量.(1)求该药品的稳定价格与稳定需求量.(2)价格在什么范围内,该药品的需求量低于供应量?(3)由于灾情严重,政府部门决定对药品供应方提供价格稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.图1图25.教室里放有一台饮水机,饮水机上有两个放水管.课间同学们依次到饮水机前用茶杯接水.假设接水过程中水不发生泼洒,每个同学所接的水量都是相等的.两个放水管同时打开时,他们的流量相同.放水时先打开一个水管,过一会儿,再打开第二个水管,放水过程中阀门一直开着.饮水机的存水量y(升)与放水时间x(分钟)的函数关系如图所示:(1)求饮水机的存水量y(升)与放水时间x(分钟)(x≥2)的函数关系式.(2)如果打开第一个水管后,2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几分钟?(3)按(2)的放法,在课间10分钟内班级中最多有多少个同学能及时接完水?三、回顾与思考__________________________________________________________________________________________________________________________________________________________________【参考答案】一、知识点睛1.轴、点、线;实际场景2.函数图象二、精讲精练1.(1)快车速度为120km/h,慢车速度为80km/h ,A,B两站间的距离为1200km;(2)PQ:y=-40x+1320 (11≤x≤15);QH:y=-120x+2520(15<x≤21);(3)x=5,7,583时,两车相距200千米.2.(1)x=4;(2)y=1.1x(5≤x≤10).3.(1)乙,甲,圆柱形铁块的高度为14厘米;(2)AB:y=3x+2DE:y=-2x+12联立32212 y xy x=+=-+?解得:28 xy=?=?∴注水时间为2分钟时,甲、乙两个水槽中的水的深度相同.(3)84立方厘米;(4)60平方厘米.4.(1)该药品的稳定价格为36(元/件),稳定需求量为34(万件);(2)当药品每件价格在大于36小于70时,该药品的需求量低于供应量;(3)政府部门对该药品每件应补贴9元,才能使供给量等于需求量.5.(1)99418821059y x x=-+≤≤();(2)前22个同学接水结束共需要7分钟;(3)最多有32个同学能及时接完水.。
一次函数应用题含答案
一次函数应用题含答案一次函数应用题含答案一、方案优化问题我市某乡A、B两村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨.现将这些柑桔运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨,A、B两村运往两仓库的柑桔运输费用分别为yA元和yB元.(1)请填写下表,并求出yA,yB与x之间的函数关系式;(2)试讨论A、B两村中,哪个村花的运费较少;(3)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元.在这种情况下,请问该怎样调运才能使两村运费之和最小?求出这个最小值.解:(1)yA=-5x+5000(0≤x≤200),yB=3x+4680(0≤x≤200).(2)当yA=yB时,-5x+5000=3x+4680,x=40;当yA>yB时,-5x+5000>3x+4680,x<40;当yA<yb时,-5x+5000<3x+4680,x style="padding: 0px; margin: 0px; font-family: Arial, 宋体; font-size: 14px; white-space: normal; background-color: rgb(255, 255, 255);">40.当x=40时,yA=yB即两村运费相等;当0≤x<40时,ya>yB即B村运费较少;当40<x≤200时,ya<yb即a村费用较少.(3)由yB≤4830得3x+4680≤4830∴x≤50设两村的运费之和为y,∴y=yA+yB.即:y=-2x+9680.又∵0≤x≤50时,y随x增大而减小,∴当x=50时,y有最小值,y最小值=9580(元).答:当由A村调往C仓库的柑桔重量为50吨、调往D仓库为150吨,由B村调往C仓库为190吨、调往D仓库110吨的时候,两村的运费之和最小,最小费用为9580元.要点提示:解答方案比较问题,求函数式时,对有图象的,多用待定系数法求;对没有给出图象的,直接依题意列式子;方案比较问题通常与不等式、方程相联系;比较方案,即比较同一自变量所对应的函数值,要将函数问题转化为方程、不等式问题;解答方案比较问题尤其要注意:不同的区间,对应的大小关系也多不同.二、利润最大化问题某个体小服装店主准备在夏季来临前,购进甲、乙两种T恤.两种T恤的相关信息如下表:根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.解:(1)设购进甲种T恤x件,则购进乙种T恤(100-x)件.可得,6195≤35x+70(100-x)≤6299.解得,20■≤x≤23.∵x为解集内的正整数,∴x=21,22,23.∴有三种进货方案:方案一:购进甲种T恤21件,购进乙种T恤79件;方案二:购进甲种T恤22件,购进乙种T恤78件;方案三:购进甲种T恤23件,购进乙种T恤77件.(2)设所获得利润为W元.W=30x+40(100-x)=-10x+4000.∵k=-10<0,∴W随x的增大而减小.∴当x=21时,W=3790.该店购进甲种T恤21件,购进乙种T恤79件时获利最大,最大利润为3790元.(3)购进甲种T恤9件、乙种T恤1件.要点提示:在一次函数y=kx+b中,x、y均可取一切实数.如果缩小x的取值范围,则其函数值就会出现最大值或最小值.求一次函数的最大值、最小值,一般都是采用“极端值法”,即用自变量的端点值,根据函数的增减性,对应求出函数的端点值(最值).三、行程问题从甲地到乙地,先是一段平路,然后是一段上坡路.小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间.假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图1中的折线OABCDE表示x与y之间的函数关系.(1)小明骑车在平路上的速度为 km/h;他途中休息了 h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?解:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15-5=10,小明骑车在下坡路的速度为:15+5=20.∴小明返回的时间为:(6.5-4.5)÷20+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1-0.5-0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意得4.5=0.3k1+b16.5=0.5k1+b1,解得:k1=10b1=1.5,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2x+b2,由题意得6.5=0.5k2+b24.5=0.6k2+b2,解得:k2=-20b2=16.5,∴y=-20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在坡路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意得10t+1.5=-20(t+0.15)+16.5,解得:t= 0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.要点提示:行程类一次函数试题以图象、点坐标相组合的形式呈现,灵活性强,对学生分析问题、解决问题的能力要求较高,重在考查学生的识图能力和创新意识.解决图象中的行程问题除了要掌握好路程、速度和时间三者之间的基本关系外,最重要的'是要学会从图象中获取信息,理清各变量之间的关系,然后根据题意选择适当的解题方法.四、分段计费问题已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为实施省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定若企业的月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收■元.若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.解:(1)设y关于x的函数关系式y=kx+b,∵直线y=kx+b经过点(50,200),(60,260)∴50k+b=20060k+b=260解得k=6b=-100∴y关于x的函数关系式是y=6x-100(x≥50);(2)由可知,当y=620时,x>50∴6x-100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x-100+■(x-80)=600,化简得x2+40x-14000=0解得:x1=100,x2=-140(不合题意,舍去).答:这家企业2014年3月份的用水量是100吨.要点提示:分段函数的特征是不同的自变量区间所对应的函数式不同,其函数图象是一个折线.解决分段计费问题,关键是要与所在的区间相对应.分段函数中“折点”既是两段函数的分界点,同时又分别在两段函数上,在求解析式时要用好“折点”坐标,同时在分析图象时还要注意“折点”所表示的实际意义,“折点”的纵坐标通常是不同区间的最值.2015年第3期《锐角三角函数》参考答案1.D;2.A;3.B;4.■;5.9■;6.2■;7.120;8. 解:(1)■-3tan30°+(π-4)0-(■)-1=2■-3×■+1-2=■-1(2)■(2cos45°-sin60°)+■=■(2×■-■)+■=2-■+■=29. 解:过点A作直线BC的垂线,垂足为D.则∠CDA=90°,∠CAD=60°,∠BAD=30°,CD=240米,在Rt△ACD中,tan∠CAD=■,∴AD=■=■=80■,在Rt△ABD中,tan∠BAD=■,∴BD=ADtan30°=80■×■=80,∴BC=CD-BD=240-80=160. 答:这栋大楼的高为160米. 10.解:在Rt△CDB中,∠C=90°,BC=■=■=4,∴tan∠CBD=■.在Rt△ABC中,∠C=90°,AB=■=4■,∴sinA=■.。
一次函数应用题(习题及答案)
一次函数应用题(习题)例题示范例1:一辆警车在高速公路的A 处加满油,以每小时60 千米的速度匀速行驶.已知警车一次加满油后,油箱内的余油量y(升)与行驶时间x(小时)之间的函数关系图象是如图所示的直线l 的一部分.(1)求直线l 的函数表达式;(2)如果警车要回到 A 处,且要求警车中的余油量不能少于10 升,那么警车可以行驶到离A 处的最远距离是多少?y/升5442-1 O解:(1)∵(1,54),(3,42)∴l:y =-6x + 60(2)由y =-6x + 60 得,当y=10 时,x =2531 2 3 4 x/小时∴警车可以行驶到离 A 处的最远距离是25⨯ 60 ⨯1= 250 (千米)3 2答:直线l 的函数关系式为y =-6x + 60 ,警车可以行驶到离A 处的最远距离是250 千米.巩固练习1.李老师开车从甲地到相距240 千米的乙地,油箱剩余油量y(升)与行驶里程x(千米)之间的函数关系如图所示.(1)求y 与x 之间的函数关系式(不必注明自变量x 的取值范围);(2)李老师到达乙地时油箱剩余油量是多少?3.52.5O160 x/千米2.某校食堂有一太阳能热水器,其水箱的最大蓄水量为 1 000升,往空水箱中注水,在没有放水的情况下,水箱的蓄水量y(升)与匀速注水时间x(分钟)之间的关系如图所示.(1)求y 与x 之间的函数关系式;(2)若水箱中原有水400 升,则按上述速度注水15 分钟,能否将水箱注满?240 180 120 60 O y/升2 4 68 x/分钟3.如图,折线AB-BC 是某市区出租车所收费用y(元)与出租车行驶路程x(km)之间的函数关系图象.(1)当x≥2 时,求y 与x 之间的函数关系式;(2)若某人付车费15.6 元,则出租车行驶了多少千米?4.我国西南五省市的部分地区发生严重旱灾,为鼓励节约用水,某市自来水公司采取分段收费标准.每月收取的水费y(元)与用水量x(吨)之间的函数关系如图所示.(1)若小明家五月份用水8 吨,则应交水费元;(2)按上述分段收费标准,若小明家三、四月份分别交水费26 元、18 元,则四月份比三月份节约用水多少吨?5.小敏从A 地出发,向B 地行走,小聪从B 地同时出发,向A地行走.如图,相交于点P 的两条线段l1,l2 分别表示小敏、小聪离B 地的距离y(km)与已用时间x(h)之间的函数关系,则当小敏、小聪两人相距7km 时,x 的值为多少?6.高铁的开通,给衢州市民出行带来了极大的方便,“五一”期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1 小时后,颖颖乘坐高铁从衢州出发,先到杭州火车站,然后再转车出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,乐乐和颖颖离衢州的距离分别为y1,y2(km),与乘车时间x(h)的关系如图所示.请结合图象解决下面问题:(1)当1≤x≤2 时,求颖颖离开衢州的距离y2 与乘车时间x 之间的函数关系式;(2)当颖颖达到杭州火车东站时,乐乐距离游乐园还有多少千米?y(千米)240 216 杭州火车站游乐园私家车高铁出租车O 1 1.5 2x(小时)思考小结1.从应用题处理框架的角度来回顾一次函数应用题:①理解题意,梳理信息通过看轴、点、线,把和对应起来.②建立一次函数模型首先确定一次函数表达式,并把所求目标转化为,然后借助一次函数表达式进行求解.③结合实际意义进行验证2.结合下图梳理本章知识,并回答下列问题.实际问题分析变量之间的关系建立数学模型函数关键点坐标k的实际意义表达式实际问题的答案用函数工具处理、求解结合实际情况验证结果一次函数图象y=kx+b(k≠0)性质计算坐标和一次函数表达式之间的关系(点在一次函数图象上):若表达式完整而坐标残缺,把残缺坐标代入即可求出坐标;若坐标完整而表达式残缺(k,b 有一个未知),把代入即可求出表达式.若已知两点坐标求直线的表达式,则利用待定系数法,四步操作为、、、.若已知两条直线的表达式,要求交点坐标,则求交点坐标.1.【参考答案】巩固练习1.(1)y =-1 x +1 (2)2 升160 22. (1)y=30x(0 ≤x ≤100)(2)不能33. (1)y =6x +3(x ≥2 )(2)12.5 千米5 54. (1)16 (2)3 吨5. x 的值为0.6 或2.66. (1)y2=240x-240 (2)56 千米思考小结1.①看轴、点、线②一次函数2.表达式;坐标,表达式一设、二代、三解、四还原.联立3.y=kx+b(k,b 为常数,k≠0);正比例.两,(0,b),( -b,0).k倾斜程度;y,纵.k 相同,b 不同.一、二、三;一、三、四;一、二、四;二、三、四.增大,同向变化;减小,反向变化.。
一次函数的应用专项练习30题有答案
一次函数的应用专项练习30题(有答案)1.向一个空水池注水,水池蓄水量y(米3)与注水时间x(小时)之间的函数图象如图所示.(1)第20小时时蓄水量为_________ 米3;(2)水池最大蓄水量是_________ 米3;(3)求y与x之间的函数关系式.2.小王的父母经营一家饲料店,拟投入a元购入甲种饲料,现有两种方案:①如果月初出售这批甲种饲料可获利8%,并用本金和利润再购入乙种饲料,到月底售完又获利10%;②如果月底出售这批甲种饲料,可获利20%,但要付仓储费600元.(1)分别写出方案①、②获利金额的表达式;(2)请你根据小王父母投入资金的多少,定出可多获利的方案.3.某工厂现在年产值是15万元,计划以后每年增加2万元,设x年后的年产值为y(万元).(1)写出y与x之间的关系式;(2)用表格表示当x从0变化到5(每次增加1)y的对应值;(3)求10年后的年产值?4.我们知道海拔一定高度的山区气温随着海拔高度的增加而下降.小明暑假到去旅游,沿途他利用随身所带的测量仪器,测得以下数据:1400 1500 1600 1700 …海拔高度x(m)气温y(°C)32.00 31.40 30.80 30.20 …(1)现以海拔高度为x轴,气温为y轴建立平面直角坐标系,根据提供的数据描出各点;(2)已知y与x的关系是一次函数关系,求出这个关系式;(3)若小明到达天都峰时测得当时的气温是29.24°C.求天都峰的海拔高度.5.如图,l1,l2分别表示一种白炽灯和一种节能灯的费用y与照明时间x(h)的函数图象,假设两种灯的使用寿命都是2000h,照明效果一样.(费用=灯的售价+电费,单位:元)(1)根据图象分别求出l1,l2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?6.某物流公司的快递车和货车每天沿同一公路往返于A、B两地,快递车比货车多往返一趟.图表示快递车与货车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B 地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.(1)两车在途中相遇的次数为_________ 次;(直接填入答案)(2)求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时.7.某农户有一水池,容量为10立方米,中午12时打开进水管向水池注水,注满水后关闭水管同时打开出水管灌溉农作物,当水池中的水量减少到1立方米时,再次打开进水管向水池注水(此时出水管继续放水),直到再次注满水池后停止注水,并继续放水灌溉,直到水池中无水,水池中的水量y(单位:立方米)随时间x(从中午12时开始计时,单位:分钟)变化的图象如图所示,其中线段CD所在直线的表达式为y=﹣0.25x+33,线段OA所在直线的表达式为y=0.5x,假设进水管和出水管每分钟的进水量和出水量都是固定的.(1)求进水管每分钟的进水量;(2)求出水管每分钟的出水量;(3)求线段AB所在直线的表达式.8.为发展电信事业,方便用户,电信公司对移动采取不同的收费方式,其中“如意卡”无月租,每通话一分钟收费0.25元,“便民卡”收费信息如图(1)分别求出两种卡在某市围每月(30天)的通话时间x(分钟)与通话费y(元)之间的函数关系式.(2)请你帮助用户计算一下,在一个月使用哪种卡便宜.9.如图是甲、乙两人去某地的路程S(km)与时间t(h)之间的函数图象,请你解答下列问题:(1)甲去某地的平均速度是多少?(2)甲出发多长时间,甲、乙在途中相遇?10.如图,在甲、乙两同学进行400米跑步比赛中,路程s(米)与时间t(秒)之间的函数关系的图象分别为折线OAB和线段OC,请根据图上信息回答下列问题:(1)_________ 先到达终点;(2)第_________ 秒时,_________ 追上_________ ;(3)比赛全程中,_________ 的速度始终保持不变;(4)写出优胜者在比赛过程中所跑的路程s(米)与时间t(秒)之间的函数关系式:_________ .11.甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)当x=2.8时,甲、乙两组共加工零件_________ 件;乙组加工零件总量a的值为_________ .(3)加工的零件数达到230件装一箱,零件装箱的时间忽略不计,若甲、乙两组加工出的零件合在一起装箱,当甲组工作多长时间恰好装满第2箱?12.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象提供的信息解答下列问题:(1)甲队在0≤x≤6的时间段,挖掘速度为每小时_________ 米;乙队在2≤x≤6的时间段,挖掘速度为每小时_________ 米;请根据乙队在2≤x≤6的时间段开挖的情况填表:时间(h) 2 3 4 5 630 50乙队开挖河渠(m)(2)①请直接写出甲队在0≤x≤6的时间段,y甲与x之间的关系式;②根据(1)中的表中规律写出乙队在2≤x≤6的时间段,y乙与x之间的关系式;(3)在(1)的基础上,如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到每小时12米,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?13.百舟竞渡,激悄飞扬,端午节期间,龙舟比赛在九龙江举行.甲、乙两支龙舟队在比赛时的路程y(米)与时间x(分钟)的函数关系的图象如图所示,根据图象解答下列问题:(1)出发后1.5分钟,_________ 支龙舟队处于领先位置(填“甲”或“乙“);(2)_________ 支龙舟队先到达终点(填“甲“或“乙”),提前_________ 分钟到达;(3)求乙队加逨后,路程y(米)与时问分钟)之间的函数关系式,并写出自变x的取值围.14.在人才招聘会上,某公司承诺:录用后第一年的月工资为2000元,以后每年的月工资比上一年的月工资增加300元,一年按12个月计算.(1)如果某人在该公司连续工作x年,他在第x年后的月工资是y元,写出y与x的关系式.(2)如果这个人期望第五年的工资收入超过4万元,那么他是否应该在该公司应聘?15.褚向同学乘车从学校出发回家,他离家的路程y(km)与所用时间x(时)之间的关系如图所示.(1)求y与x之间的关系式;(2)求学校和褚向同学家的距离.16.某软件公司开发出一种图书管理软件,前期投入的各种费用总共50000元,之后每售出一套软件,软件公司还需支付安装调试费用200元,设销售套数x(套).(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.(2)该公司计划以400元每套的价格进行销售,并且公司仍要负责安装调试,试问:软件公司售出多少套软件时,收入超出总费用?17.甲和乙上山游玩,甲乘坐缆车,乙步行,两人相约在山顶的缆车终点会合.已知乙行走到缆车终点的路程是缆车到山顶的线路长的2倍,甲在乙出发后50min才乘上缆车,缆车的平均速度为180m/min.设乙出发xmin后行走的路程为ym.图中的折线表示乙在整个行走过程中y与x的函数关系.(1)乙行走的总路程是_________ m,他途中休息了_________ min.(2)①当50≤x≤80时,求y与x的函数关系式;②当甲到达缆车终点时,乙离缆车终点的路程是多少?18.经理到家果园里一次性采购一种水果,他俩商定:经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)如果采购量x满足20≤x≤40,求y与x之间的函数关系式;(2)已知家种植水果的成本是2 800元/吨,经理的采购量x满足20≤x≤40,那么当采购量为多少时,家在这次买卖中所获的利润w最大?最大利润是多少?19.某移动通讯公司开设了“全球通”和“神舟行”两种通讯业务,收费标准见下表:通讯业务月租费(元)通话费(元/分钟)全球通50 0.4神舟行0 0.6某用户一个月通话x分钟,“全球通”和“神舟行”的收费分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)在通话时间相同的情况下,你认为该用户应选择哪种通讯业务更为合算?20.某长途汽车客运站规定,乘客可以免费携带一定质量的行,但超过该质量则需交纳行费,已知行费y(元)是行质量x(千克)的一次函数.现在黄明带了60千克的行,交了行费5元,王华带了78千克的行,交了8元.(1)写出y与x之间的函数关系式;(2)旅客最多可以免费携带多少千克的行?21.某长途汽车客运站规定,乘客可免费携带一定质量的行,但超过该质量则需要购买行票,且行费y(元)是行质量x(千克)的一次函数,如图所示.(1)求y与x之间的函数关系式.(2)最多可免费携带多少质量的行?22.小明从A地出发向B地行走,同时小聪从B地出发向A地行走.如图所示,线段l1、l2分别表示小明、小聪离B地的距离y(km)与已用时间x(h)之间的关系.观察图象,回答以下问题:(1)出发_________ (h)后,小明与小聪相遇,此时两人距离B地_________ (km);(2)求小聪走1.2(h)时与B地的距离.23.某公司生产一种新产品,前期投资300万元,每生产1吨新产品还需其他投资0.3万元,如果生产这一产品的产量为x吨,每吨售价为0.5万元.(1)设生产新产品的总投资y1万元,试写出y1与x之间的函数关系式和定义域;(2)如果生产这一产品能盈利,且盈利为y2万元,求y2与x之间的函数关系式,并写出定义域;(3)请问当这一产品的产量为1800吨时,该公司的盈利为几万元?24.根据市场调查,某厂家决定生产一批产品投放市场,安排750名工人计划10天完成a件的生产量.(1)按计划,该厂平均每天应生产产品多少件?(用含a的式子表示)(2)该厂按计划生产几天后,该厂家又抽调了若干名工人支援生产,同时,通过技术革新等手段使每位工人的工作效率比原计划每位工人的工作效率提高25%,结果提前完成任务,图中折线表示实际工作情况.求厂家又抽调了多少名工人支援生产?25.某公司库存挖掘机16台,现在运往甲、乙两地支援建设,每运一台到甲、乙两地的费用分别是500元和300元.设运往甲地x台挖掘机,运这批挖掘机的总费用为y元.(1)写出y与x之间的函数关系式;(2)如果公司决定将这16台挖掘机平均分配给甲、乙两地,求此次运输的总费用;(3)如果公司决定按运输费用平均分配这16台挖掘机,求此时运输的总费用又是多少.26.A市和B市各有机床12台和6台,现运往C市10台,D市8台.若从A市运1台到C市、D市各需要4万元和8万元,从B市运1台到C市、D市各需要3万元和5万元.(1)设B市运往C市x台,求总费用y关于x的函数关系式;(2)若总费用不超过90万元,问共有多少种调运方法?(3)求总费用最低的调运方法,最低费用是多少万元?27.某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2060万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:A B成本(万元/套)25 28售价(万元/套)30 34(1)该公司如何建房获得利润最大?(2)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?(注:利润=售价﹣成本)28.某工厂研制一种新产品并投放市场,根据市场调查的信息得出这种新产品的日销售量y(万件)与销售的天数x(天)的关系如图所示.根据图象按下列要求作出分析:(1)求开始时,不断上升的日销售量y(万件)与销售天数x(天)的函数关系式;(2)已知销售一件产品获利0.9元,求在该产品日销售量不变期间的利润有多少万元.29.两种移动计费方式如下:全球通神州行月租费15元/月0本地通话费0.10元/分0.20元/分(1)一个月某用户在本地通话时间是x分钟,请你用含有x的式子分别写出两种计费方式下该用户应该支付的费用.(2)若某用户一个月本地通话时间是5个小时,你认为采用哪种方式较为合算?(3)小王想了解一下一个月本地通话时间为多少时,两种计费方式的收费一样多.请你帮助他解决一下.30.为了学生的健康,学校课桌、课凳的高度都是按一定的关系科学设计的,小明对学校所添置的一批课桌、课凳进行观察研究,发现他们可以根据人的身长调节高度,于是,他测量了一套课桌、课凳上相对的四档高度,得到如下数据:档次/高度第一档第二档第三档第四档凳高x/cm 37.0 40.0 42.0 45.0桌高y/cm 70.0 74.8 78.0 82.8(1)小明经过数据研究发现,桌高y是凳高x的一次函数,请你求出这个一次函数的解析式(不要求写出x的取值围).(2)小明回家后,量了家里的写字台和凳子,凳子的高度是41厘米,写字台的高度是75厘米,请你判断它们是否配套.一次函数的应用30题参考答案:1.(1)由图形可知,当x=20时,y=1000,∴第20小时时蓄水量为1000米3.(2)由图形可知,当x=230时,y=4000,∴水池最大储水量为4000米3.(3)由图形可知,x=20为图象的拐点,①当0<x<20时:为正比例函数,设y1=kx1,过点(20,1000),∴k=50,∴y1=50x1,(0<x<20).②当20≤x ≤30时,设y2=k1x2+b,过点(20,1000)和(30,4000),∴代入方程式中,求解为k1=300,b=﹣5000,∴y2=300x2﹣5000,(20≤x≤30)2.(1)方案①获利a(1+8%)•(1+10%)﹣a=0.188a 方案②a•20%﹣600=0.2a﹣600(2)当0.188a=0.2a﹣600时,解得:a=50000.当a=50000元时,获利一样多;当a高于50000元时,第二种方案获利多一些;当a低于50000元时,第一种方案获利多一些3.(1)依题意,得y=15+2x;(2)列表如下:x 0 1 2 3 4 5y 15 17 19 21 23 25(3)当x=10时,y=15+2×10=35,即10年后的年产值为35万元4.(1)描点:(2)设解析式为y=kx+b,把点(1400,32),(1500,31.4)分别代入可得:,解得:,所以此一次函数关系式为:y=﹣x+40.4;(3)当y=29.24时,有:x+40.4=29.24,解得:x=,即山巅的海拔为:米5.(1)设l1、l2的解析式分别为y1=k1x+b1,y2=k2x+b2,由图象,得,,解得:,.故l1的解析式为:y1=x+2,l2的解析式为:y2=x+20(2)由题意,得x+2=x+20,解得x=1000.故当照明1000小时时两种灯的费用相等6.(1)由图象得:两车在途中相遇的次数为4次.故答案为:4;(2)由题意得:快递车的速度为:400÷4=100,货车的速度为:400÷8=50,∴200÷50=4,600÷100=6∴E(6,200),C(7,200).如图,设直线EF的解析式为y=k1x+b1,∵图象过(10,0),(6,200),∴,∴k1=﹣50,b1=500,∴y=﹣50x+500①.设直线CD的解析式为y=k2x+b2,∵图象过(7,200),(9,0),∴,∴k1=﹣100,b 1=900,∴y=﹣100x+900②.解由①,②组成的方程组得:,解得:,∴最后一次相遇时距离A地的路程为100km,货车从A 地出发了8小时.7.(1)∵线段OA所在直线的表达式为y=0.5x,∴x=1时,y=0.5,则求出进水管每分钟的进水量为0.5立方米.(2)∵线段CD所在直线的表达式为y=﹣0.25x+33,∴10=﹣0.25x+33,解得:x=92,0=﹣0.25x+33,解得:x=132,∵132﹣92=40(分钟),∴10÷40=0.25,则求出出水管每分钟的出水量为0.25立方米.(3)对于C来说,纵坐标为10,代入y=﹣0.25x+33中得:10=﹣0.25x+33,解得:x=92,点A的纵坐标为10,代入y=0.5x中得到x=20,故A(20,10),设从B到C经过了a分钟,则:(0.5﹣0.25)a=10﹣1=9,解得:a=36,∴B的横坐标为92﹣36=56,故B(56,1).设AB 解析式为y=kx+b(k≠0),将A,B坐标代入得:,解得:,即直线AB 解析式为8.(1)设便民卡每月的通话时间与费用之间的关系为y2=kx+b,根据图象得:,解得:,故使用如意卡每月的费用与时间之间的关系式为:y1=0.25x;“便民卡”y与x之间的函数关系式为:y2=0.2x+12.(2)当y1>y2时,0.25x>0.2x+12,解得:x>240;当y1=y2时,0.25x=0.2x+12,解得:x=240当y1<y2时,0.25x<0.2x+12,解得x<240.故当x<240时使用如意卡划算些,当x=240时,两种收费一样划算,当x>240时.使用便民卡划算些9.(1)利用图表得出甲所行驶的总路程为:30千米,行驶时间为:3小时,故甲去某地的平均速度是:30÷3=10千米/时;(2)由图象得出:直线CD经过点(3,30),(1,0)代入s=kt+b,得:,解得:,故直线CD解析式为:s=15t﹣15,由图象得出s=15千米时两人相遇,则15=15t﹣15,解得:t=2.故甲出发2小时,甲、乙在途中相遇10.依题意,得(1)乙先到达终点;(2)第40秒时,乙追上甲;(3)比赛全程中,乙的速度始终保持不变;(4)乙的速度为:400÷50=8,∴S=8t(0≤t≤50).故答案为:(1)乙;(2)40,乙,甲;(3)乙;(4)S=8t (0≤t≤50)11.(1)∵图象经过原点及(6,360),∴设解析式为:y=kx,∴6k=360,解得:k=60,∴y=60x(0<x≤6);(2)∵乙2小时加工100件,∴乙的加工速度是:每小时50件,∴2.8小时时两人共加工60×2.8+50×2=268(件),∴乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.∴更换设备后,乙组的工作速度是:每小时加工50×2=100件,a=100+100×(4.8﹣2.8)=300;(3)乙组加工的零件的个数y与时间x的函数关系式为y=50x(0≤x≤2)y=100(2<x≤2.8)y=100x﹣(2.8<x≤4.8)∵当2.8<x≤4.8时,60x+100x﹣=230×2,得x=4,∴再经过4小时恰好装满第2箱12.(1)甲:60÷6=10;乙:(50﹣30)÷(6﹣2)=20÷4=5;30+5(3﹣2)=35,30+5(4﹣2)=40,30+5(5﹣2)=45,∴表格容依次填35、40、45;(3分)(2)①∵甲图象经过点(0,0)(6,60),∴设y甲与x之间的关系式是y甲=ax,则6a=60,解得a=10,∴y甲与x之间的关系式是:y甲=10x,(5分)②∵图象经过点(2,30)(6,50),∴设y乙与x之间的关系式是y乙=kx+b,则,解得,∴y乙与x之间的关系式是:y乙=30+5(x﹣2)=5x+20;(7分)(3)设甲队从开挖到完工所挖河渠的长度为z米,由题意得=(9分)解得z=110,∴甲队从开挖到完工所挖河渠的长度为110米.13.(1)当x=1.5时,甲对应的函数图象在乙的图象的上方,所以甲支龙舟队处于领先位置.故答案为甲;(2)乙比赛用时4.5分,甲用时5分,所以乙支龙舟队先到达终点,比甲提前0.5分钟到达.故答案为乙,0.5;(3)设乙队加逨后,路程y(米)与时间(分钟)之间的函数关系式为y=kx+b,把(2,300)和(4.5,1050)代入得,2k+b=300,4.5k+b=1050,解得k=300,b=﹣300,∴y=300x﹣300(2≤x≤4.5)14.(1)由题意得y=2000+300(x﹣1)=1700+300x;(2)把x=5代入y=1700+300n=3200(元),3200×12=38400(元).∵38400元<40 000元,∴他不可以到该公司应聘15.(1)设y与x的关系式为y=kx+b,有函数的图象可知点(3,40),(5,0),则,解得:所以y与x的关系式为y=﹣20x+100;(2)当x=0时,y=100,所以学校与褚向同学的距离为100千米.16.(1)设总费用y(元)与销售套数x(套),根据题意得到函数关系式:y=50000+200x.(2)设软件公司至少要售出x套软件才能收入超出总费用,则有:400x>50000+200x解得:x>250.答:软件公司至少要售出251套软件才能收入超出总费用17.(1)由图象得:乙行走的总路程是:3600米,他途中休息了20分钟.故答案为:3600,20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b.根据题意得:,解得:,∴y与x的函数关系式为:y=55x﹣800②缆车到山顶的路线长为3600÷2=1800(m),缆车到达终点所需时间为1800÷=10(min).甲到达缆车终点时,乙行走的时间为10+50=60(min).把x=60代入y=55x﹣800,得y=55×60﹣800=2500.所以,当甲到达缆车终点时,乙离缆车终点的路程是:3600﹣2500=1100(m)18.(1)当20≤x≤40时,设y与x之间的函数关系式:y=kx+b,∵当x=20时,y=8000,当x=40时,y=4000∴,,∴y=﹣200x+12000;(2)当20≤x≤40时,w=(y﹣2800)x=﹣200x2+9200x=﹣200(x﹣23)2+105800,∴当x=23时,w有最大值,是105800,当采购量为23吨时,家在这次买卖中所获的利润w最大,最大利润是105800元19.(1)利用图表直接得出:y1=0.4x+50;y2=0.6x;(2)当y1=y2,即0.4x+50=0.6x时,解得:x=250;当y1<y2,即0.4x+50<0.6x时,解得:x>250;当y1>y2,即0.4x+50>0.6x时,解得:x<250;答:通话时间为250分钟时,两种通讯业务一样,当通话时间为大于250分钟时,全球通业务合算,当通话时间为小于250分钟时,神舟行业务合算20.(1)设行费y(元)关于行质量x(千克)的一次函数关系式为y=kx+b,由题意得,解得k=,b=﹣5,∴该一次函数关系式为;(2)∵,解得x≤30,∴旅客最多可免费携带30千克的行.答:(1)行费y (元)关于行质量x(千克)的一次函数关系式为;(2)旅客最多可免费携带30千克的行21.(1)设一次函数y=kx+b,∵当x=60时,y=6,当x=80时,y=10,∴,解之,得,∴所求函数关系式为y=x﹣6(x≥30);(2)当y=0时,x﹣6=0,所以x=30,故旅客最多可免费携带30kg行.22.(1)由函数图象可以得出l1、l2的交点坐标是(0.6,2.4),故出发0.6小时后,小明与小聪相遇,此时两人距B地2.4,(2)设l2的解析式为y=kx,由题意,得2.4=0.6k,k=4则l2的解析式为y=4x.当x=1.2时,y=4.8答:小聪走1.2(h)时与B地的距离是4.8(km).故答案为:0.6,2.4.23.(1)由题意,得y1=0.3x+300,定义域为x>0.(2)由题意,得y2=0.5x﹣0.3x﹣300,y2=0.2x﹣300;定义域为x>1500;(3)当x=1800时,y2=0.2×1800﹣300=60.故当这一产品的产量为1800吨时,该公司的盈利为60万元24.(1)由题意,得该厂平均每天应生产产品的件数为:件,故答案为:;(2)设厂家又抽调了x名工人支援生产,由题意及图象得:×2+(1+25%)(750+x)×6=a,解得:x=50.答:厂家又抽调了50名工人支援生产25.(1)设运往甲地x台挖掘机,运这批挖掘机的总费用为y元,则:y=500x+300(16﹣x)=200x+4800;(2)当x=8时,y=200x+4800=1600+4800=6400;(3)依题意有500x=300(16﹣x),解得:x=6,当x=6时,y=200x+4800=1200+4800=6000.26.(1)设B市运往C市x台,则运往D市(6﹣x)台,A市运往C市(10﹣x)台,运往D市(x+2)台,由题意得:y=4(10﹣x)+8(x+2)+3x+5(6﹣x),y=2x+86.(2)由题意得:,解得:0≤x≤2,∵x为整数,∴x=0或1或2,∴有3种调运方案.当x=0时,从B市调往C市0台,调往D市6台.从A市调往C 市10台,调往D市2台,当x=1时,从B市调往C市1台,调往D市5台.从A市调往C 市9台,调往D市3台,当x=2时,从B市调往C市2台,调往D市4台.从A市调往C 市8台,调往D市4台,(3)∵y=2x+86.∴k=2>0,∴y随x的增大增大,∴当x最小为0时,y最小,∴运费最小的调运方案是:从B市调往C市0台,调往D市6台,从A市调往C市10台,调往D市2台.y最小=86万元27.(1)设建A型的住房x套,B型的住房(80﹣x)套,利润为y,根据题意得:,解得:48≤x≤50.利润y=(30﹣25)x+(34﹣28)(80﹣x)=480﹣x.∵y随x的增加而减小,∴x=48时利润最大,即建A型住房48套,B型住房32套.(2)利润y=480+(a﹣1)x.当a>1时,x=50时利润y最大,即建A型住房50套,B型住房30套.当a=1时,建A型住房48到50之间即可.当0<a<1时,x=48时利润最大,即建A型48套,建B型32套28.(1)设开始时,不断上升的日销售量y(万件)与销售天数x (天)的函数关系式为y=kx,由图象得:3=60k,k=,故y与x之间的函数关系式为:y=x(0≤x≤60);(2)由图象得日销售量不变期间的销量为:3万件.则利润为:3×0.9=2.7万元29.(1)全球通:15+0.1x,神州行:0.2x;(2)5小时=300分钟,全球通:15+0.1×300=45(元),神州行:0.2×300=60(元),∴应选择全球通;(3)∵两种计费方式的收费一样多,∴0.2x=15+0.1x,解得:x=150,答:一个月本地通话时间为150分钟时,两种计费方式的收费一样多30.(1)设一次函数的解析式为:y=kx+b,将x=37,y=70;x=42,y=78代入y=kx+b,得,解得,∴y=1.8x+10.8;(2)当x=41时,y=1.8×41+10.8=84.6,∴家里的写字台和凳子不配套.。
(完整版)一次函数应用题(含答案).doc
一次函数应用题初一()班姓名:学号:.1、一次时装表演会预算中票价定位每张100 元,容纳观众人数不超过2000 人,毛利润 y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000 人时,表演会组织者需向保险公司交纳定额平安保险费5000 元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过 1000 人时,毛利润 y(百元)关于观众人数 x(百人)的函数解析式和成本费用 s(百元)关于观众人数 x(百人)的函数解析式;⑵若要使这次表演会获得36000 元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000 人时,表演会的毛利润=门票收入—成本费用;当观众人数超过 1000 人时,表演会的毛利润=门票收入—成本费用—平安保险费)2、转炉炼钢产生的棕红色烟尘会污染大气,某装置可通过回收棕红色烟尘中的氧化铁从而降低污染,该装置的氧化铁回收率与其通过的电流有关,现经过试验得到下列数据:通过电流强度(单位: A) 1 1.7 1.9 2.1 2.4 氧化铁回收率( %)75 79 88 87 78 如图建立直角坐标系,用横坐标表示通过的电流强度,纵坐标表示氧化铁的回收率.(1) 将试验所得数据在如图所示的直角坐标系中用点表示;(注:该图中坐标轴的交点代表点( 1,70))(2) 用线段将题( 1)中所画的点从左到右顺次连接,若用此图象来模拟氧化铁回收率y 关于通过电流 x 的函数关系,试写出该函数在 1.7 y(% )≤x≤2.4时的表达式;(3)利用( 2)所得函数关系,求氧化铁回收率大于85%时,该装置通过的电流应该控制的范围(精确到 0.1 A) . 858075O ( 1, 70)(2,70)x(A )3、如图( 1),在矩形中, = 10 cm , = 8 cm. 点 P 从 A 点出发,沿 → → →ABCDABBCA B C D路线运动,到 D 停止;点 Q 从 D 出发,沿 D →C → B → A 路线运动,到 A 停止 . 若点 P 、点 Q 同时 出发,点 P 的速度为每秒 1 cm ,点 Q 的速度为每秒 2 cm , a 秒时,点 P 、点 Q 同时改变 .. .. 速度,点 P 的速度变为每秒 b cm ,点 Q 的速度变为每秒 d cm. 图( 2)是点 P 出发 x 秒后△APD 的面积2)与 x (秒)的函数关系图象;图(3)是点 Q 出发 x 秒后△ AQD 的面积..S1 ( cm..2S 2 ( cm )与 x (秒)的函数关系图象 .22DQ →C40 S 1(cm )40 S 2(cm )24A P→ B Oa 8 c x (秒) O22x (秒)( 1)( 2)( 3)( 1)参照图( 2),求 a 、 b 及图( 2)中 c 的值; ( 2)求 d 的值;( 3)设点 P 离开点 A 的路程为 y 1( cm ),点 Q 到点 A 还需要走的路程为 y 2 ( cm ),请分别写出改变速度后 y 1 、 y 2 与出发后的运动时间 x (秒)的函数关系式,并求出 P 、 Q 相遇时 x 的值;( 4)当点 Q 出发 _________秒时,点 、点 Q 在运动路线上相距的路程为25cm.P4、教室里放有一台饮水机,饮水机上有两个放水管。
一次函数的应用 练习题(带答案
一次函数的应用 题集一、一次函数与实际应用(1)(2)(3)1.某周六上午小明从家出发,乘车小时到郊外某基地参加社会实践活动.在基地活动小时后,因家里有急事,他立即按原路以千米/时的平均速度步行返回,同时爸爸开车从家出发沿同一路线接他,在离家千米处与小明相遇.接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为小时,小明离家的路程(千米)与(小时)之间的函数图象如图所示.(小时)(千米)小明去基地乘车的平均速度是 千米/时,爸爸开车的平均速度是 千米/时.求线段所表示的函数关系式,不用写出自变量的取值范围.问小明能否在中午前回到家?若能,请说明理由;若不能,请算出中午时他离家的路程.【答案】(1)(2)(3) ;.不能在前回家,此时离家的距离为千米.【解析】(1)观察图象可知:小明去基地乘车小时后离基地的距离为千米,(2)(3)因此小明去基地乘车的平均速度是千米/小时;在返回时小明以千米/时的平均速度步行,行驶千米后遇到爸爸,∵两个人同时走,小明走了小时,即爸爸也走了小时,∴他爸爸在小时内行驶了千米,故爸爸开车的平均速度应是千米/小时.设线段所表示的函数关系式为,易得,,∴,解得,∴.小明从家出发到回家一共需要时间:(小时),从经过小时已经过了,∴不能在前回家,此时离家的距离:(千米).【标注】【知识点】函数图象与实际问题(1)(2)12(3)2.,两地相距千米,甲车从地出发匀速行驶到地,乙车从地出发匀速行驶到地.乙车行驶小时后,甲车出发,两车相向而行.设行驶时间为小时(),甲、乙两车离地的距离分别为,千米,,与之间的函数关系图象如图所示,根据图象解答下列问题:小时千米图小时千米图求,与的函数关系式.乙车出发几小时后,两车相遇?相遇时,两车离地多少千米?设行驶过程中,甲、乙两车之间的距离为千米,在图的直角坐标系中,已经画出了与之间的部分函数图象.图中点的坐标为,则.求与的函数关系式,并在图中补全整个过程中与之间的函数图象.【答案】(1)(2)12(3),.乙车出发小时后两车相遇,两车相遇时,两车相距地千米.当时,,当时,.画图见解析.【解析】(1)(2)12(3)设,,由图象可知,时,,时,,∴,,∴.由图象可知,,,时,,∴,,∴.故与的关系式分别为:,.两车相遇时,甲乙两车距地距离相等,∴,∴,∴.将代入中得.故乙车出发小时后两车相遇,两车相遇时,两车相距地千米.由图可知,乙车速度为(千米/小时).过程中甲车在地,乙车在行驶.时,甲乙两车相距千米.时,甲乙两车相距(千米).∴.由图可知,甲车速度为(千米/小时).由()可知甲乙两车在时相遇.∴当时,,当时,.,故整个过程中与函数图象如下图所示:小时千米【标注】【知识点】一元一次方程的行程问题-相遇问题(1)(2)(3)3.在一条直线上依次有、、三个港口,甲、乙两船同时分别从、港口出发,沿直线匀速驶向港,最终到达港.设甲、乙两船行驶后,与港的距离分别为、,、与的函数关系如图所示.甲乙填空:、两港口间的距离为 , .求图中点的坐标.若两船的距离不超过时能够相互望见,求甲、乙两船可以相互望见时的取值范围.【答案】(1)(2)(3); .或.【解析】(1)、两港口间距离,又由于甲船行驶速度不变,(2)(3)故,则.故答案为:;.由点求得,.当时,由点,求得,.当时,,解得,.此时.所以点的坐标为.根据题意知甲、乙两船的速度分别为小时、小时,①当时,根据题意可知甲船开始出发到达港这段时间,甲乙两船的距离从逐渐缩小,两船行驶时,乙船在甲船的前方:处,所以这段时间内,两船不能相互望见;②当时,乙船在甲船的前方(直至追上).依题意,,解得,即时,甲、乙两船可以相互望见;③当时,甲船在乙船的前方依题意,,解得,即时,甲、乙两船可以相互望见;④当时,甲船已经到达港,而乙船继续行驶向甲船靠近,依题意,,解得,即,甲、乙两船可以相互望见.综上所述,当或时,甲、乙两船可以相互望见.【标注】【知识点】一次函数的依据图象解决实际问题4.某地为了鼓励市民节约用水,采取阶梯分段收费标准,共分三个梯段,吨为基本段,吨为极限段,超过吨为较高收费段,且规定每月用水超过吨时,超过的部分每吨元,居民每月应交水费(元)是用水量(吨)的函数,其图象如图所示:(1)(2)(3)吨元求出基本段每吨水费,若某用户该月用水吨,问应交水费多少元?写出与的函数解析式.若某月一用户交水量元,则该用户用水多少吨?【答案】(1)(2)(3)元..吨.【解析】(1)(2)∵用水吨交水费元,∴基本段每吨水费元,∴若某用户该月用水吨,应交水费元.分三种情况:①当时,易得;②当时,设,∵,在直线上,∴,解得,∴;③当时,设,∵,在直线上,∴,解得,∴.综上所述,与的函数解析式为.(3)若某月一用户交水量元,设该用户用水吨.∵用水吨交水费元,用水吨交水费元,而,∴.由题意,得,解得.答:若某月一用户交水量元,则该用户用水吨.【标注】【能力】运算能力【知识点】一元一次方程的梯度计价问题【知识点】有理数乘除法与实际问题【知识点】一次函数与实际问题【思想】函数思想【思想】方程思想(1)(2)(3)5.某市按阶梯电价进行收费,阶梯电价收费标准为:若每月用电量为度及以下,收费标准为元/度,若每月用电量超过度,收费标准由两部分组成:①度按元/度收费,②超出度的部分按元/度收费.如果月用电量用(度)来表示,实付金额用(元)来表示,请分别写出这两种情况实付金额与月用电量之间的函数关系式.若小芳和小华家一个月的实际用电量分别为度和度,则实付金额分别为多少元?按照阶梯电价方案的规定,一居民家某月电费为元,请你计算这个家庭本月的实际用电量.【答案】(1)(2)(3).实付金额分别为元、元.这个家庭本月的实际用电量是度.【解析】(1)根据度时,按元/度收费,(2)(3)则当时,;根据超出度的部分按元/度收费得:当时,;故函数关系式为:.小芳家用电量是 度,则实付金额是:(元);小华家用电量是 度,则实付金额是:(元).答:实付金额分别为元、元.设这个家庭本月的实际用电量度,根据题意得:解得:,答:这个家庭本月的实际用电量是度.【标注】【知识点】一次函数与实际问题(1)(2)(3)6.在某次抗震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地需要台,乙地需要台;、两省获知情况后慷慨相助,分别捐赠该型号挖掘机台和台并将其全部调往灾区.如果从省调运一台挖掘机到甲地要耗资万元,到乙地要耗资万元;从省调运一台挖掘机到甲地要耗资万元,到乙地要耗资万元.设从省调往甲地台挖掘机,、两省将捐赠的挖掘机全部调往灾区共耗资万元.省捐赠台省捐赠台甲灾区需台乙灾区需台请直接写出与之间的函数关系式及自变量的取值范围.若要使总耗资不超过万元,有哪几种调运方案?怎样设计调运方案能使总耗资最少?最少耗资多少万元?【答案】(1)(2)(3)( ).两种.方案二可使总耗资最少为万元.【解析】(1)(2)(3) 省省台数(台)耗资(万元)台数(台)耗资(万元)甲区乙区或由上表可知化简得,又∵,,,∴自变量的取值范围为.,得,∵为整数且,∴,.∴调运方案有两种,如下列:方案一:甲乙方案二:甲乙由可知随的增大而减小,∴当时,,∴()问中的方案二可使总耗资最少为万元.【标注】【知识点】一次函数与实际问题(1)7.育才中学需要购置某种仪器,方案:到商家购买,每件元;方案:学校自己制作,每件元,另外需付制作工具的租用费元.设购置仪器件,方案与方案的费用(单位:元)分别为,.分别写出,的函数表达式.(2)(3)当购置仪器多少件时,两种方案的费用相同?若方案便宜,则仪器件数范围是多少?【答案】(1)(2)(3),.件..【解析】(1)(2)(3)(,且为整数),(,且为整数).依题意,得,即,解得,∴当购置的仪器为件时,两种方案的费用相同.∵,∴,解得.∴当需要的仪器件数为整数且时,选择方案便宜.【标注】【知识点】一次函数与实际问题【知识点】不等式组的方案选择问题二、一次函数与三角形面积(1)(2)8.已知一次函数的图象与轴交于点,且与正比例函数的图象相交于点,求:求点的坐标.求出这两个函数的图象与轴围成的的面积.【答案】(1)(2)..【解析】(1)(2)由题意知,,解得,,∴点的坐标为.令,则,∴,∴.【标注】【知识点】一次函数与面积(1)(2)9.如图,在平面直角坐标系中,直线与轴,轴分别交于、两点,且直线上所有点的坐标都是二元一次方程的解,直线与轴,轴分别交于、两点,且直线上所有点的坐标都是二元一次方程的解,直线与交于点.分别求出点,点的坐标.求四边形的面积.【答案】(1)(2),..【解析】(1)∵直线上所有点的坐标都是二元一次方程的解,∴当时,,(2)∴点的坐标为:,∵直线上所有点的坐标都是二元一次方程的解,∴时,,∴点的坐标为:.作轴于,,解得,∴点的坐标为,则四边形的面积四边形的面积的面积.【标注】【知识点】一次函数与面积10.在平面直角坐标系中,为坐标原点,已知及在第一象限的动点,且.则当时,点的坐标为 .【答案】【解析】∵,∴.∴∵∴.得:.∴,∴时,点坐标为.【标注】【知识点】一次函数与面积(1)(2)(3)(4)11.如图,直线的解析表达式为:,且与轴交于点,直线经过点、,直线,交于点.求点的坐标.求直线的解析表达式.求的面积.在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标.【答案】(1)(2)(3)(4).直线的解析表达式为...【解析】(1)(2)(3)由,令,得,∴,∴.设直线的解析表达式为,,由图象知:、,、,代入表达式,∴,∴,∴直线的解析表达式为.由,(4)∴,∴,∵,∴.与底边都是,面积相等所以高相等,高就是点到直线的距离,即纵坐标的绝对值,则到距离,∴纵坐标的绝对值,点不是点,∴点纵坐标是,∵,,∴,∴,∴.【标注】【知识点】公式法求面积12.如图直线与轴、轴分别交于、两点,以线段为边在第一象限内作等腰直角,且,如果在第二象限内有一点,且的面积与的面积相等,求的值.【答案】【解析】∵直线与轴、轴分别交于、两点,∴,,,∴,又∵,∴,解得.【标注】【知识点】一次函数与面积,,三、一次函数与线段最值(1)(2)13.如图,一次函数的图象与、轴分别交于点、.求该函数的解析式.为坐标原点,设、的中点分别为、,为上一动点,求的最小值,并求取得最小值时点的坐标.【答案】(1)(2),点坐标为.【解析】(1)(2)将、代入得,.∴解析式为:.设点关于点的对称点为,连接、,则.∴,即、、共线时,的最小值是.连接,在中,;易得点坐标为.【标注】【知识点】一次函数与轴对称最值问题14.直角坐标系中,有两个点,,在轴上找一个点,在轴上找一点,使四边形的周长最短,此时点的坐标为.【答案】【解析】如图设所在直线的表达式为.由于、在直线上,有解得∴所在直线表达式为,它与轴交于.【标注】【知识点】四边形周长最小15.在平面直角坐标系中,点,点,在轴上存在一个点,直线上存在点,使得四边形的周长最小,求满足条件的、两点的坐标.xy OABCD【答案】,.【解析】将点、分别关于轴,对称到、,直线与轴,的交点即为、点,求得直线的解析式为,得:,.故答案为:,.【标注】【知识点】一次函数与轴对称最值问题(1)(2)16.如图,在直角坐标系中,,,点是轴正半轴上的一个动点.当点到,两点的距离相等时,求点的坐标.当点到,两点的距离之和最小时,求点的坐标,并求出此时的值.【答案】(1)(2)..【解析】(1)如图作的中垂线与轴交于,过作轴于,∵,∴,,∵,∴,设,则,又∵,,,,(2)∴,即,,得,∴.如图,作关于轴对称点,连接交于,则即为所求,∵,∴且,设所在直线解析式为()代入,得,∴,∴直线,∴当,,∴,.【标注】【知识点】一次函数与轴对称最值问题17.如图,直线的函数表达式为,且与轴交于点,直线经过点且与交于点,已知点的横坐标是.(1)(2)求点和点的坐标.在轴上求点的坐标,使得最小.【答案】(1)(2),..【解析】(1)(2)对于直线,令,得到,∴,∵点的横坐标为,∴.作点关于轴的对称点,连接交轴于,此时的值最小,设最小的解析式为,则有,解得,∴直线的解析式为,∴.A. B.C.D.18.如图,在中,,,点在边上,且,点为的中点,点为边上的动点,当点在上移动时,使四边形周长最小的点的坐标为( ).【答案】C 【解析】∵在中,,,∴,,∵,点为的中点,∴,,∴,,作关于直线的对称点,连接交于,则此时,四边形周长最小,,∵直线的解析式为,设直线的解析式为,∴,解得:,∴直线的解析式为,解得,∴.故选.19.如图,已知点坐标为,点坐标为,在直线上有一点,满足轴,连接,,当线段位于何位置时,线段最短?求出的最小值,并求出点坐标.【答案】最小值是;点坐标为【解析】'坐标为,解析式为:,点坐标为,点坐标为,.【标注】【知识点】一次函数与轴对称最值问题,20.如图,平面直角坐标系中,已知点的坐标为,点的坐标为时,在轴上另取两点,,且.线段在轴上平移,线段平移至何处时,四边形的周长最小?求出此时点的坐标.【答案】.【解析】如图,过点作轴的平行线,并且在这条平行线上截取线段,使,作点关轴的对称点,连接,交轴于点,在轴上截取线段,则此时四边形的周长最小.∵,∴,∵,∴,设直线的解析式为,则,解得.∴直线的解析式为,当时,,解得.故线段平移至如图所示位置时,四边形的周长最小,此时点的坐标为,∴点的坐标为.【标注】【知识点】一次函数与轴对称最值问题(1)(2)(3)21.如图,一次函数的图象与轴和轴分别交于点和,再将沿直线对折,使点与点重合、直线与轴交于点,与交于点.点的坐标为 ,点的坐标为 .在直线上是否存在点使得的面积为?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.求的长度.【答案】(1)(2)(3) ;存在,或..【解析】(1)已知函数为,∴令,则,(2)(3)令,则,∴,.∵,,∴以为底,则的高为,即点到的距离为,又∵点在,∴,∴或,∴或.在折叠后,,所以.因为,设,,则.在中,,由勾股定理知,即,去括号得,整理得,解得.故.【标注】【知识点】一次函数与直角三角形结合。
八年级数学:一次函数(应用题)练习(含解析)
C.10000,13200D.13200,15400
二.填空题
7.利民商店中有3种糖果,单价及重量如下表,若商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克________元.
品种
水果糖
花生糖
软 糖
单价(元/千克)
10
12
16
重量(千克)
3
3
4
8.某公园门票价格如下表,有27名中学生游公园,则最少应付费______元.(游客只能在公园售票处购票)
购票张数
1~29张
30~60张
60张以上
每张票的价格
10元
8元
6元
9.有一个附有进水管和出水管的容器,在单位时间内的进水量和出水量分别一定.设从某时刻开始的5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到容器内水量y(升)与时间 (分)之间的函数图象如图.若20分钟后只放水不进水,这时( ≥20时) 与 之间的函数关系式是_________.
八年级数学:一次函数(应用题)练习(含解析)
一.选择题
1.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )
A.300m2B.150m2C.330m2D.450m2
12.【答案】2050;
【解析】解:设小明、小刚新的速得,y=x+1.5③,
由②得,4y﹣3=6x④,
③代入④得,4x+6﹣3=6x,
解得x=1.5,
故这次越野赛的赛跑全程=1600+300×1.5=1600+450=2050m.
一次函数的应用专项练习30题有答案
一次函数的应用专项练习30题(有答案)1.向一个空水池注水,水池蓄水量y(米3)与注水时间x(小时)之间的函数图象如图所示.(1)第20小时时蓄水量为_________ 米3;(2)水池最大蓄水量是_________ 米3;(3)求y与x之间的函数关系式.2.小王的父母经营一家饲料店,拟投入a元购入甲种饲料,现有两种方案:①如果月初出售这批甲种饲料可获利8%,并用本金和利润再购入乙种饲料,到月底售完又获利10%;②如果月底出售这批甲种饲料,可获利20%,但要付仓储费600元.(1)分别写出方案①、②获利金额的表达式;(2)请你根据小王父母投入资金的多少,定出可多获利的方案.3.某工厂现在年产值是15万元,计划以后每年增加2万元,设x年后的年产值为y(万元).(1)写出y与x之间的关系式;(2)用表格表示当x从0变化到5(每次增加1)y的对应值;(3)求10年后的年产值?4.我们知道海拔一定高度的山区气温随着海拔高度的增加而下降.小明暑假到去旅游,沿途他利用随身所带的测量仪器,测得以下数据:1400 1500 1600 1700 …海拔高度x(m)气温y(°C)32.00 31.40 30.80 30.20 …(1)现以海拔高度为x轴,气温为y轴建立平面直角坐标系,根据提供的数据描出各点;(2)已知y与x的关系是一次函数关系,求出这个关系式;(3)若小明到达天都峰时测得当时的气温是29.24°C.求天都峰的海拔高度.5.如图,l1,l2分别表示一种白炽灯和一种节能灯的费用y与照明时间x(h)的函数图象,假设两种灯的使用寿命都是2000h,照明效果一样.(费用=灯的售价+电费,单位:元)(1)根据图象分别求出l1,l2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?6.某物流公司的快递车和货车每天沿同一公路往返于A、B两地,快递车比货车多往返一趟.图表示快递车与货车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B 地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.(1)两车在途中相遇的次数为_________ 次;(直接填入答案)(2)求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时.7.某农户有一水池,容量为10立方米,中午12时打开进水管向水池注水,注满水后关闭水管同时打开出水管灌溉农作物,当水池中的水量减少到1立方米时,再次打开进水管向水池注水(此时出水管继续放水),直到再次注满水池后停止注水,并继续放水灌溉,直到水池中无水,水池中的水量y(单位:立方米)随时间x(从中午12时开始计时,单位:分钟)变化的图象如图所示,其中线段CD所在直线的表达式为y=﹣0.25x+33,线段OA所在直线的表达式为y=0.5x,假设进水管和出水管每分钟的进水量和出水量都是固定的.(1)求进水管每分钟的进水量;(2)求出水管每分钟的出水量;(3)求线段AB所在直线的表达式.8.为发展电信事业,方便用户,电信公司对移动采取不同的收费方式,其中“如意卡”无月租,每通话一分钟收费0.25元,“便民卡”收费信息如图(1)分别求出两种卡在某市围每月(30天)的通话时间x(分钟)与通话费y(元)之间的函数关系式.(2)请你帮助用户计算一下,在一个月使用哪种卡便宜.9.如图是甲、乙两人去某地的路程S(km)与时间t(h)之间的函数图象,请你解答下列问题:(1)甲去某地的平均速度是多少?(2)甲出发多长时间,甲、乙在途中相遇?10.如图,在甲、乙两同学进行400米跑步比赛中,路程s(米)与时间t(秒)之间的函数关系的图象分别为折线OAB和线段OC,请根据图上信息回答下列问题:(1)_________ 先到达终点;(2)第_________ 秒时,_________ 追上_________ ;(3)比赛全程中,_________ 的速度始终保持不变;(4)写出优胜者在比赛过程中所跑的路程s(米)与时间t(秒)之间的函数关系式:_________ .11.甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)当x=2.8时,甲、乙两组共加工零件_________ 件;乙组加工零件总量a的值为_________ .(3)加工的零件数达到230件装一箱,零件装箱的时间忽略不计,若甲、乙两组加工出的零件合在一起装箱,当甲组工作多长时间恰好装满第2箱?12.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象提供的信息解答下列问题:(1)甲队在0≤x≤6的时间段,挖掘速度为每小时_________ 米;乙队在2≤x≤6的时间段,挖掘速度为每小时_________ 米;请根据乙队在2≤x≤6的时间段开挖的情况填表:时间(h) 2 3 4 5 630 50乙队开挖河渠(m)(2)①请直接写出甲队在0≤x≤6的时间段,y甲与x之间的关系式;②根据(1)中的表中规律写出乙队在2≤x≤6的时间段,y乙与x之间的关系式;(3)在(1)的基础上,如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到每小时12米,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?13.百舟竞渡,激悄飞扬,端午节期间,龙舟比赛在九龙江举行.甲、乙两支龙舟队在比赛时的路程y(米)与时间x(分钟)的函数关系的图象如图所示,根据图象解答下列问题:(1)出发后1.5分钟,_________ 支龙舟队处于领先位置(填“甲”或“乙“);(2)_________ 支龙舟队先到达终点(填“甲“或“乙”),提前_________ 分钟到达;(3)求乙队加逨后,路程y(米)与时问分钟)之间的函数关系式,并写出自变x的取值围.14.在人才招聘会上,某公司承诺:录用后第一年的月工资为2000元,以后每年的月工资比上一年的月工资增加300元,一年按12个月计算.(1)如果某人在该公司连续工作x年,他在第x年后的月工资是y元,写出y与x的关系式.(2)如果这个人期望第五年的工资收入超过4万元,那么他是否应该在该公司应聘?15.褚向同学乘车从学校出发回家,他离家的路程y(km)与所用时间x(时)之间的关系如图所示.(1)求y与x之间的关系式;(2)求学校和褚向同学家的距离.16.某软件公司开发出一种图书管理软件,前期投入的各种费用总共50000元,之后每售出一套软件,软件公司还需支付安装调试费用200元,设销售套数x(套).(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.(2)该公司计划以400元每套的价格进行销售,并且公司仍要负责安装调试,试问:软件公司售出多少套软件时,收入超出总费用?17.甲和乙上山游玩,甲乘坐缆车,乙步行,两人相约在山顶的缆车终点会合.已知乙行走到缆车终点的路程是缆车到山顶的线路长的2倍,甲在乙出发后50min才乘上缆车,缆车的平均速度为180m/min.设乙出发xmin后行走的路程为ym.图中的折线表示乙在整个行走过程中y与x的函数关系.(1)乙行走的总路程是_________ m,他途中休息了_________ min.(2)①当50≤x≤80时,求y与x的函数关系式;②当甲到达缆车终点时,乙离缆车终点的路程是多少?18.经理到家果园里一次性采购一种水果,他俩商定:经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)如果采购量x满足20≤x≤40,求y与x之间的函数关系式;(2)已知家种植水果的成本是2 800元/吨,经理的采购量x满足20≤x≤40,那么当采购量为多少时,家在这次买卖中所获的利润w最大?最大利润是多少?19.某移动通讯公司开设了“全球通”和“神舟行”两种通讯业务,收费标准见下表:通讯业务月租费(元)通话费(元/分钟)全球通50 0.4神舟行0 0.6某用户一个月通话x分钟,“全球通”和“神舟行”的收费分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)在通话时间相同的情况下,你认为该用户应选择哪种通讯业务更为合算?20.某长途汽车客运站规定,乘客可以免费携带一定质量的行,但超过该质量则需交纳行费,已知行费y(元)是行质量x(千克)的一次函数.现在黄明带了60千克的行,交了行费5元,王华带了78千克的行,交了8元.(1)写出y与x之间的函数关系式;(2)旅客最多可以免费携带多少千克的行?21.某长途汽车客运站规定,乘客可免费携带一定质量的行,但超过该质量则需要购买行票,且行费y(元)是行质量x(千克)的一次函数,如图所示.(1)求y与x之间的函数关系式.(2)最多可免费携带多少质量的行?22.小明从A地出发向B地行走,同时小聪从B地出发向A地行走.如图所示,线段l1、l2分别表示小明、小聪离B地的距离y(km)与已用时间x(h)之间的关系.观察图象,回答以下问题:(1)出发_________ (h)后,小明与小聪相遇,此时两人距离B地_________ (km);(2)求小聪走1.2(h)时与B地的距离.23.某公司生产一种新产品,前期投资300万元,每生产1吨新产品还需其他投资0.3万元,如果生产这一产品的产量为x吨,每吨售价为0.5万元.(1)设生产新产品的总投资y1万元,试写出y1与x之间的函数关系式和定义域;(2)如果生产这一产品能盈利,且盈利为y2万元,求y2与x之间的函数关系式,并写出定义域;(3)请问当这一产品的产量为1800吨时,该公司的盈利为几万元?24.根据市场调查,某厂家决定生产一批产品投放市场,安排750名工人计划10天完成a件的生产量.(1)按计划,该厂平均每天应生产产品多少件?(用含a的式子表示)(2)该厂按计划生产几天后,该厂家又抽调了若干名工人支援生产,同时,通过技术革新等手段使每位工人的工作效率比原计划每位工人的工作效率提高25%,结果提前完成任务,图中折线表示实际工作情况.求厂家又抽调了多少名工人支援生产?25.某公司库存挖掘机16台,现在运往甲、乙两地支援建设,每运一台到甲、乙两地的费用分别是500元和300元.设运往甲地x台挖掘机,运这批挖掘机的总费用为y元.(1)写出y与x之间的函数关系式;(2)如果公司决定将这16台挖掘机平均分配给甲、乙两地,求此次运输的总费用;(3)如果公司决定按运输费用平均分配这16台挖掘机,求此时运输的总费用又是多少.26.A市和B市各有机床12台和6台,现运往C市10台,D市8台.若从A市运1台到C市、D市各需要4万元和8万元,从B市运1台到C市、D市各需要3万元和5万元.(1)设B市运往C市x台,求总费用y关于x的函数关系式;(2)若总费用不超过90万元,问共有多少种调运方法?(3)求总费用最低的调运方法,最低费用是多少万元?27.某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2060万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:A B成本(万元/套)25 28售价(万元/套)30 34(1)该公司如何建房获得利润最大?(2)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?(注:利润=售价﹣成本)28.某工厂研制一种新产品并投放市场,根据市场调查的信息得出这种新产品的日销售量y(万件)与销售的天数x(天)的关系如图所示.根据图象按下列要求作出分析:(1)求开始时,不断上升的日销售量y(万件)与销售天数x(天)的函数关系式;(2)已知销售一件产品获利0.9元,求在该产品日销售量不变期间的利润有多少万元.29.两种移动计费方式如下:全球通神州行月租费15元/月0本地通话费0.10元/分0.20元/分(1)一个月某用户在本地通话时间是x分钟,请你用含有x的式子分别写出两种计费方式下该用户应该支付的费用.(2)若某用户一个月本地通话时间是5个小时,你认为采用哪种方式较为合算?(3)小王想了解一下一个月本地通话时间为多少时,两种计费方式的收费一样多.请你帮助他解决一下.30.为了学生的健康,学校课桌、课凳的高度都是按一定的关系科学设计的,小明对学校所添置的一批课桌、课凳进行观察研究,发现他们可以根据人的身长调节高度,于是,他测量了一套课桌、课凳上相对的四档高度,得到如下数据:档次/高度第一档第二档第三档第四档凳高x/cm 37.0 40.0 42.0 45.0桌高y/cm 70.0 74.8 78.0 82.8(1)小明经过数据研究发现,桌高y是凳高x的一次函数,请你求出这个一次函数的解析式(不要求写出x的取值围).(2)小明回家后,量了家里的写字台和凳子,凳子的高度是41厘米,写字台的高度是75厘米,请你判断它们是否配套.一次函数的应用30题参考答案:1.(1)由图形可知,当x=20时,y=1000,∴第20小时时蓄水量为1000米3.(2)由图形可知,当x=230时,y=4000,∴水池最大储水量为4000米3.(3)由图形可知,x=20为图象的拐点,①当0<x<20时:为正比例函数,设y1=kx1,过点(20,1000),∴k=50,∴y1=50x1,(0<x<20).②当20≤x ≤30时,设y2=k1x2+b,过点(20,1000)和(30,4000),∴代入方程式中,求解为k1=300,b=﹣5000,∴y2=300x2﹣5000,(20≤x≤30)2.(1)方案①获利a(1+8%)•(1+10%)﹣a=0.188a 方案②a•20%﹣600=0.2a﹣600(2)当0.188a=0.2a﹣600时,解得:a=50000.当a=50000元时,获利一样多;当a高于50000元时,第二种方案获利多一些;当a低于50000元时,第一种方案获利多一些3.(1)依题意,得y=15+2x;(2)列表如下:x 0 1 2 3 4 5y 15 17 19 21 23 25(3)当x=10时,y=15+2×10=35,即10年后的年产值为35万元4.(1)描点:(2)设解析式为y=kx+b,把点(1400,32),(1500,31.4)分别代入可得:,解得:,所以此一次函数关系式为:y=﹣x+40.4;(3)当y=29.24时,有:x+40.4=29.24,解得:x=,即山巅的海拔为:米5.(1)设l1、l2的解析式分别为y1=k1x+b1,y2=k2x+b2,由图象,得,,解得:,.故l1的解析式为:y1=x+2,l2的解析式为:y2=x+20(2)由题意,得x+2=x+20,解得x=1000.故当照明1000小时时两种灯的费用相等6.(1)由图象得:两车在途中相遇的次数为4次.故答案为:4;(2)由题意得:快递车的速度为:400÷4=100,货车的速度为:400÷8=50,∴200÷50=4,600÷100=6∴E(6,200),C(7,200).如图,设直线EF的解析式为y=k1x+b1,∵图象过(10,0),(6,200),∴,∴k1=﹣50,b1=500,∴y=﹣50x+500①.设直线CD的解析式为y=k2x+b2,∵图象过(7,200),(9,0),∴,∴k1=﹣100,b 1=900,∴y=﹣100x+900②.解由①,②组成的方程组得:,解得:,∴最后一次相遇时距离A地的路程为100km,货车从A 地出发了8小时.7.(1)∵线段OA所在直线的表达式为y=0.5x,∴x=1时,y=0.5,则求出进水管每分钟的进水量为0.5立方米.(2)∵线段CD所在直线的表达式为y=﹣0.25x+33,∴10=﹣0.25x+33,解得:x=92,0=﹣0.25x+33,解得:x=132,∵132﹣92=40(分钟),∴10÷40=0.25,则求出出水管每分钟的出水量为0.25立方米.(3)对于C来说,纵坐标为10,代入y=﹣0.25x+33中得:10=﹣0.25x+33,解得:x=92,点A的纵坐标为10,代入y=0.5x中得到x=20,故A(20,10),设从B到C经过了a分钟,则:(0.5﹣0.25)a=10﹣1=9,解得:a=36,∴B的横坐标为92﹣36=56,故B(56,1).设AB 解析式为y=kx+b(k≠0),将A,B坐标代入得:,解得:,即直线AB 解析式为8.(1)设便民卡每月的通话时间与费用之间的关系为y2=kx+b,根据图象得:,解得:,故使用如意卡每月的费用与时间之间的关系式为:y1=0.25x;“便民卡”y与x之间的函数关系式为:y2=0.2x+12.(2)当y1>y2时,0.25x>0.2x+12,解得:x>240;当y1=y2时,0.25x=0.2x+12,解得:x=240当y1<y2时,0.25x<0.2x+12,解得x<240.故当x<240时使用如意卡划算些,当x=240时,两种收费一样划算,当x>240时.使用便民卡划算些9.(1)利用图表得出甲所行驶的总路程为:30千米,行驶时间为:3小时,故甲去某地的平均速度是:30÷3=10千米/时;(2)由图象得出:直线CD经过点(3,30),(1,0)代入s=kt+b,得:,解得:,故直线CD解析式为:s=15t﹣15,由图象得出s=15千米时两人相遇,则15=15t﹣15,解得:t=2.故甲出发2小时,甲、乙在途中相遇10.依题意,得(1)乙先到达终点;(2)第40秒时,乙追上甲;(3)比赛全程中,乙的速度始终保持不变;(4)乙的速度为:400÷50=8,∴S=8t(0≤t≤50).故答案为:(1)乙;(2)40,乙,甲;(3)乙;(4)S=8t (0≤t≤50)11.(1)∵图象经过原点及(6,360),∴设解析式为:y=kx,∴6k=360,解得:k=60,∴y=60x(0<x≤6);(2)∵乙2小时加工100件,∴乙的加工速度是:每小时50件,∴2.8小时时两人共加工60×2.8+50×2=268(件),∴乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.∴更换设备后,乙组的工作速度是:每小时加工50×2=100件,a=100+100×(4.8﹣2.8)=300;(3)乙组加工的零件的个数y与时间x的函数关系式为y=50x(0≤x≤2)y=100(2<x≤2.8)y=100x﹣(2.8<x≤4.8)∵当2.8<x≤4.8时,60x+100x﹣=230×2,得x=4,∴再经过4小时恰好装满第2箱12.(1)甲:60÷6=10;乙:(50﹣30)÷(6﹣2)=20÷4=5;30+5(3﹣2)=35,30+5(4﹣2)=40,30+5(5﹣2)=45,∴表格容依次填35、40、45;(3分)(2)①∵甲图象经过点(0,0)(6,60),∴设y甲与x之间的关系式是y甲=ax,则6a=60,解得a=10,∴y甲与x之间的关系式是:y甲=10x,(5分)②∵图象经过点(2,30)(6,50),∴设y乙与x之间的关系式是y乙=kx+b,则,解得,∴y乙与x之间的关系式是:y乙=30+5(x﹣2)=5x+20;(7分)(3)设甲队从开挖到完工所挖河渠的长度为z米,由题意得=(9分)解得z=110,∴甲队从开挖到完工所挖河渠的长度为110米.13.(1)当x=1.5时,甲对应的函数图象在乙的图象的上方,所以甲支龙舟队处于领先位置.故答案为甲;(2)乙比赛用时4.5分,甲用时5分,所以乙支龙舟队先到达终点,比甲提前0.5分钟到达.故答案为乙,0.5;(3)设乙队加逨后,路程y(米)与时间(分钟)之间的函数关系式为y=kx+b,把(2,300)和(4.5,1050)代入得,2k+b=300,4.5k+b=1050,解得k=300,b=﹣300,∴y=300x﹣300(2≤x≤4.5)14.(1)由题意得y=2000+300(x﹣1)=1700+300x;(2)把x=5代入y=1700+300n=3200(元),3200×12=38400(元).∵38400元<40 000元,∴他不可以到该公司应聘15.(1)设y与x的关系式为y=kx+b,有函数的图象可知点(3,40),(5,0),则,解得:所以y与x的关系式为y=﹣20x+100;(2)当x=0时,y=100,所以学校与褚向同学的距离为100千米.16.(1)设总费用y(元)与销售套数x(套),根据题意得到函数关系式:y=50000+200x.(2)设软件公司至少要售出x套软件才能收入超出总费用,则有:400x>50000+200x解得:x>250.答:软件公司至少要售出251套软件才能收入超出总费用17.(1)由图象得:乙行走的总路程是:3600米,他途中休息了20分钟.故答案为:3600,20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b.根据题意得:,解得:,∴y与x的函数关系式为:y=55x﹣800②缆车到山顶的路线长为3600÷2=1800(m),缆车到达终点所需时间为1800÷=10(min).甲到达缆车终点时,乙行走的时间为10+50=60(min).把x=60代入y=55x﹣800,得y=55×60﹣800=2500.所以,当甲到达缆车终点时,乙离缆车终点的路程是:3600﹣2500=1100(m)18.(1)当20≤x≤40时,设y与x之间的函数关系式:y=kx+b,∵当x=20时,y=8000,当x=40时,y=4000∴,,∴y=﹣200x+12000;(2)当20≤x≤40时,w=(y﹣2800)x=﹣200x2+9200x=﹣200(x﹣23)2+105800,∴当x=23时,w有最大值,是105800,当采购量为23吨时,家在这次买卖中所获的利润w最大,最大利润是105800元19.(1)利用图表直接得出:y1=0.4x+50;y2=0.6x;(2)当y1=y2,即0.4x+50=0.6x时,解得:x=250;当y1<y2,即0.4x+50<0.6x时,解得:x>250;当y1>y2,即0.4x+50>0.6x时,解得:x<250;答:通话时间为250分钟时,两种通讯业务一样,当通话时间为大于250分钟时,全球通业务合算,当通话时间为小于250分钟时,神舟行业务合算20.(1)设行费y(元)关于行质量x(千克)的一次函数关系式为y=kx+b,由题意得,解得k=,b=﹣5,∴该一次函数关系式为;(2)∵,解得x≤30,∴旅客最多可免费携带30千克的行.答:(1)行费y (元)关于行质量x(千克)的一次函数关系式为;(2)旅客最多可免费携带30千克的行21.(1)设一次函数y=kx+b,∵当x=60时,y=6,当x=80时,y=10,∴,解之,得,∴所求函数关系式为y=x﹣6(x≥30);(2)当y=0时,x﹣6=0,所以x=30,故旅客最多可免费携带30kg行.22.(1)由函数图象可以得出l1、l2的交点坐标是(0.6,2.4),故出发0.6小时后,小明与小聪相遇,此时两人距B地2.4,(2)设l2的解析式为y=kx,由题意,得2.4=0.6k,k=4则l2的解析式为y=4x.当x=1.2时,y=4.8答:小聪走1.2(h)时与B地的距离是4.8(km).故答案为:0.6,2.4.23.(1)由题意,得y1=0.3x+300,定义域为x>0.(2)由题意,得y2=0.5x﹣0.3x﹣300,y2=0.2x﹣300;定义域为x>1500;(3)当x=1800时,y2=0.2×1800﹣300=60.故当这一产品的产量为1800吨时,该公司的盈利为60万元24.(1)由题意,得该厂平均每天应生产产品的件数为:件,故答案为:;(2)设厂家又抽调了x名工人支援生产,由题意及图象得:×2+(1+25%)(750+x)×6=a,解得:x=50.答:厂家又抽调了50名工人支援生产25.(1)设运往甲地x台挖掘机,运这批挖掘机的总费用为y元,则:y=500x+300(16﹣x)=200x+4800;(2)当x=8时,y=200x+4800=1600+4800=6400;(3)依题意有500x=300(16﹣x),解得:x=6,当x=6时,y=200x+4800=1200+4800=6000.26.(1)设B市运往C市x台,则运往D市(6﹣x)台,A市运往C市(10﹣x)台,运往D市(x+2)台,由题意得:y=4(10﹣x)+8(x+2)+3x+5(6﹣x),y=2x+86.(2)由题意得:,解得:0≤x≤2,∵x为整数,∴x=0或1或2,∴有3种调运方案.当x=0时,从B市调往C市0台,调往D市6台.从A市调往C 市10台,调往D市2台,当x=1时,从B市调往C市1台,调往D市5台.从A市调往C 市9台,调往D市3台,当x=2时,从B市调往C市2台,调往D市4台.从A市调往C 市8台,调往D市4台,(3)∵y=2x+86.∴k=2>0,∴y随x的增大增大,∴当x最小为0时,y最小,∴运费最小的调运方案是:从B市调往C市0台,调往D市6台,从A市调往C市10台,调往D市2台.y最小=86万元27.(1)设建A型的住房x套,B型的住房(80﹣x)套,利润为y,根据题意得:,解得:48≤x≤50.利润y=(30﹣25)x+(34﹣28)(80﹣x)=480﹣x.∵y随x的增加而减小,∴x=48时利润最大,即建A型住房48套,B型住房32套.(2)利润y=480+(a﹣1)x.当a>1时,x=50时利润y最大,即建A型住房50套,B型住房30套.当a=1时,建A型住房48到50之间即可.当0<a<1时,x=48时利润最大,即建A型48套,建B型32套28.(1)设开始时,不断上升的日销售量y(万件)与销售天数x (天)的函数关系式为y=kx,由图象得:3=60k,k=,故y与x之间的函数关系式为:y=x(0≤x≤60);(2)由图象得日销售量不变期间的销量为:3万件.则利润为:3×0.9=2.7万元29.(1)全球通:15+0.1x,神州行:0.2x;(2)5小时=300分钟,全球通:15+0.1×300=45(元),神州行:0.2×300=60(元),∴应选择全球通;(3)∵两种计费方式的收费一样多,∴0.2x=15+0.1x,解得:x=150,答:一个月本地通话时间为150分钟时,两种计费方式的收费一样多30.(1)设一次函数的解析式为:y=kx+b,将x=37,y=70;x=42,y=78代入y=kx+b,得,解得,∴y=1.8x+10.8;(2)当x=41时,y=1.8×41+10.8=84.6,∴家里的写字台和凳子不配套.。
一次函数应用题(习题及答案)
一次函数应用题(习题及答案)一次函数应用题(习题及答案)题一:某手机品牌每月销售量与售价之间存在一次函数关系,已知售价为3000元时销售量为4000台,售价为5000元时销售量为3000台,请问每增加一台售价,销售量减少多少台?解析:这是一个典型的一次函数应用题。
首先,我们可以设定售价为x元,销售量为y台。
根据题目已知条件,可以列出两个点的坐标:(3000, 4000)和(5000, 3000)。
根据一次函数的一般式y = kx + b,可以得到方程组:4000 = 3000k + b -------(1)3000 = 5000k + b -------(2)通过解方程组,可以求解出k和b的值,从而确定函数关系。
首先,我们用(1)式减去(2)式,消去b的项,得到:1000 = -2000k解得k = -1/2。
将k的值代入(1)式或(2)式,可解得b = 7000/2 = 3500。
因此,该函数的函数关系为:y = -1/2x + 3500。
根据函数关系,我们可以计算每增加一台售价,销售量减少的台数。
由于每增加一台售价,x的变化量为1,代入函数关系,得到y的变化量为-1/2。
因此,每增加一台售价,销售量减少的台数为1/2台。
答案:每增加一台售价,销售量减少0.5台。
题二:一家电商公司将某商品的售价从每件100元提高到120元后,销售量下降了25%。
求原来的每件商品的销售量。
解析:这同样是一个一次函数的应用题。
我们可以设定原售价为x 元,销售量为y件。
根据题目已知条件,可以得到两个点的坐标:(100, y)和(120, 0.75y)(销售量下降25%相当于销售量的0.75倍)。
根据一次函数的一般式y = kx + b,可以得到方程组:y = 100k + b -------(1)0.75y = 120k + b -------(2)通过解方程组,我们可以求解出k和b的值,从而确定函数关系。
将(1)式代入(2)式,得到:0.75(100k + b) = 120k + b化简可得:75k + 0.75b = 120k + b整理得:0.25b = 45k解得:k = 0.25b/45将k的值代入(1)式,解得b = 11y/12因此,该函数的函数关系为:y = (0.25b/45)x + (11y/12)由于题目求解的是原来的每件商品的销售量,即求解y的值。
(完整版)一次函数图像应用题(带解析版答案)
一次函数中考专题一.选择题1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元 B.0.45 元C.约0.47元D.0.5元2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<2 3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣24.甲、乙两汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个 C.2个 D.3个【解答】①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为120km,乙车行的路程为80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【解答】(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度80km/h,∴乙车行驶260km需要260÷80=3.25h,∴7﹣(2+3.25)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶或小时,两车恰好相距50km,故(4)错误.故选(C)二.填空题(共3小题)6.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n的坐标是(n+,).【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….由此可推出A n,B n,A n+1,B n+1四点的坐标为(n,0),(n ,),(n+1,0),(n+1,).所以得直线A n B n+1和A n+1B n 的直线方程分别为解得故答案为:(n +,).7. 下图是护士统计一病人的体温变化图,这位病人中午12时的体温约为℃.8.某高速铁路即将在2019年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.5月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A 地停留20分钟后,以zkm/h的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得x=120,y=200,z=180,∴重庆到A地的路程为3×200=600(km),∴乙列车到达A地的时间为600÷120=5(h),∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km),故答案为:300.三.解答题(共10小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.10.如图,“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出A、B、C三种上网的收费方式:收费方式月使用费/元包时上网时间/小时超时费/(元/分钟)A30250.05B50500.05C120不限时(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤x);(2)函数图象如图:(3)由图象可知,上网方式C更合算。
一次函数应用题及答案
一次函数应用题及答案一次函数应用题及答案 1有一群猴子,分一堆桃子,第一只猴子分了4个桃子和剩下桃子的1/10,第二只猴子分了8个桃子和这时剩下桃子的1/10,第三只猴子分了12个桃子和这时剩下桃子的1/10........依次类推。
最后发现这堆桃子正好分完,且每只猴子分得的桃子同样多。
那么这群猴子有多少只?方法一:方程解法:设总的桃子个数是10a+4个,那么第一只猴子分得a+4个桃子剩下9a,假设9a=10b+8个,那么第二只猴子分得b+8个桃子。
所以a+4=b+8,即b=a-4个。
那么就有9a=10(a-4)+8。
解得a=32。
所以桃子有32×10+4=324个。
每只猴子分得32+4=36个,所以猴子有324÷36=9只。
方法二:第一只猴子分得的那1/10比第二只猴子的那1/10多8-4=4个第一只猴子分得的那1/10对应的单位1比第二只猴子分得的1/10对应的单位1多4÷1/10=40个。
那么第一只猴子分得的那1/10是40-8=32个。
所以桃子总数是32×10+4=324个。
每只猴子吃32+4=36个,那么有324÷36=9只猴子。
一次函数应用题及答案 21、题目:某市出租车收费标准为:起步价10元,3千米后每千米的价格为2.4元,小明乘坐出租车走了x千米(x>3),则小明应付车费____元.小明乘坐出租车走了x千米(x>3),则前3千米的费用为10元,超过3千米的费用为:2.4(x3)元,则小明应付车费为:10+2.4(x3)=2.4x+2.8(元).故答案为:2.4x+2.8.2、题目:某市居民用电的价格为每千瓦时0.62元.小明家上个月付电费40.3元,小明家用电多少千瓦时?小明家上个月用电的千瓦数为:40.3÷0.62=65(千瓦时)答:小明家用电65千瓦时.3、题目:某市居民用电的价格为每千瓦时0.62元.小明家上个月付电费40.3元,小明家用电多少千瓦时?小明家上个月用电的千瓦数为:40.3÷0.62=65(千瓦时)答:小明家用电65千瓦时.4、题目:某市居民用电的价格为每千瓦时0.62元.小明家上个月付电费46.5元,小明家用电多少千瓦时?小明家上个月用电的千瓦数为:46.5÷0.62=75(千瓦时)答:小明家用电75千瓦时.5、题目:某市居民用电的价格为每千瓦时0.52元.小明家上个月付电费44.2元,小明家用电多少千瓦时?小明家用电的千瓦数为:44.2÷0.52=85(千瓦时)答:小明家用电85千瓦时.。
一次函数应用题专项练习及答案
一次函数应用题1.某人在银行存入本金200元,月利率是%,求本息和(本金与利息的和)y(元)与所存月数x之间的函数关系式,并求出10个月后的本息和.2.如图14-2-4所示,已知四边形ABCD中,∠ABC=∠CDA=90°,BC=12,CD=6,点P是AD上一动点,设AP=x,四边形ABCP的面积y与x之间的函数关系是y=ax+30,当P与A重合时,四边形ABCP的面积为△PBC的面积,试求出a的值.3.如图14-2-5所示,温度计上表示了摄氏温度与华氏温度的刻度,能否用函数解析式表示摄氏温度与华氏温度的函数关系如果今天气温是摄氏32℃,那么华氏是多少度4.甲、乙两地相距600km,快车走完全程需10h,慢车走完全程需15h,两辆车分别从甲、乙两地同时相向而行,求从出发到相遇,两车的相距离y(km)与行驶时间x(h)之间的函数关系式,指出自变量x的取值范围.5.旅客乘车按规定可能随身携带一定质量的行李,如果超过规定,则需购买行李票.设行李票y(元)是行李质量x(千克)的一次函数,其图象如图14-2-6所示.求:(1)y与x之间的函数关系式;(2)旅客最多可以免费带行李的质量.6.学生进行竞走比赛,甲每小时走3千米,出发小时后,乙以每小时千米的速度追甲,令乙行走时间为t小时.(1)分别写出甲、乙两人所走的路程s与时间t的关系式;(2)在同一坐标系内作出它们的图象.7.甲、乙二人沿相同的路线由A到B匀速行进,A、B两地间的路程为20km,他们行走的路程s(km)与甲出发后的相间t(h)之间的函数图象如图14-2-7所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h参考答案1.分析:本息和等于x个月的利息+本金.解:y=%×200x+200,即y=+200(x>0),当x=10时,y=×10+200=,则10个月后本息和为元.点拨:此题是关于利率问题的应用,通过函数形式表达更明了.2.分析:当P与A重合时,x=0可由解析式求出△PBC的面积,进而求出AB,利用面积关系可求a值.解:当P与A重合时,x=0,y=30,S△PBC=12AB·BC=30,所以AB=5;S四边形ABCP=S△ABC +S△ACP=12×5×12+12·x·6=30+3x,即3x+30=ax+30,所以解得a=3.点拨:此题求AB的值是关键,找准图形的特点解题.3.分析:题中给出了摄氏温度与华氏温度的部分对应关系,利用对应的数据,及日常生活经验,我们知道摄氏温度与华氏温度的转换存在一个比例函数,再加上常数32,就呈现一次函数关系.解:设摄氏温度为x,华氏温度为y,根据已知条件可设y=kx+32(k≠0),取x=100,y=212代入上式中,解得k=,则y=+32,将50,20,122,4x xy y==-⎧⎧⎨⎨==-⎩⎩和分别代入y=+32,等式都成立,因此可证明摄氏温度和华氏温度间存在一次函数关系:y=+32.当摄氏温度x=32℃时,y=×32+32=(°F).点拨:很多问题中的两个变量之间存在对应关系,通过对所给数据的观察、估计列出函数关系,再用余下的数据进行验证.4.分析:如图14-2-2′所示,根据题意可知,快车每小时走的路程为60010,慢车每小时走的路程为60015,可由已知得出自变量x的取值范围,由解析式和自变量取值范围,图象可画出来.解:如图14-2-3′所示,则y=600-6006001015⎛⎫+⎪⎝⎭·x ,即y=600-100x , 由0,0x y ≥⎧⎨≥⎩得0≤x ≤6是自变量的取值范围.因为y 是x 的一次函数,根据0≤x ≤6,所以图象为一条线段,即(0,600),(6,0)连接两点的线段即为所求函数图象.点拨:要注意自变量的取值范围.5.分析:一次函数解析式为y=kx+b ,根据图象提供的信息可列出方程组再求解析式.解:(1)设y 与x 之间的解析式为y=kx+b ,由题意可知605,9010,a b a b +=⎧⎨+=⎩解得1,65,a b ⎧=⎪⎨⎪=-⎩则y 与x 的函数关系是y=156x -.(2)当y=0时,由16x-5=0,得x=30,则旅客可以最多免费携带30千克行李.点拨:根据所给信息,进行收集和处理,要有决策的能力. 6.分析:路程=速度×时间. 解:(1)s 甲=3×+3t ,整理得 s 甲=3t+,s 乙=.(2)如图14-2-4′所示.7.C 分析:考查考生从一次函数图象中获取正确信息的能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数应用题(习题)
➢例题示范
例1:一辆警车在高速公路的A 处加满油,以每小时60 千米的速度匀速行驶.已知警车一次加满油后,油箱内的余油量y(升)与行驶时间x(小时)之间的函数关系图象是如图所示的直线l 的一部分.
(1)求直线l 的函数表达式;
(2)如果警车要回到 A 处,且要求警车中的余油量不能少于
10 升,那么警车可以行驶到离A 处的最远距离是多少?
y/升
54
42
-1 O
解:(1)∵(1,54),(3,42)
∴l:y =-6x + 60
(2)由y =-6x + 60 得,
当y=10 时,x =
25
3
1 2 3 4 x/小时
∴警车可以行驶到离 A 处的最远距离是
25
⨯ 60 ⨯1
= 250 (千米)
3 2
答:直线l 的函数关系式为y =-6x + 60 ,警车可以行驶到离A 处的最远距离是250 千米.
➢巩固练习
1.李老师开车从甲地到相距240 千米的乙地,油箱剩余油量
y(升)与行驶里程x(千米)之间的函数关系如图所示.(1)求y 与x 之间的函数关系式(不必注明自变量x 的取值范围);
(2)李老师到达乙地时油箱剩余油量是多少?
3.5
2.5
O160 x/千米
2.某校食堂有一太阳能热水器,其水箱的最大蓄水量为 1 000
升,往空水箱中注水,在没有放水的情况下,水箱的蓄水量y(升)与匀速注水时间x(分钟)之间的关系如图所示.
(1)求y 与x 之间的函数关系式;
(2)若水箱中原有水400 升,则按上述速度注水15 分钟,能否将水箱注满?
240 180 120 60 O y/升
2 4 6
8 x/分钟
3.如图,折线AB-BC 是某市区出租车所收费用y(元)与出租
车行驶路程x(km)之间的函数关系图象.
(1)当x≥2 时,求y 与x 之间的函数关系式;
(2)若某人付车费15.6 元,则出租车行驶了多少千米?
4.我国西南五省市的部分地区发生严重旱灾,为鼓励节约用水,
某市自来水公司采取分段收费标准.每月收取的水费y(元)与用水量x(吨)之间的函数关系如图所示.
(1)若小明家五月份用水8 吨,则应交水费元;
(2)按上述分段收费标准,若小明家三、四月份分别交水费
26 元、18 元,则四月份比三月份节约用水多少吨?
5.小敏从A 地出发,向B 地行走,小聪从B 地同时出发,向A
地行走.如图,相交于点P 的两条线段l1,l2 分别表示小敏、小聪离B 地的距离y(km)与已用时间x(h)之间的函数关系,则当小敏、小聪两人相距7km 时,x 的值为多少?
6.高铁的开通,给衢州市民出行带来了极大的方便,“五一”期
间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1 小时后,颖颖乘坐高铁从衢州出发,先到杭州火车站,然后再转车出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,乐乐和颖颖离衢州的距离分别为y1,y2(km),与乘车时间x(h)的关系如图所示.
请结合图象解决下面问题:
(1)当1≤x≤2 时,求颖颖离开衢州的距离y2 与乘车时间x 之间的函数关系式;
(2)当颖颖达到杭州火车东站时,乐乐距离游乐园还有多少千米?
y(千米)
240 216 杭州火车站
游乐园
私家车
高铁
出租车
O 1 1.5 2
x(小时)
➢思考小结
1.从应用题处理框架的角度来回顾一次函数应用题:
①理解题意,梳理信息
通过看轴、点、线,把和对应起来.
②建立一次函数模型
首先确定一次函数表达式,并把所求目标转化为,然后借助一次函数表达式进行求解.
③结合实际意义进行验证
2.结合下图梳理本章知识,并回答下列问题.
实际问题分析变量之间的关系
建立数学模型
函数
关键点坐标
k的实际意义
表达式
实际问题的答案用函数工具处理、求解
结合实际情况验证结果
一次函数图象y=kx+b(k≠0)
性质
计算
坐标和一次函数表达式之间的关系(点在一次函数图象上):若表达式完整而坐标残缺,把残缺坐标代入即可求出坐标;若坐标完整而表达式残缺(k,b 有一个未知),把代入即可求出表达式.
若已知两点坐标求直线的表达式,则利用待定系数法,四步操作为、、、.若已知两条直线的表达式,要求交点坐标,则
求交点坐标.
1.
【参考答案】
➢巩固练习
1.
(1)y =-
1 x +
1 (2)
2 升
160 2
2. (1)y=30x(0 ≤x ≤100
)(2)不能3
3. (1)y =6
x +
3
(x ≥2 )(2)12.5 千米5 5
4. (1)16 (2)3 吨
5. x 的值为0.6 或2.6
6. (1)y2=240x-240 (2)56 千米
➢思考小结
1.①看轴、点、线②一次函数
2.表达式;坐标,表达式
一设、二代、三解、四还原.联立
3.y=kx+b(k,b 为常数,k≠0);正比例.
两,(0,b),( -b
,0).k
倾斜程度;y,纵.k 相同,b 不同.
一、二、三;一、三、四;一、二、四;二、三、四.增大,同向变化;减小,反向变化.。