佛山市初三数学九年级上册期末好题精选
九年级上册佛山数学期末试卷中考真题汇编[解析版]
九年级上册佛山数学期末试卷中考真题汇编[解析版]一、选择题1.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )A .15B .25C .35D .452.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( )A .k >﹣1B .k <1且k≠0C .k≥﹣1且k≠0D .k >﹣1且k≠03.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( )A .甲、乙两队身高一样整齐B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐 4.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( )A .8,10B .10,9C .8,9D .9,105.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则①二次函数的最大值为a+b+c ;②a ﹣b+c <0;③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .4 6.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( )A .()2241y x =--B .()2241y x =+-C .()2241y x =-+D .()2241y x =++ 7.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则( )A .摸出黑球的可能性最小B .不可能摸出白球C .一定能摸出红球D .摸出红球的可能性最大8.一元二次方程x 2﹣3x =0的两个根是( )A .x 1=0,x 2=﹣3B .x 1=0,x 2=3C .x 1=1,x 2=3D .x 1=1,x 2=﹣3 9.一组数据0、-1、3、2、1的极差是( ) A .4 B .3C .2D .1 10.二次函数y =()21x ++2的顶点是( )A .(1,2)B .(1,−2)C .(−1,2)D .(−1,−2)11.设A (﹣2,y 1),B (1,y 2),C (2,y 3)是抛物线y =﹣(x +1)2+m 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 3>y 2>y 1B .y 1>y 2>y 3C .y 1>y 3>y 2D .y 2>y 1>y 312.下列说法正确的是( )A .所有等边三角形都相似B .有一个角相等的两个等腰三角形相似C .所有直角三角形都相似D .所有矩形都相似二、填空题13.如图,A 、B 、C 是⊙O 上三点,∠ACB =30°,则∠AOB 的度数是_____.14.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.15.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.16.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.17.已知,二次函数2(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.18.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .19.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m .20.某电视台招聘一名记者,甲应聘参加了采访写作、计算机操作和创意设计的三项素质测试得分分别为70、60、90,三项成绩依次按照5:2:3计算出最后成绩,那么甲的成绩为__.21.如图,抛物线2143115y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.22.一组数据:3,2,1,2,2,3,则这组数据的众数是_____.23.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)24.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.三、解答题25.解方程:(1)3x 2-6x -2=0; (2)(x -2)2=(2x +1)2.26.某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:表中数据a=,b=,c=.(2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩.27.已知二次函数y=x2-2x+m(m为常数)的图像与x轴相交于A、B两点.(1)求m的取值范围;(2)若点A、B位于原点的两侧,求m的取值范围.28.在一个不透明的口袋中装有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色.然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率.29.如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为1.6m,求路灯杆AB的高度.30.某玩具商店以每件60元为成本购进一批新型玩具,以每件100元的价格销售则每天可卖出20件,为了扩大销售,增加盈利,尽快减少库存,商店决定采取适当的降价措施,经调查发现:若每件玩具每降价1元,则每天可多卖2件.(1)若商店打算每天盈利1200元,每件玩具的售价应定为多少元?(2)若商店为追求效益最大化,每件玩具的售价定为多少元时,商店每天盈利最多?最多盈利多少元?31.如图 1,直线 y=2x+2 分别交 x 轴、y 轴于点A、B,点C为x轴正半轴上的点,点 D从点C处出发,沿线段CB匀速运动至点 B 处停止,过点D作DE⊥BC,交x轴于点E,点C′是点C关于直线DE的对称点,连接EC′,若△ DEC′与△ BOC 的重叠部分面积为S,点D的运动时间为t(秒),S与 t 的函数图象如图 2 所示.(1)V D= ,C 坐标为;(2)图2中,m= ,n= ,k= .(3)求出S与t 之间的函数关系式(不必写自变量t的取值范围).32.某公司研发了一种新产品,成本是200元/件,为了对新产品进行合理定价,公司将该产品按拟定的价格进行销售,调查发现日销量y(件)与单价x(元/件)之间存在一次函数关系y=﹣2x+800(200<x<400).(1)要使新产品日销售利润达到15000元,则新产品的单价应定为多少元?(2)为使公司日销售获得最大利润,该产品的单价应定为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.2.D解析:D【解析】∵一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=4+4k>0,且k≠0.解得:k>﹣1且k≠0.故选D.考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.3.B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵S 2甲=1.7,S 2乙=2.4,∴S 2甲<S 2乙,∴甲队成员身高更整齐;故选B.【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键4.D解析:D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D .考点:众数;中位数.5.B解析:B【解析】分析:直接利用二次函数图象的开口方向以及图象与x 轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c ,即二次函数的最大值为a+b+c ,故①正确;②当x=﹣1时,a ﹣b+c=0,故②错误;③图象与x 轴有2个交点,故b 2﹣4ac >0,故③错误;④∵图象的对称轴为x=1,与x 轴交于点A 、点B (﹣1,0),∴A (3,0),故当y >0时,﹣1<x <3,故④正确.故选B .点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A 点坐标是解题关键.6.B解析:B【解析】【分析】根据题意直接利用二次函数平移规律进而判断得出选项.【详解】解:22y x 的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-.故选:B .【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 7.D解析:D【解析】【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球, ∴摸出黑球的概率是223, 摸出白球的概率是123, 摸出红球的概率是2023, ∵123<223<2023, ∴从中任意摸出1个球,摸出红球的可能性最大;故选:D .【点睛】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.8.B解析:B【解析】【分析】利用因式分解法解一元二次方程即可.【详解】x 2﹣3x =0,x (x ﹣3)=0,x =0或x ﹣3=0,x 1=0,x 2=3.故选:B .【点睛】本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).9.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.10.C解析:C【解析】【分析】x++2的顶点坐标.因为顶点式y=a(x-h)2+k,其顶点坐标是(h,k),即可求出y=()21【详解】x++2是顶点式,解:∵二次函数y=()21∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.11.B解析:B【解析】【分析】本题要比较y1,y2,y3的大小,由于y1,y2,y3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y随x的增大而减小,便可得出y1,y2,y3的大小关系.【详解】∵抛物线y=﹣(x+1)2+m,如图所示,∴对称轴为x=﹣1,∵A(﹣2,y1),∴A点关于x=﹣1的对称点A'(0,y1),∵a=﹣1<0,∴在x=﹣1的右边y随x的增大而减小,∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,∴y1>y2>y3,故选:B.【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.12.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.二、填空题13.60°【解析】【分析】直接利用圆周角定理,即可求得答案.【详解】∵A、B、C是⊙O上三点,∠ACB=30°,∴∠AOB的度数是:∠AOB =2∠ACB=60°.故答案为:60°.【点解析:60°【解析】【分析】直接利用圆周角定理,即可求得答案.【详解】∵A、B、C是⊙O上三点,∠ACB=30°,∴∠AOB的度数是:∠AOB=2∠ACB=60°.故答案为:60°.【点睛】考查了圆周角定理的运用,同弧或等弧所对的圆周角等于圆心角的一半.14.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.15.【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【解析:2 3【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是360120360=23,故答案为2 3 .【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.16.【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵,,∴点(-1,0)与(3,0)在抛物线上,∴抛物线的对称轴是直线:x=1,∴点关于直线x=解析:(4,4)【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵0a b c -+=,930a b c ++=,∴点(-1,0)与(3,0)在抛物线2y ax bx c =++上,∴抛物线的对称轴是直线:x =1,∴点(2,4)-关于直线x =1对称的点为:(4,4).故答案为:(4,4).【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于常考题型,根据题意判断出点(-1,0)与(3,0)在抛物线上、熟练掌握抛物线的对称性是解题的关键.17.【解析】【分析】直接利用函数图象与x 轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x 轴交于(-1,0),(3,0),故当y <0时,x 的取值范围是:-1<x <3.故答案为:解析:13x【解析】【分析】直接利用函数图象与x 轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x 轴交于(-1,0),(3,0),故当y <0时,x 的取值范围是:-1<x <3.故答案为:-1<x <3.【点睛】此题主要考查了抛物线与x 轴的交点,正确数形结合分析是解题关键.18..【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△AB 解析:103. 【解析】 试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC∽△ADE∴AC:AE=BC:DE∴DE=83∴10AD=3考点: 1.相似三角形的判定与性质;2.勾股定理.19.5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题. 【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.20.74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=,故答案为:74.【点睛】此题考查加权平均数,正确理解各数所占的权重是解题的关键.解析:74【解析】【分析】利用加权平均数公式计算.【详解】甲的成绩=70560290374523,故答案为:74.【点睛】 此题考查加权平均数,正确理解各数所占的权重是解题的关键.21.【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令中y=0,得x1=【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令21115y x =-中y=0,得x 1x 2∴直线AC的解析式为1y =-, 设P (x ,313x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1∴PQ 2=PB 2-BQ 2,2+(313x )2-1, =24283753x x , ∵43a =0<, ∴PQ 2有最小值24283475()3326443, ∴PQ【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ、BQ、PB之间的关系式是解题的关键.22.【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】在数据:3,2,1,2,2,3中,2出现3次,出现的次数最多,∴这组数据的众数是2,故答案为:2.【点睛解析:【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】在数据:3,2,1,2,2,3中,2出现3次,出现的次数最多,∴这组数据的众数是2,故答案为:2.【点睛】此题考查的是求一组数据的众数,掌握众数的定义是解决此题的关键.23.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S甲2>S乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.24.【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题主要解析:1 3【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是31 93 ,故答案为13.【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的公式.三、解答题25.(1)x1=1x2=12)x1=13,x2=-3【解析】【分析】(1)利用配方法解方程即可;(2)先移项,然后利用因式分解法解方程.【详解】(1)解:x 2-2x =23 x 2-2x +1=23+1 (x -1)2=53x -1=∴x 1=1x 2=1 (2)解:[ (x -2)+(2x +1)] [ (x -2)-(2x +1)]=0(3x -1) (-x -3)=0∴x 1=13,x 2=-3 【点睛】 本题考查了解一元二次方程的应用,能灵活运用各种方法解一元二次方程是解题的关键.26.解:(1)a =135,b =134.5,c =1.6;(2)①从众数(或中位数)来看,一班成绩比二班要高,所以一班的成绩好于二班;②一班和二班的平均成绩相同,说明他们的水平相当;③一班成绩的方差小于二班,说明一班成绩比二班稳定.【解析】【分析】(1)根据表中数据和中位数的定义、平均数和方差公式进行计算可求出表中数据; (2)从不同角度评价,标准不同,会得到不同的结果.【详解】解:(1)由表可知,一班135出现次数最多,为5次,故众数为135;由于表中数据为从小到大依次排列,所以处于中间位置的数为134和135,中位数为1341352+=134.5; 根据方差公式:s 2=()()()()()2222211321351341355135135213613513713510⎡⎤-+-+-+-+-⎣⎦=1.6,∴a =135,b =134.5,c =1.6; (2)①从众数看,一班一分钟跳绳135的人数最多,二班一分钟跳绳134的人数最多;所以一班的成绩好于二班;②从中位数看,一班一分钟跳绳135以上的人数比二班多;③从方差看,S 2一<S 2二;一班成绩波动小,比较稳定;④从最好成绩看,二班速度最快的选手比一班多一人;⑤一班和二班的平均成绩相同,说明他们的水平相当.此题是一道实际问题,不仅考查了统计平均数、中位数、众数和方差的定义,更考查了同学们应用知识解决问题的发散思维能力.27.(1)m<1;(2)m<0【解析】【分析】(1)根据题意可知一元二次方程有两个不相等的实数根,即b2-4ac>0然后利用根的判别式确定取值范围;(2)由题意得:x1x2<0,即m<0,即可求解;【详解】解:(1)∵二次函数y=x2-2x+m的图象与x轴相交于A、B两点则方程x2-2x+m=0有两个不相等的实数根∴b2-4ac>0,∴4-4m>0,解得:m<1;(2)∵点A、B位于原点的两侧则方程x2-2x+m=0的两根异号,即x1x2<0∵12cx x ma==∴m<0【点睛】本题考查的是二次函数图象与系数的关系,要求学生对函数基本性质、函数与坐标轴的交点等的求解熟悉,这是一个综合性很好的题目.28.两次摸到的球都是红球的概率为1 9 .【解析】【分析】根据题意画出树状图,再根据概率公式即可求解.【详解】解:画树状图得:∵共有9种等可能的结果,摸到的两个球都是红球的有1种情况,∴两次摸到的球都是红球的概率=19.【点睛】此题主要考查概率的计算,解题的关键是根据题意画出所有情况,再用公式进行求解. 29.4m【解析】由CD ∥EF ∥AB 得可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,故CD DF AB BF =,EF FG AB BG =,证DF FG BF BG =,进一步得3437BD BD =++,求出BD ,再得1.6312AB =; 【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG , ∴CD DF AB BF =,EF FG AB BG=, 又∵CD=EF , ∴DF FG BF BG =, ∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7, ∴3437BD BD =++ ∴BD=9,BF=9+3=12 ∴ 1.6312AB = 解得,AB=6.4m因此,路灯杆AB 的高度6.4m .【点睛】考核知识点:相似三角形的判定和性质.理解相似三角形判定是关键.30.(1)每件玩具的售价为80元;(2)每件玩具的售价为85元时,每天盈利最多,最多盈利1250元.【解析】【分析】(1)根据题意,可以得到关于x 的一元二次方程,从而可以解答本题;(2)根据题意可以得到利润与售价的函数关系式,然后根据二次函数的性质即可解答本题.【详解】解:(1)设每件玩具的售价为x 元,()()602021001200x x -+-=⎡⎤⎣⎦,解得:190x =,280x =,∵扩大销售,增加盈利,尽快减少库存,∴80x =,答:每件玩具的售价为80元;(2)设每件玩具的售价为a 元时,利润为w 元,()()()2602021002851250w a a a =-+-=--+⎡⎤⎣⎦,即当85a 时,w 有最大值为1250元,答:当每件玩具的售价为85元时,商店每天盈利最多,最多盈利1250元.【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质解答.31.(1)点D的运动速度为1单位长度/秒,点C坐标为(4,0).(2)85;45;25.(3)①当点C′在线段BC上时,S=14t2;②当点C′在CB的延长线上,S=−1312t2+85t−203;③当点E在x轴负半轴, S=t2−45t+20.【解析】【分析】(1)根据直线的解析式先找出点B的坐标,结合图象可知当t=5时,点C′与点B重合,通过三角形的面积公式可求出CE的长度,结合勾股定理可得出OE的长度,由OC=OE+EC可得出OC的长度,即得出C点的坐标,再由勾股定理得出BC的长度,根据CD=12BC,结合速度=路程÷时间即可得出结论;(2)结合D点的运动以及面积S关于时间t的函数图象的拐点,即可得知当“当t=k 时,点D与点B重合,当t=m时,点E和点O重合”,结合∠C的正余弦值通过解直角三角形即可得出m、k的值,再由三角形的面积公式即可得出n的值;(3)随着D点的运动,按△DEC′与△BOC的重叠部分形状分三种情况考虑:①通过解直角三角形以及三角形的面积公式即可得出此种情况下S关于t的函数关系式;②由重合部分的面积=S△CDE−S△BC′F,通过解直角三角形得出两个三角形的各边长,结合三角形的面积公式即可得出结论;③通过边与边的关系以及解直角三角形找出BD和DF的值,结合三角形的面积公式即可得出结论.【详解】(1)令x=0,则y=2,即点B坐标为(0,2),∴OB=2.当t=5时,B和C′点重合,如图1所示,此时S=12×12CE•OB=54,∴CE=52,∴BE =52. ∵OB =2, ∴OE =2253222⎛⎫-= ⎪⎝⎭, ∴OC =OE +EC =32+52=4,BC =222425+=,CD =5, 5÷5=1(单位长度/秒),∴点D 的运动速度为1单位长度/秒,点C 坐标为(4,0).故答案为:1单位长度/秒;(4,0);(2)根据图象可知:当t =k 时,点D 与点B 重合,此时k =1BC =25; 当t =m 时,点E 和点O 重合,如图2所示.sin ∠C =OB BC =25=5,cos ∠C =25525OC BC ==, OD =OC •sin ∠C =4×5=455,CD =OC •cos ∠C =4×25=85. ∴m =1CD =855,n =12BD •OD =12×(25−855)×455=45. 故答案为:855;45;25. (3)随着D 点的运动,按△DEC ′与△BOC 的重叠部分形状分三种情况考虑:①当点C ′在线段BC 上时,如图3所示.此时CD =t ,CC ′=2t ,0<CC ′≤BC ,∴0<t 5∵tan∠C=12OBOC=,∴DE=CD•tan∠C=12t,此时S=12CD•DE=14t2;②当点C′在CB的延长线上,点E在线段OC上时,如图4所示.此时CD=t,BC′=2t−25,DE=CD•tan∠C=12t,CE=CDcos C∠=5t,OE=OC−CE=4−5t,∵CC BCCE OC'⎧⎨≤⎩>,即225542tt⎧⎪⎨≤⎪⎩>,解得:5<t≤855.由(1)可知tan∠OEF=232=43,∴OF=OE•tan∠OEF=162533-t,BF=OB−OF=251033t-,∴FM=BF•cos∠C=4453t-.此时S=12CD•DE−12BC′•FM=−2138520123t t+-;③当点E在x轴负半轴,点D在线段BC上时,如图5所示.此时CD=t,BD=BC−CD=,CEt,DF=22BDBD ttan C==∠,∵CE OCCD BC⎧⎨≤⎩>,即4t⎨⎪≤⎩>,∴5<t≤此时S=12BD•DF=12×=+20.综上,当点C′在线段BC上时,S=14t2;当点C′在CB的延长线上,S=−1312t2+203;当点E在x轴负半轴, S=+20.【点睛】本题考查了勾股定理、解直角三角形以及三角形的面积公式,解题的关键是:(1)求出BC、OC的长度;(2)根据图象能够了解当t=m和t=k时,点DE的位置;(3)分三种情况求出S关于t的函数关系式.本题属于中档题,(1)(2)难度不大;(3)需要画出图形,利用数形结合,通过解直角三角形以及三角形的面积公式找出S关于t的函数解析式.32.(1)要使新产品日销售利润达到15000元,则新产品的单价应定为250元或350元;(2)为使公司日销售获得最大利润,该产品的单价应定为300元.【解析】【分析】(1)根据“总利润=每件的利润×销量”列出一元二次方程即可求出结论;(2)设公司日销售获得的利润为w元,根据“总利润=每件的利润×销量”即可求出w与x的函数关系式,然后利用二次函数求最值即可.【详解】(1)根据题意得,(﹣2x+800)(x﹣200)=15000,解得:x1=250,x2=350,答要使新产品日销售利润达到15000元,则新产品的单价应定为250元或350元;(2)设公司日销售获得的利润为w元,根据题意得,w=y(x﹣200)=(﹣2x+800)(x﹣200)=﹣2x2+1200x﹣160000=﹣2(x ﹣300)2+20000,∵﹣2<0,∴当x=300时,获得最大利润为20000元,答:为使公司日销售获得最大利润,该产品的单价应定为300元.【点睛】此题考查的是一元二次方程的应用和二次函数的应用,掌握实际问题中的等量关系和利用二次函数求最值是解决此题的关键.。
广东省佛山市南海区南海实验中学2025届九年级数学第一学期期末统考试题含解析
广东省佛山市南海区南海实验中学2025届九年级数学第一学期期末统考试题 注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)1.已知点P (2a +1,a ﹣1)关于原点对称的点在第一象限,则a 的取值范围是( )A .a <﹣12或a >1B .a <﹣12C .﹣12<a <1D .a >1 2.二次函数y = x 2+2的对称轴为( ) A .2x = B .0x = C .2x =- D .1x =3.由四个相同的小正方体搭建了一个积木,它的三视图如图所示,则这个积木可能是( )A .B .C .D .4.下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .5.如图,正比例函数11y k x =的图像与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >26.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm ,9cm ,另一个三角形的最长边长为4.5cm ,则它的最短边长是( )A .1.5cmB .2.5cmC .3cmD .4cm7.如图,在矩形ABCD 中,AD=10,AB=6,E 为BC 上一点,DE 平分∠AEC,则CE 的长为( )A .1B .2C .3D .48.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是( )A .13B .23C .49D .599.如图,抛物线的图像交x 轴于点(20)A -,和点B ,交y 轴负半轴于点C ,且OB OC =,下列结论错误的是( )A .02b a -<B .0a b c +>C .420a b c -+=D .1ac b =-10.反比例函数k y x =的图象经过点()2,3A -,(),B x y ,当13x <<时,y 的取值范围是( ) A .3223y -<<- B .62y -<<- C .26y << D .392y -<<- 11.如图,点C 、D 在圆O 上,AB 是直径,∠BOC=110°,AD ∥OC ,则∠AOD=( )A .70°B .60°C .50°D .40°12.已知圆O 与点P 在同一平面内,如果圆O 的半径为5,线段OP 的长为4,则点P ( )A.在圆O上B.在圆O内C.在圆O外D.在圆O上或在圆O内二、填空题(每题4分,共24分)13.体育课上,小聪,小明,小智,小慧分别在点O处进行了一次铅球试投,铅球分别落在图中的点A,B,C,D处,则他们四人中,成绩最好的是______.14.已知:在⊙O中,直径AB=4,点P、Q均在⊙O上,且∠BAP=60°,∠BAQ=30°,则弦PQ的长为_____.15.如图,已知AB是半圆O的直径,∠BAC=20°,D是弧AC上任意一点,则∠D的度数是_________.16.如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB 于点D,则CD的长为▲ .17.已知二次函数的图象开口向下,且其图象顶点位于第一象限内,请写出一个满足上述条件的二次函数解析式为_____(表示为y=a(x+m)2+k的形式).18.一天早上,王霞从家出发步行上学,出发6分钟后王霞想起数学作业没有带,王霞立即打电话叫爸爸骑自行车把作业送来(接打电话和爸爸出门的时间忽略不计),同时王霞把速度降低到前面的一半.爸爸骑自行车追上王霞后立即掉头以原速赶往位于家的另一边的单位上班,王霞拿到作业后立即改为慢跑上学,慢跑的速度是最开始步行速度的2倍,最后王霞比爸爸早10分钟到达目的地.如图反映了王霞与爸爸之间的距离y(米)与王霞出发后时间x(分钟)之间的关系,则王霞的家距离学校有__________米.三、解答题(共78分)19.(8分)如图,已知抛物线2y ax bx c =++的图象经过点(3,3)A 、(4,0)B 和原点O ,P 为直线OA 上方抛物线上的一个动点.(1)求直线OA 及抛物线的解析式;(2)过点P 作x 轴的垂线,垂足为D ,并与直线OA 交于点C ,当PCO △为等腰三角形时,求D 的坐标; (3)设P 关于对称轴的点为Q ,抛物线的顶点为M ,探索是否存在一点P ,使得PQM 的面积为18,如果存在,求出P 的坐标;如果不存在,请说明理由.20.(8分)如图,O 的直径10AB =,点C 为O 上一点,连接AC 、BC .(1)作ACB ∠的角平分线,交O 于点D ;(2)在(1)的条件下,连接AD .求AD 的长.21.(8分)如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,且CD ⊥AB 于点E .(1)求证:∠BCO=∠D ;(2)若CD=42,AE=2,求⊙O 的半径.22.(10分)专卖店销售一种陈醋礼盒,成本价为每盒40元.如果按每盒50元销售,每月可售出500盒;若销售单价每上涨1元,每月的销售量就减少10盒.设此种礼盒每盒的售价为x 元(50<x <75),专卖店每月销售此种礼盒获得的利润为y 元.(1)写出y 与x 之间的函数关系式;(2)专卖店计划下月销售此种礼盒获得8000元的利润,每盒的售价应为多少元?(3)专卖店每月销售此种礼盒的利润能达到10000元吗?说明理由.23.(10分)如图,在平面直角坐标系中,直线AC 与x 轴交于点A ,与y 轴交于点50,2B ⎛⎫ ⎪⎝⎭,且与反比例函数10y x=在第一象限的图象交于点C ,CD y ⊥轴于点D ,2CD =.(1)求点A 的坐标;(2)动点P 在x 轴上,PQ x ⊥轴交反比例函数10y x =的图象于点Q .若:2PAC POQ S S =,求点P 的坐标.24.(10分)为吸引市民组团去风景区旅游,观光旅行社推出了如下收费标准:某单位员工去风景区旅游,共支付给旅行社旅游费用10500元,请问该单位这次共有多少员工去风景区旅游?25.(12分)如图所示的双曲线是函数3(m y m x-=为常数,0x >)图象的一支若该函数的图象与一次函数1y x =+的图象在第一象限的交点为()2,A n ,求点A 的坐标及反比例函数的表达式.26.用配方法把二次函数y=﹣2x2+6x+4化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.参考答案一、选择题(每题4分,共48分)1、B【分析】直接利用关于原点对称点的纵横坐标均互为相反数分析得出答案.【详解】点P(2a+1,a﹣1)关于原点对称的点(﹣2a﹣1,﹣a+1)在第一象限,则21010aa-->⎧⎨-+>⎩,解得:a<﹣12.故选:B.【点睛】此题主要考查了关于原点对称点的性质以及不等式组的解法,正确解不等式是解题关键.2、B【分析】根据二次函数的性质解答即可.【详解】二次函数y = x2+2的对称轴为直线0x=.故选B.【点睛】本题考查了二次函数y=a(x-h)2+k(a,b,c为常数,a≠0)的性质,熟练掌握二次函数y=a(x-h)2+k的性质是解答本题的关键.y=a(x-h)2+k是抛物线的顶点式,a决定抛物线的形状和开口方向,其顶点是(h,k),对称轴是x=h.3、A【解析】分析:从主视图上可以看出上下层数,从俯视图上可以看出底层有多少小正方体,从左视图上可以看出前后层数,综合三视图可得到答案.解答:解:从主视图上可以看出左面有两层,右面有一层;从左视图上看分前后两层,后面一层上下两层,前面只有一层,从俯视图上看,底面有3个小正方体,因此共有4个小正方体组成,故选A .4、A【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合求解.【详解】B 既是轴对称图形,又是中心对称图形;C 只是轴对称图形;D 既不是轴对称图形也不是中心对称图形,只有A 符合.故选A.5、D【分析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论.【详解】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称,∵点A 的横坐标为1,∴点B 的横坐标为-1,∵由函数图象可知,当-1<x <0或x >1时函数y 1=k 1x 的图象在22k y x =的上方, ∴当y 1>y 1时,x 的取值范围是-1<x <0或x >1.故选:D .【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y 1>y 1时x 的取值范围是解答此题的关键. 6、B【分析】根据题意可得出两个三角形相似,利用最长边数值可求出相似比,再用三角形的最短边乘以相似比即可. 【详解】解:由题意可得出:两个三角形的相似比为:4.5192=, 所以另一个三角形最短边长为:15 2.52⨯=. 故选:B .【点睛】本题考查的知识点是相似三角形的相似比,根据题目求出两个三角形的相似比是解此题的关键.7、B【分析】根据平行线的性质以及角平分线的性质证明∠ADE=∠AED ,根据等角对等边,即可求得AE 的长,在直角△ABE 中,利用勾股定理求得BE 的长,则CE 的长即可求解.【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DEC=∠ADE ,又∵∠DEC=∠AED ,∴∠ADE=∠AED ,∴AE=AD=10,在直角△ABE 中,BE=,∴CE=BC ﹣BE=AD ﹣BE=10﹣8=1.故选B .考点:矩形的性质;角平分线的性质.8、C【分析】根据列表法列出所有的可能情况,从中找出两个球颜色相同的结果数,再利用概率的公式计算即可得到答案.【详解】解:列表如图所示:由表可知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果 所以摸出两个球颜色相同的概率是49 故选:C .【点睛】本题考查的是列表法与树状图的知识,解题的关键是能够用列表或者树状图将所有等可能结果列举出来.9、B【分析】A 根据对称轴的位置即可判断A 正确;图象开口方向,与y 轴的交点位置及对称轴位置可得0a >,0c <,0b >即可判断B 错误;把点A 坐标代入抛物线的解析式即可判断C ;把B 点坐标(),0c -代入抛物线的解析式即可判断D ;【详解】解:观察图象可知对称性02b x a=-<,故结论A 正确, 由图象可知0a >,0c <,0b >, ∴0a b c+<,故结论B 错误; 抛物线经过(2,0)A -,420a b c ∴-+=,故结论C 正确,OB OC =,OB c ∴=-,∴点B 坐标为(,0)c -,20ac bc c ∴-+=,10ac b ∴-+=,1ac b ∴=-,故结论D 正确;故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小:当0a >时,抛物线向上开口;当0a <时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即0)ab >,对称轴在y 轴左; 当a 与b 异号时(即0)ab <,对称轴在y 轴右.(简称:左同右异);常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,)c ;抛物线与x 轴交点个数由△决定:△240b ac =->时,抛物线与x 轴有2个交点;△240b ac =-=时,抛物线与x 轴有1个交点;△240b ac =-<时,抛物线与x 轴没有交点.10、B【解析】由图像经过A (2,3)可求出k 的值,根据反比例函数的性质可得1x 3<<时,y 的取值范围. 【详解】∵比例函数k y x =的图象经过点()A 2,3-, ∴-3=2k , 解得:k=-6, 反比例函数的解析式为:y=-6x , ∵k=-6<0,∴当1x 3<<时,y 随x 的增大而增大,∵x=1时,y=-6,x=3时,y=-2,∴y的取值范围是:-6<y<-2,故选B.【点睛】本题考查反比例函数的性质,k>0时,图像在一、三象限,在各象限y随x的增大而减小;k<0时,图像在二、四象限,在各象限y随x的增大而增大;熟练掌握反比例函数的性质是解题关键.11、D【分析】根据平角的定义求得∠AOC的度数,再根据平行线的性质及三角形内角和定理即可求得∠AOD的度数.【详解】∵∠BOC=110°,∠BOC+∠AOC=180°∴∠AOC=70°∵AD∥OC,OD=OA∴∠D=∠A=70°∴∠AOD=180°−2∠A=40°故选:D.【点睛】此题考查圆内角度求解,解题的关键是熟知圆的基本性质、平行线性质及三角形内角和定理的运用.12、B【分析】由题意根据圆O的半径和线段OP的长进行大小比较,即可得出选项.【详解】解:因为圆O的半径为5,线段OP的长为4,5>4,所以点P在圆O内.故选B.【点睛】本题考查同一平面内点与圆的位置关系,根据相关判断方法进行大小比较即可.二、填空题(每题4分,共24分)13、小智【分析】通过比较线段的长短,即可得到OC>OD>OB>OA,进而得出表示最好成绩的点为点C.【详解】由图可得,OC>OD>OB>OA,∴表示最好成绩的点是点C,故答案为:小智.【点睛】本题主要参考了比较线段的长短,比较两条线段长短的方法有两种:度量比较法、重合比较法.14、2或1【分析】当点P和Q在AB的同侧,如图1,连接OP、OQ、PQ,先计算出∠PAQ=30°,根据圆周角定理得到∠POQ =60°,则可判断△OPQ为等边三角形,从而得到PQ=OP=2;当点P和Q在AB的同侧,如图1,连接PQ,先计算出∠PAQ=90°,根据圆周角定理得到PQ为直径,从而得到PQ=1.【详解】解:当点P和Q在AB的同侧,如图1,连接OP、OQ、PQ,∵∠BAP=60°,∠BAQ=30°,∴∠PAQ=30°,∴∠POQ=2∠PAQ=2×30°=60°,∴△OPQ为等边三角形,∴PQ=OP=2;当点P和Q在AB的同侧,如图1,连接PQ,∵∠BAP=60°,∠BAQ=30°,∴∠PAQ=90°,∴PQ为直径,∴PQ=1,综上所述,PQ的长为2或1.故答案为2或1.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15、110°【解析】试题解析:∵AB是半圆O的直径ACB∴∠=90.ABC∴∠=-=902070.∴∠=-=D18070110.故答案为110.点睛:圆内接四边形的对角互补.16、1.【分析】利用垂径定理和中位线的性质即可求解.【详解】∵OC ⊥AP ,OD ⊥PB ,∴由垂径定理得:AC=PC ,PD=BD ,∴CD 是△APB 的中位线,∴CD=12AB=12×8=1. 故答案为117、y=﹣(x ﹣1)2+1(答案不唯一)【解析】因为二次函数()2y a x m k =++的顶点坐标为:(-m ,k ),根据题意图象的顶点位于第一象限,所以可得:m <0,k >0,因此满足m <0,k >0的点即可,故答案为:()2 11y x =--+(答案不唯一).18、1750【分析】设王霞出发时步行速度为a 米/分钟,爸爸骑车速度为b 米/分钟,根据爸爸追上王霞的时间可以算出两者速度关系,然后利用学校和单位之间距离4750建立方程求出a ,即可算出家到学校的距离.【详解】设王霞出发时步行速度为a 米/分钟,爸爸骑车速度为b 米/分钟,由图像可知9分钟时爸爸追上王霞,则630.53+⨯=a a b ,整理得=2.5b a由图像可知24分钟时,爸爸到达单位,∵最后王霞比爸爸早10分钟到达目的地∴王霞在第14分钟到达学校,即拿到作业后用时14-9=5分钟到达学校爸爸骑车用时24-9=15分钟到达单位,单位与学校相距4750米,∴52154750⨯+=a b将=2.5b a 代入可得1015 2.54750+⨯=a a ,解得=100a∴王霞的家与学校的距离为630.55217.51750+⨯+⨯==a a a a 米故答案为:1750.【点睛】本题考查函数图像信息问题,解题的关键是读懂图像中数据的含义,求出王霞的速度.三、解答题(共78分)19、(1)直线OA 的解析式为y x =,二次函数的解析式是24y x x =-+;(2)(3D -;(3)存在,315(,)24P 或515(,)24【分析】(1)先将点A 代入求出OA 表达式,再设出二次函数的交点式,将点A 代入,求出二次函数表达式; (2)根据题意得出当PCO △为等腰三角形时,只有OC=PC ,设点D 的横坐标为x ,表示出点P 坐标,从而得出PC 的长,再根据OC 和OD 的关系,列出方程解得;(3)设点P 的坐标为2(,4)P n n n -+,根据条件的触点Q 坐标为2(4,4)Q n n n --+,再表示出PQM 的高,从而表示出PQM 的面积,令其等于18,解得即可求出点P 坐标. 【详解】解:(1)设直线OA 的解析式为1y kx =,把点A 坐标(3,3)代入得:1k =,直线OA 的解析式为y x =;再设2(4)y ax x =-,把点A 坐标(3,3)代入得:1a =-,函数的解析式为24y x x =-+,∴直线OA 的解析式为y x =,二次函数的解析式是24y x x =-+. (2)设D 的横坐标为m ,则P 的坐标为2(,4)m m m -+,∵P 为直线OA 上方抛物线上的一个动点,∴03m <<.此时仅有OC PC =,OC =,∴23m m -+=,解得3m =∴(3D ;(3)函数的解析式为24y x x =-+,∴对称轴为2x =,顶点(2,4)M ,设2(,4)P n n n -+,则2(4,4)Q n n n --+,M 到直线PQ 的距离为2244()2)(n n n --+=-,要使PQM 的面积为18,则211(2)28PQ n ⋅⋅-=,即211|42|(2)28n n ⋅-⋅-=, 解得:32n =或52n =, ∴315(,)24P 或515(,)24. 【点睛】本题考查了待定系数法求解析式,二次函数图象及性质的运用,点坐标的关系,综合性较强,解题的关键是利用条件表示出点坐标,得出方程解之.20、(1)见解析;(2)52【分析】(1)以点C 为圆心,任意长为半径(不大于AC 为佳)画弧于AC 和BC 交于两点,然后以这两个交点为圆心,大于这两点之间距离的一半为半径画两段弧交于一点,过点C 和该交点的线就是ACB ∠的角平分线;(2)连接OD ,先根据角平分线的定义得出45ACD ∠=︒,再根据圆周角定理得出90AOD ∠=︒,最后再利用勾股定理求解即可.【详解】解:(1)如图,CD 为所求的角平分线;(2)连接OD ,O 的直径10AB =,90ACB ∴∠=︒,5AO DO ==.CD 平分ACB ∠,1452ACD ACB ∴∠=∠=︒. 290AOD ACD ∴∠=∠=︒.在Rt AOD ∆中,22225552AD AO DO ++=【点睛】本题主要考察基本作图、角平分线定义、圆周角定理、勾股定理,准确作出辅助线是关键.21、(1)见解析;(2)1.【解析】试题分析:根据OC=OB 得到∠BCO=∠B ,根据弧相等得到∠B=∠D ,从而得到答案;根据题意得出CE 的长度,设半径为r ,则OC=r ,OE=r -2,根据Rt △OCE 的勾股定理得出半径.试题解析:(1)证明:∵ OC=OB ,∴ ∠BCO=∠B ∵AC AC =, ∴ ∠B=∠D , ∴ ∠BCO=∠D .(2)解:∵AB 是⊙O 的直径,CD ⊥AB , ∴ CE=1122CD =⨯= 在Rt △OCE 中,OC 2=CE 2+OE 2, 设⊙O 的半径为r ,则OC=r ,OE=OA -AE=r -2,∴222(2)r r =+-,解得:r=1, ∴⊙O 的半径为1考点:圆的基本性质22、(1)y=-11x 2+1411x -41111;(2)销售价应定为61元/盒.(3)不可能达到11111元.理由见解析【分析】(1)根据题意用x 表示销售商品的件数,则利润等于单价利润乘以件数.(2)根据此种礼盒获得8111元的利润列出一元二次方程求解,再进行取舍即可;(3)得出相应的一元二次方程,判断出所列方程是否有解即可.【详解】解:(1)y=(x -41)[511-11(x -51)],整理,得y=-11x 2+1411x -41111;(2)由题意得y=8111,即-11x 2+1411x -41111=8111,化简,得x 2-141x +4811=1.解得,x 1=61,x 2=81(不符合题意,舍去).∴x =61.答:销售价应定为61元/盒.(3)不可能达到11111元.理由如下:当y=11111时,得-11x 2+1411x -41111=11111.化简,得x 2-141x +5111=1.△=(-141)2-4×1×5111<1,原方程无实数解. ∴该专卖店每月销售此种礼盒的利润不可能达到11111元.【点睛】解决问题的关键是读懂题意,找到所求的量的等量关系.注意售价、进价、利润、销售量之间的数量关系.23、(1)()2,0A -;(2)()6,0P -或()2,0【分析】(1)根据反比例函数表达式求出点C 坐标,再利用“待定系数法”求出一次函数表达式,从而求出坐标; (2)根据“P 在x 轴上,PQ x ⊥轴交反比例函数10y x=的图象于点Q ”及k 的几何意义可求出△POQ 的面积,从而求得△PAC 的面积,利用面积求出点P 坐标即可.【详解】解:(1)∵CD y ⊥轴于点D ,2CD =,∴点C 的横坐标为2,把2x =代入反比例函数10y x =,得1052y ==, ∴()2,5C ,设直线AC 的解析式为y kx b =+, 把50,2B ⎛⎫ ⎪⎝⎭,()2,5C 代入,得5225b k b ⎧=⎪⎨⎪+=⎩,解得5452k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AC 的解析式为5542y x =+, 令55042y x =+=,解得2x =-, ∴()2,0A -;(2)∵PQ x ⊥轴,点Q 在反比例函数10y x =的图象上, ∴11052POQ S =⨯=△, ∵:2PAC POQ S S =,∴10PAC S =△, ∴1102C PA y ⋅=, ∴21045PA ⨯==, 由(1)知()2,0A -,∴()6,0P -或()2,0.【点睛】本题考查一次函数与反比例函数的综合应用,要熟练掌握“待定系数法”求表达式及反比例函数中k 的几何意义,在利用面积求坐标时要注意多种情况.24、该单位这次共有30名员工去风景区旅游【分析】设该单位这次共有x 名员工去风景区旅游,因为500×15=7500<10500,所以员工人数一定超过15人.由题意,得[500-10(x-15)]x=10500;【详解】解:设该单位这次共有x 名员工去风景区旅游因为500×15=7500<10500,所以员工人数一定超过15人.由题意,得[500-10(x-15)]x=10500,整理,得x 2-65x+1050=0,解得x 1=35,x 2=30当x 1=35时,500-10(x-15)=300<320,故舍去x 1;当x 2=30时,500-10(x-15)=350>320,符合题意答:该单位这次共有30名员工去风景区旅游【点睛】考核知识点:二元一次方程应用.理解题是关键.25、点A 的坐标为()2,3;反比例函数的表达式为6y x=. 【分析】先将x=2代入一次函数1y x =+中可得,点A 的坐标为()2,3,再将点A 的坐标代入3m y x -=可得反比例函数的解析式. 【详解】解:点()2,A n 在一次函数1y x =+的图象上,213,n ∴=+=∴点A 的坐标为()2,3. 又点A 在反比例函数3(m y m x-=为常数,0x >)的图象上, 3236,m ∴-=⨯=∴反比例函数的表达式为6y x =. 【点睛】本题考查反比例函数和一次函数的交点问题和解析式,熟练掌握待定系数法是解题的关键.26、开口向下,对称轴为直线32x =,顶点317,22⎛⎫ ⎪⎝⎭【解析】试题分析:先通过配方法对二次函数的一般式进行配方成顶点式,再根据二次函数图象性质写出开口方向,对称轴,顶点坐标.试题解析:2264y x x =-++, =29923442x x ⎛⎫--+++ ⎪⎝⎭, =22317317222222x x ⎡⎤⎛⎫⎛⎫--+=-+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,开口向下,对称轴为直线32x=,顶点317,22⎛⎫⎪⎝⎭.。
【初三数学】佛山市九年级数学上期末考试测试卷及答案
九年级上学期期末考试数学试题(答案)一.填空题(满分18分,每小题3分)1.下列事件:①打开电视机,它正在播广告;②从一只装有红球的口袋中,任意摸出一个球,恰是白球;③两次抛掷正方体骰子,掷得的数字之和<13;④抛掷硬币1000次,第1000次正面向上,其中为随机事件的有个.2.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为.3.一元二次方程2x2﹣4x+1=0有个实数根.4.为响应“足球进校园”的号召,我县教体局在今年11月份组织了“县长杯”校园足球比赛.在某场比赛中,一个球被从地面向上踢出,它距地面的高度h(m)可用公式h=﹣5t2+v0t表示,其中t(s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果足球的最大高度到20m,那么足球被踢出时的速度应达到m/s.5.已知圆锥的底面半径为3,母线长为6,则此圆锥侧面展开图的圆心角是.6.为庆祝祖国华诞,某单位排练的节目需用到如图所示的扇形布扇,布扇完全打开后,外侧两竹条AB,AC夹角为120°,AB的长为30cm,贴布部分BD的长为20cm,则贴布部分的面积约为cm2.二.选择题(满分32分,每小题4分)7.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.用配方法解方程x2+2x﹣3=0,下列配方结果正确的是()A.(x﹣1)2=2B.(x﹣1)2=4C.(x+1)2=2D.(x+1)2=4 9.如图的四个转盘中,C,D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A.B.C.D.10.函数y=(m+2)x+2x+1是二次函数,则m的值为()A.﹣2B.0C.﹣2或1D.111.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.5cm C.5cm D.6cm12.某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x,则下面所列方程正确的是()A.50(1+x)2=182B.50+50(1+x)2=182C.50+50(1+x)+50(1+2x)=182D.50+50(1+x)+50(1+x)2=18213.已知△ABC中,∠C=90°,BC=a,CA=b,AB=c,⊙O与三角形的边相切,下列选项中,⊙O的半径为的是()A.B.C.D.14.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=三.解答题(共9小题,满分70分)15.(8分)(1)解方程:x(x﹣2)+x﹣2=0;(2)用配方法解方程:x2﹣10x+22=016.(8分)(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2.(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).17.(8分)一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.18.(6分)在平面直角坐标系中,抛物线y=x2﹣2x+c(c为常数)的对称轴如图所示,且抛物线过点C(0,c).(1)当c=﹣3时,点(x1,y1)在抛物线y=x2﹣2x+c上,求y1的最小值;(2)若抛物线与x轴有两个交点,自左向右分别为点A、B,且OA=OB,求抛物线的解析式;(3)当﹣1<x<0时,抛物线与x轴有且只有一个公共点,求c的取值范围.19.(6分)如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?20.(6分)已知,如图:AB为⊙O直径,D为弧AC中点,DE⊥AB于E,AC交OD于点F,(1)求证:OD∥BC;(2)若AB=10cm,BC=6cm,求DF的长;(3)探索DE与AC的数量关系,直接写出结论不用证明.21.(8分)某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于50元,设每件商品的售价上涨x元(x为整数),每周的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?(3)每件商品的售价定为多少元时,每周的利润恰好是2145元?22.(8分)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①,AB是直径,要使EF是⊙O的切线,还须添加一个条件是(只需写出三种情况).(ī)(īī)(īīī)(2)如图(2),若AB为非直径的弦,∠CAE=∠B,则EF是⊙O的切线吗?为什么?23.(12分)已知,抛物线y=mx2+(1﹣2m)x+1﹣3m(m是常数).(Ⅰ)当m=1时,求该抛物线与x轴的公共点的坐标;(Ⅱ)抛物线与x轴相交于不同的两点A,B.①求m的取值范围;②无论m取何值,该抛物线都经过非坐标轴上的定点P,当<m≤8时,求△P AB面积的最大值,并求出相对应的m的值.参考答案一.填空题1.解:①打开电视机,它正在播广告是随机事件;②从一只装有红球的口袋中,任意摸出一个球,恰是白球是不可能事件;③两次抛掷正方体骰子,掷得的数字之和<13是必然事件;④抛掷硬币1000次,第1000次正面向上是随机事件;故答案为:2.2.解:∵∠ACB=90°,∠ABC=30°,∴∠A=60°,∵△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,∴CA′=CA,∠ACA′等于旋转角,∴△ACA′为等边三角形,∴∠ACA′=60°,即旋转角度为60°.故答案为60°.3.解:∵a=2,b=﹣4,c=1,∴△=(﹣4)2﹣4×2×1=8>0,∴此一元二次方程有两个实数根,故答案为:两.4.解:h=﹣5t2+v0•t,其对称轴为t=,=﹣5×()2+v0•=20,当t=时,h最大解得:v0=20,v0=﹣20(不合题意舍去),答:足球被踢出时的速度应达到20m/s.5.解:∵圆锥底面半径是3,∴圆锥的底面周长为6π,设圆锥的侧面展开的扇形圆心角为n°,=6π,故答案为180°.6.解:贴布部分的面积=S扇形BAC ﹣S扇形DAE=﹣=(cm2).故答案为.二.选择题(共8小题,满分32分,每小题4分)7.解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.8.解:∵x2+2x﹣3=0∴x2+2x=3∴x2+2x+1=1+3∴(x+1)2=4故选:D.9.解:A、如图所示:指针落在阴影区域内的概率为:=;B、如图所示:指针落在阴影区域内的概率为:=;C、如图所示:指针落在阴影区域内的概率为:;D、如图所示:指针落在阴影区域内的概率为:,∵>>>,∴指针落在阴影区域内的概率最大的转盘是:.故选:A.10.解:∵函数y=(m+2)x+2x+1是二次函数,∴m2+m=2,m+2≠0,故选:D.11.解:连接EC,由圆周角定理得,∠E=∠B,∠ACE=90°,∵∠B=∠EAC,∴∠E=∠EAC,∴CE=CA,∴AC=AE=5(cm),故选:B.12.解:设该厂八、九月份平均每月生产零件的增长率均为x,根据题意得:50+50(1+x)+50(1+x)2=182.故选:D.13.解:①∵⊙O是△ABC的内切圆,∴⊙O的半径=,∴A不正确;②∵⊙O与AB,BC相切,∴r2+(c﹣a)2=(b﹣r)2∴r=,∴B不正确;③∵⊙O与AC,BC相切,圆心在AB上,∴=,∴r=,∴C正确,④∵⊙O与AB,AC相切,圆心在BC上,∴(a﹣r)2=r2+(c﹣b)2,∴r=,∴D不正确.14.解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x2﹣3x+c与y轴的交点为(0,2),∴c=2,∴抛物线的解析式为y=x2﹣3x+2.当y=0时,有x2﹣3x+2=0,解得:x1=1,x2=2,∴抛物线与x轴的交点为(1,0)、(2,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x2﹣3x+2,∴抛物线的对称轴为直线x=﹣=﹣=,D选项正确.故选:D.三.解答题(共9小题,满分70分)15.解:(1)∵x(x﹣2)+x﹣2=0,∴(x﹣2)(x+1)=0,则x﹣2=0或x+1=0,解得:x1=2,x2=﹣1;(2)∵x2﹣10x+22=0,∴x2﹣10x+25﹣3=0,则x2﹣10x+25=3,即(x﹣5)2=3,∴x﹣5=±,∴x=5±,即x1=5+,x2=5﹣.16.解:(1)如图,△A1B1C1为所作,点A1的坐标为(2,﹣4);(2)如图,△A2BC2为所作;(3)∵BC==,∴C点旋转到C2点所经过的路径长为=π.17.解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为=;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为.18.解:(1)当c=﹣3时,抛物线为y=x2﹣2x﹣3,∴抛物线开口向上,有最小值,===﹣4,∴y最小值∴y1的最小值为﹣4;(2)抛物线与x轴有两个交点,①当点A、B都在原点的右侧时,如解图1,设A(m,0),∵OA=OB,∴B(2m,0),∵二次函数y=x2﹣2x+c的对称轴为x=1,由抛物线的对称性得1﹣m=2m﹣1,解得m=,∴A(,0),∵点A在抛物线y=x2﹣2x+c上,∴0=﹣+c,解得c=,此时抛物线的解析式为y=x2﹣2x+;②当点A在原点的左侧,点B在原点的右侧时,如解图2,设A(﹣n,0),∵OA=OB,且点A、B在原点的两侧,∴B(2n,0),由抛物线的对称性得n+1=2n﹣1,解得n=2,∴A(﹣2,0),∵点A在抛物线y=x2﹣2x+c上,∴0=4+4+c,解得c=﹣8,此时抛物线的解析式为y=x2﹣2x﹣8,综上,抛物线的解析式为y=x2﹣2x+或y=x2﹣2x﹣8;(3)∵抛物线y=x2﹣2x+c与x轴有公共点,∴对于方程x2﹣2x+c=0,判别式b2﹣4ac=4﹣4c≥0,∴c≤1.当x=﹣1时,y=3+c;当x=0时,y=c,∵抛物线的对称轴为x=1,且当﹣1<x<0时,抛物线与x轴有且只有一个公共点,∴3+c>0且c<0,解得﹣3<c<0,综上,当﹣3<c<0时,抛物线与x轴有且只有一个公共点.19.解:设道路的宽为xm,由题意得:(30﹣2x)(20﹣x)=6×78,整理得:(x﹣2)(x﹣33)=0,解得x=2或x=33舍去),答:通道应设计成2米.20.(1)证明:∵AB为直径,∴∠ACB=90°,∵D为弧AC中点,∴OD⊥AC,∴∠AFO=90°,∴OD⊥BC;(2)解:∵OF∥BC,而OA=OB,∴OF为△ACB的中位线,∴OF=BC=3cm,∴DF=OD﹣OF=5cm﹣3cm=2cm;(3)解:DE=AC.21.解:(1)由题意得:y=(40+x﹣30)(180﹣5x)=﹣5x2+130x+1800(0≤x≤10)(2)对称轴:x=﹣=﹣=13,∵13>10,a=﹣5<0,∴在对称轴左侧,y随x增大而增大,=﹣5×102+130×10+1800=2600,∴当x=10时,y最大值∴售价=40+10=50元答:当售价为50元时,可获得最大利润2600元.(3)由题意得:﹣5x2+130x+1800=2145解之得:x=3或23(不符合题意,舍去)∴售价=40+3=43元.答:售价为43元时,每周利润为2145元.22.(1)解:如图1中,当AB⊥EF或∠BAE=90°可判断EF为⊙O的切线;当∠ABC=∠EAC,∵AB为直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∴∠EAC+∠CAB=90°,∴AB⊥EF,∴EF为⊙O的切线;故答案为AB⊥EF、∠BAE=90°、∠ABC=∠EAC;(2)证明:如图2,作直径AD,连结CD,∵AD为直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∵∠D=∠B,∠CAE=∠B,∴∠CAE=∠D,∴∠EAC+∠CAD=90°,∴AD⊥EF,∴EF为⊙O的切线;23.解:(Ⅰ)把m=1,y=0代入抛物线可得x2﹣x﹣2=0,解得x1=﹣1,x2=2,故该抛物线与x轴的公共点的坐标为(﹣1,0)或(2,0);(Ⅱ)①当m=0时,函数为一次函数,不符合题意,舍去;当m≠0时,∵抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B,∴△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,∴1﹣4m≠0,∴m≠,∴m的取值范围为m≠0且m≠;②|AB|=|x A﹣x B|=====||=|﹣4|,∵<m≤8,∴≤<4,∴﹣≤﹣4<0,∴0<|﹣4|≤,∴|AB|最大时,||=,解得:m=8,或m=(舍去),∴当m=8时,|AB|有最大值,此时△ABP的面积最大,没有最小值,则面积最大为:|AB|y P=××4=.九年级上学期期末考试数学试题(答案)一.填空题(满分18分,每小题3分)1.下列事件:①打开电视机,它正在播广告;②从一只装有红球的口袋中,任意摸出一个球,恰是白球;③两次抛掷正方体骰子,掷得的数字之和<13;④抛掷硬币1000次,第1000次正面向上,其中为随机事件的有个.2.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为.3.一元二次方程2x2﹣4x+1=0有个实数根.4.为响应“足球进校园”的号召,我县教体局在今年11月份组织了“县长杯”校园足球比赛.在某场比赛中,一个球被从地面向上踢出,它距地面的高度h(m)可用公式h=﹣5t2+v0t表示,其中t(s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果足球的最大高度到20m,那么足球被踢出时的速度应达到m/s.5.已知圆锥的底面半径为3,母线长为6,则此圆锥侧面展开图的圆心角是.6.为庆祝祖国华诞,某单位排练的节目需用到如图所示的扇形布扇,布扇完全打开后,外侧两竹条AB,AC夹角为120°,AB的长为30cm,贴布部分BD的长为20cm,则贴布部分的面积约为cm2.二.选择题(满分32分,每小题4分)7.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.用配方法解方程x2+2x﹣3=0,下列配方结果正确的是()A.(x﹣1)2=2B.(x﹣1)2=4C.(x+1)2=2D.(x+1)2=4 9.如图的四个转盘中,C,D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A.B.C.D.10.函数y=(m+2)x+2x+1是二次函数,则m的值为()A.﹣2B.0C.﹣2或1D.111.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.5cm C.5cm D.6cm12.某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x,则下面所列方程正确的是()A.50(1+x)2=182B.50+50(1+x)2=182C.50+50(1+x)+50(1+2x)=182D.50+50(1+x)+50(1+x)2=18213.已知△ABC中,∠C=90°,BC=a,CA=b,AB=c,⊙O与三角形的边相切,下列选项中,⊙O的半径为的是()A.B.C.D.14.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=三.解答题(共9小题,满分70分)15.(8分)(1)解方程:x(x﹣2)+x﹣2=0;(2)用配方法解方程:x2﹣10x+22=016.(8分)(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2.(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).17.(8分)一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.18.(6分)在平面直角坐标系中,抛物线y=x2﹣2x+c(c为常数)的对称轴如图所示,且抛物线过点C(0,c).(1)当c=﹣3时,点(x1,y1)在抛物线y=x2﹣2x+c上,求y1的最小值;(2)若抛物线与x轴有两个交点,自左向右分别为点A、B,且OA=OB,求抛物线的解析式;(3)当﹣1<x<0时,抛物线与x轴有且只有一个公共点,求c的取值范围.19.(6分)如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?20.(6分)已知,如图:AB为⊙O直径,D为弧AC中点,DE⊥AB于E,AC交OD于点F,(1)求证:OD∥BC;(2)若AB=10cm,BC=6cm,求DF的长;(3)探索DE与AC的数量关系,直接写出结论不用证明.21.(8分)某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于50元,设每件商品的售价上涨x元(x为整数),每周的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?(3)每件商品的售价定为多少元时,每周的利润恰好是2145元?22.(8分)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①,AB是直径,要使EF是⊙O的切线,还须添加一个条件是(只需写出三种情况).(ī)(īī)(īīī)(2)如图(2),若AB为非直径的弦,∠CAE=∠B,则EF是⊙O的切线吗?为什么?23.(12分)已知,抛物线y=mx2+(1﹣2m)x+1﹣3m(m是常数).(Ⅰ)当m=1时,求该抛物线与x轴的公共点的坐标;(Ⅱ)抛物线与x轴相交于不同的两点A,B.①求m的取值范围;②无论m取何值,该抛物线都经过非坐标轴上的定点P,当<m≤8时,求△P AB面积的最大值,并求出相对应的m的值.参考答案一.填空题1.解:①打开电视机,它正在播广告是随机事件;②从一只装有红球的口袋中,任意摸出一个球,恰是白球是不可能事件;③两次抛掷正方体骰子,掷得的数字之和<13是必然事件;④抛掷硬币1000次,第1000次正面向上是随机事件;故答案为:2.2.解:∵∠ACB=90°,∠ABC=30°,∴∠A=60°,∵△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,∴CA′=CA,∠ACA′等于旋转角,∴△ACA′为等边三角形,∴∠ACA′=60°,即旋转角度为60°.故答案为60°.3.解:∵a=2,b=﹣4,c=1,∴△=(﹣4)2﹣4×2×1=8>0,∴此一元二次方程有两个实数根,故答案为:两.4.解:h=﹣5t2+v0•t,其对称轴为t=,=﹣5×()2+v0•=20,当t=时,h最大解得:v0=20,v0=﹣20(不合题意舍去),答:足球被踢出时的速度应达到20m/s.5.解:∵圆锥底面半径是3,∴圆锥的底面周长为6π,设圆锥的侧面展开的扇形圆心角为n°,=6π,故答案为180°.6.解:贴布部分的面积=S扇形BAC ﹣S扇形DAE=﹣=(cm2).故答案为.二.选择题(共8小题,满分32分,每小题4分)7.解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.8.解:∵x2+2x﹣3=0∴x2+2x=3∴x2+2x+1=1+3∴(x+1)2=4故选:D.9.解:A、如图所示:指针落在阴影区域内的概率为:=;B、如图所示:指针落在阴影区域内的概率为:=;C、如图所示:指针落在阴影区域内的概率为:;D、如图所示:指针落在阴影区域内的概率为:,∵>>>,∴指针落在阴影区域内的概率最大的转盘是:.故选:A.10.解:∵函数y=(m+2)x+2x+1是二次函数,∴m2+m=2,m+2≠0,故选:D.11.解:连接EC,由圆周角定理得,∠E=∠B,∠ACE=90°,∵∠B=∠EAC,∴∠E=∠EAC,∴CE=CA,∴AC=AE=5(cm),故选:B.12.解:设该厂八、九月份平均每月生产零件的增长率均为x,根据题意得:50+50(1+x)+50(1+x)2=182.故选:D.13.解:①∵⊙O是△ABC的内切圆,∴⊙O的半径=,∴A不正确;②∵⊙O与AB,BC相切,∴r2+(c﹣a)2=(b﹣r)2∴r=,∴B不正确;③∵⊙O与AC,BC相切,圆心在AB上,∴=,∴r=,∴C正确,④∵⊙O与AB,AC相切,圆心在BC上,∴(a﹣r)2=r2+(c﹣b)2,∴r=,∴D不正确.14.解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x2﹣3x+c与y轴的交点为(0,2),∴c=2,∴抛物线的解析式为y=x2﹣3x+2.当y=0时,有x2﹣3x+2=0,解得:x1=1,x2=2,∴抛物线与x轴的交点为(1,0)、(2,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x2﹣3x+2,∴抛物线的对称轴为直线x=﹣=﹣=,D选项正确.故选:D.三.解答题(共9小题,满分70分)15.解:(1)∵x(x﹣2)+x﹣2=0,∴(x﹣2)(x+1)=0,则x﹣2=0或x+1=0,解得:x1=2,x2=﹣1;(2)∵x2﹣10x+22=0,∴x2﹣10x+25﹣3=0,则x2﹣10x+25=3,即(x﹣5)2=3,∴x﹣5=±,∴x=5±,即x1=5+,x2=5﹣.16.解:(1)如图,△A1B1C1为所作,点A1的坐标为(2,﹣4);(2)如图,△A2BC2为所作;(3)∵BC==,∴C点旋转到C2点所经过的路径长为=π.17.解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为=;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为.18.解:(1)当c=﹣3时,抛物线为y=x2﹣2x﹣3,∴抛物线开口向上,有最小值,===﹣4,∴y最小值∴y1的最小值为﹣4;(2)抛物线与x轴有两个交点,①当点A、B都在原点的右侧时,如解图1,设A(m,0),∵OA=OB,∴B(2m,0),∵二次函数y=x2﹣2x+c的对称轴为x=1,由抛物线的对称性得1﹣m=2m﹣1,解得m=,∴A(,0),∵点A在抛物线y=x2﹣2x+c上,∴0=﹣+c,解得c=,此时抛物线的解析式为y=x2﹣2x+;②当点A在原点的左侧,点B在原点的右侧时,如解图2,设A(﹣n,0),∵OA=OB,且点A、B在原点的两侧,∴B(2n,0),由抛物线的对称性得n+1=2n﹣1,解得n=2,∴A(﹣2,0),∵点A在抛物线y=x2﹣2x+c上,∴0=4+4+c,解得c=﹣8,此时抛物线的解析式为y=x2﹣2x﹣8,综上,抛物线的解析式为y=x2﹣2x+或y=x2﹣2x﹣8;(3)∵抛物线y=x2﹣2x+c与x轴有公共点,∴对于方程x2﹣2x+c=0,判别式b2﹣4ac=4﹣4c≥0,∴c≤1.当x=﹣1时,y=3+c;当x=0时,y=c,∵抛物线的对称轴为x=1,且当﹣1<x<0时,抛物线与x轴有且只有一个公共点,∴3+c>0且c<0,解得﹣3<c<0,综上,当﹣3<c<0时,抛物线与x轴有且只有一个公共点.19.解:设道路的宽为xm,由题意得:(30﹣2x)(20﹣x)=6×78,整理得:(x﹣2)(x﹣33)=0,解得x=2或x=33舍去),答:通道应设计成2米.20.(1)证明:∵AB为直径,∴∠ACB=90°,∵D为弧AC中点,∴OD⊥AC,∴∠AFO=90°,∴OD⊥BC;(2)解:∵OF∥BC,而OA=OB,∴OF为△ACB的中位线,∴OF=BC=3cm,∴DF=OD﹣OF=5cm﹣3cm=2cm;(3)解:DE=AC.21.解:(1)由题意得:y=(40+x﹣30)(180﹣5x)=﹣5x2+130x+1800(0≤x≤10)(2)对称轴:x=﹣=﹣=13,∵13>10,a=﹣5<0,∴在对称轴左侧,y随x增大而增大,=﹣5×102+130×10+1800=2600,∴当x=10时,y最大值∴售价=40+10=50元答:当售价为50元时,可获得最大利润2600元.(3)由题意得:﹣5x2+130x+1800=2145解之得:x=3或23(不符合题意,舍去)∴售价=40+3=43元.答:售价为43元时,每周利润为2145元.22.(1)解:如图1中,当AB⊥EF或∠BAE=90°可判断EF为⊙O的切线;当∠ABC=∠EAC,∵AB为直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∴∠EAC+∠CAB=90°,∴AB⊥EF,∴EF为⊙O的切线;故答案为AB⊥EF、∠BAE=90°、∠ABC=∠EAC;(2)证明:如图2,作直径AD,连结CD,∵AD为直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∵∠D=∠B,∠CAE=∠B,∴∠CAE=∠D,∴∠EAC+∠CAD=90°,∴AD⊥EF,∴EF为⊙O的切线;23.解:(Ⅰ)把m=1,y=0代入抛物线可得x2﹣x﹣2=0,解得x1=﹣1,x2=2,故该抛物线与x轴的公共点的坐标为(﹣1,0)或(2,0);(Ⅱ)①当m=0时,函数为一次函数,不符合题意,舍去;当m≠0时,∵抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B,∴△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,∴1﹣4m≠0,∴m≠,∴m的取值范围为m≠0且m≠;②|AB|=|x A﹣x B|=====||=|﹣4|,∵<m≤8,∴≤<4,∴﹣≤﹣4<0,∴0<|﹣4|≤,∴|AB|最大时,||=,解得:m=8,或m=(舍去),∴当m=8时,|AB|有最大值,此时△ABP的面积最大,没有最小值,则面积最大为:|AB|y P=××4=.人教版九年级(上)期末模拟数学试卷【答案】一、选择题(每小题3分,共30分)1.(2018·齐齐哈尔)下列成语中,表示不可能事件的是(A)A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地2.一元二次方程x2-4x=12的根是(B)A .x 1=2,x 2=-6B .x 1=-2,x 2=6C .x 1=-2,x 2=-6D .x 1=2,x 2=63.已知点A(a ,1)与点B(-4,b)关于原点对称,则a +b 的值为(C )A .5B .-5C .3D .-34.(2018·张家界)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =5 cm ,CD =8 cm ,则AE =(A )A .8 cmB .5 cmC .3 cmD .2 cm,第4题图) ,第7题图) ,第8题图) ,第9题图)5.若关于x 的一元二次方程x 2+2(k -1)x +k 2-1=0有实数根,则k 的取值范围是(D )A .k ≥1B .k >1C .k <1D .k ≤16.一个袋中里有4个小球,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个小球,都是蓝色小球的概率是(D )A .12B .13C .14D .167.(2018·陇南)如图,点E 是正方形ABCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转90°到△ABF 的位置,若四边形AECF 的面积为25,DE =2,则AE 的长为(D )A .5B .23C .7D .298.如图,△ABC 为直角三角形,∠C =90°,AC =6,BC =8,以点C 为圆心,以CA 为半径作⊙C ,则△ABC 斜边的中点D 与⊙C 的位置关系是(B )A .点D 在⊙C 上B .点D 在⊙C 内 C .点D 在⊙C 外 D .不能确定9.(2018·宜宾)在△ABC 中,若O 为BC 边的中点,则必有:AB 2+AC 2=2AO 2+2BO 2成立.依据以上结论,解决如下问题:如图,在矩形DEFG 中,已知DE =4,EF =3,点P 在以DE 为直径的半圆上运动,则PF 2+PG 2的最小值为(D )A .10B .192C .34D .1010.(2018·随州)如图所示,已知二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,对称轴为直线x =1.直线y =-x +c 与抛物线y =ax 2+bx +c 交于C ,D 两点,D 点在x 轴下方且横坐标小于3,则下列结论:①2a +b +c >0;②a -b +c <0;③x(ax +b)≤a +b ;④a <-1.其中正确的有(A )A .4个B .3个C .2个D .1个二、填空题(每小题3分,共24分)11.将抛物线y =6x 2向左平移2个单位后所得到的抛物线为y =6(x +2)2.12.(2018·湘潭)如图,AB 是⊙O 的切线,点B 为切点,若∠A =30°,则∠AOB =60°.,第12题图) ,第15题图) ,第17题图) ,第18题图)13.在△ABC 中,BC =2,AB =23,AC =b ,且关于x 的方程x 2-4x +b =0有两个相等的实数根,则AC 边上的中线长为2.14.(2018·内江)有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是25. 15.如图,线段AB 是圆O 的直径,弦CD ⊥AB 于点E ,∠CAB =30°,BE =1,则CD 的长为2 3.16.(2018·巴中)对于任意实数a ,b ,定义:a ◆b =a 2+ab +b 2.若方程(x ◆2)-5=0的两根记为m ,n ,则m 2+n 2=6.17.如图,⊙O 的半径为2,点A ,B 在⊙O 上,∠AOB =90°,则阴影部分的面积为π-2.18.如图,将半径4 cm 的半圆围成一个圆锥,在圆锥内接一个圆柱,当圆柱的底面半径长为1cm 时,圆柱的侧面面积最大.三、解答题(共66分)19.(6分)解方程:(1)x 2+4x -1=0; (2)(x -2)2-3x(x -2)=0.(1)x 1=-2+5,x 2=-2- 5 解:(2)x 1=2,x 2=-120.(6分)在边长为1个单位长度的正方形网格中建立如图的平面直角坐标系xOy ,△ABC 的顶点都在格点上,请解答下列问题:(1)将△ABC 向下平移5个单位长度,画出平移后的△A 1B 1C 1;(2)若点M 是△ABC 内一点,其坐标为(a ,b),点M 在△A 1B 1C 1内的对应点为M 1,则点M 1的坐标为 ;(3)画出△ABC 关于原点O 的中心对称图形△A 2B 2C 2.(1)如图所示:△A 1B 1C 1即为所求 (2)∵点M 是△ABC 内一点,其坐标为(a ,b),点M 在△A 1B 1C 1内的对应点为M 1,∴点M 1的坐标为(a ,b -5);故答案为:(a ,b -5) (3)如图所示:△A 2B 2C 2,即为所求21.(6分)如图,在△ABC 中,∠ACB =90°,AC =BC ,D 是AB 边上一点(点D 与A ,B 不重合),连接CD ,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,连接DE 交BC 于点F ,连接BE.(1)求证:△ACD ≌△BCE ;(2)当AD =BF 时,求∠BEF 的度数.(1)由题意可知:CD =CE ,∠DCE =90°,∵∠ACB =90°,∴∠ACD =∠ACB -∠DCB ,∠BCE =∠DCE -∠DCB ,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,⎩⎨⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE(SAS ) (2)∵∠ACB =90°,AC =BC ,∴∠A =45°,由(1)可知:∠A =∠CBE =45°,∵AD =BF ,∴BE =BF ,∴∠BEF =67.5°22.(8分)(2018·湖北)已知关于x 的一元二次方程x 2+(2m +1)x +m 2-2=0.(1)若该方程有两个实数根,求m 的最小整数值;(2)若方程的两个实数根为x 1,x 2,且(x 1-x 2)2+m 2=21,求m 的值.(1)根据题意得Δ=(2m +1)2-4(m 2-2)≥0,解得m ≥-94,所以m 的最小整数值为-2 (2)根据题意得x 1+x 2=-(2m +1),x 1x 2=m 2-2,∵(x 1-x 2)2+m 2=21,∴(x 1+x 2)2-4x 1x 2+m 2=21,∴(2m +1)2-4(m 2-2)+m 2=21,整理得m 2+4m -12=0,解得m 1=2,m 2=-6,∵m ≥-94,∴m 的值为2 23.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.D 90≤x <100 8 0.08请根据所给信息,解答以下问题:(1)表中a = ,b = ;(2)请计算扇形统计图中B 组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.(1)0.3 45 (2)360°×0.3=108°,答:扇形统计图中B 组对应扇形的圆心角为108°(3)将同一班级的甲、乙学生记为A ,B ,另外两学生记为C ,D ,画树形图得:人教版数学九年级上册期末考试试题(答案)一、选择题(本大题共小10题,每小题3分,共30分)1.(3分)下列各数中与4相等的是( )A .22-B .2(2)-C .|4|--D .(4)-+2.(3分)2017年成都市经济呈现活力增强,稳重向好的发展态势,截止2017年12月,全市实现地区总值约13900亿元,将13900亿元用科学记数法表示是( )亿元.A .213910⨯B .313.910⨯C .41.3910⨯D .51.3910⨯3.(3分)下列计算正确的是( )A .326a a a ⨯=B .32a a a -=C .22a b ab +=D .123--=-4.(3分)下列说法不正确的是( )A .两组对边分别相等的四边形是平行四边形B .当a c b +=时,一元二次方程20ax bx c ++=必有一根为1C .若点P 是线段AB 的黄金分割点()PA PB >,则PA AB =D .23410x x -+=的两根之和为43 5.(3分)已知52x y =,则x y y -的值为( ) A .35 B .32 C .23 D .35-6.(3分)如图,线段AB 两个端点的坐标分别为(2,2)A 、(3,1)B ,以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A .(3,1)B .(3,3)C .(4,4)D .(4,1)7.(3分)如图,在菱形ABCD 中,2AB =,120ABC ∠=︒,则对角线BD 等于( )A .2B .4C .6D .88.(3分)如图,A 、B 、C 三点在正方形网格线的交点处,若将ABC ∆绕着点A 逆时针旋转得到△AC B '',则tan B '的值为( )A .12B .13C .14D 9.(3分)关于x 的一元二次方程220x x m ++=有实数根,则m 的取值范围是( )A .1m <B .1m <且0m ≠C .1m …D .1m … 且0m ≠10.(3分)如图,菱形OBAC 的边OB 在x 轴上,点(8,4)A ,4tan 3COB ∠=,若反比例函数(0)k y k x=≠的图象经过点C ,则k 的值为( )A .6B .12C .24D .32二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)已知a 为锐角,且满足tan(10)a +︒=,则a 为 度.12.(4分)已知关于x 的一元二次方程20x x m -+=有一个根为2,则m 的值为 ,它的另一个根为 .13.(4分)反比例函数||2m y mx -=,当0x >时,y 随x 的增大而增大,则m =14.(4分)如图,AB 和DE 是直立在地面上的两根立柱,5AB =米,某一时刻AB 在阳光下的投影3BC =米,在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6米,则DE 的长为 .三、解答题(本大题共6小题,共54分)15.(12分)计算(1)计算:03(3)(1)3tan 30π--+--⨯︒+(2)解方程:(3)2x x x -=16.(6分)先化简再求值:213(1)22a a a a +++--,其中12a = 17.(8分)如图,大楼AD 高50米,和大楼AD 相距90米的C 处有一塔BC ,某人在楼顶D 处测得塔顶B 的仰角30BDE ∠=︒,求塔高.(结果保留整数,参考数据:1.73)≈≈18.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t (单位:小时),将学生分成五类:A 类(02)t 剟,B 类(24)t <…,C 类(46)t <…,D 类(68)t <…,E 类(8)t >.绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E 类学生有 人,补全条形统计图;(2)D 类学生人数占被调查总人数的 %;(3)从该班做义工时间在04t 剟的学生中任选2人,求这2人做义工时间都在24t <…中的概率.19.(10分)如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象与反比例函数6y x=的图象相交于点(,3)A m ,(6,1)B --,与x 轴交于点(,0)C n(1)求一次函数y kx b =+的关系式;(2)求BOC ∆的面积;(3)若点P 在x 轴上,且32ACP BOC S S ∆∆=,求点P 的坐标。
【数学】九年级上册佛山数学全册期末复习试卷中考真题汇编[解析版]
【数学】九年级上册佛山数学全册期末复习试卷中考真题汇编[解析版]一、选择题1.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为( ) A .30°B .45°C .30°或150°D .45°或135°2.如图,已知点D 在ABC ∆的BC 边上,若CAD B ∠=∠,且:1:2CD AC =,则:CD BD =( )A .1:2B .2:3C .1:4D .1:33.方程 x 2=4的解是( )A .x 1=x 2=2B .x 1=x 2=-2C .x 1=2,x 2=-2D .x 1=4,x 2=-44.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差2S 甲和2S 乙的大小关系是( )A .2S 甲>2S 乙B .2S 甲=2S 乙C .2S 甲<2S 乙D .无法确定5.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .15B .25C .35D .456.对于二次函数2610y x x =-+,下列说法不正确的是( ) A .其图象的对称轴为过(3,1)且平行于y 轴的直线. B .其最小值为1. C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.7.如图,以AB 为直径的⊙O 上有一点C ,且∠BOC =50°,则∠A 的度数为( )A.65°B.50°C.30°D.25°8.sin30°的值是()A.12B.22C.32D.19.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.410.已知⊙O的半径为4,点P到圆心O的距离为4.5,则点P与⊙O的位置关系是()A.P在圆内B.P在圆上C.P在圆外D.无法确定11.已知⊙O的直径为4,点O到直线l的距离为2,则直线l与⊙O的位置关系是A.相交B.相切C.相离D.无法判断12.已知一组数据:2,5,2,8,3,2,6,这组数据的中位数和众数分别是()A.中位数是3,众数是2 B.中位数是2,众数是3C.中位数是4,众数是2 D.中位数是3,众数是413.下列方程中,是一元二次方程的是()A.2x+y=1 B.x2+3xy=6 C.x+1x=4 D.x2=3x﹣214.如图,□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:215.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A .252-B .25-C .251-D .52-二、填空题16.平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)17.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.18.已知矩形ABCD ,AB=3,AD=5,以点A 为圆心,4为半径作圆,则点C 与圆A 的位置关系为 __________.19.如图,已知菱形ABCD 中,4AB =,C ∠为钝角,AM BC ⊥于点M ,N 为AB 的中点,连接DN ,MN .若90DNM ∠=︒,则过M 、N 、D 三点的外接圆半径为______.20.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.21.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.22.抛物线y=(x ﹣2)2﹣3的顶点坐标是____.23.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)24.在△ABC 中,∠C =90°,cosA =35,则tanA 等于 . 25.若关于x 的一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.26.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 27.已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为_____cm 2.(结果保留π)28.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.29.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x ,则列出方程是______________.30.如图,四边形ABCD 中,∠A =∠B =90°,AB =5cm ,AD =3cm ,BC =2cm ,P 是AB 上一点,若以P 、A 、D 为顶点的三角形与△PBC 相似,则PA =_____cm .三、解答题31.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A 、B 和点C 、D ,先用卷尺量得AB=160m ,CD=40m ,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).32.某校为了丰富学生课余生活,计划开设以下社团:A .足球、B .机器人、C .航模、D .绘画,学校要求每人只能参加一个社团小丽和小亮准备随机报名一个项目. (1)求小亮选择“机器人”社团的概率为______;(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率.33.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线-2y x =交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标; (2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.34.如图,转盘A 中的6个扇形的面积相等,转盘B 中的3个扇形的面积相等.分别任意转动转盘A 、B 各1次,当转盘停止转动时,将指针所落扇形中的2个数字分别作为平面直角坐标系中一个点的横坐标、纵坐标.(1)用表格列出这样的点所有可能的坐标;(2)求这些点落在二次函数y =x 2﹣5x +6的图象上的概率. 35.解方程:2670x x --=四、压轴题36.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.37.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts . (1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.38.如图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点p 从A 开始折线A ——B ——C ——D 以4cm/秒的 速度 移动,点Q 从C 开始沿CD 边以1cm/秒的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动的时间t (秒)(1)t 为何值时,四边形APQD 为矩形.(2)如图(2),如果⊙P 和⊙Q 的半径都是2cm ,那么t 为何值时,⊙P 和⊙Q 外切? 39.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C 的覆盖矩形,其中矩形AB 3C 3D 3是点A ,B ,C 的最优覆盖矩形. (1)已知A (﹣2,3),B (5,0),C (t ,﹣2). ①当t =2时,点A ,B ,C 的最优覆盖矩形的面积为 ;②若点A ,B ,C 的最优覆盖矩形的面积为40,求直线AC 的表达式;(2)已知点D (1,1).E (m ,n )是函数y =4x(x >0)的图象上一点,⊙P 是点O ,D ,E 的一个面积最小的最优覆盖矩形的外接圆,求出⊙P 的半径r 的取值范围.40.矩形ABCD中,AB=2,AD=4,将矩形ABCD绕点C顺时针旋转至矩形EGCF(其中E、G、F分别与A、B、D对应).(1)如图1,当点G落在AD边上时,直接写出AG的长为;(2)如图2,当点G落在线段AE上时,AD与CG交于点H,求GH的长;(3)如图3,记O为矩形ABCD对角线的交点,S为△OGE的面积,求S的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意画出图形,连接OA和OB,根据勾股定理的逆定理得出∠AOB=90°,再根据圆周角定理和圆内接四边形的性质求出即可.【详解】解:如图所示,连接OA,OB,则OA=OB=3,∵AB=,∴OA2+OB2=AB2,∴∠AOB=90°,∴劣弧AB的度数是90°,优弧AB的度数是360°﹣90°=270°,∴弦AB对的圆周角的度数是45°或135°,故选:D.【点睛】此题主要考查圆周角的求解,解题的关键是根据图形求出圆心角,再得到圆周角的度数. 2.D解析:D【解析】【分析】根据两角对应相等证明△CAD∽△CBA,由对应边成比例得出线段之间的倍数关系即可求解.【详解】解:∵∠CAD=∠B,∠C=∠C,∴△CAD∽△CBA,∴12 CD CACA CB,∴CA=2CD,CB=2CA,∴CB=4CD,∴BD=3CD,∴13 CDBD.故选:D.【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键. 3.C解析:C【解析】【分析】两边开方得到x=±2.【详解】解:∵x2=4,∴x=±2,∴x1=2,x2=-2.故选:C.【点睛】本题考查了解一元二次方程-直接开平方法:形如ax2+c=0(a≠0)的方程可变形为2=cx a-,当a 、c 异号时,可利用直接开平方法求解. 4.A解析:A 【解析】 【分析】方差的大小反映数据的波动大小,方差越小,数据越稳定,根据题意可判断乙的数据比甲稳定,所以乙的方差小于甲. 【详解】解:由题意可知,乙的数据比甲稳定,所以2S 甲>2S 乙 故选:A 【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5.B解析:B 【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是25. 故选B. 考点:概率.6.D解析:D 【解析】 【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案. 【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意. 故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键. 7.D解析:D【解析】【分析】根据圆周角定理计算即可.【详解】解:由圆周角定理得,1252A BOC∠=∠=︒,故选:D.【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.A解析:A【解析】【分析】根据特殊角的三角函数值计算即可.【详解】解:sin30°=12.故选:A.【点睛】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.9.B解析:B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.10.C解析:C【解析】【分析】点到圆心的距离大于半径,得到点在圆外.【详解】∵点P到圆心O的距离为4.5,⊙O的半径为4,∴点P在圆外.故选:C.【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d的距离与半径r的大小确定点与圆的位置关系.11.B解析:B【解析】【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O的直径为4,∴⊙O的半径为2,∵圆心O到直线l的距离是2,∴根据圆心距与半径之间的数量关系可知直线l与⊙O的位置关系是相切.故选:B.【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r,圆心到直线的距离是d,当d=r时,直线和圆相切,当d>r时,直线和圆相离,当d<r时,直线和圆相交.12.A解析:A【解析】【分析】先将这组数据从小到大排列,找出最中间的数,就是中位数,出现次数最多的数就是众数.【详解】解:将这组数据从小到大排列为:2,2,2,3,5,6,8,最中间的数是3,则这组数据的中位数是3;2出现了三次,出现的次数最多,则这组数据的众数是2;故选:A.【点睛】此题考查了众数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.13.D解析:D【解析】【分析】利用一元二次方程的定义判断即可.【详解】解:A 、原方程为二元一次方程,不符合题意;B 、原式方程为二元二次方程,不符合题意;C 、原式为分式方程,不符合题意;D 、原式为一元二次方程,符合题意,故选:D .【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.14.D解析:D【解析】【分析】根据题意得出△DEF ∽△BCF ,进而得出=DE EF BC FC ,利用点E 是边AD 的中点得出答案即可.【详解】解:∵▱ABCD ,故AD ∥BC ,∴△DEF ∽△BCF , ∴=DE EF BC FC, ∵点E 是边AD 的中点, ∴AE=DE=12AD , ∴12EF FC . 故选D .15.A解析:A【解析】根据黄金比的定义得:12AP AB = ,得1422AP =⨯= .故选A. 二、填空题16.不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B (0,-3)、C (2,-3),∴BC ∥x 轴,而点A (1,-3)与C 、解析:不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B (0,-3)、C (2,-3),∴BC ∥x 轴,而点A (1,-3)与C 、B 共线,∴点A 、B 、C 共线,∴三个点A (1,-3)、B (0,-3)、C (2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.17.y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解析:y=x 2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为y=x2+2.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18.点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=厘米,∵半径为4厘米,∴点C在圆A外【点解析:点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=223534+=厘米,∵半径为4厘米,∴点C在圆A外【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.19.【解析】【分析】通过延长MN 交DA 延长线于点E ,DF⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt△DMF 和Rt△DCF 中,利用勾股定理列方程求DM 长,根1【解析】【分析】通过延长MN 交DA 延长线于点E ,DF ⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根据圆的性质即可求解.【详解】如图,延长MN 交DA 延长线于点E ,过D 作DF ⊥BC 交BC 延长线于F,连接MD,∵四边形ABCD 是菱形,∴AB=BC=CD=4,AD ∥BC,∴∠E=∠EMB, ∠EAN=∠NBM,∵AN=BN,∴△EAN ≌BMN,∴AE=BM,EN=MN,∵90DNM ∠=︒,∴DN ⊥EM,∴DE=DM,∵AM ⊥BC,DF ⊥BC,AB=DC,AM=DF∴△ABM ≌△DCF,∴BM=CF,设BM=x,则DE=DM=4+x,在Rt △DMF 中,由勾股定理得,DF 2=DM 2-MF 2=(4+x)2-42,在Rt △DCF 中,由勾股定理得,DF 2=DC 2-CF 2=4 2-x 2,∴(4+x)2-42=4 2-x 2,解得,x 1=2,x 2=232(不符合题意,舍去)∴DM=2,∴90DNM ∠=︒∴过M 、N 、D 三点的外接圆的直径为线段DM, ∴其外接圆的半径长为1312DM .31.【点睛】本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X字型”全等模型是解答此题的突破口,也是解答此题的关键.20.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.21.115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连解析:115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.22.(2,﹣3)【解析】【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题解析:(2,﹣3)【解析】【分析】根据:对于抛物线y=a (x ﹣h )2+k 的顶点坐标是(h,k).【详解】抛物线y=(x ﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式.23.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为> 24..【解析】试题分析:∵在△ABC 中,∠C =90°,cosA =,∴.∴可设.∴根据勾股定理可得.∴.考点:1.锐角三角函数定义;2.勾股定理. 解析:43. 【解析】 试题分析:∵在△ABC 中,∠C =90°,cosA =35,∴35AC AB =. ∴可设35AC k AB k ==,.∴根据勾股定理可得4BC k =. ∴44tanA 33BC k AC k ===. 考点:1.锐角三角函数定义;2.勾股定理.25.【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴ 解析:72【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】 解:∵一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根, ∴2214241402b ac k k ,整理得,22410k k , ∴21+22k k 2221k k k 224k k224k k当21+22k k 时, 224k k142=-+ 72= 故答案为:72. 【点睛】本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.26.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为1203180π⨯=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.27.60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧解析:60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 28.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:. 【点睛】本题主要考查二次函 解析:22(1)2y x =+-【解析】 【分析】根据二次函数图象的平移规律平移即可. 【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-. 【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键.29.=31.5 【解析】 【分析】根据题意,第一次降价后的售价为,第二次降价后的售价为,据此列方程得解. 【详解】 根据题意,得: =31.5故答案为:=31.5. 【点睛】本题考查一元二次方程的解析:()2561x -=31.5 【解析】 【分析】根据题意,第一次降价后的售价为()561x -,第二次降价后的售价为()2561x -,据此列方程得解. 【详解】 根据题意,得:()2561x -=31.5故答案为:()2561x -=31.5. 【点睛】本题考查一元二次方程的应用,关键是理解第二次降价是以第一次降价后的售价为单位“1”的.30.2或3 【解析】 【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可. 【详解】解:设AP =xcm .则解析:2或3 【解析】 【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可. 【详解】解:设AP =xcm .则BP =AB ﹣AP =(5﹣x )cm以A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似, ①当AD :PB =PA :BC 时,352x x =-, 解得x =2或3. ②当AD :BC =PA +PB 时,3=25x x-,解得x =3, ∴当A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,AP 的值为2或3. 故答案为2或3. 【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.三、解答题31.该段运河的河宽为. 【解析】 【分析】过D 作DE ⊥AB ,可得四边形CHED 为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH 与直角三角形BDE 中,设CH=DE=xm ,利用锐角三角函数定义表示出AH 与BE ,由AH+HE+EB=AB 列出方程,求出方程的解即可得到结果.【详解】解:过D 作DE AB ⊥,可得四边形CHED 为矩形,40HE CD m ∴==, 设CH DE xm ==,在Rt BDE ∆中,60DBA ∠=︒,3BE xm ∴=, 在Rt ACH ∆中,30BAC ∠=︒,3AH xm ∴=,由160AH HE EB AB m ++==,得到3340160x x ++=, 解得:303x =,即303CH m =, 则该段运河的河宽为303m .【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键. 32.(1)14;(2)716; 【解析】 【分析】(1)属于求简单事件的概率,根据概率公式计算可得;(2)用列表格法列出所有的等可能结果,从中确定符合事件的结果,根据概率公式计算可得. 【详解】解:(1)小亮随机报名一个项目共有4种等可能结果,分别为A.足球、B.机器人、C.航模、D.绘画,其中选择“机器人”的有1种,为B.机器人,所以选择“机器人”的概率为P=14. (2)用列表法表示所有可能出现的结果如图:从表格可以看出,总共有16种结果,每种结果出现的可能性相同,其中至少有一人参加“航模”社团有7种,分别为(A,C),(B,C),(C,A), (C,B),(C,C), (C,D),(D,C),所以两人至少有一人参加“航模”社团的概率P=7 16.【点睛】本题考查的是求简单事件的概率和两步操作事件的概率,用表格或树状图表示总结果数是解答此类问题的关键.33.(1)y=﹣(x﹣1)2+1,C(﹣1,﹣3);(2)3;(3)存在满足条件的N点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0)【解析】【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)设直线AC的解析式为y=kx+b,与x轴交于D,得到y=2x−1,求得BD于是得到结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得MN ONAB BC=或MN ONBC AB=,可求得N点的坐标.【详解】(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得22-2y x x y x⎧=+⎨=⎩﹣,解得2xy=⎧⎨=⎩或13xy=-⎧⎨=-⎩,∴B(2,0),C(﹣1,﹣3);(2)设直线AC的解析式为y=kx+b,与x轴交于D,把A (1,1),C (﹣1,﹣3)的坐标代入得13k bk b =+⎧⎨-=-+⎩,解得:21k b =⎧⎨=-⎩,∴y=2x ﹣1,当y=0,即2x ﹣1=0,解得:x=12,∴D (12,0), ∴BD=2﹣12=32, ∴△ABC 的面积=S △ABD +S △BCD =12×32×1+12×32×3=3; (3)假设存在满足条件的点N ,设N (x ,0),则M (x ,﹣x 2+2x ), ∴ON=|x|,MN=|﹣x 2+2x|,由(2)知,,, ∵MN ⊥x 轴于点N ,∴∠ABC=∠MNO=90°, ∴当△ABC 和△MNO 相似时,有MN ON AB BC =或MN ONBC AB=, ①当MN ON AB BC =时,∴=|x||﹣x+2|=13|x|, ∵当x=0时M 、O 、N 不能构成三角形,∴x≠0,∴|﹣x+2|=13,∴﹣x+2=±13,解得x=53或x=73,此时N 点坐标为(53,0)或(73,0); ②当或MN ON BC AB =时,∴=,即|x||﹣x+2|=3|x|, ∴|﹣x+2|=3,∴﹣x+2=±3,解得x=5或x=﹣1, 此时N 点坐标为(﹣1,0)或(5,0), 综上可知存在满足条件的N 点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0). 【点睛】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理及逆定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N 、M 的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中. 34.(1)见解析;(2)19【解析】 【分析】(1)根据题意列表,展示出所有等可能的坐标结果;(2)由(1)可求得点落在二次函数y=x2﹣5x+6的图象上的结果数,再根据概率公式计算即可解答.【详解】(1)根据题意列表如下:(2)由上表可知,点(1,2)、(4,2)都在二次函数y=x2﹣5x+6的图象上,所以P(这些点落在二次函数y=x2﹣5x+6的图象上)=218=19.【点睛】本题考查列表法或树状图法求概率,解题的关键是不重复不遗漏地列出所有等可能的结果.35.x1=7,x2=1-【解析】【分析】观察原方程,可运用二次三项式的因式分解法进行求解.【详解】解:原方程可化为:(x-7)(x+1)=0,x-7=0或x+1=0;解得:x1=7,x2=1-.【点睛】本题考查了解一元二次方程的方法,解题的关键是熟练掌握因式分解法解一元二次方程.四、压轴题36.(1)12;(2);(3)【解析】【分析】(1)如图1中,过点B作BD CA⊥,交CA延长线于点D,通过构造直角三角形,求出。
广东省佛山市九年级(上)期末数学试卷
九年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.已知3x=2y,则x,y一定满足( )A. x=2,y=3B. x=3,y=2C. xy=23D. xy=322.如图,△ABC中,∠C=90°,若AC=4,BC=3,则cos B等于( )A. 35B. 34C. 45D. 433.如图是由5个大小相同的正方体搭成的几何体,该几何体的俯视图( )A.B.C.D.4.在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有( )A. 12个B. 14个C. 18个D. 28个5.已知a是方程x2-2x-1=0的一个根,则代数式2a2-4a-1的值为( )A. 1B. −2C. −2或1D. 26.如图,在△ABC中,DE∥BC,AD=4,AE=3,CE=6,那么BD的值是( )A. 4B. 6C. 8D. 127.关于x的一元二次方程9x2-6x+k=0有两个不相等的实根,则k的范围是( )A. k<1B. k>1C. k≤1D. k≥18.如图,丝带重叠的部分一定是( )A. 正方形B. 矩形C. 菱形D. 都有可能9.已知反比例函数y=-8x,下列结论:①图象必经过(-2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>-1时,则y>8.其中错误的结论有( )个A. 3B. 2C. 1D. 010.函数y=kx与y=-kx+k(k≠0)在同一平面直角坐标系中的大致图象是( )A. B.C. D.二、填空题(本大题共5小题,共20.0分)11.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离为9m,则AB与CD间的距离是______m.12.若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是______.13.如图,点P在反比例函数y=kx(x<0)的图象上,过P分别作x轴、y轴的垂线,垂足分别为点A、B.已知矩形PAOB的面积为8,则k=______.14.如图,现有测试距离为5m的一张视力表,表上一个E的高AB为2cm,要制作测试距离为3m的视力表,其对应位置的E的高CD为______cm.15.如图,正方形ABCD顶点C、D在反比例函数y=6x(x>0)图象上,顶点A、B分别在x轴、y轴的正半轴上,则点C的坐标为______.三、计算题(本大题共3小题,共16.0分)16.计算:2cos60°+tan45°=______.17.解方程:x2+4x-3=0.18.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OB.(1)求证:四边形ABCD是矩形;(2)若AB=2,∠AOB=60°,求BC的长.四、解答题(本大题共7小题,共54.0分)19.如图所示,小明家住在30米高的A楼里,小丽家住在B楼里,B楼坐落在A楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°.(1)如果A、B两楼相距163米,那么A楼落在B楼上的影子有多长?(2)如果A楼的影子刚好不落在B楼上,那么两楼的距离应是多少米?(结果保留根号)20.有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和-2;乙袋中有三个完全相同的小球,分别标有数字-1、0和2.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点A的坐标为(x,y).(1)请用表格或树状图列出点A所有可能的坐标;(2)求点A在反比例函数y=2x图象上的概率.21.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2014年起逐月增加,据统计,2014年该商城1月份销售自行车64辆,3月份销售了100辆.(1)求1月到3月自行车销量的月平均增长率;(2)若按照(1)中自行车销量的增长速度,问该商城4月份能卖出多少辆自行车?22.如图,点D,E在线段BC上,△ADE是等边三角形,且∠BAC=120°(1)求证:△ABD∽△CAE;(2)若BD=2,CE=8,求BC的长.23.如图,一次函数y=kx+b的图象交反比例函数y=ax(x>0)的图象于A(4,-8)、B(m,-2)两点,交x轴于点C.(1)求反比例函数与一次函数的关系式;(2)根据图象回答:当x为何值时,一次函数的值大于反比例函数的值?(3)以O、A、B、P为顶点作平行四边形,请直接写出点P的坐标.24.如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上的动点,且DE=CF,连接DF、AE,AE的延长线交DF于点M,连接OM.(1)求证:△ADE≌△DCF;(2)求证:AM⊥DF;(3)当CD=AF时,试判断△MOF的形状,并说明理由.25.如图,在平面直角坐标系中,A、B两点的坐标分别为(20,0)和(0,15),动点P从点A出发在线段AO上以每秒2cm的速度向原点O运动,动直线EF从x轴开始以每秒lcm的速度向上平行移动(即EF∥x轴),分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=9时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t使得△PEF的面积等于40cm2?若存在,请求出此时t的值;若不存在,请说明理由;(3)当t为何值时,△EOP与△BOA相似.答案和解析1.【答案】C【解析】解:∵3x=2y,∴.故选:C.根据两内项之积等于两外项之积解答即可.本题考查了比例的性质,熟记两内项之积等于两外项之积是解题的关键.2.【答案】A【解析】解:由勾股定理,得AB==5,cosB==,故选:A.根据勾股定理,可得AB的长,根据余弦等于邻边比斜边,可得答案.本题考查了锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.【答案】D【解析】解:从上往下看得到的平面图形是D,故选:D.根据俯视图的定义即可判断.本题考查三视图,解题的关键是熟练掌握基本知识,属于中考常考题型.4.【答案】B【解析】解:设袋子中黄球有x个,根据题意,得:=0.35,解得:x=14,即布袋中黄球可能有14个,故选:B.利用频率估计概率得到摸到黄球的概率为0.35,然后根据概率公式计算即可.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.5.【答案】A【解析】解:∵a是方程x2-2x-1=0的一个根,∴a2-2a-1=0,整理得,a2-2a=1,∴2a2-4a-1=2(a2-2a)-1=2×1-1=1.故选:A.根据一元二次方程的解的定义,把x=a代入方程求出a2-2a的值,然后整体代入代数式进行计算即可得解.本题考查了一元二次方程的解,利用整体思想求出a2-2a的值,然后整体代入是解题的关键.6.【答案】C【解析】解:∵DE∥BC,∴=,即=,∴BD=8.故选:C.根据平行线分线段长比例定理得到=,然后利用比例性质可求出BD的长.本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.7.【答案】A【解析】解:∵关于x的一元二次方程9x2-6x+k=0有两个不相等的实根,∴△=(-6)2-4×9k>0,解得k<1.故选:A.根据判别式的意义得到△=(-6)2-4×9k>0,然后解不等式即可.此题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.【答案】C【解析】解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,所以AB∥CD,AD∥BC,AE=AF.∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.又AE=AF.∴BC=CD,∴四边形ABCD是菱形.故选:C.首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.本题利用了平行四边形的判定和平行四边形的面积公式、一组邻边相等的平行四边形是菱形.9.【答案】B【解析】解:①当x=-2时,y=4,即图象必经过点(-2,4);②k=-8<0,图象在第二、四象限内;③k=-8<0,每一象限内,y随x的增大而增大,错误;④k=-8<0,每一象限内,y随x的增大而增大,若0>x>-1,-y>8,故④错误,故选:B.根据反比例函数的性质,可得答案.本题考查了反比例函数的性质,熟记反比例函数的性质是解题关键.10.【答案】A【解析】解:当k>0时,反比例函数的图象位于第一、三象限,一次函数的图象交y轴于正半轴,y随着x的增大而减小,A选项符合,C选项错误;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y轴于负半轴,y随着x的增大而增大,B、D均错误;故选:A.分k>0和k<0两种情况确定正确的选项即可.本题考查反比例函数与一次函数的图象性质:解题的关键是分两种情况确定答案,难度不大.11.【答案】6【解析】解:作PE⊥CD于E,交AB于F,如图,则PF=9,∵AB∥CD,∴PF⊥CD,△PAB∽△PCD,∴=,即=,∴PF=3,∴EF=PE-PF=9-3=6.∴AB与CD间的距离是6m.故答案为6.作PE⊥CD于E,交AB于F,如图,则PF=9,利用AB∥CD可判断△PAB∽△PCD,利用相似比计算出PF,然后计算出EF即可.本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,利用三角形相似的性质求相应线段的长.12.【答案】1:2【解析】解:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:2,∴这两个相似三角形的周长比是1:2,故答案为:1:2.根据相似三角形面积的比等于相似比的平方求出相似比,根据似三角形周长的比等于相似比得到答案.本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.13.【答案】-8【解析】解:∵S矩形PAOB=8,∴|k|=8,∵图象在二、四象限,∴k<0,∴k=-8,故答案为:-8.根据反比例函数k的几何意义可得|k|=-8,再根据图象在二、四象限可确定k<0,进而得到解析式.本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.14.【答案】1.2【解析】解:OB=5m,OD=3m,AB=2cm,∵CD∥AB,∴△OCD∽△OAB,∴=,即=,∴CD==1.2,即对应位置的E的高CD为1.2cm.故答案为1.2.证明△OCD∽△OAB,然后利用相似比计算出CD即可.本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,利用三角形相似的性质求相应线段的长.15.【答案】(3,23)【解析】解:如图,过点C作CE⊥y轴于E,过点D做DF⊥x轴于F,设C(a,),则CE=a,OE=,∵四边形ABCD为正方形,∴BC=AB=AD,∵∠BEC=∠AOB=∠AFD=90°,∴∠EBC+∠OBA=90°,∠ECB+∠EBC=90°,∴∠ECB=∠OBA,同理可得:∠DAF=∠OBA,∴Rt△BEC≌Rt△AOB≌Rt△DFA,∴OB=EC=AF=a,∴OA=BE=FD=-a,∴OF=a+-a=,∴点D的坐标为(,-a),把点D的坐标代入y=(x>0),得到(-a)=6,解得a=-(舍),或a=,∴点C的坐标为(,2),故答案为:(,2).要求C点的坐标,可设C点的坐标为(a,),作CE⊥y轴于E,FD⊥x轴于F,因为四边形ABCD是正方形,容易得出△BEC、△AOB、△DFA全等,从而可以用a表示出D点的坐标,从而构建方程解出a的值,则可求出C点的坐标.本题考查了反比函数图象上点坐标的坐标特征、正方形性质、三角形全等有关知识,题目综合性较强,解题的关键是能够用利用C点坐标表示出D点坐标从而构建方程,解答本题.16.【答案】2【解析】解:2cos60°+tan45°=2×+1=2.故选:2.直接利用特殊角的三角函数值代入求出即可.此题主要考查了特殊角的三角函数值,正确记忆特殊角的三角函数值是解题关键.17.【答案】解:原式可化为x2+4x+4-7=0即(x+2)2=7,开方得,x+2=±7,x1=-2+7;x2=-2-7.【解析】先利用配方法将原式化为完全平方的形式,再用直接开平方法解答.本题考查了解一元二次方程--配方法,熟悉完全平方公式是解题的关键.18.【答案】解:(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD又∵OA=OB∴OA=OB=OC=OD∴AC=BD∴四边形ABCD是矩形证法二:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD又∵OA=OBOA=12BD∴△ABD是以∠BAD为直角的直角三角形,∴∠BAD=90°根据矩形的定义知,四边形ABCD是矩形.(2)∵OA=OB,∠AOB=60°∴△AOB是等边三角形,∴OA=OB=AB=2∴AC=2OA=4∴在Rt△ABC中,根据勾股定理,有AB2+BC2=AC2∴BC2=AC2-AB2=42-22=16-4=12∴BC=23【解析】(1)证法一就根据“对角线互相平分且相等的四边形是矩形”由OA=OB=OC=OD得AC=BD,所以四边形ABCD是矩形;证法二则是根据“有一个角为直角的平行四边形是矩形”由,得△ABD是以∠BAD为直角的直角三角形,得∠BAD=90°,根据矩形的定义知,四边形ABCD是矩形;(2)由题意知OA=OB,∠AOB=60°∴△AOB是等边三角形,易知AC=4,根据勾股定理,有AB2+BC2=AC2可求得BC=.本题利用了矩形的判定和性质,勾股定理定理的应用求解.19.【答案】解:(1)如图,过D作DE⊥CG于E,ED=163,∠CDE=30°,∴CE=DE•tan30°=163×33=16(m),故DF=EG=CG-CE=30-16=14(m),答:A楼落在B楼上的影子有14m.(2)延长CD交GF于点H,当A楼的影子刚好不落在B楼上,则GH=CGtan30∘=3033=303(m),答:如果A楼的影子刚好不落在B楼上,那么两楼的距离应是303米.【解析】(1)利用锐角三角函数关系得出CE的长,进而得出答案;(2)可根据A楼,地面和光线正好构成直角三角形,利用锐角三角函数关系求解.本题考查的是解直角三角形在实际生活中的运用,善于观察题目的信息是解题以及学好数学的关键.20.【答案】解:(1)根据题意,可以画出如下的树状图:则点A所有可能的坐标有:(1,-1)、(1,0)、(1,2)、(-2,-1)、(-2,0)、(-2,-2);(2)在反比例函数y=2x图象上的坐标有:(1,2)、(-2,-1),所以点A在反比例函数y=2x图象上的概率为:26=13.【解析】(1)横坐标的可能性有两种,纵标的可能性有3种,则A点的可能性有六种,画出树状图即可;(2)根据点A要在反比例函数y=的图象,则横纵坐标的乘积为2,从而可以选出符合条件的A点,算出概率.本题考查了概率、反比函数上点的特征,题目难度不大,解题的关键是对用树状图或者列表法求概率的熟练掌握和对反比例函数点的特征的熟悉.21.【答案】解:(1)设1月到3月自行车销量的月平均增长率为x,根据题意列方程:64(1+x)2=100,解得x1=-225%(不合题意,舍去),x2=25%,答:1月到3月自行车销量的月平均增长率为25%;(2)100×(1+25%)=125(辆).答:该商城4月份卖出125辆自行车.【解析】(1)根据1月份和3月份的销售量求得月平均增长率;(2)根据上题求得的增长率求得4月份的销量即可.本题考查了一元二次方程的应用,解题关键是根据题意列出方程,这也是本题的难点.22.【答案】(1)证明:∵∠BAC=120°,∴∠BAD+∠EAC=60°,∵△ADE是等边三角形,∴∠ADE=∠AED=60°,∴∠BAD+∠B=60°,∠ADB=∠AEC=120°,∴∠B=∠EAC,又∠ADB=∠AEC,∴ABD∽△CAE;(2)解:∵ABD∽△CAE,∴BDAE=ADCE,即AD2=BD•CE=16,解得,AD=4,则DE=4,∴BC=BD+DE+EC=14.【解析】(1)根据等边三角形的性质、三角形的外角的性质得到∠B=∠EAC,∠ADB=∠AEC,根据相似三角形的判定定理证明结论;(2)根据相似三角形的性质列出比例式,计算即可.本题考查的是相似三角形的判定和性质、三角形的外角的性质,掌握相似三角形的判定定理和性质定理是解题的关键.23.【答案】解:(1)∵反比例函数y=ax(x>0)的图象于A(4,-8),∴k=4×(-8)=-32.∵双曲线y=ax过点B(m,-2),∴m=16.由直线y=kx+b过点A,B得:4k+b=−816k+b=−2,解得,k=12b=−10,∴反比例函数关系式为y=−32x,一次函数关系式为y=12x−10.(2)观察图象可知,当0<x<4或x>16时,一次函数的值大于反比例函数的值.(3)∵O(0,0),A(4,-8)、B(16,-2),分三种情况:①若OB∥AP,OA∥BP,∵O(0,0),A(4,-8),∴由平移规律,点B(16,-2)向右平移4个单位,向下平移8个单位得到P点坐标为(20,-10);②若OP∥AB,OA∥BP,∵A(4,-8),B(16,-2),∴由平移规律,点O(0,0)向右平移12个单位,向上平移6个单位得到P点坐标为(12,6);③若OB∥AP,OP∥AB,∵B(16,-2),A(4,-8),∴由平移规律,点O(0,0)向左平移12个单位,向下平移6个单位得到P点坐标为(-12,-6);∴以O,A,B,P为顶点作平行四边形,第四个顶点P的坐标为(12,6)或(-12,-6)或(20,-10).【解析】(1)将点A(4,-8),B(m,-2)代入反比例函数y=(x>0)中,可求k、a;再将点A(4,-8),B(m,-2)代入y=kx+b中,列方程组求k、b即可;(2)根据两函数图象的交点,图象的位置可确定一次函数的值大于反比例函数的值时x的范围;(3)根据平行四边形的性质,即可直接写出.本题考查了用待定系数法求函数解析式以及反比例函数和一次函数的交点问题,这里体现了数形结合的思想.24.【答案】(1)证明:∵四边形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=45°在△AED和△DFC中,AD=CD∠ADE=∠DCFDE=CF,∴△AED≌△DFC(SAS);(2)由①中△AED≌△DFC,∴∠EAD=∠FDC,∵∠ADM+∠FDC=90°,∴∠ADM+∠EAD=90°,∴∠AMD=90°,∴AM⊥DF;(3)如图,△MOF是等腰三角形,理由是:∵AD=CD,CD=AF∴AD=AF∵AM⊥DF,∴DM=FM,∵∠DOF=90°,∴OM=12DF=FM,∴△MOF是等腰三角形.【解析】(1)根据DE=CF和正方形的性质,证明△AED≌△DFC;(2)由△AED≌△DFC得出∠EAD=∠FDC,然后利用等角代换可得出∠AMD=90°,得出了结论.(2)利用等腰三角形三线合一得:DM=FM,再由直角三角形斜边中线可得结论.本题考查了正方形的性质、全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰三角形三线合一的性质,解答本题的关键是证明△AED≌△DFC,利用等角代换解题.25.【答案】解:(1)∵EF∥OA,∴∠BEF=∠BOA又∵∠B=∠B,∴△BEF∽△BOA,∴EFOA=BEBO,当t=9时,OE=9,OA=20,OB=15,∴EF=20×615=8,∴S△PEF=12EF•OE=12×8×9=36(cm2);(2)∵△BEF∽△BOA,∴EF=BE⋅OABO=(15−t)⋅2015=43(15-t),∴12×43(15-t)×t=40,整理,得t2-15t+60=0,∵△=152-4×1×60<0,∴方程没有实数根.∴不存在使得△PEF的面积等于40cm2的t值;(3)当∠EPO=∠BAO时,△EOP∽△BOA,∴OPOA=OEOB,即20−2t20=t15,解得t=6;当∠EPO=∠ABO时,△EOP∽△AOB,∴OPOB=OEOA,即20−2t15=t20,解得t=8011.∴当t=6或t=8011时,△EOP与△BOA相似.【解析】(1)由于EF∥x轴,则S△PEF=•EF•OE.t=9时,OE=9,关键是求EF.易证△BEF∽△BOA,则=,从而求出EF的长度,得出△PEF的面积;(2)假设存在这样的t,使得△PEF的面积等于40cm2,则根据面积公式列出方程,由根的判别式进行判断,得出结论;(3)如果△EOP与△BOA相似,由于∠EOP=∠BOA=90°,则只能点O与点O对应,然后分两种情况分别讨论:①点P与点A对应;②点P与点B对应.本题主要考查了相似三角形的判定和性质,一元二次方程根的判别式等知识点,要注意最后一问中,要分对应角的不同来得出不同的对应线段成比例,从而得出运动时间的值.不要忽略掉任何一种情况.。
┃精选3套试卷┃2021届佛山市九年级上学期期末学业水平测试数学试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AB 为O 的直径延长AB 到点P ,过点P 作O 的切线,切点为C ,连接,40AC P ∠=,D 为圆上一点,则D ∠的度数为( )A .25B .30C .35D .40【答案】A 【分析】连接OC,根据切线的性质和直角三角形两锐角互余求出COB ∠ 的度数,然后根据圆周角定理即可求出D ∠的度数.【详解】连接OC∵PC 为O 的切线∴90OCP ∠=︒∵40P ∠=︒90904050COB P ∴∠=︒-∠=︒-︒=︒1252D COB ∴∠=∠=︒ 故选:A .【点睛】本题主要考查切线的性质,直角三角形两锐角互余和圆周角定理,掌握切线的性质,直角三角形两锐角互余和圆周角定理是解题的关键.2.关于x 的方程(a ﹣1)x |a|+1﹣3x+2=0是一元二次方程,则( )A .a≠±1B .a =1C .a =﹣1D .a =±1【答案】C【解析】根据一元一次方程的定义即可求出答案.【详解】由题意可知:1012a a -≠⎧⎨⎩+=,解得a =−1 故选C .【点睛】本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型. 3.某公司一月份缴税40万元,由于公司的业绩逐月稳步上升,假设每月的缴税增长率相同,第一季度共缴税145.6万元,该公司这季度缴税的月平均增长率为多少?设公司这季度缴税的月平均增长率为x ,则下列所列方程正确的是( )A .()2401145.6x +=B .()240401145.6x ++= C .()40401145.6x ++=D .()()240401401145.6x x ++++= 【答案】D【分析】根据题意,第二月获得利润()401x +万元,第三月获得利润240(1)x +万元,根据第一季度共获利145.6万元,即可得出关于x 的一元二次方程,此题得解.【详解】设二、三月份利润的月增长率为x ,则第二月获得利润()401x +万元,第三月获得利润240(1)x +万元,依题意,得:()24040140(1)145.6x x ++++=. 故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.求平均变化率的方法为:若变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为2(1)a x b ±=.4.如图,点A 、B 、C 都在⊙O 上,若∠AOC=140°,则∠B 的度数是( )A .70°B .80°C .110°D .140°【答案】C 【解析】分析:作AC 对的圆周角∠APC ,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC 的度数.详解:作AC 对的圆周角∠APC ,如图,∵∠P=12∠AOC=12×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故选:C.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是AB上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【答案】C【解析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=PQOP,cosα=OQOP,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.6.如图,△ABC中,∠C=90°,∠B=30°,AC7,D、E分别在边AC、BC上,CD=1,DE∥AB,将△CDE绕点C旋转,旋转后点D、E对应的点分别为D′、E′,当点E′落在线段AD′上时,连接BE′,此时BE′的长为()A.3B.3C.7D.7【答案】B【分析】如图,作CH⊥BE′于H,设AC交BE′于O.首先证明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解决问题.【详解】解:如图,作CH⊥BE′于H,设AC交BE′于O.∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,∵DE∥AB,∴CDCA=CECB,∠CDE=∠CAB=∠D′=60°∴'CDCA='CECB,∵∠ACB=∠D′CE′,∴∠ACD′=∠BCE′,∴△ACD′∽△BCE′,∴∠D′=∠CE′B=∠CAB,在Rt△ACB中,∵∠ACB=90°,AC7,∠ABC=30°,∴AB=2AC=7,BC321∵DE∥AB,∴CDCA=CECB,721,∴CE3∵∠CHE′=90°,∠CE′H=∠CAB=60°,CE′=CE3∴E′H=12CE3CH3′=32,∴BH22BC CH-9214-53∴BE ′=HE ′+BH =33,故选:B .【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.7.已知一个圆锥的母线长为30 cm ,侧面积为300πcm ,则这个圆锥的底面半径为( )A .5 cmB .10 cmC .15 cmD .20 cm 【答案】B【解析】设这个圆锥的底面半径为r ,根据圆锥的侧面积公式可得π×r×30=300π,解得r=10cm ,故选B.8.已知圆锥的底面半径是4,母线长是9,则圆锥侧面展开图的面积是( )A .4πB .9πC .18πD .36π【答案】D【分析】先根据圆的周长公式计算出圆锥的底面周长,然后根据扇形的面积公式,即可求出圆锥侧面展开图的面积.【详解】解:圆锥的底面周长为:2×4π=8π,则圆锥侧面展开图的面积是189362ππ⨯⨯=. 故选:D.【点睛】此题考查的是求圆锥的侧面面积,掌握圆的周长公式和扇形的面积公式是解决此题的关键.9.将二次函数246y x x =-+化成顶点式,变形正确的是:( )A .2(2)2y x =-+B .2(2)2y x =++C .2(2)2y x =+-D .2(2)2y x =--【答案】A【分析】将246y x x =-+化为顶点式,再进行判断即可.【详解】246y x x =-+ ()222y x =-+故答案为:A .【点睛】本题考查了一元二次方程的问题,掌握一元二次方程的顶点式表示形式是解题的关键.10.顺次连接边长为6cm 的正六边形的不相邻的三边的中点,又形成一个新的正三角形,则这个新的正三角形的面积等于( )A .2813cmB .2363cmC .2183cmD .293cm 【答案】A【分析】作AP ⊥GH 于P ,BQ ⊥GH 于Q ,由正六边形和等边三角形的性质求出GH=PG+PQ+QH=9cm ,由等边三角形的面积公式即可得出答案.【详解】如图所示:作AP ⊥GH 于P ,BQ ⊥GH 于Q ,如图所示:∵△GHM 是等边三角形,∴∠MGH=∠GHM=60°,∵六边形ABCDEF 是正六边形,∴∠BAF=∠ABC=120°,正六边形ABCDEF 是轴对称图形,∵G 、H 、M 分别为AF 、BC 、DE 的中点,△GHM 是等边三角形,∴AG=BH=3cm ,∠MGH=∠GHM=60°,∠AGH=∠FGM=60°,∴∠BAF+∠AGH=180°,∴AB ∥GH ,∵作AP ⊥GH 于P ,BQ ⊥GH 于Q ,∴PQ=AB=6cm ,∠PAG=90°-60°=30°,∴PG=12AG=32cm , 同理:QH=32cm , ∴GH=PG+PQ+QH=9cm ,∴△GHM 的面积32=8134cm 2; 故选:A .【点睛】此题主要考查了正六边形的性质、等边三角形的性质及三角形的面积公式等知识;熟练掌握正六边形和等边三角形的性质是解题的关键.11. 若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为( ).A .-1或2B .-1或1C .1或2D .-1或2或1 【答案】D【解析】当该函数是一次函数时,与x 轴必有一个交点,此时a -1=0,即a =1.当该函数是二次函数时,由图象与x 轴只有一个交点可知Δ=(-4)2-4(a -1)×2a =0,解得a1=-1,a2=2.综上所述,a =1或-1或2.故选D.12.如果2a b =(a ,b 均为非零向量),那么下列结论错误的是( )A .a //bB .a -2b =0C .b =12aD .2a b =【答案】B【解析】试题解析:向量最后的差应该还是向量.20.a b -= 故错误.故选B.二、填空题(本题包括8个小题)13.某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有________ 条鱼.【答案】1000【解析】试题考查知识点:统计初步知识抽样调查思路分析:第二次捞出来的100条鱼中有10条带记号的,说明带记号的鱼约占整个池塘鱼的总数的十分之一.具体解答过程:第二次捞出来的100条鱼中有10条带记号的,说明带记号的鱼约占整个池塘鱼的总数的比例为:∵先从鱼塘中捞出后作完记号又放回水中的鱼有100条∴该鱼塘里总条数约为:(条)试题点评:14.已知实数x ,y 满足2330x x y ++-=,则x+y 的最大值为_______.【答案】4【解析】用含x 的代数式表示y ,计算x+y 并进行配方即可.【详解】∵2330x x y ++-=∴233y x x =--+∴()222314x y x x x +=--+=-++∴当x=-1时,x+y 有最大值为4故答案为4【点睛】本题考查的是求代数式的最大值,解题的关键是配方法的应用.15.如图,在正方形ABCD 中,对角线AC 、BD 交于点O ,E 是BC 的中点,DE 交AC 于点F ,则tan ∠BDE =______.【答案】13【分析】设AD =DC =a ,根据勾股定理求出AC ,易证△AFD ∽△CFE ,根据相似三角形的性质,可得:AF AD CF CE==2,进而求得CF ,OF 的长,由锐角的正切三角函数定义,即可求解. 【详解】∵四边形ABCD 是正方形,∴∠ADC =90°,AC ⊥BD ,设AD =DC =a ,∴AC 2a ,∴OA =OC =OD=22a , ∵E 是BC 的中点,∴CE =12BC =12a , ∵AD ∥BC ,∴△AFD ∽△CFE , ∴AF AD CF CE==2,∴CF =13AC=3a , ∴OF =OC ﹣CF, ∴tan ∠BDE =OF OD2a 13, 故答案为:13. 【点睛】本题主要考查相似三角形的判定和性质定理以及正切三角函数的定义,根据题意,设AD =DC =a ,表示出OF ,OD 的长度,是解题的关键.16.在一个不透明的塑料袋中装有红色白色球共40个.除颜色外其他都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在20%左右,则口袋中红色球可能有________个.【答案】1【分析】设有红球有x 个,利用频率约等于概率进行计算即可.【详解】设红球有x 个, 根据题意得:40x =20%, 解得:x =1,即红色球的个数为1个,故答案为:1.【点睛】本题考查了由频率估计概率的知识,解题的关键是了解大量重复实验中事件发生的频率等于事件发生的概率.17.若圆锥的底面圆半径为2cm ,圆锥的母线长为5cm ,则圆锥的侧面积为______2cm .【答案】10π【分析】根据圆锥的侧面积公式:S 侧=rl π代入数据计算即可.【详解】解:圆锥的侧面积=25102cm .故答案为:10π【点睛】本题考查了圆锥的侧面积公式,属于基础题型,熟练掌握计算公式是解题关键.18.如图,在矩形ABCD 中,AB=4,BC=8,将矩形沿对角线BD 折叠,使点C 落在点E 处,BE 交AD 于点F ,则BF 的长为________.【答案】5【解析】由翻折的性质可以知道EBD CBD ∠=∠,由矩形的性质可以知道: AD BC ∥,从而得到DBC ADB ∠=∠,于是EBD ADB ∠=∠,故此BF=DF,在AFB ∆中利用勾股定理可求得BF 的长.【详解】由折叠的性质知,CD=ED,BE=BC.四边形ABCD 是矩形,在ABF ∆和EDF ∆中,090BAF DEF AFB EFD AB ED∠=∠=∠=∠=⎧⎪⎨⎪⎩, ()ABF EDF AAS ∴∆≅∆,BF DF ∴=;设BF=x,则DF=x,AF=8-x,在Rt AFB ∆中,可得: 222BF AB AF =+,即()22248x x =+-,计算得出:x=5,故BF 的长为5.因此,本题正确答案是:5【点睛】本题考查了折叠的性质折叠前后两图形全等,即对应线段相等,对应角相等,也考查了勾股定理,矩形的性质.三、解答题(本题包括8个小题)19.如图,在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F .(1)求证:四边形ADCF 是菱形;(3)若AC =6,AB =8,求菱形ADCF 的面积.【答案】(1)详见解析;(2)24【分析】(1)可先证得△AEF ≌△DEB ,可求得AF=DB ,可证得四边形ADCF 为平行四边形,再利用直角三角形的性质可求得AD=CD ,可证得结论;(2)将菱形ADCF 的面积转换成△ABC 的面积,再用S △ABC 的面积=12AB•AC ,结合条件可求得答案. 【详解】(1)证明:∵E 是AD 的中点∴AE =DE∵AF ∥BC∴∠AFE =∠DBE 在△AEF 和△DEB 中AFE DBE DEB AEF AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△DEB (AAS )∴AF =DB∵D 是BC 的中点∴BD=CD=AF∴四边形ADCF 是平行四边形∵∠BAC =90°,∴AD =CD =12BC ∴四边形ADCF 是菱形;(2)解:设AF 到CD 的距离为h ,∵AF ∥BC ,AF =BD =CD ,∠BAC =90°,AC =6,AB =8∴S 菱形ADCF =CD•h =12BC•h =S △ABC =12AB•AC =168242⨯⨯=. 【点睛】本题主要考查菱形的判定和性质,全等三角形的判定与性质及直角三角形的性质,掌握菱形的判定方法是解题的关键.20.如图,在平面直角坐标系中,ΔABC 的三个顶点坐标分别为A (-2,1)、B (-1,4)、C (-3,2). (1)画图:以原点为位似中心,位似比为1:2,在第二象限作出ΔABC 的放大后的图形111A B C ∆ (2)填空:点C 1的坐标为 ,111tan C A B ∠= .【答案】(1)见解析;(2)(-6,4),2【分析】(1)利用位似比为1:2,进而将各对应点坐标扩大为原来的2倍,进而得出答案;(2)利用(1)中位似比得出对应点坐标.【详解】(1)如图所示:△A 1B 1C 1即为所求;(2)∵C 点坐标为(-3,2),∴C 1点坐标为(-6,4); ∵22112222C A =+=22114442C B =+=221126210B A =+=, ∵((222240+=,(21040=,∴222111111C A C B B A +=,∴111C A B 是直角三角形,且11190B C A ∠=︒, ∴111111142tan 222C B C A B C A ∠===. 【点睛】 本题主要考查了位似变换和锐角三角函数的知识,正确掌握位似比与坐标的关系是解题关键. 21.已知关于x 的一元二次方程2(2)10x m x m +++-=,(1) 求证:无论m 为何值,方程总有两个不相等的实数根;(2) 当m 为何值时,该方程两个根的倒数之和等于1.【答案】(2)见解析 (2)12- 【解析】(2)根据方程的系数结合根的判别式,可得出△=2m 2+4>0,进而即可证出:方程总有两个不相等的实数根;(2)利用根与系数的关系列式求得m 的值即可.【详解】证明:△=(m+2)2-4×2×(m-2)=m 2+2.∵m2≥0,∴m2+2>0,即△>0,∴方程总有两个不相等的实数根.(2)设方程的两根为a、b,利用根与系数的关系得:a+b=-m-2,ab=m-2根据题意得:11a b+=2,即:21mm=2解得:m=-12,∴当m=-12时该方程两个根的倒数之和等于2.【点睛】本题主要考查根与系数的关系,解题的关键是掌握根与系数的关系及根的判别式.22.某校九年级(1)班甲、乙两名同学在5次引体向上测试中的有效次数如下:甲:8,8,7,8,1.乙:5,1,7,10,1.甲、乙两同学引体向上的平均数、众数、中位数、方差如下:根据以上信息,回答下列问题:(1)表格中a=_______,b=_______,c=_______.(填数值)(2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是_______________________________________.班主任李老师根据去年比赛的成绩(至少1次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是_______________________________________.(3)乙同学再做一次引体向上,次数为n,若乙同学6次引体向上成绩的中位数不变,请写出n的最小值.【答案】(1)2;2;1(2)甲的方差较小,比较稳定;乙的中位数是1,众数是1,获奖可能性较大.(3)9n=.【分析】(1)根据中位数、众数、平均数的计算方法分别计算结果,得出答案;(2)选择甲,只要看甲的方差较小,发挥稳定,选择乙由于乙的众数较大,中位数较大,成绩在中位数以上的占一半,获奖的次数较多;(3)加入一次成绩为n 之后,计算6个数的平均数、众数、中位数,做出判断.【详解】解:(1)甲的成绩中,2出现的次数最多,因此甲的众数是2,即b=2,(5+1+7+1+10)÷5=2.即a=2,将乙的成绩从小到大排列为5,7,1,1,10,处在第3位的数是1,因此中位数是1,即c=1, 故答案为:2,2,1.(2)甲的方差为0.4,乙的方差为3.2,选择甲的理由是:甲的方差较小,比较稳定,选择乙的理由是:乙的中位数是1,众数是1,获奖可能性较大,(3)若要中位数不变,按照从小到大排列为:5,7,1,1,n ,10,或5,7,1,1,10,n , 可得n 最小值为1.【点睛】本题考查了平均数、中位数、众数的意义和计算方法,明确各个统计量的意义,反映数据的特征以及计算方法是正确解答的关键.23.如图,在ABC 中,90ACB ∠=︒,CD 平分ACB ∠交AB 于点D ,将CDB △绕点C 顺时针旋转到CEF △的位置,点F 在AC 上.(1)CDB △旋转的度数为______︒;(2)连结DE ,判断DE 与BC 的位置关系,并说明理由.【答案】(1)90;(2)DE ∥BC ,见解析【分析】(1)根据旋转的性质即可求得旋转角的度数;(2)先利求得∠DCE=∠BCF=90°,CD=CE ,可得△CDE 为等腰直角三角形,即∠CDE=45°,再根据角平分线定义得到∠BCD=45°,则∠CDE=∠BCD ,然后根据平行线的判定定理即可说明.【详解】解:(1)解:∵将△CDB 绕点C 顺时针旋转到△CEF 的位置,点F 在AC 上,∴∠BCF=90°,即旋转角为90°;故答案为90°.(2)DE BC ∥,理由如下:∵将CDB △绕点C 顺时针旋转到CEF △的位置,点F 在AC 上,∴90DCE BCF ∠=∠=︒,CD CE =,∴CDE △为等腰直角三角形,∴45CDE ∠=︒,∵CD 平分ACB ∠交AB 于点D ,∴45BCD ∠=︒,∴CDE BCD ∠=∠,∴DE BC ∥.【点睛】本题考查了旋转的性质、等腰三角形的性质以及平行线的判定,掌握旋转变换前后图形的特点以及旋转角的定义是解答本题的关键.24.解方程:x 2﹣4x ﹣12=1.【答案】x 1=6,x 2=﹣2.【解析】试题分析:用因式分解法解方程即可.试题解析:()()620x x -+=,60x =﹣或20x +=,所以1262x x ==-,.25.倡导全民阅读,建设书香社会.(调查)目前,某地纸媒体阅读率为40%,电子媒体阅读率为80%,综合媒体阅读率为90%.(百度百科)某种媒体阅读率,指有某种媒体阅读行为人数占人口总数的百分比;综合阅读率,在纸媒体和电子体中,至少有一种阅读行为的人数占人口总数的百分比,它反映了一个国家或地区的阅读水平. (问题解决)(1)求该地目前只有电子媒体阅读行为人数占人口总数的百分比;(2)国家倡导全民阅读,建设书香社会.预计未来两个五年中,若该地每五年纸媒体阅读人数按百分数x 减少,综合阅读人数按百分数x 增加,这样十年后,只读电子媒体的人数比目前增加53%,求百分数x .【答案】(1)该社区有电子媒体阅读行为人数占人口总数的百分比为50%.(2)x 为10%.【分析】(1)根据题意,利用某地传统媒体阅读率为80%,数字媒体阅读率为40%,而综合阅读率为90%,得出等式求出答案;(2)根据综合阅读人数﹣纸媒体阅读人数=只读电子媒体的人数,结合该地每五年纸媒体阅读人数按百分数x 减少,综合阅读人数按百分数x 增加列出方程即可求出答案.【详解】解:(1)设某地人数为a ,既有传统媒体阅读又有数字媒体阅读的人数为y ,则传统媒体阅读人数为0.8a ,数字媒体阅读人数为0.4a .依题意得:0.8a+0.4a ﹣y =0.9a ,解得y =0.3a ,∴传统媒体阅读又有数字媒体阅读的人数占总人口总数的百分比为30%.则该社区有电子媒体阅读行为人数占人口总数的百分比为=80%﹣30%=50%.(2)依题意得:0.9a (1+x )2+0.4a (1﹣x )2=0.5a (1+0.53),整理得:5x 2+26x ﹣2.65=0, 解得:x 1=0.1=10%,x 2=﹣5.3(舍去),答:x 为10%.【点睛】此题主要考查了一元二次方程的应用,根据题意得出正确等量关系是解题关键.26.已知△ABC 在平面直角坐标系中的位置如图所示.(1)分别写出图中点A 和点C 的坐标;(2)画出△ABC 绕点C 按顺时针方向旋转90°后的△A′B′C′;(3)求点A 旋转到点A ′所经过的路线长(结果保留π).【答案】(1)()04A ,、()31C ,(2)见解析(3)322【解析】试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A 所经过的路程是以点C 为圆心,AC 长为半径的扇形的弧长.试题解析:(1)A (0,4)C (3,1)(2)如图所示:(3)根据勾股定理可得:AC=32,则9032321801802n rlπππ⨯===.考点:图形的旋转、扇形的弧长计算公式.27.如图,Rt△ABC中,∠ACB=90°,AC=BC,D是线段AB上一点(0<AD<12AB).过点B作BE⊥CD,垂足为E.将线段CE绕点C逆时针旋转90°,得到线段CF,连接AF,EF.设∠BCE的度数为α.(1)①依题意补全图形.②若α=60°,则∠CAF=_____°;EFAB=_____;(2)用含α的式子表示EF与AB之间的数量关系,并证明.【答案】(1)①补图见解析;②30,12;(2)EF=ABcosα;证明见解析.【分析】(1)①利用旋转直接画出图形,②先求出∠CBE=30°,再判断出△ACF≌△BCE,得出∠CAF=30°,再利用等腰直角三角形的性质计算即可得出结论;(2)先判断出△ACF≌△BCE,得出∠CAF=α,再同(1)②的方法即可得出结论.【详解】(1)①将线段CE绕点C逆时针旋转90°,得到线段CF,连接AF,EF,如图1;②∵BE⊥CD,∠CEB=90°,∵α=60°,∴∠CBE=30°,在Rt△ABC中,AC=BC,∴AC=22AB,∵∠FCA=90°﹣∠ACE,∠ECB=90°﹣∠ACE,∴∠FCA=∠ECB=α.在△ACF 和△BCE 中,AC =BC ,∠FCA =∠ECB ,FC =EC ,∴△ACF ≌△BCE (SAS ),∴∠AFC =∠BEC =90°,∠CAF =∠CBE =30°,∴CF =12AC , 由旋转知,CF =CE ,∠ECF =90°,∴EF CF =2AC =2×2AB =12AB , ∴EF AB =12, 故答案为30,12; (2)EF =ABcosα.证明:∵∠FCA =90°﹣∠ACE ,∠ECB =90°﹣∠ACE ,∴∠FCA =∠ECB =α.同(1)②的方法知,△ACF ≌△BCE ,∴∠AFC =∠BEC =90°,∴在Rt △AFC 中,cos ∠FCA =FC AC . ∵∠ACB =90°,AC =BC ,∴∠CAB =∠CBA =45°.∵∠ECF =90°,CE =CF ,∴∠CFE =∠CEF =45°.在△FCE 和△ACB 中,∠FCE =∠ACB =90°,∠CFE =∠CAB =45°,∴△FCE ∽△ACB , ∴EF FC AB AC=cos ∠FCA =cosα, 即EF =ABcosα.【点睛】此题是相似形综合题,主要考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,判断出△ACF ≌△BCE 是解本题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.对于两个不相等的实数,a b ,我们规定符号{,}Max a b 表示,a b 中的较大值,如:{3,6}6Max =,按照这个规定,方程44{,}x Max x x x --=的解为( )A .2B .1-C .2+或2-D .2或2--【答案】D【分析】分两种情况讨论:①x x >-,②x x <-,根据题意得出方程求解即可. 【详解】44-x x有意义,则0x ≠ ①当x x >-,即0x >时,由题意得44-x x x=, 去分母整理得2440x x -+=,解得122x x ==经检验,122x x ==是分式方程的解,符合题意;②当x x <-,即0x <时,由题意得44--x x x=, 去分母整理得2440x x +-=,解得12x =-+,22x =--,经检验,12x =-+,22x =--是分式方程的解,但0x <,∴取2=--x综上所述,方程的解为2或2--故选:D .【点睛】本题考查了新型定义下的分式方程与解一元二次方程,理解题意,进行分类讨论是解题的关键. 2.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事,一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,前三天累计票房收入达10亿元,若设增长率为x ,则可列方程为( )A .()23110x +=B .()()231110x x ++++=C .()233110x ++= D .()()23313110x x ++++=【答案】D【分析】根据题意可得出第二天的票房为()31x +,第三天的票房为()231x +,将三天的票房相加得到票房总收入,即可得出答案.【详解】解:设增长率为x ,由题意可得出,第二天的票房为()31x +,第三天的票房为()231x +,因此,()()23313110x x ++++=.故选:D . 【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式.3.将抛物线y =212x 向左平移2个单位后,得到的新抛物线的解析式是( ) A .21(2)2y x =+ B .y =2122x +C .y =21(2)2x - D .y =2122x -【答案】A【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可. 【详解】解:将抛物线y =212x 向左平移2个单位后,得到的新抛物线的解析式是:21(2)2y x =+.故答案为A . 【点睛】本题考查了二次函数图像的平移法则,即掌握“左加右减,上加下减”是解答本题的关键. 4.数据3、3、5、8、11的中位数是( ) A .3 B .4C .5D .6【答案】C【解析】根据中位数的定义进行求解即可. 【详解】从小到大排序:3、3、5、8、11, 位于最中间的数是5, 所以这组数据的中位数是5, 故选C. 【点睛】本题考查了中位数,熟练掌握中位数的定义以及求解方法是解题的关键.①给定n 个数据,按从小到大排序,如果n 为奇数,位于中间的那个数就是中位数;如果n 为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.5.质检部门对某酒店的餐纸进行调查,随机调查5包(每包5片),5包中合格餐纸(单位:片)分别为4,5,4,5,5,则估计该酒店的餐纸的合格率为 ( ) A .95% B .97%C .92%D .98%【答案】C【分析】随机调查1包餐纸的合格率作为该酒店的餐纸的合格率,即用样本估计总体. 【详解】解:1包(每包1片)共21片,1包中合格餐纸的合格率4545592%25++++==.故选:C . 【点睛】本题考查用样本估计整体,注意1包中的总数是21,不是1.6.将抛物线y =x 2﹣2向上平移1个单位后所得新抛物线的表达式为( ) A .y =2x ﹣1 B .y =2x ﹣3C .y =2(1)x +﹣2D .y =2(1)x -﹣2【答案】A【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:将抛物线y =x 2﹣2向上平移1个单位后所得新抛物线的表达式为y =x 2﹣2+1, 即y =x 2﹣1. 故选:A . 【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键. 7.下列图形中,是中心对称的图形的是( )A .直角三角形B .等边三角形C .平行四边形D .正五边形【答案】C【分析】根据中心对称的定义,结合所给图形即可作出判断. 【详解】解:A .直角三角形不是中心对称图象,故本选项错误; B .等边三角形不是中心对称图象,故本选项错误; C .平行四边形是中心对称图象,故本选项正确; D .正五边形不是中心对称图象,故本选项错误. 故选:C . 【点睛】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合. 8.二次函数()2214y x =-+-下列说法正确的是( ) A .开口向上B .对称轴为直线1x =C .顶点坐标为()1,4D .当1x <-时,y 随x 的增大而增大【答案】D【分析】根据解析式即可依次判断正确与否. 【详解】∵a=-20<, ∴开口向下,A 选项错误; ∵()2214y x =-+-,∴对称轴为直线x=-1,故B 错误; ∵()2214y x =-+-,∴顶点坐标为(-1,-4),故C 错误; ∵对称轴为直线x=-1,开口向下,∴当1x <-时,y 随x 的增大而增大,故D 正确. 故选:D. 【点睛】此题考查二次函数的性质,掌握不同函数解析式的特点,各字母代表的含义,并熟练运用解题是关键. 9.若点A (2,y 1),B (﹣3,y 2),C (﹣1,y 3)三点在抛物线y =x 2﹣4x ﹣m 的图象上,则y 1、y 2、y 3的大小关系是( ) A .y 1>y 2>y 3 B .y 2>y 1>y 3 C .y 2>y 3>y 1 D .y 3>y 1>y 2【答案】C【分析】先求出二次函数24y x x m =--的图象的对称轴,然后判断出()12,A y ,()23,B y -,()31,C y -在抛物线上的位置,再根据二次函数的增减性求解. 【详解】解:∵二次函数24y x x m =--中10a =>, ∴开口向上,对称轴为22bx a=-=, ∵()12,A y 中2x =,∴1y 最小,又∵()23,B y -,()31,C y -都在对称轴的左侧, 而在对称轴的左侧,y 随x 得增大而减小,故23y y >. ∴213y y y >>. 故选:C . 【点睛】本题考查二次函数的图象与性质,特别是对称轴与其两侧的增减性,熟练掌握图象与性质是解答关键. 10.在实数|﹣3|,﹣2,0,π中,最小的数是( )A .|﹣3|B .﹣2C .0D .π【答案】B【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案. 【详解】在实数|-3|,-1,0,π中, |-3|=3,则-1<0<|-3|<π, 故最小的数是:-1. 故选B . 【点睛】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键. 11.-2019的相反数是( ) A .2019 B .-2019C .12019D .12019-【答案】A【分析】根据只有符号不同的两个数是互为相反数解答即可. 【详解】解:-1的相反数是1. 故选A . 【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数. 12.已知反比例函数ky x=的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限 B .第一、三象限C .第二、四象限D .第三、四象限【答案】B【详解】解:将点(m ,3m )代入反比例函数ky x=得, k=m•3m=3m 2>0; 故函数在第一、三象限, 故选B .二、填空题(本题包括8个小题)13.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y (米)关于水珠与喷头的水平距离x (米)的函数解析式是()2510042y x x x =-+≤≤.水珠可以达到的最大高度是________(米). 【答案】10【解析】将一般式转化为顶点式,依据自变量的变化范围求解即可.【详解】解:()()222555104210222y x x x x x =-+=--=--+,当x=2时,y 有最大值10, 故答案为:10. 【点睛】利用配方法将一般式转化为顶点式,再利用顶点式去求解函数的最大值.14.如图,点A 、B 、C 、D 都在⊙O 上,∠ABC =90°,AD =4,CD =3,则⊙O 的半径的长是______.【答案】2.5【分析】连接AC ,根据∠ABC=90°可知AC 是⊙O 的直径,故可得出∠D=90°,再由AD=4,CD=3可求出AC 的长,进而得出结论. 【详解】解:如图,连接AC ,∵∠ABC=90°, ∴AC 是⊙O 的直径, ∴∠D=90°, ∵AD=4,CD=3, ∴AC= 5,∴⊙O 的半径= 2.5, 故答案为:2.5. 【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键. 15.已知△ABC 中,tanB=23,BC=6,过点A 作BC 边上的高,垂足为点D ,且满足BD :CD=2:1,则△ABC 面积的所有可能值为____________. 【答案】8或1.【解析】试题分析:如图1所示:∵BC=6,BD:CD=2:1,∴BD=4,∵AD⊥BC,tanB=23,∴ADBD=23,∴AD=23BD=83,∴S△ABC=12BC•AD=12×6×83=8;如图2所示:∵BC=6,BD:CD=2:1,∴BD=12,∵AD⊥BC,tanB=23,∴ADBD=23,∴AD=23BD=8,∴S△ABC=12BC•AD=12×6×8=1;综上,△ABC面积的所有可能值为8或1,故答案为8或1.考点:解直角三角形;分类讨论.16.如图所示,△ABC是⊙O的内接三角形,若∠BAC与∠BOC互补,则∠BOC的度数为_____.【答案】120°【分析】利用圆周角定理得到∠BAC=12∠BOC,再利用∠BAC+∠BOC=180°可计算出∠BOC的度数.【详解】解:∵∠BAC和∠BOC所对的弧都是BC,∴∠BAC=12∠BOC∵∠BAC+∠BOC=180°,∴12∠BOC+∠BOC=180°,∴∠BOC=120°.故答案为:120°.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解决本题的关键.17.九年级8班第一小组x名同学在庆祝2020年新年之际,互送新年贺卡,表达同学间的真诚祝福,全组共送出贺卡30张,则x的值是___.。
【初三数学】佛山市九年级数学上期末考试检测试卷(含答案解析)
人教版数学九年级上册期末考试试题(答案)一、选择题(本大题共小10题,每小题3分,共30分)1.(3分)下列各数中与4相等的是( )A .22-B .2(2)-C .|4|--D .(4)-+2.(3分)2017年成都市经济呈现活力增强,稳重向好的发展态势,截止2017年12月,全市实现地区总值约13900亿元,将13900亿元用科学记数法表示是( )亿元.A .213910⨯B .313.910⨯C .41.3910⨯D .51.3910⨯3.(3分)下列计算正确的是( )A .326a a a ⨯=B .32a a a -=C .22a b ab +=D .123--=-4.(3分)下列说法不正确的是( )A .两组对边分别相等的四边形是平行四边形B .当a c b +=时,一元二次方程20ax bx c ++=必有一根为1C .若点P 是线段AB 的黄金分割点()PA PB >,则PA AB =D .23410x x -+=的两根之和为43 5.(3分)已知52x y =,则x y y -的值为( ) A .35 B .32 C .23 D .35- 6.(3分)如图,线段AB 两个端点的坐标分别为(2,2)A 、(3,1)B ,以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A .(3,1)B .(3,3)C .(4,4)D .(4,1)7.(3分)如图,在菱形ABCD 中,2AB =,120ABC ∠=︒,则对角线BD 等于( )A .2B .4C .6D .88.(3分)如图,A 、B 、C 三点在正方形网格线的交点处,若将ABC ∆绕着点A 逆时针旋转得到△AC B '',则tan B '的值为( )A .12B .13C .14D 9.(3分)关于x 的一元二次方程220x x m ++=有实数根,则m 的取值范围是( )A .1m <B .1m <且0m ≠C .1m …D .1m … 且0m ≠10.(3分)如图,菱形OBAC 的边OB 在x 轴上,点(8,4)A ,4tan 3COB ∠=,若反比例函数(0)k y k x=≠的图象经过点C ,则k 的值为( )A .6B .12C .24D .32二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)已知a 为锐角,且满足tan(10)a +︒=,则a 为 度.12.(4分)已知关于x 的一元二次方程20x x m -+=有一个根为2,则m 的值为 ,它的另一个根为 .13.(4分)反比例函数||2m y mx -=,当0x >时,y 随x 的增大而增大,则m =14.(4分)如图,AB 和DE 是直立在地面上的两根立柱,5AB =米,某一时刻AB 在阳光下的投影3BC =米,在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6米,则DE 的长为 .三、解答题(本大题共6小题,共54分)15.(12分)计算(1)计算:03(3)(1)3tan 30π--+--⨯︒+(2)解方程:(3)2x x x -=16.(6分)先化简再求值:213(1)22a a a a +++--,其中12a = 17.(8分)如图,大楼AD 高50米,和大楼AD 相距90米的C 处有一塔BC ,某人在楼顶D 处测得塔顶B 的仰角30BDE ∠=︒,求塔高.(结果保留整数,参考数据:1.73)≈≈18.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t (单位:小时),将学生分成五类:A 类(02)t 剟,B 类(24)t <…,C 类(46)t <…,D 类(68)t <…,E 类(8)t >.绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E 类学生有 人,补全条形统计图;(2)D 类学生人数占被调查总人数的 %;(3)从该班做义工时间在04t 剟的学生中任选2人,求这2人做义工时间都在24t <…中的概率.19.(10分)如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象与反比例函数6y x=的图象相交于点(,3)A m ,(6,1)B --,与x 轴交于点(,0)C n(1)求一次函数y kx b =+的关系式;(2)求BOC ∆的面积;(3)若点P 在x 轴上,且32ACP BOC S S ∆∆=,求点P 的坐标20.(10分)在平行四边形ABCD 中,6AB =,8BC =,点E 、F 分别为AB 、BC 的两点.(1)如图1,若90B ∠=︒,且2BF CE ==,连接EF 、DE ,判断EF 和DE 的数量关系及位置关系,并说明理由;(2)如图2,60B FED ∠=∠=︒,求证:EF BE ED CD=; (3)如图3,若90ABC ∠=︒,点C 关于BD 的对称点为点C ',点O 为平行四边形ABCD 对角线BD 的中点,连接OC 交AD 于点G ,求GD 的长.B 卷一、填空题:(每小题4分,共20分)21.(4分)已知m ,n 是方程2240x x --=的两实数根,则22m mn n ++= .22.(4分)有三张正面分别写有数字2-,1-, 1 的卡片, 它们的背面完全相同, 将这三张卡片的背面朝上洗匀后随机抽取一张, 以其正面的数字作为x 的值, 放回卡片洗匀, 再从三张卡片中随机抽取一张, 以其正面的数字作为y 的值, 两次结果记为(,)x y . 则使分式2223x xy y x y x y-+--有意义的(,)x y 出现的概率是 . 23.(4分)如图,点A 是反比例函数5(0)y x x=>图象上的一点,点B 是反比例函数1(0)y x x=-<图象上的点,连接OA 、OB 、AB ,若90AOB ∠=︒,则sin A ∠=24.(4分)如图,在ABC ∆中,5AB =,12AC =,13BC =,ABD ∆、ACE ∆、BCF ∆都是等边三角形,则四边形AEFD 的面积S = .25.(4分)如图,直线l 经过正方形ABCD 的顶点A ,先分别过此正方形的顶点B 、D 作BE l ⊥于点E 、DF l ⊥于点F .然后再以正方形对角线的交点O 为端点,引两条相互垂直的射线分别与AD ,CD 交于G ,H 两点.若EF =,2ABE S ∆=,则线段GH 长度的最小值是 .二、解答题:(26题8分,27题10分,28题12分,共计30分)26.(8分)成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m,宽为60m,按照规划将预留总面积为24536m的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这24536m的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了2536m的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?27.(10分)如图,正方形ABCD中,4AB=,点E是对角线AC上的一点,连接DE.过点E作EF ED⊥,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG AE+的值;(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.28.(12分)如图1,已知点(,0)A a,(0,)B b,且a、b2(3)0a b+++=,ABCD的边AD与y轴交于点E,且E为AD中点,双曲线kyx=经过C、D两点.(1)求k的值;(2)点P在双曲线kyx=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN HT⊥,交AB于N,当T在AF上运动时,MNHT的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.四川省成都市新都区2018-2019学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共小10题,每小题3分,共30分)1.(3分)下列各数中与4相等的是( )A .22-B .2(2)-C .|4|--D .(4)-+【考点】1E :有理数的乘方;14:相反数;15:绝对值【分析】各项计算得到结果,即可做出判断.【解答】解:A 、原式4=-,不相同;B 、原式4=,相同;C 、原式4=-,不相同;D 、原式4=-,不相同,故选:B .【点评】此题考查了有理数的乘方,绝对值,相反数,熟练掌握有理数的乘方,绝对值,相反数的意义是解本题的关键.2.(3分)2017年成都市经济呈现活力增强,稳重向好的发展态势,截止2017年12月,全市实现地区总值约13900亿元,将13900亿元用科学记数法表示是( )亿元.A .213910⨯B .313.910⨯C .41.3910⨯D .51.3910⨯【考点】1I :科学记数法-表示较大的数【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:13900亿41.3910=⨯亿,故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(3分)下列计算正确的是( )A .326a a a ⨯=B .32a a a -=C .22a b ab +=D .123--=-【考点】46:同底数幂的乘法;1A :有理数的减法;35:合并同类项【分析】分别根据同底数幂的乘法法则,合并同类项的法则,有理数的加减法法则逐一判断即可.【解答】解:325a a a ⨯=,故选项A 不合题意;3a 与2a 不是同类项,故不能合并,故选项B 不合题意;2a 与b 不是同类项,故不能合并,故选项C 不合题意;123--=-,正确,故选项D 符合题意.故选:D .【点评】本题主要考查了幂的运算以及有理数的加减法,熟练掌握运算法则是解答本题的关键.4.(3分)下列说法不正确的是( )A .两组对边分别相等的四边形是平行四边形B .当a c b +=时,一元二次方程20ax bx c ++=必有一根为1C .若点P 是线段AB 的黄金分割点()PA PB >,则PA AB =D .23410x x -+=的两根之和为43 【考点】3A :一元二次方程的解;AB :根与系数的关系;3S :黄金分割;6L :平行四边形的判定【分析】A 、根据平行四边形的判定判断即可;B 、根据一元二次方程的根解答即可;C 、根据黄金分割点的概念解答即可;D 、根据一元二次方程的根解答即可.【解答】解:A 、两组对边分别相等的四边形是平行四边形,正确;B 、当a c b +=-时,一元二次方程20ax bx c ++=必有一根为1,错误;C 、若点P 是线段AB 的黄金分割点()PA PB >,则PA AB =,正确;D 、23410x x -+=的两根之和为为43,正确; 故选:B .【点评】此题考查黄金分割,关键是根据黄金分割、平行四边形的判定和一元二次方程的根解答.5.(3分)已知52x y =,则x y y- 九年级(上)数学期末考试试题(含答案)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑)1.(4分)在有理数﹣6,3,0,﹣7中,最小的数是()A.﹣6B.3C.0D.﹣72.(4分)如图是由几个相同的小正方体堆砌成的几何体,它的左视图是()A.B.C.D.3.(4分)在函数y=中,自变量x的取值范围是()A.x>2B.x≤2且x≠0C.x<2D.x>2且x≠04.(4分)下列图形都是由同样大小的地砖按照一定规律所组成的,其中第①个图形中有4块地砖,第②个图形中有9块地砖,第③个图形中有16块地砖,…,按此规律排列下去,第9个图形中地砖的块数为()A.81B.99C.100D.1215.(4分)如图,△ABC中,DE∥BC且=,若△ABC的面积等于,则四边形DBCE的面积为()A.B.C.D.46.(4分)下列命题是真命题的是()A.一组对边平行,且另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.四边都相等的矩形是正方形D.对角线相等的四边形是矩形7.(4分)估计(﹣)的值应在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间8.(4分)按如图所示的程序运算,如果输出y的结果是4,则输入x的值可能是()A.±2B.2或3C.﹣2或3D.±2或39.(4分)如图,以Rt△ABC的直角边AB为直径作⊙O交BC于点D,连接AD,若∠DAC =30°,DC=1,则⊙O的半径为()A.2B.C.2﹣D.110.(4分)如图,小明站在某广场一看台C处,测得广场中心F的俯角为21°,若小明身高CD=1.7米,BC=1.9米,BC平行于地面F A,台阶AB的坡度为i=3:4,坡长AB=10.5米,则看台底端A点距离广场中心F点的距离约为()米.(参考数据:sin21°≈0.36,cos21°≈0.93,tan21°≈0.38)A.8.9B.9.7C.10.8D.11.911.(4分)若数a使关于x的二次函数y=x2+(a﹣1)x+b,当x<﹣1时,y随x的增大而减小;且使关于y的分式方程+=2有非负数解,则所以满足条件的整数a 的是()A.﹣2B.1C.0D.312.(4分)如图,已知Rt△ABC的直角顶点A落在x轴上,点B、C在第一象限,点B的坐标为(,4),点D、E分别为边BC、AB的中点,且tan B=,反比例函数y=的图象恰好经过D、E,则k的值为()A.B.8C.12D.16二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将正确答案书写在答题卡(卷)中对应的位置上13.(4分)计算:|1﹣|+(π﹣3.14)0+=.14.(4分)如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆O 交AB于点D,则图中阴影部分的面积为(结果保留π).15.(4分)如图,在4×4正方形网格中,有4个涂成黑色的小方格,现在任意选取一个白色的小方格涂成黑色,则使得黑色部分的图形构成轴对称图形的概率为.16.(4分)如图,在Rt△ABC中,∠ABC=90°,把△ABC沿斜边AC折叠,使点B落在B’,点D,点E分别为BC和AB′上的点,连接DE交AC于点F,把四边形ABDE沿DE折叠,使点B与点C重合,点A落在A′,连接AA′交B′C于点H,交DE于点G.若AB=3,BC=4,则GE的长为.17.(4分)一天学生小明早上从家去学校,已知小明家离学校路程为2280米(小明每次走的路程),小明从家匀速步行了105分钟后,爸爸发现小明的一科作业忘带,爸爸立刻拿起小明忘带的作业匀速跑步追赶小明,追上小明后爸爸立即将作业交给小明,小明继续以原速向学校行走(假定爸爸将作业交给小明的时间忽略不计),爸爸将作业带给小明后,原地接了2分钟的电话后,立即以更快的速度匀速返回家中.小明和爸爸两人相距的路程y(米)与小明出发的时间x(分钟)之间的关系如图所示,则爸爸到达家时,小明与学校相距的路程是米.18.(4分)某水果销售商在年末准备购进一批水果进行销售,经过市场调查,发现芒果、车厘子、奇异果、火龙果比较受顾客的喜爱,于是制定了进货方案.其中芒果、车厘子的进货量与奇异果、火龙果的进货量分别相同,而芒果、车厘子的单价与火龙果、奇异果的单价分别相同,已知芒果和车厘子的单价和为每千克180元,且芒果和车厘子的进货总价比奇异果和火龙果的进货总价多863元.由于年末资金周转不开,所以临时决定只购进芒果和车厘子,芒果和车厘子的进货量与原方案相同,且进货量总数不超过300kg,则该水果商最多需要准备元进货资金.三、解答题:(本大题2个小题,第19小题8分,第20小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的位置上19.(8分)先化简,再求值:÷(a﹣2﹣)+,其中a2﹣2a﹣6=0 20.(8分)如图,直线AB∥CD,EF平分∠AEG,∠DFH=13°,∠H=21°,求∠EFG 的度数.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的位置上21.(10分)如图,在平面直角坐标系中,直线l1与x轴交于点B,与y轴交于点C,直线l1与直线l2:y=﹣x交于点A,将直线l2:y=﹣x沿射线AB的方向平移得到直线l3,当l3经过点B时,与y轴交点记为D点,已知A点的纵坐标为2,sin∠ABO=.(1)求直线BC的解析式;(2)求△ABD的面积.22.(10分)距离中考体考时间越来越近,年级想了解初三年级2200名学生周末进行体育锻炼的情况,在初三年级随机抽查了20名男生和20名女生周末每天的运动时间进行了调查并收集到了以下数据(单位:min)男生:20 30 40 45 60 120 80 50 100 45 85 90 9070 90 50 90 50 70 40女生:75 30 120 70 60 100 90 40 75 60 75 75 8090 70 80 50 80 100 90根据统计数据制作了如下统计表:两组数据的极差、平均数、中位数、众数如下表所示:(1)请将上面两个表格补充完整:a=,b=,c=;(2)请根据抽样调查的数据估计初三年级周末每天运动时间在100分钟以上的同学大约有多少人?(3)李老师看了表格数据后认为初三年级的女生周末体锻坚持得比男生好,请你结合统计数据,写出支持李老师观点的理由.23.(10分)春节即将来临,根据习俗每家每户都会在门口挂红灯笼和贴对联.某商店看准了商机,准备购进一批红灯笼和对联进行销售,已知对联的进价比红灯笼的进价少10元,若用720元购进对联的数量比用720元购进红灯笼的数量多50件.(1)对联和红灯笼的单价分别为多少?(2)由于销售火爆,第一批售完后,该商店以相同的进价再购进300幅对联和200个红灯笼,已知对联的销售价格为12元一幅,红灯笼的销售价格为24元一个销售一段时间后发现对联售出了总数的,红灯笼售出了总数的,为了清仓,该店老板决定对剩下的红灯笼和对联以相同的折扣数打折销售,并很快全部售出,问商店最低打几折,才能使总的利润率不低于20%?24.(10分)已知平行四边形ABCD,过点A作BC的垂线,垂足为E,且满足AE=EC,过点C作AB的垂线,垂足为F,交AE于点G,连接BG,(1)如图1,若AC=,CD=4,求EG的长度;(2)如图2,取BE的中点K,在EC上取一点H,使得点K和点E为BH的三等分点,连接AH,过点K作AH的垂线,交AC于点Q,求证:BG=2CQ.25.(10分)阅读材料,解决问题:某数学学习小组在阅读数学史时,发现了一个有趣的故事;古希腊神话中的米诺斯王嫌别人为他建造的坟墓太小,命令将其扩大一倍,并说只要将每边扩大一倍就行,这当然是错误的,但这类问题却引出了著名的几何问题:倍立方问题.此时他们刚好学习了平面几何,所以甲同学提出:“任意给定一个正方形,是否存在另外一个正方形,它的周长和面积分别是已知正方形周长和面积的2倍呢?”,对于这个问题小组成员很快给出了解答:设原正方形的边长为a,则周长为4a,面积为a2∵另一个正方形的周长为2×4a=8a∴此时边长为2a,面积为(2a)2=4a2≠2a2∴不存在这样的正方形,它的周长和面积分别是已知正方形周长和面积的2倍.虽然甲同学的问题得到了很快的解决,但这一问题的提出触发了其他小组成员的积极思考,进一步乙同学提出:“任意给定一个矩形,是否存在另外一个矩形,它的周长和面积分别是已知矩形周长和面积的2倍呢?”通过讨论,他们决定先研究:“已知矩形的长和宽分别为m和1,是否存在另外一个矩形,它的周长和面积分别是已知矩形周长和面积的2倍呢?”,并给出了如下解答过程:设所求矩形的长为x,则根据题意可表示出所求矩形的宽为2(m+1)﹣x那么可建立方程:x•[2(m+1)﹣x]=2m∵判别式△=4m2+4>0∴原方程有解,即结论成立.根据材料解决下列问题(1)若已知一个矩形的长和宽分别为3和1,则是否存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半呢?若存在,请求出此矩形的长和宽;若不存在,请说明理由;(2)若已知一个矩形的长和宽分别为m和1,且一定存在另一个矩形的周长和面积分别是已知矩形周长和面积的k倍,求k的取值范围(写明解答过程).五、解谷题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡中对应的位置上.26.(12分)如图1,抛物线y=﹣x2+x+6与x轴交于A、B(B在A的左侧)两点,与y轴交于点C,将直线AC沿y轴正方向平移2个单位得到直线A′C′,将抛物线的对称轴沿x轴正方向平移九年级(上)数学期末考试试题(含答案)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑)1.(4分)在有理数﹣6,3,0,﹣7中,最小的数是()A.﹣6B.3C.0D.﹣72.(4分)如图是由几个相同的小正方体堆砌成的几何体,它的左视图是()A.B.C.D.3.(4分)在函数y=中,自变量x的取值范围是()A.x>2B.x≤2且x≠0C.x<2D.x>2且x≠04.(4分)下列图形都是由同样大小的地砖按照一定规律所组成的,其中第①个图形中有4块地砖,第②个图形中有9块地砖,第③个图形中有16块地砖,…,按此规律排列下去,第9个图形中地砖的块数为()A.81B.99C.100D.1215.(4分)如图,△ABC中,DE∥BC且=,若△ABC的面积等于,则四边形DBCE 的面积为()A.B.C.D.46.(4分)下列命题是真命题的是()A.一组对边平行,且另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.四边都相等的矩形是正方形D.对角线相等的四边形是矩形7.(4分)估计(﹣)的值应在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间8.(4分)按如图所示的程序运算,如果输出y的结果是4,则输入x的值可能是()A.±2B.2或3C.﹣2或3D.±2或39.(4分)如图,以Rt△ABC的直角边AB为直径作⊙O交BC于点D,连接AD,若∠DAC =30°,DC=1,则⊙O的半径为()A.2B.C.2﹣D.110.(4分)如图,小明站在某广场一看台C处,测得广场中心F的俯角为21°,若小明身高CD=1.7米,BC=1.9米,BC平行于地面F A,台阶AB的坡度为i=3:4,坡长AB=10.5米,则看台底端A点距离广场中心F点的距离约为()米.(参考数据:sin21°≈0.36,cos21°≈0.93,tan21°≈0.38)A.8.9B.9.7C.10.8D.11.911.(4分)若数a使关于x的二次函数y=x2+(a﹣1)x+b,当x<﹣1时,y随x的增大而减小;且使关于y的分式方程+=2有非负数解,则所以满足条件的整数a 的是()A.﹣2B.1C.0D.312.(4分)如图,已知Rt△ABC的直角顶点A落在x轴上,点B、C在第一象限,点B的坐标为(,4),点D、E分别为边BC、AB的中点,且tan B=,反比例函数y=的图象恰好经过D、E,则k的值为()A.B.8C.12D.16二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将正确答案书写在答题卡(卷)中对应的位置上13.(4分)计算:|1﹣|+(π﹣3.14)0+=.14.(4分)如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆O 交AB于点D,则图中阴影部分的面积为(结果保留π).15.(4分)如图,在4×4正方形网格中,有4个涂成黑色的小方格,现在任意选取一个白色的小方格涂成黑色,则使得黑色部分的图形构成轴对称图形的概率为.16.(4分)如图,在Rt△ABC中,∠ABC=90°,把△ABC沿斜边AC折叠,使点B落在B’,点D,点E分别为BC和AB′上的点,连接DE交AC于点F,把四边形ABDE沿DE折叠,使点B与点C重合,点A落在A′,连接AA′交B′C于点H,交DE于点G.若AB=3,BC=4,则GE的长为.17.(4分)一天学生小明早上从家去学校,已知小明家离学校路程为2280米(小明每次走的路程),小明从家匀速步行了105分钟后,爸爸发现小明的一科作业忘带,爸爸立刻拿起小明忘带的作业匀速跑步追赶小明,追上小明后爸爸立即将作业交给小明,小明继续以原速向学校行走(假定爸爸将作业交给小明的时间忽略不计),爸爸将作业带给小明后,原地接了2分钟的电话后,立即以更快的速度匀速返回家中.小明和爸爸两人相距的路程y(米)与小明出发的时间x(分钟)之间的关系如图所示,则爸爸到达家时,小明与学校相距的路程是米.18.(4分)某水果销售商在年末准备购进一批水果进行销售,经过市场调查,发现芒果、车厘子、奇异果、火龙果比较受顾客的喜爱,于是制定了进货方案.其中芒果、车厘子的进货量与奇异果、火龙果的进货量分别相同,而芒果、车厘子的单价与火龙果、奇异果的单价分别相同,已知芒果和车厘子的单价和为每千克180元,且芒果和车厘子的进货总价比奇异果和火龙果的进货总价多863元.由于年末资金周转不开,所以临时决定只购进芒果和车厘子,芒果和车厘子的进货量与原方案相同,且进货量总数不超过300kg,则该水果商最多需要准备元进货资金.三、解答题:(本大题2个小题,第19小题8分,第20小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的位置上19.(8分)先化简,再求值:÷(a﹣2﹣)+,其中a2﹣2a﹣6=0 20.(8分)如图,直线AB∥CD,EF平分∠AEG,∠DFH=13°,∠H=21°,求∠EFG 的度数.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡卷)中对应的位置上21.(10分)如图,在平面直角坐标系中,直线l1与x轴交于点B,与y轴交于点C,直线l1与直线l2:y=﹣x交于点A,将直线l2:y=﹣x沿射线AB的方向平移得到直线l3,当l3经过点B时,与y轴交点记为D点,已知A点的纵坐标为2,sin∠ABO=.(1)求直线BC的解析式;(2)求△ABD的面积.22.(10分)距离中考体考时间越来越近,年级想了解初三年级2200名学生周末进行体育锻炼的情况,在初三年级随机抽查了20名男生和20名女生周末每天的运动时间进行了调查并收集到了以下数据(单位:min)男生:20 30 40 45 60 120 80 50 100 45 85 90 9070 90 50 90 50 70 40女生:75 30 120 70 60 100 90 40 75 60 75 75 8090 70 80 50 80 100 90根据统计数据制作了如下统计表:两组数据的极差、平均数、中位数、众数如下表所示:(1)请将上面两个表格补充完整:a=,b=,c=;(2)请根据抽样调查的数据估计初三年级周末每天运动时间在100分钟以上的同学大约有多少人?(3)李老师看了表格数据后认为初三年级的女生周末体锻坚持得比男生好,请你结合统计数据,写出支持李老师观点的理由.23.(10分)春节即将来临,根据习俗每家每户都会在门口挂红灯笼和贴对联.某商店看准了商机,准备购进一批红灯笼和对联进行销售,已知对联的进价比红灯笼的进价少10元,若用720元购进对联的数量比用720元购进红灯笼的数量多50件.(1)对联和红灯笼的单价分别为多少?(2)由于销售火爆,第一批售完后,该商店以相同的进价再购进300幅对联和200个红灯笼,已知对联的销售价格为12元一幅,红灯笼的销售价格为24元一个销售一段时间后发现对联售出了总数的,红灯笼售出了总数的,为了清仓,该店老板决定对剩下的红灯笼和对联以相同的折扣数打折销售,并很快全部售出,问商店最低打几折,才能使总的利润率不低于20%?24.(10分)已知平行四边形ABCD,过点A作BC的垂线,垂足为E,且满足AE=EC,过点C作AB的垂线,垂足为F,交AE于点G,连接BG,(1)如图1,若AC=,CD=4,求EG的长度;(2)如图2,取BE的中点K,在EC上取一点H,使得点K和点E为BH的三等分点,连接AH,过点K作AH的垂线,交AC于点Q,求证:BG=2CQ.25.(10分)阅读材料,解决问题:某数学学习小组在阅读数学史时,发现了一个有趣的故事;古希腊神话中的米诺斯王嫌别人为他建造的坟墓太小,命令将其扩大一倍,并说只要将每边扩大一倍就行,这当然是错误的,但这类问题却引出了著名的几何问题:倍立方问题.此时他们刚好学习了平面几何,所以甲同学提出:“任意给定一个正方形,是否存在另外一个正方形,它的周长和面积分别是已知正方形周长和面积的2倍呢?”,对于这个问题。
佛山市九年级上册期末精选试卷检测题
佛山市九年级上册期末精选试卷检测题一、初三数学 一元二次方程易错题压轴题(难)1.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts . (1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.【答案】(1)① 2.5t =, 1.1a =或2t =,0.5a =;②1t =;(2)见解析 【解析】 【分析】(1)①当PBM PCN ≅△△时或当MBP PCN ≅△△时,分别列出方程即可解决问题; ②当AP BD ⊥时,由ABP BCD ≅△△,推出BP CD =,列出方程即可解决问题; (2)如图②中,连接AC 交MD 于O 只要证明AOM COD ≅△△,推出OA OC =,可得ADO CDO S S ∆∆=,AFO CFO S S ∆∆=,推出ADO AFO CDO CFO S S S S ∆∆∆∆-=-,即ADF CDF S S ∆∆=;【详解】解:(1)①90ABC BCD ∠=∠=︒,∴当PBM PCN ≅△△时,有BM NC =,即5t t -=①5 1.54t at -=-②由①②可得 1.1a =, 2.5t =.当MBP PCN ≅△△时,有BM PC =,BP NC =,即5 1.5t t -=③ 54t at -=-④,由③④可得0.5a =,2t =.综上所述,当 1.1a =, 2.5t =或0.5a =,2t =时,以P 、B 、M 为顶点的三角形与PCN △全等; ②AP BD ⊥,90BEP ∴∠=︒,90APB CBD ∴∠+∠=︒,90ABC ∠=︒,90APB BAP ∴∠+∠=︒, BAP CBD ∴∠=∠,在ABP △和BCD 中,BAP CBD AB BCABC BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABP BCD ASA ∴≅△△,BP CD ∴=, 即54t -=, 1t ∴=;(2)当38a =,83t =时,1DN at ==,而4CD =,DN CD ∴<,∴点N 在点C 、D 之间, 1.54AM t ==,4CD =, AM CD ∴=,如图②中,连接AC 交MD 于O , 90ABC BCD ∠=∠=︒, 180ABC BCD ∴∠+∠=︒, //AB BC ∴,AMD CDM ∴∠=∠,BAC DCA ∠=∠, 在AOM 和COD △中, AMD CDM AM CDBAC DCA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOM COD ASA ∴≅△△,OA OC ∴=,ADO CDO S S ∆∆∴=,AFO CFO S S ∆∆=, ADO AFO CDO CFO S S S S ∆∆∆∆∴-=-, ADF CDF S S ∆∆∴=.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.2.已知二次函数y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)①求a的值;②求当a≤x≤b时,一次函数y=ax+b的最大值及最小值;【答案】①a的值是﹣2或﹣4;②最大值=13,最小值=9【解析】【分析】①根据题意解一元二次方程即可得到a的值;②根据a≤x≤b,b=﹣3求得a=-4,由此得到一次函数为y=﹣4x﹣3,根据函数的性质当x=﹣4时,函数取得最大值,x=﹣3时,函数取得最小值,分别计算即可.【详解】解:①∵y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)∴4=9×(﹣1)2﹣6a×(﹣1)+a2+3,解得,a1=﹣2,a2=﹣4,∴a的值是﹣2或﹣4;②∵a≤x≤b,b=﹣3∴a=﹣2舍去,∴a=﹣4,∴﹣4≤x≤﹣3,∴一次函数y=﹣4x﹣3,∵一次函数y=﹣4x﹣3为单调递减函数,∴当x=﹣4时,函数取得最大值,y=﹣4×(﹣4)﹣3=13x=﹣3时,函数取得最小值,y=﹣4×(﹣3)﹣3=9.【点睛】此题考查解一元二次方程,一次函数的性质,(2)是难点,正确理解a、b的关系得到函数解析式是解题的关键.3.如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程()2x 31x 30-++=的两个根,点C 在x 轴负半轴上,且AB :AC=1:2(1)求A 、C 两点的坐标;(2)若点M 从C 点出发,以每秒1个单位的速度沿射线CB 运动,连接AM ,设△ABM 的面积为S ,点M 的运动时间为t ,写出S 关于t 的函数关系式,并写出自变量的取值范围; (3)点P 是y 轴上的点,在坐标平面内是否存在点Q ,使以 A 、B 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出Q 点的坐标;若不存在,请说明理由. 【答案】解:(1)解()2x 31x 30-++=得(x ﹣3)(x ﹣1)=0,解得x 1=3,x 2=1。
佛山市九年级上册期末精选试卷检测题
佛山市九年级上册期末精选试卷检测题一、初三数学一元二次方程易错题压轴题(难)1.阅读与应用:阅读1:a,b为实数,且a>0,b>0,因为()2≥0,所以a﹣2+b≥0,从而a+b≥2(当a=b时取等号).阅读2:若函数y=x+(m>0,x>0,m为常数),由阅读1结论可知:x+≥2,所以当x=,即x=时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=时,周长的最小值为;问题2:汽车的经济时速是汽车最省油的行驶速度,某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油()L.若该汽车以每小时x公里的速度匀速行驶,1h的耗油量为yL.(1)求y关于x的函数关系式(写出自变量x的取值范围);(2)求该汽车的经济时速及经济时速的百公里耗油量.【答案】问题1:2,8;问题2:(1)y=;(2)10.【解析】【分析】(1)利用题中的不等式得到x+=4,从而得到x=2时,周长的最小值为8;(2)根据耗油总量=每公里的耗油量×行驶的速度列出函数关系式即可,经济时速就是耗油量最小的形式速度.【详解】(1)∵x+≥2=4,∴当x=时,2(x+)有最小值8.即x=2时,周长的最小值为8;故答案是:2;8;问题2:,当且仅当,即x=90时,“=”成立,所以,当x=90时,函数取得最小值9,此时,百公里耗油量为,所以,该汽车的经济时速为每小时90公里,经济时速的百公里耗油量为10L.【点睛】本题考查了配方法及反比例函数的应用,最值问题,解题的关键是读懂题目提供的材料,易错点是了解“耗油总量=每公里的耗油量×行驶的速度”,难度中等偏上.2.某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠.【解析】【分析】(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可;(2)分别求出两种方式的增长率,然后比较即可.【详解】(1)设平均每次下调x%,则7000(1﹣x)2=5670,解得:x1=10%,x2=190%(不合题意,舍去);答:平均每次下调的百分率为10%.(2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x)2=(1﹣10%)2=81%.∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.3.有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)【答案】(1)⑤;(2)x1=2n,x2=﹣4n.【解析】【分析】(1)根据移项要变号,可判断;(2)先把常数项移到方程的右边,再把方程两边都加上一次项系数的一半,使左边是一个完全平方式,然后用直接开平方法求解.【详解】解:(1)小静的解法是从步骤⑤开始出现错误的,故答案为⑤;(2)x2+2nx﹣8n2=0,x2+2nx=8n2,x2+2nx+n2=8n2+n2,(x+n)2=9n2,x+n=±3n,x1=2n,x2=﹣4n.4.如图,正方形ABCD的四个顶点分别在正方形EFGH的四条边上,我们称正方形EFGH 是正方形ABCD的外接正方形.探究一:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍?如图,假设存在正方形EFGH,它的面积是正方形ABCD的2倍.因为正方形ABCD的面积为1,则正方形EFGH的面积为2,所以EF=FG=GH=HE2EB=x,则BF2﹣x,∵Rt△AEB≌Rt△BFC∴BF=AE2﹣x在Rt△AEB中,由勾股定理,得x2+2﹣x)2=122解得,x1=x2∴BE=BF,即点B是EF的中点.同理,点C,D,A分别是FG,GH,HE的中点.所以,存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍探究二:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍?(仿照上述方法,完成探究过程)探究三:已知边长为1的正方形ABCD,一个外接正方形EFGH,它的面积是正方形ABCD面积的4倍?(填“存在”或“不存在”)探究四:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n倍?(n>2)(仿照上述方法,完成探究过程)【答案】不存在,详见解析【解析】【分析】探究二,根据探究一的解答过程、运用一元二次方程计算即可;探究三,根据探究一的解答过程、运用一元二次方程根的判别式解答;探究四,根据探究一的解答过程、运用一元二次方程根的判别式解答.【详解】探究二:因为正方形ABCD的面积为1,则正方形EFGH的面积为3,所以EF=FG=GH=HE,设EB=x,则BF x,∵Rt△AEB≌Rt△BFC,∴BF=AE﹣x,在Rt△AEB中,由勾股定理,得,x2+x)2=12,整理得x2x+1=0,b2﹣4ac=3﹣4<0,此方程无解,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍;探究三:因为正方形ABCD的面积为1,则正方形EFGH的面积为4,所以EF=FG=GH=HE=2,设EB=x,则BF=2﹣x,∵Rt△AEB≌Rt△BFC,∴BF=AE=2﹣x,在Rt△AEB中,由勾股定理,得,x2+(2﹣x)2=12,整理得2x2﹣4x+3=0,b2﹣4ac=16﹣24<0,此方程无解,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍,故答案为不存在;探究四:因为正方形ABCD的面积为1,则正方形EFGH的面积为n,所以EF=FG=GH=HE,设EB=x,则BF﹣x,∵Rt△AEB≌Rt△BFC,∴BF=AE﹣x,在Rt△AEB中,由勾股定理,得,x2+﹣x)2=12,整理得2x2﹣+n﹣1=0,b2﹣4ac=8﹣4n<0,此方程无解,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n倍.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、一元二次方程的解法等知识.读懂探究一的解答过程、正确运用一元二次方程根的判别式是解题的关键.5.定南县某楼盘准备以每平方米4000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米3240元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【答案】(1)10%;(2)方案②【解析】试题分析:首先设下调的百分率为x,根据题意列出方程进行求解,得出答案;分别求出两种方案所需要花费的钱数,然后进行比较.试题解析:(1)设平均每次下调的百分率是x,依题意得,4000(1-x)2=3240解之得:x=0.1=10%或x=1.9(不合题意,舍去)答:平均每次下调的百分率是10%.(2)方案①实际花费=100×3240×98%=317520元方案②实际花费=100×3240-100×80=316000元∵317520>316000 ∴方案②更优惠考点:一元二次方程的应用二、初三数学二次函数易错题压轴题(难)6.如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出抛物线和直线AB的函数表达式;(2)设△PMN的面积为S1,△AEN的面积为S2,当123625SS时,求点P的坐标;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E'A+23E'B的最小值.【答案】(1)抛物线y =﹣34 x 2+94 x +3,直线AB 解析式为y =﹣34x +3;(2)P (2,32);(3【解析】【分析】(1)由题意令y =0,求出抛物线与x 轴交点,列出方程即可求出a ,根据待定系数法可以确定直线AB 解析式;(2)根据题意由△PNM ∽△ANE ,推出65PN AN =,以此列出方程求解即可解决问题; (3)根据题意在y 轴上 取一点M 使得OM′=43,构造相似三角形,可以证明AM′就是E′A+23E′B 的最小值. 【详解】 解:(1)∵抛物线y =mx 2﹣3mx+n (m≠0)与x 轴交于点C (﹣1,0)与y 轴交于点B (0,3),则有330n m m n ⎧⎨⎩++==,解得433m n ⎧⎪⎨⎪-⎩==, ∴抛物线239344y x x =-++, 令y =0,得到239344x x -++=0, 解得:x =4或﹣1,∴A (4,0),B (0,3),设直线AB 解析式为y =kx+b ,则340b k b +⎧⎨⎩==, 解得334k b ⎧-⎪⎨⎪⎩==, ∴直线AB 解析式为y =34-x+3. (2)如图1中,设P (m ,239344m m -++),则E (m ,0),∵PM ⊥AB ,PE ⊥OA ,∴∠PMN =∠AEN ,∵∠PNM =∠ANE ,∴△PNM ∽△ANE ,∵△PMN 的面积为S 1,△AEN 的面积为S 2,123625S S =, ∴65PN AN =, ∵NE ∥OB , ∴AN AE AB OA =, ∴AN =54545454(4﹣m ), ∵抛物线解析式为y =239344x x -++, ∴PN =239344m m -++﹣(34-m+3)=34-m 2+3m , ∴2336455(4)4m m m -+=-, 解得m =2或4(舍弃),∴m =2,∴P (2,32). (3)如图2中,在y 轴上 取一点M′使得OM′=43,连接AM′,在AM′上取一点E′使得OE′=OE .∵OE′=2,OM′•OB =43×3=4, ∴OE′2=OM′•OB , ∴OE OB OM OE '='', ∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB , ∴M E OE BE OB '''='=23, ∴M′E′=23BE′, ∴AE′+23BE′=AE′+E′M′=AM′,此时AE′+23BE ′最小(两点间线段最短,A 、M′、E′共线时), 最小值=AM′2244()3+410. 【点睛】本题属于二次函数综合题,考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM ′就是AE′+23BE′的最小值,属于中考压轴题.7.在平面直角坐标系中,抛物线22(0)y ax bx a =++≠经过点(2,4)A --和点(2,0)C ,与y 轴交于点D ,与x 轴的另一交点为点B .(1)求抛物线的解析式;(2)如图1,连接BD ,在抛物线上是否存在点P ,使得2PBC BDO ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)如图2,连接AC ,交y 轴于点E ,点M 是线段AD 上的动点(不与点A ,点D 重合),将CME △沿ME 所在直线翻折,得到FME ,当FME 与AME △重叠部分的面积是AMC 面积的14时,请直接写出线段AM 的长. 【答案】(1)22y x x =-++;(2)存在,(23,209)或(103,529-);(3)105或2 【解析】【分析】(1)根据点A 和点C 的坐标,利用待定系数法求解;(2)在x 轴正半轴上取点E ,使OB=OE ,过点E 作EF ⊥BD ,垂足为F ,构造出∠PBC=∠BDE ,分点P 在第三象限时,点P 在x 轴上方时,点P 在第四象限时,共三种情况分别求解;(3)设EF 与AD 交于点N ,分点F 在直线AC 上方和点F 在直线AC 下方时两种情况,利用题中所给面积关系和中线的性质可得MN=AN ,FN=NE ,从而证明四边形FMEA 为平行四边形,继而求解.【详解】解:(1)∵抛物线22(0)y ax bx a =++≠经过点A (-2,-4)和点C (2,0),则44220422a b a b -=-+⎧⎨=++⎩,解得:11a b =-⎧⎨=⎩, ∴抛物线的解析式为22y x x =-++;(2)存在,理由是:在x 轴正半轴上取点E ,使OB=OE ,过点E 作EF ⊥BD ,垂足为F ,在22y x x =-++中,令y=0,解得:x=2或-1,∴点B 坐标为(-1,0),∴点E 坐标为(1,0),可知:点B 和点E 关于y 轴对称,∴∠BDO=∠EDO ,即∠BDE=2∠BDO ,∵D (0,2),∴=,在△BDE 中,有12×BE ×OD=12×BD ×EF ,即2×EF ,解得:,∴,∴tan ∠BDE=EF DF =55÷=43, 若∠PBC=2∠BDO ,则∠PBC=∠BDE ,∵BE=2,则BD 2+DE 2>BE 2,∴∠BDE 为锐角,当点P 在第三象限时,∠PBC 为钝角,不符合;当点P 在x 轴上方时,∵∠PBC=∠BDE ,设点P 坐标为(c ,22c c -++), 过点P 作x 轴的垂线,垂足为G ,则BG=c+1,PG=22c c -++,∴tan ∠PBC=PG BG =221c c c -+++=43, 解得:c=23, ∴22c c -++=209, ∴点P 的坐标为(23,209);当点P 在第四象限时, 同理可得:PG=22c c --,BG=c+1,tan ∠PBC=PG BG =221c c c --+=43, 解得:c=103, ∴22c c -++=529-, ∴点P 的坐标为(103,529-), 综上:点P 的坐标为(23,209)或(103,529-);(3)设EF 与AD 交于点N ,∵A (-2,-4),D (0,2),设直线AD 表达式为y=mx+n ,则422m n n -=-+⎧⎨=⎩,解得:32m n =⎧⎨=⎩, ∴直线AD 表达式为y=3x+2,设点M 的坐标为(s ,3s+2),∵A (-2,-4),C (2,0),设直线AC 表达式为y=m 1x+n 1,则11114202m n m n -=-+⎧⎨=+⎩,解得:1112m n =⎧⎨=-⎩, ∴直线AC 表达式为y=x-2,令x=0,则y=-2,∴点E 坐标为(0,-2),可得:点E 是线段AC 中点,∴△AME 和△CME 的面积相等,由于折叠,∴△CME ≌△FME ,即S △CME =S △FME ,由题意可得:当点F 在直线AC 上方时,∴S △MNE =14S △AMC =12S △AME =12S △FME , 即S △MNE = S △ANE = S △MNF ,∴MN=AN ,FN=NE ,∴四边形FMEA 为平行四边形,∴CM=FM=AE=12AC=221442⨯+=22, ∵M (s ,3s+2), ∴()()2223222s s -++=,解得:s=45-或0(舍), ∴M (45-,25-), ∴AM=22422455⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭=6105,当点F 在直线AC 下方时,如图,同理可得:四边形AFEM 为平行四边形,∴AM=EF,由于折叠可得:CE=EF,∴AM=EF=CE=22,综上:AM的长度为6105或22.【点睛】本题是二次函数综合题,涉及到待定系数法,二次函数的图像和性质,折叠问题,平行四边形的判定和性质,中线的性质,题目的综合性很强.难度很大,对学生的解题能力要求较高.8.如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=6x(x>0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?【答案】(1)y=﹣x2+2x+3;(2)N(57,0),F(0,53);(3)t=9﹣215.【解析】【分析】(1)由已知求出D点坐标,将点A(-1,0)和D(2,3)代入y=ax2+bx+3即可;(2)作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;(3)设P(0,t),作△PBD的外接圆N,当⊙N与y轴相切时,∠BPD的度数最大;【详解】解;(1)C(0,3)∵CD⊥y,∴D点纵坐标是3.∵D在y=6x上,∴D(2,3),将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3,∴a=﹣1,b=2,∴y=﹣x2+2x+3;(2)M(1,4),B(3,0),作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;∴M'(﹣1,4),D'(2,﹣3),∴M'D'直线的解析式为y=﹣73x+53,∴N(57,0),F(0,53);(3)设P(0,t).∵△PBO 和△CDP 都是直角三角形, tan∠CDP =32t -,tan ∠PBO =3t , 令y =tan ∠BPD =3233123t t t t -+--, ∴yt 2+t ﹣3yt +6y ﹣9=0,△=﹣15y 2+30y +1=0时,y =15415-+(舍)或y =15415+, ∴t =32﹣12×1y, ∴t =9﹣215,∴P (0,9﹣215).【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,利用轴对称求最短距离,学会利用辅助圆解决问题,属于中考压轴题.9.如图,已知抛物线2y x bx c =-++与x 轴交于A ,B 两点,过点A 的直线l 与抛物线交于点C ,其中点A 的坐标是()1,0,点C 的坐标是()2,3-,抛物线的顶点为点D .(1)求抛物线和直线AC 的解析式.(2)若点P 是抛物线上位于直线AC 上方的一个动点,求APC ∆的面积的最大值及此时点P 的坐标.(3)若抛物线的对称轴与直线AC 相交于点E ,点M 为直线AC 上的任意一点,过点M 作//MN DE 交抛物线于点N ,以D ,E ,M ,N 为顶点的四边形能否为平行四边形?若能,求出点M 的坐标;若不能,请说明理由.【答案】(1)y=-x 2-2x+3,y=-x+1;(2)最大值为278,此时点P(12-,154);(3)能,(0,1),)或【解析】【分析】(1)直接利用待定系数法进行求解,即可得到答案;(2)设点P(m ,-m 2-2m+3),则Q(m ,-m+1),求出PQ 的长度,结合三角形的面积公式和二次函数的性质,即可得到答案;(3)根据题意,设点M(t ,-t+1),则点N(t ,-t 2-2t+3),可分为两种情况进行分析:①当点M 在线段AC 上时,点N 在点M 上方;②当点M 在线段AC (或CA )延长线上时,点N 在点M 下方;分别求出点M 的坐标即可.【详解】解:(1)∵抛物线y=-x 2+bx+c 过点A(1,0),C(-2,3),∴10423b c b c -++=⎧⎨--+=⎩,,解得:23b c =-⎧⎨=⎩,. ∴抛物线的解析式为y=-x 2-2x+3.设直线AC 的解析式为y=kx+n .将点A ,C 坐标代入,得023k n k n +=⎧⎨-+=⎩,,解得11k n =-⎧⎨=⎩,. ∴直线AC 的解析式为y=-x+1.(2)过点P 作PQ ∥y 轴交AC 于点Q .设点P(m ,-m 2-2m+3),则Q(m ,-m+1).∴PQ=(-m 2-2m+3)-(-m+1)=-m 2-m+2.∴S △APC =S △PCQ +S △APQ =12PQ·(x A -x C )=12(-m 2-m+2)×3=23127()228m -++. ∴当m=12-时,S △APC 最大,最大值为278,此时点P(12-,154). (3)能.∵y=-x 2-2x+3,点D 为顶点,∴点D(-1,4),令x=-1时,y=-(-1)+1=2,∴点E(-1,2).∵MN ∥DE ,∴当MN=DE=2时,以D ,E ,M ,N 为顶点的四边形是平行四边形.∵点M 在直线AC 上,点N 在抛物线上,∴设点M(t ,-t+1),则点N(t ,-t 2-2t+3).①当点M 在线段AC 上时,点N 在点M 上方,则MN=(-t 2-2t+3)-(-t+1)=-t 2-t+2.∴-t 2-t+2=2,解得:t=0或t=-1(舍去).∴此时点M 的坐标为(0,1).②当点M 在线段AC (或CA )延长线上时,点N 在点M 下方,则MN=(-t+1)-(-t 2-2t+3)=t 2+t-2.∴t 2+t-2=2,解得:或.∴此时点M ).综上所述,满足条件的点M 的坐标为:(0,1),(12-+,32-)或(12-,32). 【点睛】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC 的函数关系式;(2)利用三角形的面积公式和二次函数的性质解题;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M 的位置.10.如图,已知二次函数22(0)y ax ax c a 的图象与x 轴负半轴交于点A (-1,0),与y 轴正半轴交与点B ,顶点为P ,且OB=3OA ,一次函数y=kx+b 的图象经过A 、B .(1) 求一次函数解析式;(2)求顶点P 的坐标;(3)平移直线AB 使其过点P ,如果点M在平移后的直线上,且3tan 2OAM ∠=,求点M 坐标;(4)设抛物线的对称轴交x 轴与点E ,联结AP 交y 轴与点D ,若点Q 、N 分别为两线段PE 、PD 上的动点,联结QD 、QN ,请直接写出QD+QN 的最小值.【答案】(1) 一次函数的解析式为:y=3x+3(2)顶点P 的坐标为(1,4)(3) M 点的坐标为:15,2(,39⎛⎫- ⎪⎝⎭或 23-) (445【解析】【分析】(1)根据抛物线的解析式即可得出B (0,3),根据OB=3OA ,可求出OA 的长,也就得出了A 点的坐标,然后将A 、B 的坐标代入直线AB 的解析式中,即可得出所求;(2)将(1)得出的A 点坐标代入抛物线的解析式中,可求出a 的值,也就确定了抛物线的解析式进而可求出P 点的坐标;(3)易求出平移后的直线的解析式,可根据此解析式设出M 点坐标(设横坐标,根据直线的解析式表示出纵坐标).然后过M 作x 轴的垂线设垂足为E ,在构建的直角三角形AME 中,可用M 点的坐标表示出ME 和AE 的长,然后根据∠OAM 的正切值求出M 的坐标.(本题要分M 在x 轴上方和x 轴下方两种情况求解.方法一样.)(4)作点D 关于直线x=1的对称点D′,过点D′作D′N ⊥PD 于点N ,根据垂线段最短求出QD+QN 的最小值.【详解】(1)∵A (-1,0),∴OA=1∵OB=3OA ,∴B (0,3)∴图象过A 、B 两点的一次函数的解析式为:y=3x+3(2)∵二次函数22(0)y ax ax c a =-+<的图象与x 轴负半轴交与点A (-1,0),与y 轴正半轴交与点B (0,3),∴c=3,a=-1∴二次函数的解析式为:223y x x =-++∴抛物线223y x x =-++的顶点P (1,4)(3)设平移后的直线的解析式为:3y x b =+∵直线3y x b =+过P (1,4)∴b=1∴平移后的直线为31y x =+∵M 在直线31y x =+,且3tan 2OAM ∠=设M (x,3x+1)① 当点M 在x 轴上方时,有31312x x +=+,∴13x = ∴11,23M ⎛⎫ ⎪⎝⎭②当点M 在x 轴下方时,有31312x x +-=+,∴59x =- ∴25(,9M - 23-) (4)作点D 关于直线x=1的对称点D’,过点D’作D’N ⊥PD 于点N当-x 2+2x+3=0时,解得,x=-1或x=3,∴A (-1,0),P 点坐标为(1,4),则可得PD 解析式为:y=2x+2,令x=0,可得y=2,∴D (0,2),∵D 与D′关于直线x=1对称,∴D′(2,2).根据ND′⊥PD ,设ND′解析式为y=kx+b ,则k=-12,即y=-12x+b , 将D′(2,2)代入,得2=-12×2+b ,解得b=3, 可得函数解析式为y=-12x+3, 将两函数解析式组成方程组得:13222y x y x ⎧=-+⎪⎨⎪=+⎩,解得25145xy⎧=⎪⎪⎨⎪=⎪⎩,故N(214,)55,由两点间的距离公式:d=222144522555⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭,∴所求最小值为455【点睛】本题主要考查了一次函数解析式的确定、二次函数解析式的确定、函数图象的平移等知识点.同时考查了应用轴对称和垂线段最短解决线段和的最小值问题.三、初三数学旋转易错题压轴题(难)11.小明研究了这样一道几何题:如图1,在△ABC中,把AB点A顺时针旋转α (0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,请问△AB′C′边B′C′上的中线AD与BC的数量关系是什么?以下是他的研究过程:特例验证:(1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠A+∠B=120°,BC=12,CD=6,DA3边形内部是否存在点P,使△PDC与△PAB之间满足小明探究的问题中的边角关系?若存在,请画出点P的位置(保留作图痕迹,不需要说明)并直接写出△PDC的边DC上的中线PQ的长度;若不存在,说明理由.【答案】(1)①12;②4(2) AD=12BC,理由见解析(3)存在,313【解析】【分析】(1)①由已知条件可得AD⊥B′C′,由α+β=180°可得∠BAC+∠B′AC′=180°,已知∠BAC=60°,可求得∠B′AC′=120°继而∠B′=∠C′=30°,可得AD=12AB′=12BC②当∠BAC=90°时,可得∠B′AC′=∠BAC=90°,△B′AC′是直角三角形,可证得△BAC≌△B′AC′,推出对应边相等,已知BC=8求出AD的长.(2)先做辅助线,延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:因为B′D=DC′,AD=DM,对角线相互平分,可得四边形AC′MB′是平行四边形,得出对应边相等,由∠BAB′+∠CAC′=180°推得∠BAC=∠AB′M,可证明△BAC≌△AB′M,所以BC=AM,AD=12 BC;(3)先做辅助线,作线段BC的垂直平分线交BE于P,即为点P的位置;延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O假设P点存在,再证明理由.根据已知角可得出△DCM是直角三角形,∠MDC=30°,可得出CM3DM3在;∵CD=6,∠DCM=90°,∠MDC=30°,∠M=90°﹣∠MDC=60°,可求得EM=12BM3DE=EM﹣DM3﹣33由已知DAAE=DE且BE⊥AD,可得PF是线段BC的垂直平分线,证得PA=PD因为PB=PC,PF∥CD,可求得CF=12BC,利用线段长度可求得∠CDF=60°利用全等三角形判定定理可证得△FCP≌△CFD(AAS),进而证得四边形CDPF是矩形,得∠CDP=90°,∠ADP =60°,可得△ADP是等边三角形,求出DQ、DP,在Rt△PDQ中可求得PQ长度.【详解】(1)①∵△ABC是等边三角形∴AB=BC=AC=AB′=AC′,∠BAC=60°∵DB′=DC′∴AD⊥B′C′∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∴∠B′AC′=180°﹣∠BAC=180°﹣60°=120°∴∠B′=∠C′=30°∴AD=12AB′=12BC故答案:1 2②∵∠BAB′+∠CAC′=180°∴∠BAC+∠B′AC′=180°∵∠BAC=90°∴∠B′AC′=∠BAC=90°在△BAC和△B′AC′中,''"90"AB ABBAC B ACAC AC=⎧⎪∠=∠=︒⎨⎪=⎩∴△BAC≌△B′AC′(SAS)∴BC=B′C′∵B′D=DC′∴AD=12B′C′=12BC=4故答案:4(2)AD与BC的数量关系:AD=12BC;理由如下:延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴∠B′AC′+∠AB′M=180°,AC′=B′M=AC,∵∠BAB′+∠CAC′=180°,∴∠BAC+∠B′AC′=180°,∴∠BAC=∠AB′M,在△BAC和△AB′M中,'''AC B MBAC AB MAB AB=⎧⎪∠=∠⎨⎪=⎩,∴△BAC≌△AB′M(SAS),∴BC=AM,∴AD=12BC;(3)存在;作BE⊥AD于E,作线段BC的垂直平分线交BE于P,即为点P的位置;理由如下:延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O,如图4所示:∵∠A+∠B=120°,∴∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵CD=6,∠DCM=90°,∠MDC=30°,∴CM3DM3,∠M=90°﹣∠MDC=60°,在Rt△BEM中,∵∠BEM=90°,BM=BC+CM333,∠MBE=90°﹣∠M=30°,∴EM=12BM3∴DE=EM﹣DM333∵DA3∴AE=DE,∵BE⊥AD,∴PA=PD,∵PF是线段BC的垂直平分线,∴PB=PC,PF∥CD,在Rt△CDF中,∵CD=6,CF=12BC3∴tan ∠CDF =CF CD =636=3, ∴∠CDF =60°,∴∠MDF =∠MDC +∠CDF =30°+60°=90°, ∴∠ADF =90°=∠AEB , ∴∠CBE =∠CFD , ∵∠CBE =∠PCF , ∴∠CFD =∠PCF =30°,∵∠CFD +∠CDF =90°,∠PCF +∠CPF =90°, ∴∠CPF =∠CDF =60°,在△FCP 和△CFD 中,CPF CDF PCF CFD CF CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△FCP ≌△CFD (AAS ), ∴CD =PF , ∵CD ∥PF ,∴四边形CDPF 是矩形, ∴∠CDP =90°,∴∠ADP =∠ADC ﹣∠CDP =60°, ∴△ADP 是等边三角形, ∴∠APD =60°,∵∠BPF =∠CPF =90°﹣30°=60°, ∴∠BPC =120°, ∴∠APD +∠BPC =180°,∴△PDC 与△PAB 之间满足小明探究的问题中的边角关系; 在Rt △PDQ 中,∵∠PDQ =90°,PD =DA =63,DN =12CD =3, ∴PQ =22DQ DP +=223(63)+=313.【点睛】本题考查了三角形的边旋转的问题,旋转前后边长不变,根据已知角度变化,求得线段之间关系.在证明某点知否存在时,先假设这点存在,能求出相关线段或坐标,即证实存在性.12.边长为2的正方形ABCD 的两顶点A 、C 分别在正方形EFGH 的两边DE 、DG 上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.(1)求边DA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.【答案】(1);(2);(3)不变化,证明见解析.【解析】试题分析:(1)将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,DA旋转了,从而根据扇形面积公式可求DA在旋转过程中所扫过的面积.(2)旋转过程中,当MN和AC平行时,根据平行的性质和全等三角形的判定和性质可求正方形ABCD旋转的度数为.(3)延长BA交DE轴于H点,通过证明和可得结论.(1)∵A点第一次落在DF上时停止旋转,∴DA旋转了.∴DA在旋转过程中所扫过的面积为.(2)∵MN∥AC,∴,.∴.∴.又∵,∴.又∵,∴.∴.∴.∴旋转过程中,当MN和AC平行时,正方形ABCD旋转的度数为.(3)不变化,证明如下:如图,延长BA交DE轴于H点,则,,∴.又∵.∴.∴.又∵, ,∴.∴.∴.∴.∴在旋转正方形ABCD的过程中,值无变化.考点:1.面动旋转问题;2.正方形的性质;3.扇形面积的计算;4.全等三角形的判定和性质.13.如图,△ABC和△DEC都是等腰三角形,点C为它们的公共直角顶点,连接AD、BE,F 为线段AD的中点,连接CF.(1)如图1,当D点在BC上时,BE与CF的数量关系是__________;(2)如图2,把△DEC绕C点顺时针旋转90°,其他条件不变,问(1)中的关系是否仍然成立?请说明理由;(3)如图3,把△DEC绕C点顺时针旋转一个钝角,其他条件不变,问(1)中的关系是否仍然成立?如成立,请证明;如果不成立,请写出相应的正确的结论并加以证明.【答案】(1)BE=2CF;(2)(1)中的关系是仍然成立,理由见解析;(3)(1)中的关系是仍然成立,理由见解析.【解析】试题分析:(1)根据“SAS”证明△ACD≌△BCE,可得AD=BE,又因为AD=2CF,从而BE=2CF;(2)由点F是AD中点,可得AD=2DF,从而AC= 2DF+CD,又由△ABC和△CDE是等腰直角三角形,可知BC=2DF+CE,所以BE= 2(DF+CE),CF= DF+CD,从而BE=2CF;(3)延长CF至G使FG=CF,即:CG=2CF,可证△CDF≌△GAF,再证明△BCE≌△ACG,从而BE=CG=2CF成立.解:(1)∵△ABC是等腰直角三角形,∴AC=BC,∵△CDE是等腰直角三角形,∴CD=CE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,在Rt△ACD中,点F是AD中点,∴AD=2CF,∴BE=2CF,故答案为BE=2CF;(2)(1)中的关系是仍然成立,理由:∵点F是AD中点,∴AD=2DF,∴AC=AD+CD=2DF+CD,∵△ABC和△CDE是等腰直角三角形,∴AC=BC,CD=CE,∴BC=2DF+CE,∴BE=BC+CE=2DF+CE+CE=2(DF+CE),∵CF=DF+CD=DF+CD,∴BE=2CF;(3)(1)中的关系是仍然成立,理由:如图3,延长CF至G使FG=CF,即:CG=2CF,∵点F是AD中点,∴AF=DF,在△CDF和△GAF中,,∴△CDF≌△GAF,∴AG=CD=CE,∠CDF=∠GAF,∴∠CAG=∠CAD+∠GAF=∠CAD+∠ADC=180°﹣∠ACD,∵∠ACB=∠DCE=90°,∴∠BCE=360°﹣∠ACB﹣∠DCE﹣∠ACD=180°﹣∠ACD,∴∠CAG=∠BCE,连接BE,在△BCE和△ACG中,,∴△BCE≌△ACG,∴BE=CG=2CF,即:BE=2CF.点睛:本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质和旋转的性质,考查了学生综合运用知识的能力,熟练掌握旋转的性质、全等三角形的判定与性质是解答本题的关键.14.如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.(1)如图1,当点D在AB上,点E在AC上时①证明:△BFC是等腰三角形;②请判断线段CF,DF的关系?并说明理由;(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.【答案】(1)①证明见解析;②结论:CF=DF且CF⊥DF.理由见解析;(2)(1)中的结论仍然成立.理由见解析.【解析】【详解】分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF,根据∠CFD=2∠ABC,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DF至G使FG=DF,连接BG,CG,DC,首先证明△BFG和△EFD全等,然后再证明△BCG和△ACD全等,从而得出GC=DC,∠BCG=∠ACD,∠DCG=∠ACB=90°,最后根据直角三角形斜中线的性质得出答案.详解:(1)①证明:∵∠BCE=90°.EF=FB,∴CF=BF=EF,∴△BFC是等腰三角形.②解:结论:CF=DF且CF⊥DF.理由如下:∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=12BE=BF,∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,∴CF=DF且CF⊥DF.(2)(1)中的结论仍然成立.理由如下:如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,∴∠CBG=∠DAC,又∵BG=ED,DE=DA,∴BG=AD,又∵BC=AC,∴△BCG≌△ACD(SAS),∴GC=DC,∠BCG=∠ACD,∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,∴△DCG是等腰直角三角形,又∵F是DG的中点,∴CF⊥DF且CF=DF.点睛:主要考查了旋转的性质,等腰三角形和全等三角形的判定,及勾股定理的运用.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.15.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,求证:△CDE是等边三角形.(2)设OD=t,①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②求t为何值时,△DEB是直角三角形(直接写出结果即可).【答案】(1)见解析;(2)①见解析;②t=2或14.【解析】【分析】(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)①当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;②存在,当点D与点B重合时,D,B,E不能构成三角形;当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2=t;当6<t<10时,此时不存在;当t>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14.【详解】(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)①存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=3,∴△BDE的最小周长=CD+4=3;②存在,∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,。
佛山市九年级上册期末精选试卷检测题
佛山市九年级上册期末精选试卷检测题一、初三数学 一元二次方程易错题压轴题(难)1.随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭.据某市交通部门统计,2008年底该市汽车拥有量为75万辆,而截止到2010年底,该市的汽车拥有量已达108万辆.(1)求2008年底至2010年底该市汽车拥有量的年平均增长率;(2)为了保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2012年底全市汽车拥有量不超过125.48万辆;另据统计,从2011年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%假设每年新增汽车数量相同,请你估算出该市从2011 年初起每年新增汽车数量最多不超过多少万辆.【答案】解:(1)2008年底至2010年底该市汽车拥有量的年平均增长率是20% (2)从2011年初起每年新增汽车数量最多不超过20万辆 【解析】 【分析】(1)设年平均增长率x ,根据等量关系“2008年底汽车拥有量×(1+年平均增长率)×(1+年平均增长率)”列出一元二次方程求得.(2)设从2011年初起每年新增汽车的数量y ,根据已知得出2011年报废的车辆是2010年底拥有量×10%,推出2011年底汽车拥有量是2010年底拥有量-2011年报废的车辆=2010年拥有量×(1-10%),得出等量关系是: 2010年拥有量×(1-10%)+新增汽车数量]×(1-10%)+新增汽车数量”,列出一元一次不等式求得. 【详解】解:(1)设该市汽车拥有量的年平均增长率为x . 根据题意,得75(1+x )2=108,则1+x=±1.2 解得x 1=0.2=20%,x 2=﹣2.2(不合题意,舍去). 答:该市汽车拥有量的年平均增长率为20%.(2)设全市每年新增汽车数量为y 万辆,则2010年底全市的汽车拥有量为(108×90%+y )万辆,2011年底全市的汽车拥有量为[(108×90%+y )×90%+y]万辆. 根据题意得(108×90%+y )×90%+y≤125.48, 解得y≤20.答:该市每年新增汽车数量最多不能超过20万辆.2.阅读以下材料,并解决相应问题:材料一:换元法是数学中的重要方法,利用换元法可以从形式上简化式子,在求解某些特殊方程时,利用换元法常常可以达到转化的目的,例如在求解一元四次方程42210x x -+=,就可以令21x =,则原方程就被换元成2210t t -+=,解得 t = 1,即21x =,从而得到原方程的解是 x = ±1材料二:杨辉三角形是中国数学上一个伟大成就,在中国南宋数学家杨辉 1261 年所著的《详解九章算法》一书中出现,它呈现了某些特定系数在三角形中的一种有规律的几何排列,下图为杨辉三角形:……………………………………(1)利用换元法解方程:()()222312313+-++-=x x x x(2)在杨辉三角形中,按照自上而下、从左往右的顺序观察, an 表示第 n 行第 2 个数(其中 n≥4),bn 表示第 n 行第 3 个数,n c 表示第(n )1-行第 3 个数,请用换元法因式分解:()41-⋅+n n n b a c 【答案】(1)317x -+=或317x --= 或x=-1或x=-2;(2)()41-⋅+n n n b a c =(n 2-5n+5)2 【解析】 【分析】(1)设t=x 2+3x-1,则原方程可化为:t 2+2t=3,求得t 的值再代回可求得方程的解; (2)根据杨辉三角形的特点得出a n ,b n ,c n ,然后代入4(b n -a n )•c n +1再因式分解即可. 【详解】(1)解:令t=x 2+3x-1 则原方程为:t 2+2t=3 解得:t=1 或者 t=-3 当t=1时,x 2+3x-1=1 解得:317x -+=或317x --=当t=-3时,x 2+3x-1=-3 解得:x=-1或x=-2 ∴方程的解为:317x -+=或317x --=或x=-1或x=-2 (2)解:根据杨辉三角形的特点得出: a n =n-1(1)(2)2n n n b --= (2)(3)2n n n c --=∴4(b n -a n )•c n +1=(n-1)(n-4)(n-2)(n-3)+1=(n 2-5n+4)(n 2-5n+6)+1 =(n 2-5n+4)2+2(n 2-5n+4)+1=(n 2-5n+5)2 【点睛】本题主要考查因式分解的应用.解一些复杂的因式分解问题,常用到换元法,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用.3.如图,∠ AOB =90°,且点A ,B 分别在反比例函数1k y x =(x <0),2ky x=(x >0)的图象上,且k 1,k 2分别是方程x 2-x -6=0的两根. (1)求k 1,k 2的值;(2)连接AB ,求tan ∠ OBA 的值.【答案】(1)k 1=-2,k 2=3. (2)tan∠OBA =63. 【解析】解:(1)∵k 1,k 2分别是方程x 2-x -6=0的两根,∴解方程x 2-x -6=0,得x 1=3,x 2=-2.结合图像可知:k 1<0,k 2>0,∴k 1=-2,k 2=3.(2)如图,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥y 轴于点D .[来源:学&科&网Z&X&X&K]由(1)知,点A ,B 分别在反比例函数2y x =-(x <0),3y x=(x >0)的图象上, ∴S △ACO =12×2-=1 ,S △ODB =12×3=32.∵∠ AOB =90°, ∴∠ AOC +∠ BOD =90°,∵∠ AOC +∠ OAC =90°,∴∠ OAC =∠ BOD . 又∵∠ACO =∠ODB =90°,∴△ACO ∽△ODB .∴S S ACO ODB ∆∆=2OA OB ⎛⎫ ⎪⎝⎭=23,∴OA OB =±63(舍负取正),即OA OB =63. ∴在Rt △AOB 中,tan ∠ OBA =OA OB =63.4.如图,已知AB 是⊙O 的弦,半径OA=2,OA 和AB 的长度是关于x 的一元二次方程x 2﹣4x+a=0的两个实数根. (1)求弦AB 的长度; (2)计算S △AOB ;(3)⊙O 上一动点P 从A 点出发,沿逆时针方向运动一周,当S △POA =S △AOB 时,求P 点所经过的弧长(不考虑点P 与点B 重合的情形).【答案】(1)AB=2;(2)S △AOB 33)当S △POA =S △AOB 时,P 点所经过的弧长分别是43π、83π、103π. 【解析】试题分析:(1)OA 和AB 的长度是一元二次方程的根,所以利用一元二次方程的根与系数的关系即可求出AB 的长度;(2)作出△AOB 的高OC ,然后求出OC 的长度即可求出面积; (3)由题意知:两三角形有公共的底边,要面积相等,即高要相等. 试题解析:(1)由题意知:OA 和AB 的长度是x 2﹣4x+a=0的两个实数根, ∴OA+AB=﹣41-=4, ∵OA=2, ∴AB=2;(2)过点C 作OC⊥AB 于点C ,∵OA=AB=OB=2,∴△AOB 是等边三角形,∴AC=12AB=1, 在Rt△ACO 中,由勾股定理可得:3△AOB =12AB ﹒OC=1233; (3)延长AO 交⊙O 于点D ,由于△AOB 与△POA 有公共边OA , 当S △POA =S △AOB 时,∴△AOB 与△POA 高相等,由(2)可知:等边△AOB 3P 到直线OA 3,这样点共有3个 ①过点B 作BP 1∥OA 交⊙O 于点P 1,∴∠BOP 1=60°,∴此时点P经过的弧长为:1202180π⨯=43π,②作点P2,使得P1与P2关于直线OA对称,∴∠P2OD=60°,∴此时点P经过的弧长为:2402180π⨯=83π,③作点P3,使得B与P3关于直线OA对称,∴∠P3OP2=60°,∴此时P经过的弧长为:3002180π⨯=103π,综上所述:当S△POA=S△AOB时,P点所经过的弧长分别是43π、83π、103π.【点睛】本题主要考查了一元二次方程与圆的综合知识.涉及等边三角形性质,圆的对称性等知识,能综合运用所学知识,选择恰当的方法进行解题是关键.5.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF 的斜边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:①∠FCD的最大度数为;②当FC∥AB时,AD= ;③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;④△FCD的面积s的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F作FH⊥AC于点H,设AD=x,由②知DH=3,FH=,则HC=.在Rt△CFH中,根据勾股定理,得.∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,∴,即,解得.④设AD=x,易知,即.而,当时,;当时,.∴△FCD的面积s的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.二、初三数学 二次函数易错题压轴题(难)6.如图,抛物线2y ax 2x c =++经过,,A B C 三点,已知()()1,0,0,3.A C -()1求此抛物线的关系式;()2设点P 是线段BC 上方的抛物线上一动点,过点P 作y 轴的平行线,交线段BC 于点,D 当BCP 的面积最大时,求点D 的坐标;()3点M 是抛物线上的一动点,当()2中BCP 的面积最大时,请直接写出使45PDM ∠=︒的点M 的坐标【答案】(1)2y x 2x 3=-++;(2)点33,22D ⎛⎫ ⎪⎝⎭;(3)点M 的坐标为()0,3或113113++⎝⎭【解析】 【分析】(1)由2y ax 2x c =++经过点()(),1,00,3A C -,利用待定系数法即可求得此抛物线的解析式.(2)首先设点()2,23,P t t t -++令2230x x -++=,求得()3,0B ,然后设直线BC 的关系式为y kx b =+,由待定系数法求得BC 的解析式为3y x =-+,可得()()22,3,2333D t t PD t t t t t -+=-++--+=-+,BCP 的面积为()21333,22S PD t t =⨯=-+利用二次函数的性质即可求解; (3)根据PD y 轴,45PDM ∠=︒,分别设DM y x b =+,DM y x b =-+,根据点33D(22,)坐标即可求出b ,再与抛物线联系即可得出点M 的坐标. 【详解】()1将()(),1,00,3A C -分别代入22,y ax x c =++可解得1,3,a c =-=即抛物线的关系式为2y x 2x 3=-++.()2设点()2,23,P t t t -++令2230,x x -++=解得121,3,x x =-= 则点()3,0B .设直线BC 的关系式为(y kx b k =+为常数且0k ≠), 将点,B C 的坐标代入,可求得直线BC 的关系式为3y x =-+.∴点()()22,3,2333D t t PD t t t t t -+=-++--+=-+设BCP 的面积为,S 则()21333,22S PD t t =⨯=-+ ∴当32t =时,S 有最大值,此时点33,22D ⎛⎫ ⎪⎝⎭.()3∵PD y 轴,45PDM ∠=︒第一种情况:令DM y x b =+,33D(22,) 解得:b=0∴223y x y x x =⎧⎨=-++⎩解得:113x =∴11M 22+(, 第二种情况:令DM y x b =-+,33D(22,) 解得:b=3∴2323y x y x x =-+⎧⎨=-++⎩解得:x=0或x=3(舍去) ∴M 03(,)满足条件的点M 的坐标为()0,3或113113,⎛⎫++ ⎪ ⎪⎝⎭【点睛】此题主要考查待定系数法求函数解析式和二次函数的性质,熟练掌握二次函数的性质是解题关键.7.如图,过原点的抛物线y=﹣12x 2+bx+c 与x 轴交于点A (4,0),B 为抛物线的顶点,连接OB ,点P 是线段OA 上的一个动点,过点P 作PC ⊥OB ,垂足为点C . (1)求抛物线的解析式,并确定顶点B 的坐标;(2)设点P 的横坐标为m ,将△POC 绕着点P 按顺利针方向旋转90°,得△PO′C′,当点O′和点C′分别落在抛物线上时,求相应的m 的值;(3)当(2)中的点C′落在抛物线上时,将抛物线向左或向右平移n (0<n <2)个单位,点B 、C′平移后对应的点分别记为B′、C″,是否存在n ,使得四边形OB′C″A 的周长最短?若存在,请直接写出n 的值和抛物线平移的方向,若不存在,请说明理由.【答案】(1)2122y x x =-+,点B (2,2);(2)m=2或209m =;(3)存在;n=27时,抛物线向左平移. 【解析】 【分析】(1)将点A 和点O 的坐标代入解析式,利用待定系数法即可求得二次函数的解析式,然后利用配方法可求得点B 的坐标;(2)由点A 、点B 、点C 的坐标以及旋转的性质可知△△PDC 为等腰直角三角形,从而可得到点O′坐标为:(m ,m ),点C′坐标为:(32m ,2m),然后根据点在抛物线上,列出关于m 的方程,从而可解得m 的值;(3)如图,将AC′沿C′B 平移,使得C′与B 重合,点A 落在A′处,以过点B 的直线y=2为对称轴,作A′的对称点A″,连接OA″,由线段的性质可知当B′为OA″与直线y=2的交点时,四边形OB′C″A 的周长最短,先求得点B′的坐标,根据点B 移动的方向和距离从而可得出点抛物线移动的方向和距离. 【详解】解:(1)把原点O (0,0),和点A (4,0)代入y=12-x 2+bx+c .得040c b b c =⎧⎨-++=⎩,∴02c b =⎧⎨=⎩.∴22112(2)222y x x x =-+=--+. ∴点B 的坐标为(2,2).(2)∵点B 坐标为(2,2). ∴∠BOA=45°.∴△PDC 为等腰直角三角形. 如图,过C′作C′D ⊥O′P 于D .∵O′P=OP=m . ∴C′D=12O′P=12m . ∴点O′坐标为:(m ,m ),点C′坐标为:(32m ,2m ).当点O′在y=12-x 2+2x 上. 则−12m 2+2m =m . 解得:12m =,20m =(舍去). ∴m=2. 当点C′在y=12-x 2+2x 上, 则12-×(32m )2+2×32m =12m ,解得:1209m =,20m =(舍去). ∴m=209(3)存在n=27,抛物线向左平移. 当m=209时,点C′的坐标为(103,109).如图,将AC′沿C′B平移,使得C′与B重合,点A落在A′处.以过点B的直线y=2为对称轴,作A′的对称点A″,连接OA″.当B′为OA″与直线y=2的交点时,四边形OB′C″A的周长最短.∵BA′∥AC′,且BA′=AC′,点A(4,0),点C′(103,109),点B(2,2).∴点A′(83,89).∴点A″的坐标为(83,289).设直线OA″的解析式为y=kx,将点A″代入得:828 39k=,解得:k=76.∴直线OA″的解析式为y=76 x.将y=2代入得:76x=2,解得:x=127,∴点B′得坐标为(127,2).∴n=2122 77 -=.∴存在n=27,抛物线向左平移.【点睛】本题主要考查的是二次函数、旋转的性质、平移的性质、路径最短等知识点,由旋转的性质和平移的性质求得点点O′坐标为:(m,m),点C′坐标为:(32m,2m)以及点B′的坐标是解题的关键.8.定义:函数l与l'的图象关于y轴对称,点(),0P t是x轴上一点,将函数l'的图象位于直线x t=左侧的部分,以x轴为对称轴翻折,得到新的函数w的图象,我们称函数w是函数l的对称折函数,函数w的图象记作1F,函数l的图象位于直线x t=上以及右侧的部分记作2F,图象1F和2F合起来记作图象F.例如:如图,函数l的解析式为1y x=+,当1t=时,它的对称折函数w的解析式为()11y x x=-<.(1)函数l的解析式为21y x=-,当2t=-时,它的对称折函数w的解析式为_______;(2)函数l的解析式为1²12y x x=--,当42x-≤≤且0t=时,求图象F上点的纵坐标的最大值和最小值;(3)函数l的解析式为()2230y ax ax a a=--≠.若1a=,直线1y t=-与图象F有两个公共点,求t的取值范围.【答案】(1)()212y x x=+<-;(2)F的解析式为2211(0)211(0)2y x x xy x x x⎧=--≥⎪⎪⎨⎪=--+<⎪⎩;图象F上的点的纵坐标的最大值为32y=,最小值为3y=-;(3)当3t=-,3171t-<≤,3175t+<<时,直线1y t=-与图象F有两个公共点.【解析】【分析】(1)根据对折函数的定义直接写出函数解析式即可;(2)先根据题意确定F的解析式,然后根据二次函数的性质确定函数的最大值和最小值即可;(3)先求出当a=1时图像F的解析式,然后分14t-=-、点(),1t t-落在223()y x x x t=--≥上和点(),1t t-落在()223y x x x t=--+<上三种情况解答,最后根据图像即可解答.【详解】解:(1)()212y x x=+<-(2)F 的解析式为2211(0)211(0)2y x x x y x x x ⎧=--≥⎪⎪⎨⎪=--+<⎪⎩当4x =-时,3y =-,当1x =-时,32y =, 当1x =时,32y =-,当2x =时,1y =, ∴图象F 上的点的纵坐标的最大值为32y =,最小值为3y =-. (3)当1a =时,图象F 的解析式为2223()23()y x x x t y x x x t ⎧=--≥⎨=--+<⎩∴该函数的最大值和最小值分别为4和-4; a :当14t -=-时,3t =-,∴当3t =-时直线1y t =-与图象F 有两个公共点; b :当点(),1t t -落在223()y x x x t =--≥上时,2123t t t -=--,解得1t =2t =c :当点(),1t t -落在()223y x x x t =--+<上时,2123t t t -=--+,解得34t =-(舍),41t =14t -=,∴55t =1t <≤5t <<时,直线1y t =-与图象F 有两个公共点; 综上所述:当3t =-1t <≤5t <<时,直线1y t =-与图象F 有两个公共点. 【点睛】本题属于二次函数综合题,考查了“称折函数”的定义、二次函数的性质、解二元一次方程等知识,弄清题意、灵活运用所学知识是解答本题的关键.9.定义:在平面直角坐标系中,O 为坐标原点,设点P 的坐标为(x ,y ),当x <0时,点P 的变换点P′的坐标为(﹣x ,y );当x≥0时,点P 的变换点P′的坐标为(﹣y ,x ). (1)若点A (2,1)的变换点A′在反比例函数y=kx的图象上,则k= ; (2)若点B (2,4)和它的变换点B'在直线y=ax+b 上,则这条直线对应的函数关系式为 ,∠BOB′的大小是 度.(3)点P 在抛物线y=x 2﹣2x ﹣3的图象上,以线段PP′为对角线作正方形PMP'N ,设点P 的横坐标为m ,当正方形PMP′N 的对角线垂直于x 轴时,求m 的取值范围.(4)抛物线y=(x ﹣2)2+n 与x 轴交于点C ,D (点C 在点D 的左侧),顶点为E ,点P 在该抛物线上.若点P 的变换点P′在抛物线的对称轴上,且四边形ECP′D 是菱形,求n 的值.【答案】(1) -2;(2) y=13x+103,90;(3) m <0,或;(4) n=﹣8,n=﹣2,n=﹣3. 【解析】 【分析】(1)先求出A 的变换点A ′,然后把A ′代入反比例函数即可得到结论; (2)确定点B ′的坐标,把问题转化为方程组解决;(3)分三种情形讨论:①当m <0时;②当m ≥0,PP '⊥x 轴时;③当m ≥0,MN ⊥x 轴时.(4)利用菱形的性质,得到点E 与点P '关于x 轴对称,从而得到点P '的坐标为(2,﹣n ).分两种情况讨论:①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ),代入抛物线解析式,求解即可;②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入抛物线解析式,求解即可. 【详解】(1)∵A (2,1)的变换点为A ′(-1,2),把A ′(-1,2)代入y =kx中,得到k =-2. 故答案为:-2.(2)点B (2,4)的变换点B ′(﹣4,2),把(2,4),(﹣4,2)代入y =ax +b 中.得到:2442a b a b +=⎧⎨-+=⎩,解得:13103a b ⎧=⎪⎪⎨⎪=⎪⎩,∴11033y x =+.∵OB 2=2224+=20,OB ′2=2224+=20,BB ′2=22(42)(24)--+-=40,∴OB 2+OB ′2=BB ′2,∴∠BOB ′=90°. 故答案为:y =13x +103,90. (3)①当m <0时,点P 与点P '关于y 轴对称,此时MN 垂直于x 轴,所以m <0. ②当m ≥0,PP '⊥x 轴时,则点P '的坐标为(m ,m ),点P 的坐标为(m ,﹣m ). 将点P (m ,﹣m )代入y =x 2﹣2x ﹣3,得:﹣m =m 2﹣2m ﹣3.解得:12m m ==(不合题意,舍去).所以12m +=③当m ≥0,MN ⊥x 轴时,则PP '∥x 轴,点P 的坐标为(m ,m ).将点P (m ,m )代入y =x 2﹣2x ﹣3,得:m =m 2﹣2m ﹣3. 解得:12321321m m +-==,(不合题意,舍去). 所以3212m +=. 综上所述:m 的取值范围是m <0,m =1132+或m =3212+. (4)∵四边形ECP 'D 是菱形,∴点E 与点P '关于x 轴对称. ∵点E 的坐标为(2,n ),∴点P '的坐标为(2,﹣n ). ①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ). 代入y =(x ﹣2)2+n ,得:﹣n =(﹣2﹣2)2+n ,解得:n =﹣8. ②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入y =(x ﹣2)2+n ,得:﹣2=(﹣n ﹣2)2+n .解得:n 1=﹣2,n 2=﹣3. 综上所述:n 的值是n =﹣8,n =﹣2,n =﹣3. 【点睛】本题是二次函数综合题、一次函数的应用、待定系数法、变换点的定义等知识,解题的关键是理解题意,学会用分类讨论的射线思考问题,学会用方程的思想思考问题,属于中考压轴题.10.如图,在平面直角坐标系中,矩形AOBC 的边AO 在x 轴的负半轴上,边OB 在y 轴的负半轴上.且AO =12,OB =9.抛物线y =﹣x 2+bx+c 经过点A 和点B . (1)求抛物线的表达式;(2)在第二象限的抛物线上找一点M ,连接AM ,BM ,AB ,当△ABM 面积最大时,求点M 的坐标;(3)点D 是线段AO 上的动点,点E 是线段BO 上的动点,点F 是射线AC 上的动点,连接EF ,DF ,DE ,BD ,且EF 是线段BD 的垂直平分线.当CF =1时. ①直接写出点D 的坐标 ;②若△DEF 的面积为30,当抛物线y =﹣x 2+bx+c 经过平移同时过点D 和点E 时,请直接写出此时的抛物线的表达式 .【答案】(1)y=﹣x2﹣514x﹣9;(2)M(﹣6,31.5);(3)①(﹣12+35,0)或(﹣3,0),②y=﹣x2﹣133x﹣4【解析】【分析】(1)利用待定系数法把问题转化为解方程组即可解决问题.(2)如图1中,设M(m,﹣m2﹣514m﹣9),根据S△ABM=S△ACM+S△MBC﹣S△ACB构建二次函数,利用二次函数的性质解决问题即可.(3)①分两种情形:如图2中,当点F在AC的延长线设时,连接DF,FB.设D(m,0).根据FD=FB,构建方程求解.当点F在线段AC上时,同法可得.②根据三角形的面积求出D,E的坐标,再利用待定系数法解决问题即可.【详解】解:(1)由题意A(﹣12,0),B(0,﹣9),把A,B的坐标代入y=﹣x2+bx+c,得到9 144120cb c=-⎧⎨--+=⎩,解得:5149bc⎧=-⎪⎨⎪=-⎩,∴抛物线的解析式为y=﹣x2﹣514x﹣9.(2)如图1中,设M(m,﹣m2﹣514m﹣9),S△ABM=S△ACM+S△MBC﹣S△ACB=12×9×(m+12)+12×12×(﹣m2﹣514m﹣9+9)﹣12×12×9=﹣6m2﹣72m=﹣6(m+6)2+216,∵﹣6<0,∴m=﹣6时,△ABM的面积最大,此时M(﹣6,31.5).(3)①如图2中,当点F在AC的延长线设时,连接DF,FB.设D(m,0).∵EF垂直平分线段BD,∴FD=FB,∵F(﹣12,﹣10),B(0,﹣9),∴102+(m+12)2=122+12,∴m=﹣12﹣55∴D(﹣50).当点F在线段AC上时,同法可得D(﹣3,0),综上所述,满足条件的点D的坐标为(﹣50)或(﹣3,0).故答案为(﹣50)或(﹣3,0).②由①可知∵△EF的面积为30,∴D(﹣3,0),E(0,﹣4),把D,E代入y=﹣x2+b′x+c′,可得'493''0cb c=-⎧⎨--+=⎩,解得:13'3'4bc⎧=-⎪⎨⎪=-⎩,∴抛物线的解析式为y=﹣x2﹣133x﹣4.故答案为:y=﹣x2﹣133x﹣4.【点睛】本题属于二次函数综合题,考查了二次函数的性质,待定系数法,线段的垂直平分线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.三、初三数学 旋转易错题压轴题(难)11.如图1,在Rt ABC △中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是_________,位置关系是_________;(2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PMN 面积的最大值.【答案】(1)PM PN =,PM PN ⊥;(2)等腰直角三角形,见解析;(3)492【解析】 【分析】(1)由三角形中位线定理及平行的性质可得PN 与PM 等于DE 或CE 的一半,又△ABC 为等腰直角三角形,AD=AE ,所以得PN=PM ,且互相垂直;(2)由旋转可推出BAD CAE ∆∆≌,再利用PM 与PN 皆为中位线,得到PM=PN ,再利用角度间关系推导出垂直即可;(3)找到面积最大的位置作出图形,由(2)可知PM=PM ,且PM ⊥PN ,利用三角形面积公式求解即可. 【详解】(1)PM PN =,PM PN ⊥;已知点M ,P ,N 分别为DE ,DC ,BC 的中点,根据三角形的中位线定理可得12PM EC =,12PN BD =,//PM EC ,//PN BD 根据平行线性质可得DPM DCE ∠=∠,NPD ADC ∠=∠ 在Rt ABC ∆中,90A ∠=︒,AB AC =,AD AE = 可得BD EC =,90DCE ADC ∠+∠=︒ 即得PM PN =,PM PN ⊥ 故答案为:PM PN =;PM PN ⊥. (2)等腰直角三角形,理由如下:由旋转可得BAD CAE ∠=∠, 又AB AC =,AD AE = ∴BAD CAE ∆∆≌∴BD CE =,ABD ACE ∠=∠, ∵点M ,P 分别为DE ,DC 的中点 ∴PM 是DCE ∆的中位线 ∴12PM CE =,且//PM CE , 同理可证12PN BD =,且//PN BD ∴PM PN =,MPD ECD ∠=∠,PNC DBC ∠=∠, ∴MPD ECD ACD ACE ACD ABD ∠=∠=∠+∠=∠+∠,DPN PNC PCN DBC PCN ∠=∠+∠=∠+∠,∴90MPN MPD DPN ACD ABD DBC PCN ABC ACB ∠=∠+∠=∠+∠+∠+∠=∠+∠=︒,即PMN ∆为等腰直角三角形.(3)把ADE ∆绕点A 旋转的如图的位置,此时1()72PN AD AB =+=,1()72PM AE AC =+= 且PN 、PM 的值最长,由(2)可知PM PN =,PM PN ⊥ 所以PMN ∆面积最大值为1497722⨯⨯=. 【点睛】本题主要考查三角形中位线的判定及性质、全等三角形的判定及性质、等腰直角三角形的判定及性质、旋转的性质等相关知识,解题关键在于找到图形中各角度之间的数量关系.12.在Rt △ACB 和Rt △AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE .(1) 如图1,若点E,F分别落在边AB,AC上,求证:PC=PE;(2) 如图2,把图1中的△AEF绕着点A顺时针旋转,当点E落在边CA的延长线上时,探索PC与PE的数量关系,并说明理由.(3) 如图3,把图2中的△AEF绕着点A顺时针旋转,点F落在边AB上.其他条件不变,问题(2)中的结论是否发生变化?如果不变,请加以证明;如果变化,请说明理由.【答案】(1)见解析;(2)PC=PE,理由见解析;(3)成立,理由见解析【解析】【分析】(1)利用直角三角形斜边的中线等于斜边的一半,即可;(2)先判断△CBP≌△HPF,再利用直角三角形斜边的中线等于斜边的一半;(3)先判断△DAF≌△EAF,再判断△DAP≌△EAP,然后用比例式即可;【详解】解:(1)证明:如图:∵∠ACB=∠AEF=90°,∴△FCB和△BEF都为直角三角形.∵点P是BF的中点,∴CP=12BF,EP=12BF,∴PC=PE.(2)PC=PE理由如下:如图2,延长CP,EF交于点H,∵∠ACB=∠AEF=90°,∴EH//CB,∴∠CBP=∠PFH,∠H=∠BCP,∵点P是BF的中点,∴PF=PB,∴△CBP≌△HFP(AAS),∴PC=PH,∵∠AEF=90°,∴在Rt△CEH中,EP=12CH,∴PC=PE.(3)(2)中的结论,仍然成立,即PC=PE,理由如下:如图3,过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,∵∠DAF=∠EAF,∠FDA=∠FEA=90°,在△DAF和△EAF中,DAF,,,EAFFDA FEAAF AF∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DAF≌△EAF(AAS),∴AD=AE,在△DAP≌△EAP中,,,,AD AEDAP EAPAP AP=⎧⎪∠=∠⎨⎪=⎩∴△DAP≌△EAP (SAS),∴PD=PF,∵FD⊥AC,BC⊥AC,PM⊥AC,∴FD//BC//PM,∴DM FPMC PB=,∵点P是BF的中点,∴DM=MC,又∵PM⊥AC,∴PC=PD,又∵PD=PE,∴PC=PE.【点睛】此题是几何变换综合题,主要考查了直角三角形斜边的中线等于斜边一半,全等三角形的性质和判定,相似三角形的性质和判定,作出辅助线是解本题的关键也是难点.13.在△ABC中,∠C=90°,AC=BC=6.(1)如图1,若将线段AB绕点B逆时针旋转90°得到线段BD,连接AD,则△ABD的面积为.(2)如图2,点P为CA延长线上一个动点,连接BP,以P为直角顶点,BP为直角边作等腰直角△BPQ,连接AQ,求证:AB⊥AQ;(3)如图3,点E,F为线段BC上两点,且∠CAF=∠EAF=∠BAE,点M是线段AF上一个动点,点N是线段AC上一个动点,是否存在点M,N,使CM+NM的值最小,若存在,求出最小值:若不存在,说明理由.【答案】(1)36;(2)详见解析;(3)存在,最小值为3.【解析】【分析】(1)根据旋转的性质得到△ABD是等腰直角三角形,求得AD=2BC=12,根据三角形的面积公式即可得到结论;(2)如图2,过Q作QH⊥CA交CA的延长线于H,根据等腰直角三角形的性质,得到PQ =PB,∠BPQ=90°,根据全等三角形的性质得到PH=BC,QH=CP,求得CP=AH,得到∠HAQ=45°,于是得到∠BAQ=180°﹣45°﹣45°=90°,即可得到结论;(3)根据已知条件得到∠CAF=∠EAF=∠BAE=15°,求得∠EAC=30°,如图3,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,则此时,CM+NM的值最小,且最小值=DN,求得AD=AC=6,根据直角三角形的性质即可得到结论.【详解】解:(1)∵将线段AB绕点B逆时针旋转90°得到线段BD,∴△ABD是等腰直角三角形,∵∠ACB=90°,∴BC⊥AD,∴AD=2BC=12,∴△ABD的面积=12AD•BC=1212×6=36,故答案为:36;(2)如图,过Q作QH⊥CA交CA的延长线于H,∴∠H=∠C=90°,∵△BPQ是等腰直角三角形,∴PQ=PB,∠BPQ=90°,∴∠HPQ+∠BPC=∠QPH+∠PQH=90°,∴∠PQH=∠BPC,∴△PQH≌△BPC(AAS),∴PH=BC,QH=CP,∵AC=BC,∴PH=AC,∴CP=AH,∴QH=AH,∴∠HAQ=45°,∵∠BAC=45°,∴∠BAQ=180°﹣45°﹣45°=90°,∴AB⊥AQ;(3)如图,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,∵∠CAF=∠EAF=∠BAE,∠BAC=45°,∴∠CAF=∠EAF=∠BAE=15°,∴∠EAC=30°,则此时,CM+NM的值最小,且最小值=DN,∵点C和点D关于AF对称,∴AD=AC=6,∵∠AND=90°,∴DN=12AD=126=3,∴CM+NM最小值为3.【点睛】本题是几何变换综合题,考查了全等三角形的判定与性质,旋转的性质,等腰直角三角形的性质,含30°角的直角三角形的性质,正确的作出作辅助线构造全等三角形是解题的关键.14.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【答案】(1)详见解析;(2)①详见解析;②2;③62 4.【解析】【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,3m,6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,3,6m.∴EG=m+3m=(1+3)m,∵S△BEG=12•EG•BN=12•BG•EH,∴EH=3?(13)m m+=3+3m,在Rt△EBH中,sin∠EBH=3+362246mEHEB m+==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,15.已知,正方形ABCD的边长为4,点E是对角线BD延长线上一点,AE=BD.将△ABE绕点A顺时针旋转α度(0°<α<360°)得到△AB′E′,点B、E的对应点分别为B′、E′.(1)如图1,当α=30°时,求证:B′C=DE;(2)连接B′E、DE′,当B′E=DE′时,请用图2求α的值;(3)如图3,点P为AB的中点,点Q为线段B′E′上任意一点,试探究,在此旋转过程中,线段PQ长度的取值范围为.【答案】(1)证明见解析(2)45°或22.5°(3)2-22+2【解析】【分析】(1)先由正方形的性质得到直角三角形AOE,再经过简单计算求出角,判断出△ADE≌△AB′C即可;(2)先判断出△AEB′≌△AE′D,再根据旋转角和图形,判断出∠BAB′=∠DAB′即可;(3)先判断出点Q的位置,PQ最小时和最大时的位置,进行计算即可.【详解】解:(1)如图1,连接AC,B′C,∵四边形ABCD是正方形,∴AB=AD,AC⊥BD,AC=BD=2OA,∠CAB=ADB=45°,∵AE=BD,∴AC=AE=2OA,在Rt△AOE中,∠AOE=90°,AE=2OA,∴∠E=30°,∴∠DAE=∠ADB-∠E=45°-30°=15°,由旋转有,AD=AB=AB′∠BAB′=30°,∴∠DAE=15°,在△ADE和△AB′C中,''AD ABDAE CABAE AC=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△AB′C,∴DE=B′C,(2)如图2,由旋转得,AB′=AB=AD,AE′=AE,在△AEB′和△AE′D中,''''AE AEAD ABDB DE=⎧⎪=⎨⎪=⎩,∴△AEB′≌△AE′D,∴∠DAE′=∠EAB′,∴∠EAE′=∠DAB′,由旋转得,∠EAE′=∠BAB′,∴∠BAB′=∠DAB′,∵∠BAB′+∠DA B′=90°,∴α=∠BAB′=45°,或α=360°-90°-45°=225°;(3)如图3,∵正方形ABCD的边长为4,∴122,连接AC交BD于O,∴OA⊥BD,OA=12AC=122在旋转过程中,△ABE在旋转到边B'E'⊥AB于Q,此时PQ最小,由旋转知,△ABE≌△AB'E',∴AQ=OA=12BD(全等三角形对应边上的高相等),∴PQ=AQ-AP=122-2在旋转过程中,△ABE在旋转到点E在BA的延长线时,点Q和点E'重合,∴2,∴2+2,故答案为2-2+2..四、初三数学圆易错题压轴题(难)16.四边形ABCD内接于⊙O,连接AC、BD,2∠BDC+∠ADB=180°.(1)如图1,求证:AC=BC;(2)如图2,E为⊙O上一点,AE=BE,F为AC上一点,DE与BF相交于点T,连接AT,若∠BFC=∠BDC+12∠ABD,求证:AT平分∠DAB;(3)在(2)的条件下,DT=TE,AD=8,BD=12,求DE的长.【答案】(1)见解析;(2)见解析;(3)2【解析】【分析】(1)只要证明∠CAB=∠CBA即可.(2)如图2中,作TH⊥AD于H,TR⊥BD于R,TL⊥AB于L.想办法证明TL=TH即可解决问题.(3)如图3中,连接EA,EB,作EG⊥AB,TH⊥AD于H,TR⊥BD于R,TL⊥AB于L,AQ⊥BD于Q.证明△EAG≌△TDH(AAS),推出AG=DH,证明Rt△TDR≌Rt△TDH(HL),推出DH=DR,同理可得AL=AH,BR=BL,设DH=x,则AB=2x,由S△ADB=12•BD•AQ=12•AD•h+12•AB•h+12•DB•h,可得AQ=52h,再根据sin∠BDE=sin∠ADE,sin∠AED=sin∠ABD,构建方程组求出m即可解决问题.【详解】解:(1)如图1中,。
∥3套精选试卷∥2020年佛山市九年级上学期期末复习检测数学试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.关于x 的一元二次方程(m -2)x 2+(2m +1)x +m -2=0有两个不相等的正实数根,则m 的取值范围是( )A .m >34B .m >34且m≠2C .-12≤m≤2D .34<m <2 【答案】D【解析】试题分析:根据题意得20m -≠且△=2(21)4(2)(2)0m m m +--->,解得34m >且2m ≠, 设方程的两根为a 、b ,则+a b =2102m m +->-,2102m ab m -==>-,而210m +>,∴20m -<,即2m <,∴m 的取值范围为324m <<.故选D . 考点:1.根的判别式;2.一元二次方程的定义.2 A .﹣3B .3C .﹣9D .9 【答案】B【分析】利用二次根式的性质进行化简即可.﹣3|=3. 故选B.3.一个菱形的边长是方程28150x x -+=的一个根,其中一条对角线长为8,则该菱形的面积为( ) A .48B .24C .24或40D .48或80 【答案】B【解析】利用因式分解法解方程得到x1=5,x2=3,利用菱形的对角线互相垂直平分和三角形三边的关系得到菱形的边长为5,利用勾股定理计算出菱形的另一条对角线为6,然后计算菱形的面积.【详解】解:()()530x x --=,所以15x =,23x =,∵菱形一条对角线长为8,∴菱形的边长为5,∴菱形的另一条对角线为6=,∴菱形的面积168242=⨯⨯=.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了三角形三边的关系.也考查了三角形三边的关系和菱形的性质.4.下列关于x 的一元二次方程没有实数根的是( )A .2510x x +-=B .2440x x -+=C .22630x x ++=D .2220x x ++= 【答案】D【解析】利用一元二次方程的根的判别式逐项判断即可.【详解】一元二次方程的根的判别式为24b ac ∆=-,逐项判断如下:A 、2541(1)290∆=-⨯⨯-=>,方程有两个不相等的实数根,不符题意B 、2(4)4140∆=--⨯⨯=,方程有两个相等的实数根,符合题意C 、26423120∆=-⨯⨯=>,方程有两个不相等的实数根,不符题意D 、2241240∆=-⨯⨯=-<,方程没有实数根,符合题意故选:D.【点睛】本题考查了一元二次方程的根的判别式,对于一般形式20(a 0)++=≠ax bx c 有:(1)当240b ac ∆=->时,方程有两个不相等的实数根;(2)当240b ac ∆=-=时,方程有两个相等的实数根;(3)当240b ac ∆=-<时,方程没有实数根.5.在ABC ∆中,D 是AB 边上的点,//,9,3,6DE BC AD DB AE ===,则AC 的长为( ) A .6B .7C .8D .9【答案】C【分析】先利用比例性质得到AD :AB=3:4,再证明△ADE ∽△ABC ,然后利用相似比可计算出AC 的长.【详解】解:解:∵AD=9,BD=3,∴AD :AB=9:12=3:4,∵DE ∥BC ,∴△ADE ∽△ABC , ∴=AD AE AB AC =34,故选C.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用相似三角形的性质时主要利用相似比计算线段的长.6.如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或6【答案】D【解析】以AB为对角线将图形补成长方形,由已知可得缺失的两部分面积相同,即3×6=x×(9-x),解得x=3或x=6,故选D.【点睛】本题考查了正方形的性质,图形的面积的计算,准确地区分和识别图形是解题的关键.7.如图所示,AB∥CD,∠A=50°,∠C=27°,则∠AEC的大小应为()A.23°B.70°C.77°D.80°【答案】C【分析】根据平行线的性质可求解∠ABC的度数,利用三角形的内角和定理及平角的定义可求解.【详解】解:∵AB∥CD,∠C=27°,∴∠ABC=∠C=27°,∵∠A=50°,∴∠AEB=180°﹣27°﹣50°=103°,∴∠AEC=180°﹣∠AEB=77°,故选:C.【点睛】A .轴对称B .平移C .绕某点旋转D .先平移再轴对称【答案】A 【分析】根据对称,平移和旋转的定义,结合等边三角形的性质分析即可.【详解】解:从左边的等边三角形到右边的等边三角形,可以利用平移或绕某点旋转或先平移再轴对称,只轴对称得不到,故选:A .【点睛】本题考查了图形的变换:旋转、平移和对称,等边三角形的性质,掌握图形的变换是解题的关键. 9.不论m 取何值时,抛物线21y x mx =--与x 轴的交点有( )A .0个B .1个C .2个D .3个【答案】C【分析】首先根据题意与x 轴的交点即0y =,然后利用根的判别式判定即可.【详解】由题意,得与x 轴的交点,即0y = 240m =+△>∴不论m 取何值时,抛物线21y x mx =--与x 轴的交点有两个故选C .【点睛】此题主要考查根据根的判别式判定抛物线与坐标轴的交点,熟练掌握,即可解题.10.下列事件中是随机事件的个数是( )①投掷一枚硬币,正面朝上;②五边形的内角和是540°;③20件产品中有5件次品,从中任意抽取6件,至少有一件是次品;④一个图形平移后与原来的图形不全等.A .0B .1C .2D .3【答案】C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】①掷一枚硬币正面朝上是随机事件;④一个图形平移后与原来的图形不全等是不可能事件;则是随机事件的有①③,共2个;故选:C .【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.已知1x ,2x 是一元二次方程220x x +=的两个实数根,下列结论错误的是( )A .12x x ≠B .21120x x +=C .122x x =-D .122x x +=-【答案】C【分析】由题意根据解一元二次方程的概念和根与系数的关系对选项逐次判断即可.【详解】解:∵△=22-4×1×0=4>0,∴12x x ≠,选项A 不符合题意;∵1x 是一元二次方程220x x +=的实数根,∴21120x x +=,选项B 不符合题意; ∵1x ,2x 是一元二次方程220x x +=的两个实数根,∴122x x +=-,120x x =,选项D 不符合题意,选项C 符合题意.故选:C .【点睛】本题考查解一元二次方程和根与系数的关系,能熟记根与系数的关系的内容是解此题的关键. 12.我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.64万件,设该快递公司这两个月投递总件数的月平均增长率为x ,则下列方程正确的是( )A .6(1+x )=8.64B .6(1+2x )=8.64C .6(1+x )2=8.64D .6+6(1+x )+6(1+x )2=8.64【答案】C【分析】设该快递公司这两个月投递总件数的月平均增长率为x ,根据今年8月份与10月份完成投递的快递总件数,即可得出关于x 的一元二次方程,此题得解.故选:C .【点睛】此题主要考查一元二次方程的应用,解题的关键是熟知增长率的问题.二、填空题(本题包括8个小题)13.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同). 【答案】1【分析】首先设应在该盒子中再添加红球x 个,根据题意得:12123x x +=++,解此分式方程即可求得答案. 【详解】解:设应在该盒子中再添加红球x 个, 根据题意得:12123x x +=++, 解得:x=1,经检验,x=1是原分式方程的解.故答案为:1.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.已知△ABC ∽△DEF ,其中顶点A 、B 、C 分别对应顶点D 、E 、F ,如果∠A =40°,∠E =60°,那么∠C =_______度.【答案】80【解析】因为△ABC ∽△DEF,所以∠A=∠D, ∠B=∠E, ∠C=∠F,因为∠A=40°,∠E=60°,所以∠B=60°,所以∠C=180°―40°―60°=80°,故答案为: 80.15.用半径为6cm ,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为_______cm .【答案】1.【详解】解:设圆锥的底面圆半径为r ,根据题意得1πr=208161π⨯, 解得r=1,即圆锥的底面圆半径为1cm .故答案为:1.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.16.若点(),2P m -与点()3,Q n 关于原点对称,则2018()m n +=______.【解析】∵点P(m,﹣2)与点Q(3,n)关于原点对称,∴m=﹣3,n=2,则(m+n)2018=(﹣3+2)2018=1,故答案为1.17.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是_____.【答案】1 5【分析】利用黑色区域的面积除以游戏板的面积即可.【详解】解:黑色区域的面积=3×3﹣12×3×1﹣12×2×2﹣12×3×1=4,∴击中黑色区域的概率=420=15.故答案是:15.【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.18.已知2是关于x方程32x2-2a=0的一个解,则2a-1的值是______________.【答案】5.【分析】把x=2代入已知方程可以求得2a=6,然后将其整体代入所求的代数式进行解答.【详解】解:∵x=2是关于x的方程32x2-2a=0的一个解,∴32×22-2a=0,即6-2a=0,则2a=6,∴2a-1=6-1=5.故答案为5..【点睛】本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.三、解答题(本题包括8个小题)19.一个不透明的布袋里装有3个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸(2)先从布袋中摸出1个球后不放回,再摸出1个球,求出两次都摸到白球的概率.【答案】 (1)红球的个数为2个;(2)15. 【分析】(1)设红球的个数为x ,根据白球的概率可得关于x 的方程,解方程即可;(2)画出树形图,即可求出两次摸到的球都是白球的概率.【详解】解:(1)设红球的个数为x ,由题意可得:31312x =++, 解得:2x =,经检验2x =是方程的根,即红球的个数为2个;(2)画树状图如下:两次都摸到白球的概率:61305=. 【点睛】 此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.已知关于x 的一元二次方程2210x px p -++=.(1)请判断1x =-是否可为此方程的根,说明理由.(2)是否存在实数p ,使得12124x x x x p ⋅--=+成立?若存在,请求出p 的值;若不存在,请说明理由.【答案】(1)1x =-不是此方程的根,理由见解析;(2)存在,13p =或21p =-【分析】(1)将1x =-代入一元二次方程2210x px p -++=中,得到一个关于p 的一元二次方程,然后用根的判别式验证关于p 的一元二次方程是否存在实数根即可得出答案;(2)根据一元二次方程根与系数的关系可知,21212,1x x p x x p +=⋅=+,然后代入到12124x x x x p ⋅--=+中,解一元二次方程,若有解,则存在这样的p,反之则不存在.则220p p ++=. 14120∆=-⨯⨯<,∴1x =-不是此方程的根.(2)存在实数p ,使得12124x x x x p ⋅--=+成立.∵21212,1x x p x x p +=⋅=+,且12124x x x x p ⋅--=+.∴214p p p +-=+即2230p p --=. ∴123,1p p ==-∴存在实数p ,当13p =或21p =-时,12124x x x x p ⋅--=+成立【点睛】本题主要考查一元二次方程根与系数的关系,根的判别式,掌握一元二次方程根与系数的关系是解题的关键.21.如图,在平面直角坐标系中,顶点为(11,﹣2512)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧),已知A 点坐标为(0,8).(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D ,如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)连接AC ,在抛物线上是否存在一点P ,使△ACP 是以AC 为直角边的直角三角形,若存在,请直接写出点P 的坐标,若不存在,请说明理由.【答案】(1)21118126y x x =-+;(2)对称轴l 与⊙C 相交,见解析;(3)P (30,﹣2)或(41,100) 【分析】(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A 点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l 的解析式及B 、C 的坐标,分别求出直线AB 、BD 、CE 的解析式,再求出CE 的长,与到抛物线的对称轴的距离相比较即可;∵抛物线经过点A(0,8),∴8=a(0﹣11)2﹣25 12,解得a=112,∴抛物线为y=2125(11)1212x--=21118126x x-+;(2)设⊙C与BD相切于点E,连接CE,则∠BEC=∠AOB=90°.∵y=2125(11)1212x--=0时,x1=11,x2=1.∴A(0,8)、B(1,0)、C(11,0),∴OA=8,OB=1,OC=11,BC=10;∴AB2200A B+=2286+10,∴AB=BC.∵AB⊥BD,∴∠ABC=∠EBC+90°=∠OAB+90°,∴∠EBC=∠OAB,∴0AB EBCAOB BECAB BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OAB≌△EBC(AAS),∴OB=EC=1.设抛物线对称轴交x轴于F.∵x=11,∴F(11,0),∴CF=11﹣11=5<1,∴对称轴l与⊙C相交;(3)由点A、C的坐标得:直线AC的表达式为:y=﹣12x+8,联立直线和抛物线方程得22321118126y x y x x =-⎧⎪⎨=-+⎪⎩, 解得:x =30或11(舍去),故点P (30,﹣2);当∠CAP =90°时,2281118126y x y x x =+⎧⎪⎨=-+⎪⎩同理可得:点P (41,100),综上,点P (30,﹣2)或(41,100);【点睛】本题考查了二次函数解析式的确定、相似三角形的判定和性质、直线与圆的位置关系、图形面积的求法等知识,正确表示出S △PAC =S △AQP +S △CQP 是解题关键.22.某水果经销商到水果种植基地采购葡萄,经销商一次性采购葡萄的采购单价y (元/千克)与采购量x (千克)之间的函数关系图象如图中折线AB BC CD →→所示(不包括端点A ).(1)当5001000x <≤时,写出y 与x 之间的函数关系式;(2)葡萄的种植成本为8元/千克,某经销商一次性采购葡萄的采购量不超过1000千克,当采购量是多少时,水果种植基地获利最大,最大利润是多少元?【答案】(1)0.0240y x =-+;(2)一次性采购量为800千克时,蔬菜种植基地能获得最大利润为12800元.【分析】(1)根据函数图象中的点B 和点C 可以求得当500<x ≤1000时,y 与x 之间的函数关系式;(2)根据题意可以分为两种讨论,然后进行对比即可解答本题;【详解】解:(1)设当5001000x <≤时,y 与x 之间的函数关系式为:y ax b =+,50030100020a b a b +=⎧⎨+=⎩,解得0.0240a b =-⎧⎨=⎩.故y 与x 之间的函数关系式为:0.0240y x =-+;(2)当采购量是x 千克时,蔬菜种植基地获利ω元,当0500x <≤时,()30822x x ω=-=,则当500x =时,ω有最大值11000元,当5001000x <≤时,()8y x ω=-,()0.0232x x =-+20.0232x x =-+()20.028*******x =--+,故当800x =时,ω有最大值为12800元,综上所述,一次性采购量为800千克时,蔬菜种植基地能获得最大利润为12800元;【点睛】本题主要考查了二次函数的应用,一元二次方程的应用,掌握二次函数的应用,一元二次方程的应用是解题的关键.23.如图,一艘船由A 港沿北偏东65°方向航行302km 至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向.求:(1)∠C 的度数;(2)A ,C 两港之间的距离为多少km.【答案】(1)∠C=60°(2)AC=(30103)km +【分析】(1)根据方位角的概念确定∠ACB=40°+20°=60;(2)2 ,过B 作BE ⊥AC 于E ,解直角三角形即可得到结论.【详解】解:(1)如图,在点C 处建立方向标根据题意得,AF∥CM∥BD∴∠ACM=∠FAC, ∠BCM=∠DBC∴∠ACB=∠ACM+∠BCM=40°+20°=60°,(2)∵AB=302 ,过B 作BE⊥AC 于E ,∴∠AEB=∠CEB=90°,在Rt △ABE 中,∵∠ABE=45°,AB=302,∴AE=BE=22AB=30km , 在Rt △CBE 中,∵∠ACB=60°,∴CE=3BE=103 km , ∴AC=AE+CE=30+103 ,∴A ,C 两港之间的距离为(30+103)km ,【点睛】本题考查了解直角三角形的应用,方向角问题,三角形的内角和,是基础知识比较简单.24.如图,在ABC ∆中,点D ,E 分别在AB ,AC 上,DE BC ∥,:2:5AD AB =,4ADE S ∆=.求四边形BCED 的面积.【答案】21.【分析】利用平行判定ADE ABC ∆∆∽,然后利用相似三角形的性质求得425ADE ABC S S ∆∆=,从而求得25ABC S ∆=,使问题得解.【详解】解:∵DE BC ∥,∴ADE B ∠=∠,AED C ∠=∠.∴ADE ABC ∆∆∽.∵25 ADAB=,∴425ADEABCSS∆∆=.∵4ADES∆=,∴25ABCS∆=.∴=21BCEDS四边形.【点睛】本题考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是本题的解题关键. 25.某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资. 已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为120元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利为z(万元)。
2022-2023学年广东省佛山市禅城区九年级(上)期末数学试卷+答案解析(附后)
2022-2023学年广东省佛山市禅城区九年级(上)期末数学试卷1. 的绝对值是( )A. 8B.C.D.2. 已知,则下列变形不正确的是( )A. B. C. D.3. 下列方程中,是一元二次方程的是( )A. B. C. D.4. 如图,四边形ABCD和四边形EFGH相似,且顶点都在方格纸的格点上,它们的相似比是( )A. 1:2B. 1:4C. 2:1D. 4:15. 一元二次方程的根的情况是( )A. 有两个相等的实数根B. 没有实数根C. 有两个不相等的实数根D. 无法确定6. 如图,矩形ABCD中,对角线AC,BD交于O点.若,,则AB的长为( )A. 4B.C. 3D. 57. 一个不透明的盒子中装有10个小球白色或黑色,它们除了颜色外其余都相同,每次摸球试验前,都将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中,如表是一组统计数据:摸球次数50100150200250300500摸到白球的次数286078104123152251摸到白球的频率由表可以推算出盒子白色小球的个数是( )A. 4个B. 5个C. 6个D. 7个8. 关于反比例函数,下列说法不正确的是( )A. y随x增大而增大B. 图象分别在第二、四象限C. 该反比例函数图象与坐标轴无交点D. 图象经过点9.如图,已知,那么添加下列一个条件后,仍无法判定∽的是( )A. B. C. D.10. 唐代李白《日出行》云:“日出东方隈,似从地底来”.描述的是看日出的景象,意思是太阳从东方升起,似从地底而来.如图,此时观测到地平线和太阳所成的视图可能是( )A. B.C. D.11. 将39600用科学记数法表示______.12. 校园内一棵松树在一天不同时刻的影子如图所示,按时间的顺序排列,第一个序号是______.13. 如图,铁路口栏杆短臂长1米,长臂长16米,当短臂端点下降米时,长臂端点升高______米.14.如图,一次函数的图象与反比例函数的图象相交于,两点,当时,x的取值范围是______.15. 如图,菱形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AB,BC的中点.若,,则线段EF的长为______.16. 用指定方法解方程:公式法;配方法17. 某校科技小组在一次野外考察中遇到一片烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺了若干块木板,构筑成一条临时近道.每块木板对地面的压强是木板面积的反比例函数,其图象如图所示.请根据图象直接写出这反比例函数表达式和自变量取值范围;如果要求压强不超过8000Pa,选用的木板的面积至少要多大?18. 如图,已知:中,若,,,求EC的长;若,,,求EC的长.19. 某校在体育节期间开展体育竞赛活动,其中九年级学生开设踢毽、跳绳、立定跳远、实心球四种运动项目分别用A,B,C,D表示每个学生必须选择一种且只能选择一种参加比赛,赛后统计各比赛项目参加人数,并将调查结果绘制成如下两幅不完整统计图.请你结合图中的信息,计算:参加比赛的学生人数,B、D项目对应的人数并补全条形统计图;若在中考体育测试中,每位考生均需采取抽签的方式从踢毽、跳绳、立定跳远、实心球四种运动项目中任意选择两项参加考试.试求出小刚同学抽中实心球测试的概率.20. 广大党员群众积极参加公益活动,据统计某市今年第一批自愿者为10万人次,第三批自愿者为万人次.如果第二批、第三批自愿者人次的增长率相同,求这个增长率;如果按照中的增长率,预计第四批自愿者数将达到多少万人次?21. 如图,等边中,D为边BC上一点,E为边AC上一点,,,求证:∽;求的边长.22. 如图,在平行四边形ABCD中,,,点G、F分别是AD、CB的中点,过点A作交CD的延长线于点求证:四边形DGBF是菱形;请判断四边形ABDH的形状并加以证明.23. 如图,在平面直角坐标系中,点B是第二象限上一个动点,过点B作轴负半轴于点A,过点B作轴正半轴于点C,过点D的反比例函数的图象交AB于点F;当点B的坐标为时,点D恰好在线段AC的中垂线上,求k的值;在上题中,线段AC的中垂线交线段AO于E,直接写出四边形AEDF面积的数值;连接DF,判断DF与AC的位置关系并说明理由.答案和解析1.【答案】A【解析】解:的绝对值为故选:根据负数的绝对值等于它的相反数解答.本题考查了绝对值的性质,熟记一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.2.【答案】D【解析】解:由,可得,,,故选:通过得到,,然后逐个排除即可.本题考查比例的性质,能够将比例的各种写法灵活转化是解答本题的关键.3.【答案】D【解析】解:A、不是一元二次方程,故本选项不符合题意;B 、不是一元二次方程,故本选项不符合题意;C、不是一元二次方程,故本选项不符合题意;D、是一元二次方程,故本选项符合题意.故选:根据一元二次方程的定义,逐项判断即可求解.本题主要考查了一元二次方程的定义,熟练掌握含有一个未知数,且未知数的最高次数为2的整式方程是一元二次方程是解题的关键.4.【答案】C【解析】解:四边形ABCD∽四边形EFGH,相似比,故选:根据相似多边形的性质求解即可.本题考查相似多边形的性质,解题的关键是掌握相似多边形的性质,属于中考常考题型.5.【答案】C【解析】解:在方程中,,方程有两个不相等的实数根.故选:根据方程的系数结合根的判别式,可得出,由此即可得出原方程有两个不相等的实数根.本题考查了根的判别式,牢记“当时,方程有两个不相等的实数根”是解题的关键.6.【答案】A【解析】解:四边形ABCD是矩形,,,,,,是等边三角形,;故选:先由矩形的性质得出,再证明是等边三角形,得出即可.本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.7.【答案】B【解析】解:通过大量重复试验后发现,摸到白球的频率稳定于,,即白色小球的个数是5个.故选:利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.此题主要考查了利用频率估计概率,正确运用概率公式是解题关键.8.【答案】A【解析】解:,,图象过二、四象限,在每一个象限内,y随x增大而增大,,,反比例函数图象与坐标轴无交点,,图象经过点,综上,选项B、C、D正确,不符合题意;选项A错误,符合题意.故选:根据反比例函数的图象和性质,进行判断即可.本题考查反比例函数的图象和性质,熟练掌握反比例函数的图象和性质,是解题的关键.9.【答案】D【解析】解:,,A、添加,可用两角法判定∽,故本选项错误;B、添加,可用两角法判定∽,故本选项错误;C、添加,可用两边及其夹角法判定∽,故本选项错误;D、添加,不能判定∽,故本选项正确;故选:先根据求出,再根据相似三角形的判定方法解答.本题考查了相似三角形的判定,先求出两三角形的一对相等的角是确定其他条件的关键,注意掌握相似三角形的几种判定方法.10.【答案】C【解析】解:观测到地平线和太阳所成的视图可能.故选:利用圆在海平面以下部分用虚线可对各选项进行判断.本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.也考查了视图.11.【答案】【解析】解:;故答案为:利用科学记数法的表示方法,进行表示即可.本题考查科学记数法.熟练掌握科学记数法的表示方法:,是解题的关键.12.【答案】②【解析】解:图①根据影子的方向即可求出太阳光在南西靠近南的方向上,图②根据影子可以判断太阳光在东侧,图③根据影子的方向可以判断太阳光在在西南方向靠近西的方向上,图④根据影子可以判断东南方向靠近东的方向上.按照时间顺序应为:②④①③.第一个序号应该是②.故答案为:②.根据影子的方向,可以判断出太阳光的方向,再根据太阳东升西落,判断出太阳所在的方向,进而得出时间.本题考查的是根据树的影子判断时间,理解方位角的概念是解题的关键.13.【答案】8【解析】解:连接AB、CD,由题意可知,米,米,米,在与中,,,∽,,即,解得米.故答案为:连接AB、CD,根据相似三角形的判定定理判断出∽,再由相似三角形的对应边成比例即可得出CD的长.本题考查的是相似三角形的应用,根据题意判断出∽,再根据相似三角形的对应边成比例即可解答.14.【答案】【解析】解:由图象可知:当时,直线在双曲线上方,当时,x的取值范围是;故答案为:找到直线在双曲线上方时,x的取值范围即可得解.本题考查反比例函数与一次函数的综合应用.熟练掌握图象法求不等式的解集,是解题的关键.15.【答案】3【解析】解:为菱形,,,在中,依据勾股定理可知:、F是AB和BC的中点,即EF是的中位线,故答案为:先依据菱形的性质求得OB的长,然后依据勾股定理可求得AO的长,从而可得到AC的长,最后,依据三角形中位线定理求的EF的长即可.本题考查了三角形的中位线定理和菱形的面积公式,利用勾股定理求得AO的长是解题的关键.16.【答案】解:,,,,,,解得:,;,,两边加上1,,即,,解得:【解析】根据公式法解一元二次方程;先将二次项系数化为1,然后根据配方法解一元二次方程即可求解.本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.17.【答案】解:由图象得:双曲线过点,在第一象限,,反比例函数表达式为:;解:当时:,即:;由图象可知,P随着S的增大而减小,当时,,选用的木板的面积至少要【解析】根据图象,双曲线过点,待定系数法求出解析式,曲线在第一象限,即可得出自变量取值范围;根据压强不超过8000Pa,求出自变量的取值范围即可.本题考查反比例函数的实际应用.正确的求出函数解析式,利用数形结合的思想求解,是解题的关键.18.【答案】解:,,,;,,即;【解析】利用平行线分线段成比例定理,得出,,代入数据计算即可;利用平行线分线段成比例定理,代入数据得出AE,根据即可求解.本题考查了平行线分线段成比例定理,根据题意灵活选择不同的比例式是解题的关键.19.【答案】解:人;人;人;参赛学生人数为:200人,选B,D的人数分别为60人和40人;补全图形如下:解:列表如下:A B C DA A,B A,C A,DB B,A B,C B,DC C,A C,B C,DD D,A D,B D,C共有12种等可能的结果,其中小刚同学抽中实心球测试的有6种,则小刚同学抽中实心球测试的概率是【解析】用选A的频数除以所占百分比,求出参赛人数,利用参赛人数乘以选B所占的百分比求出选B的人数,用总人数减去选A,B,C的人数,求出选D的人数,再补全条形图即可;利用列表法,求概率即可.本题考查条形统计图和扇形统计图综合应用,以及列表法或树状图求概率.从统计图中准确的获取信息,熟练掌握列表法或树状图求概率,是解题的关键.20.【答案】解:设这个增长率为x,根据题意得:,解得:,舍去,答:这个增长率为;万人,答:预计第四批自愿者数将达到万人次.【解析】设增长率为x,根据“第一批公益课受益学生10万人次,第三批公益课受益学生万人次”可列方程求解;用增长率,计算即可求解.本题考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.21.【答案】证明:是等边三角形,,,,,,∽;解:∽,,,,故的边长为【解析】根据等边三角形的性质得出,再根据,,得出,从而得出结论;根据相似三角形的性质得出,代入得出,即可得出答案.本题考查相似三角形的判定与性质,等边三角形的性质,证明相似三角形是解题的关键.22.【答案】证明:在平行四边形ABCD中,,,,,点G、F分别是AD、CB的中点,,,四边形DGBF是平行四边形,,,是等边三角形,,四边形DGBF是菱形;解:四边形ABDH是矩形,证明如下:过点A作交CD的延长线于点H,,,四边形ABDH是平行四边形,由知:是等边三角形,,,,,,,四边形ABDH是矩形.【解析】利用平行四边形的性质,以及线段的中点,得到四边形DGBF是平行四边形,再根据,推出是等边三角形,进而得到,即可得证;易证:四边形ABDH是平行四边形,根据三角形外角的性质和菱形的性质,推出,进而得到,即可得到四边形ABDH是矩形.本题考查平行四边形的性质和判定,等边三角形的判定和性质,菱形的判定,矩形的判定.熟练掌握平行四边形的性质,以及菱形和矩形的判定方法,是解题的关键.23.【答案】解:轴,轴,四边形AOCB是矩形,点B的坐标为,,,如图所示,连接AD,点D恰好在线段AC的中垂线上,,设,则,四边形AOCB是矩形,,在中,,即,解得,,点D的坐标为,点D在反比例函数的图象上,,解得;如图所示,设AC于DE交于点M,线段AC的中垂线交线段AO于E,,,,,≌,,点F在AB上点F的横坐标为将代入,解得,,,,如图所示,连接DF,设,,,,,又,∽,,【解析】首先证明四边形AOCB是矩形,然后根据点B的坐标得到,,连接AD,根据垂直平分线的性质得到,设,在中根据勾股定理求出点D的坐标,然后代入求解即可;设AC于DE交于点M,首先根据题意证明≌,进而得到,然后进一步求出,,最后根据代入求解即可;连接DF,首先根据题意证明∽,然后根据相似三角形的性质得到,最后根据平行线的判定定理即可证明此题考查了反比例函数和四边形综合题,相似三角形的性质和判定,勾股定理等知识,解题的关键是熟练掌握以上知识点.。
2019-2020学年广东佛山九年级上数学期末试卷
2019-2020学年广东佛山九年级上数学期末试卷一、选择题1. 下列四个几何体的主视图是三角形的是()A. B.C. D.2. 在Rt△ABC中,∠C=90∘,若AB=5,BC=3,则sin A=()A.5 3B.35C.45D.343. 一元二次方程x2−6x−4=0配方为()A.(x−3)2=13B.(x−3)2=9C.(x+3)2=13D.(x+3)2=94. 若△ABC∽△DEF,面积之比为9:4,则相似比为()A.9 4B.49C.32D.81165. 点A(−3,y1),B(−1,y2)都在反比例函数y=−1x的图象上,则y1,y2的大小关系是() A.y1<y2 B.y1=y2 C.y1>y2 D.不能确定6. 设ab=32,下列变形正确的是()A.ba=32B.a2=b3C.3a=2bD.2a=3b7. 一个不透明的袋子装有除颜色外其余均相同的2个白球和n个黑球.随机地从袋中摸出一个球记录下颜色,再放回袋中摇匀,大量重复试验后,发现摸出白球的频率稳定在0.2附近,则n的值为()A.2B.4C.8D.108. 某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价为x元,则可列方程为()A.(40+x−30)(600−10x)=10000B.(40+x−30)(600+10x)=10000C.(x−30)[600−10(x−40)]=10000D.(x−30)[600+10(x−40)]=100009. 如图,菱形ABCD的边AB的垂直平分线交AB于点E,交AC于点F,连接DF.当∠BAD=100∘时,则∠CDF=()A.15∘B.30∘C.40∘D.50∘10. 如图,一人站在两等高的路灯之间走动,GB为人AB在路灯EF照射下的影子,BH为人AB在路灯CD照射下的影子,当人从点C走向点E时两段影子之和GH的变化趋势是()A.先变长后变短B.先变短后变长C.不变D.先变短后变长再变短二、填空题若锐角A满足cos A=12,则∠A=________∘.已知x=2是方程x2−3x+c=0的一个根,则c的值是________. 某菱形的两条对角线的长分别是6和8,则其边长为________.如图,点P在反比例函数y=2x的图象上,过点P作坐标轴的垂线交坐标轴于点A,B,则矩形AOBP的面积为________.关于x的一元二次方程9x2−6x+k=0有两个不相等的实数根,则k的取值范围是________.如图,为了测量塔CD的高度,小明在A处仰望塔顶,测得仰角为30∘,再往塔的方向前进60m至B处,测得仰角为60∘,那么塔的高度是________m.(小明的身高忽略不计,结果保留根号)如图,n个全等的等腰三角形的底边在同一条直线上,底角顶点依次重合.连接第一个三角形的底角顶点B1和第n个三角形的顶角顶点A n交A1B2于点P n,则A1B2:P n B2=________. 三、解答题计算:sin245∘−2tan30∘⋅sin60∘.解方程:2x2−4x+1=0.甲、乙两个人在纸上随机写一个−2到2之间的整数(包括−2和2).若将两个人所写的整数相加,那么和是1的概率是多少?如图,Rt△ABC中,∠C=90∘, AC=15,面积为150.(1)尺规作图:作∠C的平分线交AB于点D;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,求出点D到两条直角边的距离.如图,△ABC的三个顶点在平面直角坐标系中正方形的格点上.(1)求tan A的值;(2)点B(1,3)在反比例函数y=kx的图象上,求k的值,画出反比例函数在第一象限内的图象.已知反比例函数y=−6x和一次函数y=kx+b(k≠0).(1)当两个函数图象的交点的横坐标是−2和3时,求一次函数的表达式;(2)当k=23时,两个函数的图象只有一个交点,求b的值.如图,在矩形ABCD的边AB上取一点E,连接CE并延长和DA的延长线交于点G,过点E作CG的垂线与CD的延长线交于点H,与DG交于点F,连接GH.(1)当tan∠BEC=2且BC=4时,求CH的长;(2)求证:DF⋅FG=HF⋅EF;(3)连接DE,求证:∠CDE=∠CGH. 已知一次函数y=kx−(2k+1)的图象与x轴和y轴分别交于A、B两点,与反比例函数y=−1+kx的图象分别交于C,D两点.(1)如图1,当k=1,点P在线段AB上(不与点A、B重合)时,过点P作x轴和y轴的垂线,垂足为M、N.当矩形OMPN的面积为2时,求出点P的位置;(2)如图2,当k=1时,在x轴上是否存在点E,使得以A、B、E为顶点的三角形与△BOC相似?若存在,求出点E的坐标;若不存在,说明理由;(3)若某个等腰三角形的一条边长为5,另两条边长恰好是两个函数图象的交点横坐标,求k的值.参考答案与试题解析2019-2020学年广东佛山九年级上数学期末试卷一、选择题1.【答案】D【考点】简单几何体的三视图【解析】此题暂无解析【解答】解:A中主视图是长方形;B中主视图是正方形;C中主视图是长方形;D中主视图是三角形.故选D.2.【答案】B【考点】锐角三角函数的定义【解析】此题暂无解析【解答】解:在Rt△ABC中,∠C=90∘,AB=5,BC=3则sin A=BCAB =35.故选B.3.【答案】A【考点】解一元二次方程-配方法【解析】本题考查了解一元二次方程--配方法.【解答】解:x2−6x−4=0,移项得,x2−6x=4,配方得,x2−6x+9=13,(x−3)2=13,故选A.4.【答案】C【考点】相似三角形的性质【解析】根据相似三角形的周长比等于相似比,即可得出结果.【解答】解:∵△ABC∽△DEF,且面积之比为9:4,又∵相似三角形的相似比的平方等于面积比,∴它们的相似比为3:2.故选C.5.【答案】A【考点】反比例函数图象上点的坐标特征【解析】此题暂无解析【解答】解:在反比例函数y=−1x的图象中,∵−1<0∴在其定义域内分别有y随x的增大而增大,∵−3<−1<0,∴y1<y2,故选A.6.【答案】D【考点】比例的性质【解析】此题暂无解析【解答】解:∵ab=32,∴ 2a=3b,对于A,B,C,3a=2b,错误,故D变形正确.故选D.7.【答案】C【考点】概率公式【解析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:依题意有:2n+2=0.2,解得:n=8.故选C.8.【答案】A【考点】由实际问题抽象出一元二次方程【解析】设这种节能灯的售价为x元,那么就少卖出10(x−40)个,根据利润=售价-进价,可列方程求解.【解答】解:设每个台灯涨价为x元,则销售量将减少10x个,根据题意得(40−30+x)(600−10x)=10000.故选A.9.【答案】B【考点】全等三角形的性质与判定线段垂直平分线的性质【解析】此题暂无解析【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF,∴△BCF≅△DCF(SAS),∴∠CBF=∠CDF,∵FE垂直平分AB,∠BAF=12×100∘=50∘,∴∠ABF=∠BAF=50∘,∵∠ABC=180∘−100∘=80∘,∠CBF=80∘−50∘=30∘,∴∠CDF=30∘,故选B.10.【答案】C【考点】平行投影中心投影【解析】此题暂无解析【解答】解:因为当人在远处时,人与灯光的夹角小,形成的影子长;当人逐渐走近路灯时,人与灯光的夹角会变大,此时形成的影子会变短;所以,当人从点C走向点E时两段影子之和GH的变化趋势是不变的.故选C.二、填空题【答案】60【考点】特殊角的三角函数值【解析】此题暂无解析【解答】解:∵cos A=12,∠A为锐角,∴∠A=60∘.故答案为:60.【答案】2【考点】一元二次方程的解【解析】此题暂无解析 【解答】解:把x =2代入x 2−3x +c =0, 即22−3×2+c =0, 解得c =2. 故答案为:2. 【答案】 5【考点】 菱形的性质 【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积. 【解答】 解:如图,∵ 四边形ABCD 是菱形,AC =8,BD =6, ∴ OB =OD =3, OA =OC =4, AC ⊥BD , 在Rt △AOB 中,由勾股定理得:AB =√AO 2+OB 2=√42+33=5. 即菱形ABCD 的边长AB =BC =CD =AD =5, 故答案为:5.【答案】 2【考点】反比例函数系数k 的几何意义 【解析】 此题暂无解析 【解答】解:∵ PA ⊥x 轴于点A ,PB ⊥y 轴于点B , ∴ 矩形AOBP 的面积=|2|=2. 故答案为:2. 【答案】 k <1【考点】 根的判别式 【解析】 此题暂无解析 【解答】解:∵ 一元二次方程9x 2−6x +k =0有两个不相等的实数根, ∴ Δ=(−6)2−4×9⋅k =36−36k >0, 解得k <1,故答案为:k <1. 【答案】30√3 【考点】解直角三角形的应用-仰角俯角问题 【解析】从题意可知AB =BD =20m ,至B 处,测得仰角为60∘,sin 60∘=DC BD.可求出塔高.【解答】解:∵ ∠DAB =30∘,∠DBC =60∘, ∴ BD =AB =60m . ∴ DC =BD ⋅sin 60∘=60×√32=30√3(m).故答案为:30√3. 【答案】 n【考点】规律型:点的坐标 【解析】 此题暂无解析 【解答】解:如图,连接A 1A n ,则有A 1A n //B 1B n ,连接B 1A 2,交A 1B 2于点P 1, 则有△A 1P 1A 2∼△B 1P 1B 2, ∴A 1P1P 1B 2=A 1A2B 1B 2=1,此时A 1B 2P 1B 2=21=2;连接B 1A 3,交A 1B 2于点P 2,则有△A 1P 2A 3∼△B 1P 2B 2, ∴A 1P 2P 2B 2=A 1A 3B 1B 2=21,此时A 1B 2P 2B 2=31,⋯⋯连接B 1A n ,交A 1B 2于点P n , 则有△A 1P n A n ∼△B 1P n B 2, ∴A 1P n P nB 2=A 1A nB 1B 2=n−11,此时A 1B2P n B 2=n 1=n ,故答案为:n .三、解答题 【答案】解:原式=(√22)2−2×√33×√32=−12.【考点】特殊角的三角函数值 【解析】 此题暂无解析 【解答】解:原式=(√22)2−2×√33×√32=−12.【答案】解:∵ a =2,b =−4,c =1,∴ b 2−4ac =(−4)2−4×2×1=8>0, ∴ x =−(−4)±√82×2=4±2√24, ∴ x 1=2+√22,x 2=2−√22.【考点】解一元二次方程-公式法 【解析】 此题暂无解析 【解答】解:∵ a =2,b =−4,c =1,∴ b 2−4ac =(−4)2−4×2×1=8>0,∴ x =−(−4)±√82×2=4±2√24, ∴ x 1=2+√22,x 2=2−√22.【答案】解:事件“甲、乙两人分别随机写一个整数”是等可能事件,列表如下:由列表可知,共有25种等可能结果,其中,整数和为1的结果共有4种:(2,−1),(1,0),(0,1),(−1,2) ∴ P(和为1) =425.【考点】列表法与树状图法 概率公式【解析】此题暂无解析 【解答】解:事件“甲、乙两人分别随机写一个整数”是等可能事件,列表如下:由列表可知,共有25种等可能结果,其中,整数和为1的结果共有4种:(2,−1),(1,0),(0,1),(−1,2) ∴ P(和为1) =425. 【答案】(1)如图,CD 即为所求,(2)如图,过点D 作 DE ⊥BC 于点E ,过点D 作 DF ⊥AC 于点F.由(1)知,∠C 的角平分线交AB 于点D , ∴ DE =DF ,∴ 四边形DECF 为正方形. ∴ DE//CF ,∴ ∠BDE =∠BAC , ∠B =∠B ,∠BED =∠BCA =90∘, ∴ △BED ∼△BCA .∵ S △ABC =150,AC =15. ∴12AC ⋅BC =150,即BC =20, ∴ED AC =BE BC,即20−ED 20=ED 15,∴ DE =DF =607.【考点】相似三角形的性质与判定 作角的平分线 正方形的判定【解析】 此题暂无解析 【解答】(1)如图,CD 即为所求,(2)如图,过点D 作 DE ⊥BC 于点E ,过点D 作 DF ⊥AC 于点F.由(1)知,∠C 的角平分线交AB 于点D , ∴ DE =DF ,∴ 四边形DECF 为正方形. ∴ DE//CF ,∴ ∠BDE =∠BAC , ∠B =∠B ,∠BED =∠BCA =90∘, ∴ △BED ∼△BCA .∵ S △ABC =150,AC =15. ∴ 12AC ⋅BC =150,即BC =20,∴ ED AC =BE BC ,即20−ED 20=ED 15,∴ DE =DF =607.【答案】解:(1)过B 点作BD ⊥AC 交AC 的延长线于点D ,在Rt△ADB中,BD=2, AD=4,∴tan A=BDAD , tan A=12.(2)将点B坐标为(1,3)代入反比例函数的表达式为y=kx,得k=3.∴反比例函数的表达式为y=3x,画出的函数图象如图所示,【考点】解直角三角形待定系数法求反比例函数解析式【解析】此题暂无解析【解答】解:(1)过B点作BD⊥AC交AC的延长线于点D,在Rt△ADB中,BD=2, AD=4,∴tan A=BDAD , tan A=12.(2)将点B坐标为(1,3)代入反比例函数的表达式为y=kx,得k=3.∴反比例函数的表达式为y=3x,画出的函数图象如图所示,【答案】解:(1)当x=3时,y=−2,当x=−2时,y=3.∴ A(3,−2),B(−2,3),{3k+b=−2,−2k+b=3,解得{k=−1,b=1,∴一次函数的表达式为:y=−x+1. (2)依题意,得23x+b=−6x,化简得2x2+3bx+18=0,(3b)2−4×2×18=0.解得:b=±4.【考点】待定系数法求一次函数解析式根与系数的关系【解析】此题暂无解析【解答】解:(1)当x=3时,y=−2,当x=−2时,y=3.∴ A(3,−2),B(−2,3),{3k+b=−2,−2k+b=3,解得{k=−1,b=1,∴一次函数的表达式为:y=−x+1.(2)依题意,得23x+b=−6x,化简得2x2+3bx+18=0,(3b)2−4×2×18=0.解得:b=±4.【答案】(1)解:在Rt△BCE中,易得BE=BCtan∠BEC=42=2,∴ CE=√BF2+BC2=√22+42=2√5,∴cos∠BEC=BECE=2√5=√55,∵ EH⊥CG, ∠BEC=∠ECH,∴ CH=CFcos∠FCH=2√5√55=10.(2)证明:在矩形ABCD中,∠CDA=90∘,∠FDH=90∘,∠FEG=90∘,即∠FEG=∠FDH,又∵∠EFG=∠DFH,∴ △FEG∼△FDH,∴EFFD=FGFH,即DF⋅FG=HF⋅EF.(3)证明:连接DE,由(2)可知,∠FGE=∠DHE,∵ ∠EFD=∠GEH,∴ △EFD∼△GFH,∴∠FDE=∠GHE,∵ ∠CED=∠FDE+∠FGE,∠CHG=∠GHE+∠DHE,∴∠CED=∠CHG.∵∠ECD=∠HCG,∴ △ECD∼△HCG,∴ ∠CDE=∠CGH.【考点】相似三角形的性质相似三角形的判定锐角三角函数的定义勾股定理【解析】此题暂无解析【解答】(1)解:在Rt△BCE中,易得BE=BCtan∠BEC =42=2,∴ CE=√BF2+BC2=√22+42=2√5,∴cos∠BEC=BECE =2√5=√55,∵ EH⊥CG, ∠BEC=∠ECH,∴ CH=CFcos∠FCH=2√5√55=10.(2)证明:在矩形ABCD中,∠CDA=90∘,∠FDH=90∘,∠FEG=90∘,即∠FEG=∠FDH,又∵∠EFG=∠DFH,∴ △FEG∼△FDH,∴EFFD =FGFH,即DF⋅FG=HF⋅EF.(3)证明:连接DE,由(2)可知,∠FGE=∠DHE,∵ ∠EFD=∠GEH,∴ △EFD∼△GFH,∴∠FDE=∠GHE,∵ ∠CED=∠FDE+∠FGE,∠CHG=∠GHE+∠DHE,∴∠CED=∠CHG.∵∠ECD=∠HCG,∴ △ECD∼△HCG,∴ ∠CDE=∠CGH.【答案】解:(1)当k=1时,一次函数表达式为y=x−3,设P点坐标为(a,a−3),得a⋅(3−a)=2,解得a1=1,a2=2,∴ P(1,−2)或(2,−1).(2)当k=1时,反比例函数为y=−2x,一次函数为y=x−3易得OA=OB=3,AB=3√2,{y=−2x,y=x−3,∴{x1=1,y1=−2,{x2=2,y2=−1,∴ C(1,−2),∴ BC=√2.设E点坐标为(m,0),则AE=3−m.由于∠OBC=∠EAB,要使△OBC∼△BAE,则∴BCAE=OBAB,即√23−m=3√2,∴ m=1,即E(1,0),或者BCAB=OBAE,即√23√2=33−m,∴ m=−6,即E(−6,0).(3)依题意得,−1+kx=kx−(2k+1),化简,得kx2−(2k+1)x+(k+1)=0,x1=k+1k, x2=1,∴k+1k=5,解得k=14.【考点】相似三角形的性质与判定一次函数图象上点的坐标特点反比例函数与一次函数的综合等腰三角形的性质【解析】此题暂无解析【解答】解:(1)当k=1时,一次函数表达式为y=x−3,设P点坐标为(a,a−3),得a⋅(3−a)=2,解得a1=1,a2=2,∴ P(1,−2)或(2,−1).(2)当k=1时,反比例函数为y=−2x,一次函数为y=x−3易得OA=OB=3,AB=3√2,{y=−2x,y=x−3,∴{x1=1,y1=−2,{x2=2,y2=−1,∴ C(1,−2),∴ BC=√2.设E点坐标为(m,0),则AE=3−m.由于∠OBC=∠EAB,要使△OBC∼△BAE,则∴BCAE =OBAB,即√23−m=32,∴ m=1,即E(1,0),或者BCAB =OBAE,即√23√2=33−m,∴ m=−6,即E(−6,0).(3)依题意得,−1+kx=kx−(2k+1),化简,得kx2−(2k+1)x+(k+1)=0,x1=k+1k, x2=1,∴k+1k =5,解得k=14.第21页共22页◎第22页共22页。
佛山市初三数学九年级上册期末复习题及答案
佛山市初三数学九年级上册期末复习题及答案一、选择题1.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB 的宽为8cm ,水面最深的地方高度为2cm ,则该输水管的半径为( )A .3cmB .5cmC .6cmD .8cm 2.圆锥的底面半径为2,母线长为6,它的侧面积为( )A .6πB .12πC .18πD .24π3.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .3mC .150mD .34.已知52x y =,则x y y-的值是( ) A .12B .2C .32D .235.抛物线2y 3(x 1)1=-+的顶点坐标是( ) A .()1,1B .()1,1-C .()1,1--D .()1,1-6.方程2210x x --=的两根之和是( ) A .2-B .1-C .12D .12-7.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为( ) A .5πB .10πC .20πD .40π8.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为172cm ,方差为k 2cm ,第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是172cm ,此时全班同学身高的方差为'k 2cm ,那么'k 与k 的大小关系是( )A .'k k >B .'k k <C .'k k =D .无法判断9.如果两个相似三角形的周长比是1:2,那么它们的面积比是( )A .1:2B .1:4C .1:2D .2:1 10.数据3、4、6、7、x 的平均数是5,这组数据的中位数是( )A .4B .4.5C .5D .611.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( ) A .y =32x −2 B .y =32x +2C .y =3()22x - D .y =3()22x +12.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( )A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的13.二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表: x…134 …y … 2 4 2 ﹣2…则下列判断中正确的是( ) A .抛物线开口向上 B .抛物线与y 轴交于负半轴C .当x=﹣1时y >0D .方程ax 2+bx+c=0的负根在0与﹣1之间14.“一般的,如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x =1x﹣2实数根的情况是 ( ) A .有三个实数根 B .有两个实数根C .有一个实数根D .无实数根15.如图,AB 为O 的切线,切点为A ,连接AO BO 、,BO 与O 交于点C ,延长BO 与O 交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为( )A .54B .36C .32D .27二、填空题16.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.17.若记[]x 表示任意实数的整数部分,例如:[]4.24=,21⎡⎤=⎣⎦,…,则123420192020⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-+-+⋅⋅⋅⋅⋅⋅+-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(其中“+”“-”依次相间)的值为______.18.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是2200.5s t t =-,飞机着陆后滑行______m 才能停下来.19.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.20.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km .21.数据2,3,5,5,4的众数是____.22.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.23.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.24.在Rt ABC ∆中,90C ∠=︒,12AC =,9BC =,圆P 在ABC ∆内自由移动.若P 的半径为1,则圆心P 在ABC ∆内所能到达的区域的面积为______.25.如图,矩形ABCD 中,2AB =,点E 在边CD 上,且BC CE =,AE 的延长线与BC 的延长线相交于点F ,若CF AB =,则tan DAE ∠=______.26.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AEAC,AE =2,EC =6,AB =12,则AD 的长为_____.27.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.28.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.29.圆锥的母线长是5 cm,底面半径长是3 cm,它的侧面展开图的圆心角是____.30.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.三、解答题31.在平面直角坐标系中,已知抛物线24y x x =-+.(1)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“方点”.试求拋物线24y x x =-+的“方点”的坐标;(2)如图,若将该抛物线向左平移1个单位长度,新抛物线与x 轴相交于A 、B 两点(A 在B 左侧),与y 轴相交于点C ,连接BC .若点P 是直线BC 上方抛物线上的一点,求PBC ∆的面积的最大值;(3)第(2)问中平移后的抛物线上是否存在点Q ,使QBC ∆是以BC 为直角边的直角三角形?若存在,直接写出所有符合条件的点Q 的坐标;若不存在,说明理由. 32.在平面直角坐标系中,二次函数 y =ax 2+bx +2 的图象与 x 轴交于 A (﹣3,0),B (1,0)两点,与 y 轴交于点C .(1)求这个二次函数的关系解析式 ,x 满足什么值时 y ﹤0 ?(2)点 p 是直线 AC 上方的抛物线上一动点,是否存在点 P ,使△ACP 面积最大?若存在,求出点 P 的坐标;若不存在,说明理由(3)点 M 为抛物线上一动点,在 x 轴上是否存在点 Q ,使以 A 、C 、M 、Q 为顶点的四边形是平行四边形?若存在,直接写出点 Q 的坐标;若不存在,说明理由.33.如图,点C 在以AB 为直径的圆上,D 在线段AB 的延长线上,且CA=CD ,BC=BD . (1)求证:CD 与⊙O 相切;(2)若AB=8,求图中阴影部分的面积.34.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD 与⊙O 的位置关系,并说明理由; (2)若BE=4,DE=8,求AC 的长.35.(如图 1,若抛物线 l 1 的顶点 A 在抛物线 l 2 上,抛物线 l 2 的顶点 B 也在抛物线 l 1 上(点 A 与点 B 不重合).我们称抛物线 l 1,l 2 互为“友好”抛物线,一条抛物线的“友 好”抛物线可以有多条.(1)如图2,抛物线 l 3:21(2)12y x =-- 与y 轴交于点C ,点D 与点C 关于抛物线的对称轴对称,则点 D 的坐标为 ;(2)求以点 D 为顶点的 l3的“友好”抛物线 l4的表达式,并指出 l3与 l4中y 同时随x增大而增大的自变量的取值范围;(3)若抛物线 y=a1(x-m)2+n 的任意一条“友好”抛物线的表达式为 y=a2(x-h)2+k,写出 a1与a2的关系式,并说明理由.四、压轴题36.如图1:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),试探索AD,BD,CD之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE.继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;(2)如图2,在Rt△ABC中,AB=AC,D为△ABC外的一点,且∠ADC=45°,线段AD,BD,CD之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB是⊙O的直径,点C,D是⊙O上的点,且∠ADC=45°.①若AD=6,BD=8,求弦CD的长为;②若AD+BD=14,求2AD BD CD⎛⎫⋅+⎪⎪⎝⎭的最大值,并求出此时⊙O的半径.37.如图,在平面直角坐标系中,直线l:y=﹣13x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.38.平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点. (1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m 的值或取值范围.39.如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点,A 点的坐标为(1,0)-,过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH OB ⊥于点H .若5PB t =,且01t <<.(1)点C 的坐标是________,b =________; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与COQ 相似?若存在,直接写出所有t 的值;若不存在,说明理由.40.如图,抛物线y =﹣(x +1)(x ﹣3)与x 轴分别交于点A 、B (点A 在B 的右侧),与y 轴交于点C ,⊙P 是△ABC 的外接圆.(1)直接写出点A 、B 、C 的坐标及抛物线的对称轴; (2)求⊙P 的半径;(3)点D在抛物线的对称轴上,且∠BDC>90°,求点D纵坐标的取值范围;(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=12AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求出r的值.【详解】解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=12AB=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.∴该输水管的半径为5cm;故选:B.【点睛】此题主要考查垂径定理,解题的关键是熟知垂径定理及勾股定理的运用. 2.B解析:B【解析】【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【详解】根据圆锥的侧面积公式:πrl=π×2×6=12π,故选:B.【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.3.A解析:A【解析】∵堤坝横断面迎水坡AB的坡比是1,∴BCAC,∵BC=50,∴,∴100==(m).故选A 4.C解析:C【解析】【分析】设x=5k(k≠0),y=2k(k≠0),代入求值即可.【详解】解:∵52 xy=∴x=5k(k≠0),y=2k(k≠0)∴52322 x y k ky k--==故选:C.【点睛】本题考查分式的性质及化简求值,根据题意,正确计算是解题关键.5.A解析:A【解析】【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【详解】∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.【点睛】本题考查了由抛物线的顶点式写出抛物线顶点的坐标,比较容易.6.C解析:C 【解析】 【分析】利用两个根和的关系式解答即可. 【详解】 两个根的和=1122b a , 故选:C. 【点睛】此题考查一元二次方程根与系数的关系式, 1212,b c x x x x a a+=-=. 7.B解析:B 【解析】 【分析】利用圆锥面积=Rr 计算. 【详解】Rr =2510,故选:B. 【点睛】此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.8.B解析:B 【解析】 【分析】设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm ,然后根据方差公式比较大小即可. 【详解】解:设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1, 根据平均数的定义可知:算上小明后,平均身高仍为172cm 根据方差公式:()()()22212111721721721n k x x x n -⎡⎤=-+-++-⎣⎦-()()()()2222'1211172172172172172n x x k x n -⎡⎤=-+-++-+-⎣⎦()()()2221211172172172n x x x n -⎡⎤=-+-++-⎣⎦∵111n n <- ∴()()()()()()222222121121111721721721721721721n n x x x x x x n n --⎡⎤⎡⎤-+-++-<-+-++-⎣⎦⎣⎦-即'k k <故选B .【点睛】此题考查的是比较方差的大小,掌握方差公式是解决此题的关键.9.B解析:B【解析】【分析】 直接根据相似三角形的性质即可得出结论.【详解】解:∵两个相似三角形的周长比是1:2,∴它们的面积比是:1:4.故选:B .【点睛】本题考查相似三角形的性质,掌握相似三角形的周长比等于相似比,面积比等于相似比的平方是解题的关键.10.C解析:C【解析】【分析】首先根据3、4、6、7、x 这组数据的平均数求得x 值,再根据中位数的定义找到中位数即可.【详解】由3、4、6、7、x 的平均数是5,即(3467)55++++÷=x得5x =这组数据按照从小到大排列为3、4、5、6、7,则中位数为5.故选C【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.11.D解析:D【解析】【分析】先确定抛物线y=3x 2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.【详解】解:抛物线y=3x 2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),∴平移后的抛物线解析式为:y=3(x+2)2.故选:D .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y =﹣x 2+x =﹣(x 12-)2+14, ∴a =﹣1,该函数的图象开口向下,故选项A 错误;对称轴是直线x =12,故选项B 错误; 当x =12时取得最大值14,该函数有最高点,故选项C 错误; 在对称轴右侧的部分从左往右是下降的,故选项D 正确;故选:D .【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.13.D解析:D【解析】【分析】根据表中的对应值,求出二次函数2y ax bx c =++的表达式即可求解.【详解】解:选取02(,),14(,),32(,)三点分别代入2y ax bx c =++得4932a b c a b c⎪++=⎨⎪++=⎩解得:132a b c =-⎧⎪=⎨⎪=⎩∴二次函数表达式为232y x x =-++∵1a =-,抛物线开口向下;∴选项A 错误;∵2c =函数图象与y 的正半轴相交;∴选项B 错误;当x=-1时,2(1)3(1)220y =--+⨯-+=-<;∴选项C 错误;令0y =,得2320x x -++=,解得:1317x +=,2317x -= ∵31710--<<,方程20ax bx c ++=的负根在0与-1之间; 故选:D .【点睛】本题考查二次函数图象与性质,掌握性质,利用数形结合思想解题是关键.14.C解析:C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点 所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.解析:D【解析】【分析】由切线性质得到AOB ∠,再由等腰三角形性质得到OAD ODA ∠=∠,然后用三角形外角性质得出ADC ∠【详解】切线性质得到90BAO ∠=903654AOB ∴∠=-=OD OA =OAD ODA ∠=∠∴AOB OAD ODA ∠=∠+∠27ADC ADO ∴∠=∠=故选D【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键二、填空题16.红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】解析:红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.【解析】【分析】先确定的整数部分的规律,根据题意确定算式的运算规律,再进行实数运算. 【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数解析:-22【解析】【分析】2020的整数部分的规律,根据题意确定算式-+-+⋅⋅⋅⋅⋅⋅+-的运算规律,再进行实数运算.【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数据1,2,3,4 (2020)中,算术平方根是1的有3个,算术平方根是2的有5个,算数平方根是3的有7个,算数平方根是4的有9个,…其中432=1849,442=1936,452=2025,所以在、⋅⋅⋅⋅⋅⋅中,算术平方根依次为1,2,3……43的个数分别为3,5,7,9……个,均为奇数个,最大算数平方根为44的有85个,所以-+-+⋅⋅⋅⋅⋅⋅+-=1-2+3-4+…+43-44= -22【点睛】本题考查自定义运算,通过正整数的算术平方根的整数部分出现的规律,找到算式中相同加数的个数及符号的规律,方能进行运算.18.200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用解析:200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.解:()()222200.50.5404002000.520200s t t t t t =-=--++=--+ 所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.19.y =-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y =-5(x +2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x 2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键. 20.15【解析】【分析】由在比例尺为1:50000的地图上,量得A 、B 两地的图上距离AB=3cm ,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A 、B 两地的图上距离AB=3cm ,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A、B两地的实际距离3×500000=1500000cm=15km,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.21.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.22.【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得. 【详解】解:如图,连接D解析:4 5【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,∵△ABC是等边三角形,∴AB=BC=AC, ∠A=∠B=∠ACB=60°,由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,∴∠BDF=∠AED,∵∠A=∠B,∴△AED∽△BDF,∴AD AE DE BF BD DF,设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,∵AD AE DE BF BD DF,∴AD AE DE DE BF BD DF DF∴323x x DE x x DF∴45 DEDF,∴45 CECF.故答案为:4 5 .【点睛】本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.23.【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:解析:817 9【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=12BE=12,∵BF∥AD,∴△BOF∽△AOD,∴11248 BO BFAO AD===,∴89AO AB=,∵221417 AB=+=,∴8179 AO=.故答案为:817【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.24.24【解析】【分析】根据题意做图,圆心在内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交A C 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根解析:24【解析】【分析】根据题意做图,圆心P 在ABC ∆内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交AC 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根据Rt △AMH 中利用勾股定理求出x 的值,作EK ⊥BC 于K 点,利用△BEK ∽△BHC ,求出BK 的长,即可求出EF 的长,再根据△EFG ∽△BCA 求出FG ,即可求出△EFG 的面积.【详解】如图,由题意点O 所能到达的区域是△EFG ,连接BE ,延长BE 交AC 于H 点,作HM ⊥AB 于M ,EK ⊥BC 于K ,作FJ ⊥BC 于J .∵90C ∠=︒,12AC =,9BC =,∴15=根据圆的性质可知BH 平分∠ABC∴故CH=HM,设CH=x=HM ,则AH=12-x ,BM=BC=9,∴AM=15-9=6在Rt △AMH 中,AH 2=HM 2+AM 2即AH 2=HM 2+AM 2(12-x )2=x 2+62解得x=4.5∵EK ∥AC ,∴△BEK ∽△BHC , ∴EK BK HC BC =,即14.59BK = ∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG ∥AB ,EF ∥AC ,FG ∥BC , ∴∠EGF =∠ABC ,∠FEG =∠CAB ,∴△EFG ∽△ACB , 故EF FG BC AC =,即6912FG = 解得FG=8∴圆心P 在ABC ∆内所能到达的区域的面积为12FG×EF=12×8×6=24, 故答案为24.【点睛】此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.25.【解析】【分析】设BC=EC=a,根据相似三角形得到,求出a 的值,再利用tanA 即可求解.【详解】设BC=EC=a,∵AB ∥CD ,∴△ABF ∽△ECF ,∴,即解得a=(-舍去)∴ 51- 【解析】【分析】设BC=EC=a,根据相似三角形得到222a a =+,求出a 的值,再利用tan DAE ∠=tanA 即可求解. 【详解】设BC=EC=a,∵AB ∥CD ,∴△ABF ∽△ECF ,∴AB EC BF CF =,即222a a =+ 解得51(-51舍去) ∴tan DAE ∠=tanF=2EC a CF =51-故答案为:12. 【点睛】 此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质及正切的定义. 26.3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】解:∵=,AE =2,EC =6,AB =12,∴=,解得:AD =3,故答案为:3.【点睛】本题解析:3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】 解:∵AD AB =AE AC,AE =2,EC =6,AB =12, ∴12AD =226+, 解得:AD =3,故答案为:3.【点睛】 本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.27.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率). 28.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 29.216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,解析:216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则π5 180n=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.30.7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n的值.【详解】解:∵,∴,∴,∴,∴;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟解析:7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵2430x x +-=,∴243x x +=,∴2447x x ++=,∴2(2)7x +=,∴7n =;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤. 三、解答题31.(1)抛物线的方点坐标是()0,0,()3,3;(2)当32m =时,PBC ∆的面积最大,最大值为278;(3)存在,()1,4Q 或()2,5-- 【解析】【分析】(1)由定义得出x=y ,直接代入求解即可(2)作辅助线PD 平行于y 轴,先求出抛物线与直线的解析式,设出点P 的坐标,利用点坐标求出PD 的长,进而求出面积的二次函数,再利用配方法得出最大值(3)通过抛物线与直线的解析式可求出点B ,C 的坐标,得出△OBC 为等腰直角三角形,过点C 作CM BC ⊥交x 轴于点M ,作BN BC ⊥交y 轴于点N ,得出M ,N 的坐标,得出直线BN 、MC 的解析式然后解方程组即可.【详解】解:(1)由题意得:x y =∴24x x x -+=解得10x =,23x =∴抛物线的方点坐标是()0,0,()3,3.(2)过P 点作y 轴的平行线交BC 于点D .易得平移后抛物线的表达式为2y x 2x 3=-++,直线BC 的解析式为3y x =-+. 设()2,23P m m m -++,则(),3D m m -+. ∴()222333PD m m m m m =-++--+=-+()03m << ∴()2213327332228PBC S m m m ∆⎛⎫=-+⨯=--+ ⎪⎝⎭()03m << ∴当32m =时,PBC ∆的面积最大,最大值为278. (3)如图所示,过点C 作CM BC ⊥交x 轴于点M ,作BN BC ⊥交y 轴于点N由已知条件得出点B 的坐标为B(3,0),C 的坐标为C(0,3),∴△COB 是等腰直角三角形,∴可得出M 、N 的坐标分别为:M(-3,0),N(0,-3)直线CM 的解析式为:y=x+3直线BN 的解析式为:y=x-3由此可得出:2233y x x y x ⎧=-++⎨=+⎩或2233y x x y x ⎧=-++⎨=-⎩解方程组得出:14x y =⎧⎨=⎩或25x y =-⎧⎨=-⎩ ∴()1,4Q 或()2,5--【点睛】本题是一道关于二次函数的综合题目,解题的关键是根据题意得出抛物线与直线的解析式.32.(1)24233y x x =--+,13x <- 或21>x ;(2)P 35,22⎛⎫- ⎪⎝⎭;(3)1234(5,0),(1,0),(2(2--Q Q Q Q【解析】【分析】(1)将点A (﹣3,0),B (1,0)带入y =ax 2+bx +2得到二元一次方程组,解得即可得出函数解析式;又从图像可以看出x 满足什么值时 y ﹤0;(2)设出P 点坐标224233m m m ⎛⎫--+ ⎪⎝⎭,,利用割补法将△ACP 面积转化为PAC PAO PCO ACO S S S S =+-,带入各个三角形面积算法可得出PAC S 与m 之间的函数关系,分析即可得出面积的最大值;(3)分两种情况讨论,一种是CM 平行于x 轴,另一种是CM 不平行于x 轴,画出点Q 大概位置,利用平行四边形性质即可得出关于点Q 坐标的方程,解出即可得到Q 点坐标.【详解】解:(1)将A (﹣3,0),B (1,0)两点带入y =ax 2+bx +2可得:093202a b a b =-+⎧⎨=++⎩解得:2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴二次函数解析式为24233y x x =--+. 由图像可知,当x 3<-或x 1>时y ﹤0; 综上:二次函数解析式为24233y x x =--+,当x 3<-或x 1>时y ﹤0; (2)设点P 坐标为224233m m m ⎛⎫--+ ⎪⎝⎭,,如图连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
佛山市初三数学九年级上册期末好题精选一、选择题1.如图,四边形ABCD 内接于O ,若40A ∠=︒,则C ∠=( )A .110︒B .120︒C .135︒D .140︒ 2.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( )A .x 2+1=0B .x 2+2x +1=0C .x 2+2x +3=0D .x 2+2x -3=03.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .244.如图,已知正五边形ABCDE 内接于O ,连结,BD CE 相交于点F ,则BFC ∠的度数是( )A .60︒B .70︒C .72︒D .90︒5.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( ) A .2sin 3B =; B .2cos 3B =; C .2tan 3B =; D .以上都不对;6.如图,△ABC 内接于⊙O ,连接OA 、OB ,若∠ABO =35°,则∠C 的度数为( )A.70°B.65°C.55°D.45°7.sin30°的值是()A.12B.22C.32D.18.如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.33C.6 D.99.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是()A.74 B.44 C.42 D.4010.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8 B.12 C.14 D.1611.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的中位数是( ) A.2 B.3 C.4 D.512.如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6 B.8 C.10 D.1213.二次函数y =()21x ++2的顶点是( ) A .(1,2)B .(1,−2)C .(−1,2)D .(−1,−2)14.如图,点P (x ,y )(x >0)是反比例函数y=kx(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变 15.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是A .相离B .相切C .相交D .无法判断二、填空题16.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.17.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC ,若点A 、D 、E 在同一条直线上,∠ACD =70°,则∠EDC 的度数是_____.18.圆锥的母线长为5cm ,高为4cm ,则该圆锥的全面积为_______cm 2.19.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.20.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.21.将二次函数y =2x 2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.22.在△ABC 中,∠C=90°,若AC=6,BC=8,则△ABC 外接圆半径为________; 23.在△ABC 中,∠C =90°,cosA =35,则tanA 等于 . 24.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)25.数据1、2、3、2、4的众数是______.26.将抛物线 y =(x+2)2-5向右平移2个单位所得抛物线解析式为_____. 27.若a b b -=23,则ab的值为________. 28.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.29.如图,正方形ABCD 的边长为5,E 、F 分别是BC 、CD 上的两个动点,AE ⊥EF .则AF 的最小值是_____.30.已知二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(﹣1,y1),(2,y2),则y1_____y2.(填“>”“<”或“=”)三、解答题︒):31.下表是某地连续5天的天气情况(单位:C日期1月1日1月2日1月3日1月4日1月5日最高气温57684最低气温-20-213︒(1)1月1日当天的日温差为______C(2)利用方差判断该地这5天的日最高气温波动大还是日最低气温波动大.32.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.(1)这组数据的中位数是,众数是;(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.33.如图,抛物线y=ax2+bx+4(a≠0)与x轴交于点B (-3 ,0) 和C (4 ,0)与y轴交于点A.(1) a = ,b = ;(2) 点M从点A出发以每秒1个单位长度的速度沿AB向B运动,同时,点N从点B出发以每秒1个单位长度的速度沿BC向C运动,当点M到达B点时,两点停止运动.t为何值时,以B、M、N为顶点的三角形是等腰三角形?(3) 点P是第一象限抛物线上的一点,若BP恰好平分∠ABC,请直接写出此时点P的坐标.34.A箱中装有3张相同的卡片,它们分别写有数字1,2,4;B箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A箱、B箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:(1)两张卡片上的数字恰好相同的概率.(2)如果取出A 箱中卡片上的数字作为十位上的数字,取出B 箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.35.一个四边形被一条对角线分割成两个三角形,如果被分割的两个三角形相似,我们被称为该对角线为相似对角线.(1)如图1,正方形ABCD 的边长为4,E 为AD 的中点,1AF =,连结CE .CP ,求证:EF 为四边形AECF 的相似对角线.(2)在四边形ABCD 中,120BAD ︒∠=,3AB =,6AC =,AC 平分BAD ∠,且AC 是四边形ABCD 的相似对角线,求BD 的长.(3)如图2,在矩形ABCD 中,6AB =,4BC =,点E 是线段AB (不取端点A .B )上的一个动点,点F 是射线AD 上的一个动点,若EF 是四边形AECF 的相似对角线,求BE 的长.(直接写出答案) 四、压轴题36.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F . (1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).37.已知,如图Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 为AC 的中点,Q 从点A 运动到B ,点Q 运动到点B 停止,连接PQ ,取PQ 的中点O ,连接OC ,OB . (1)若△ABC ∽△APQ ,求BQ 的长;(2)在整个运动过程中,点O 的运动路径长_____;(3)以O 为圆心,OQ 长为半径作⊙O ,当⊙O 与AB 相切时,求△COB 的面积.38.如图,一次函数122y x =-+的图象交y 轴于点A ,交x 轴于点B 点,抛物线2y x bx c =-++过A 、B 两点.(1)求A ,B 两点的坐标;并求这个抛物线的解析式;(2)作垂直x 轴的直线x =t ,在第一象限交直线AB 于M ,交这个抛物线于N .求当t 取何值时,MN 有最大值?最大值是多少?(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.39.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.40.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB 及线段AB 外一点C ,我们称∠ACB 为点C 关于线段AB 的视角. 如图2,点Q 在直线l 上运动,当点Q 关于线段AB 的视角最大时,则称这个最大的“视角”为直线l 关于线段AB 的“视角”.(1)如图3,在平面直角坐标系中,A (0,4),B (2,2),点C 坐标为(﹣2,2),点C 关于线段AB 的视角为 度,x 轴关于线段AB 的视角为 度;(2)如图4,点M 是在x 轴上,坐标为(2,0),过点M 作线段EF ⊥x 轴,且EM =MF =1,当直线y =kx (k ≠0)关于线段EF 的视角为90°,求k 的值;(3)如图5,在平面直角坐标系中,P 3,2),Q 3,1),直线y =ax +b (a >0)与x 轴的夹角为60°,且关于线段PQ 的视角为45°,求这条直线的解析式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】直接利用圆内接四边形的对角互补计算∠C 的度数.∵四边形ABCD 内接于⊙O ,∠A =400, ∴∠C =1800-400=1400, 故选D. 【点睛】此题考查圆内接四边形的性质,解题关键在于利用圆内接四边形的对角互补2.D解析:D 【解析】 【分析】要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程. 【详解】A 、△=0-4×1×1=-4<0,没有实数根;B 、△=22-4×1×1=0,有两个相等的实数根;C 、△=22-4×1×3=-8<0,没有实数根;D 、△=22-4×1×(-3)=16>0,有两个不相等的实数根, 故选D . 【点睛】本题考查了根的判别式,注意掌握一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.3.D解析:D 【解析】 【分析】根据位似图形的性质,再结合点A 与点A '的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案. 【详解】解:∵△ABC 与△A B C '''是以坐标原点O 为位似中心的位似图形,且A 为O A '的中心, ∴△ABC 与△A B C '''的相似比为:1:2; ∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=. 故答案为:D. 【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.4.C解析:C【分析】连接OA 、OB 、OC 、OD 、OE ,如图,则由正多边形的性质易求得∠COD 和∠BOE 的度数,然后根据圆周角定理可得∠DBC 和∠BCF 的度数,再根据三角形的内角和定理求解即可. 【详解】解:连接OA 、OB 、OC 、OD 、OE ,如图,则∠COD =∠AOB =∠AOE =360725︒=︒, ∴∠BOE =144°, ∴1362DBC COD ∠=∠=︒,1722BCE BOE ∠=∠=︒, ∴18072BFC DBC BCF ∠=︒-∠-∠=︒. 故选:C.【点睛】本题考查了正多边形和圆、圆周角定理和三角形的内角和定理,属于基本题型,熟练掌握基本知识是解题关键.5.C解析:C 【解析】 【分析】根据勾股定理求出AB ,根据锐角三角函数的定义求出各个三角函数值,即可得出答案. 【详解】 如图:由勾股定理得:22222133AC BC ++==, 所以cosB=313BC AB =,sinB=21233AC AC tanB AB BC === ,所以只有选项C 正确; 故选:C . 【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.6.C解析:C【解析】【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,∴∠C=12∠O=55°.故选:C.【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.7.A解析:A【解析】【分析】根据特殊角的三角函数值计算即可.【详解】解:sin30°=12.故选:A.【点睛】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.8.A解析:A【解析】【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【详解】连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6-3=3.故选A.【点睛】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.9.C解析:C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.10.D解析:D【解析】【分析】直接利用三角形中位线定理得出DE∥BC,DE=12BC,再利用相似三角形的判定与性质得出答案.【详解】解:∵在△ABC中,点D、E分别是AB、AC的中点,∴DE∥BC,DE=12 BC,∴△ADE∽△ABC,∵DEBC=12,∴14ADEABCSS∆∆=,∵△ADE的面积为4,∴△ABC的面积为:16,故选D.【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE∽△ABC是解题关键.11.B解析:B【解析】【分析】根据题意由有唯一的众数4,可知x=4,然后根据中位数的定义求解即可.∵这组数据有唯一的众数4,∴x=4,∵将数据从小到大排列为:1,2,3,3,4,4,4,∴中位数为:3.故选B.【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数. 12.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.13.C解析:C【解析】【分析】x++2的顶点坐标.因为顶点式y=a(x-h)2+k,其顶点坐标是(h,k),即可求出y=()21解:∵二次函数y=()21x++2是顶点式,∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.14.D解析:D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.15.C解析:C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,∵⊙O的半径为6,圆心O到直线l的距离为5,∴6>5,即:d<r.∴直线l与⊙O的位置关系是相交.故选C.二、填空题16.7【解析】设树的高度为m,由相似可得,解得,所以树的高度为7m 解析:7【解析】设树的高度为x m,由相似可得6157262x+==,解得7x=,所以树的高度为7m17.115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=7解析:115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.18.24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm ,圆锥的高为4cm ,∴底解析:24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm ,圆锥的高为4cm ,∴底面圆的半径为3,则底面周长=6π, ∴侧面面积=12×6π×5=15π; ∴底面积为=9π,∴全面积为:15π+9π=24π.故答案为24π.【点睛】 本题利用了圆的周长公式和扇形面积公式求解.19.【解析】【分析】观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【解析:23x -<<【解析】【分析】观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【详解】解:设21y ax h =+,2y kx b =+,∵2ax b kx h -<-∴2ax h kx b +<+,∴12y y <即二次函数值小于一次函数值,∵抛物线与直线交点为()3,A m ,()2,B n -,∴由图象可得,x 的取值范围是23x -<<.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.20.【解析】【分析】分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100 解析:9π 【解析】【分析】分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算S S 半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100πcm 2,边长为30cm 的正方形ABCD 的面积=302=900cm 2,∴P (飞镖落在圆内)=100==9009S S ππ半圆正方形,故答案为:9π. 【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键. 21.y =2(x -2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为解析:y=2(x-2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为y=2(x-2)2+3,故答案为:y=2(x-2)2+3.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.22.5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的解析:5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的中点,∵∠C=90°,AC=6,BC=8,∴2222AB AC BC,6810∴△ABC外接圆半径为5.故答案为:5.【点睛】此题考查勾股定理的运用、三角形外接圆的确定.根据圆周角定理,直角三角形的直角所对的边为直径,即可确定圆的位置及大小.23..【解析】试题分析:∵在△ABC中,∠C=90°,cosA=,∴.∴可设.∴根据勾股定理可得.∴.考点:1.锐角三角函数定义;2.勾股定理. 解析:43. 【解析】 试题分析:∵在△ABC 中,∠C =90°,cosA =35,∴35AC AB =. ∴可设35AC k AB k ==,.∴根据勾股定理可得4BC k =. ∴44tanA 33BC k AC k ===. 考点:1.锐角三角函数定义;2.勾股定理.24.或【解析】【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有解析:5 或1555【解析】【分析】计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有×10=5, 当AC<BC 时,则有BC=12AB=12×10=5-,∴AC=AB-BC=10-(5 )=15-,∴AC 长为5 cm 或1555 cm. 故答案为:55 或1555【点睛】本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.25.2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的解析:2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.26.y =x2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−5向右平移2个单位,得:y=(x+2−2)2−5,即y=x2−5解析:y=x2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−5向右平移2个单位,得:y=(x+2−2)2−5,即y=x2−5.故答案是:y=x2−5.【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.27.【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.28.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可. 【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m=﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.29.【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,解析:25 4【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴ABEC=BECF,∴55x-=xy,∴y=﹣15x2+x=﹣15(x﹣52)2+54,∵﹣15<0,∴x=52时,y有最大值54,∴CF的最大值为54,∴DF的最小值为5﹣54=154,∴AF的最小值=22AD DF+=221554⎛⎫+ ⎪⎝⎭=254,故答案为254.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF的最小值.30.>【解析】【分析】根据二次函数y =ax2+bx+c(a >0)图象的对称轴为直线x =1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1 和y2的大小关系.【详解】解:∵二次解析:>【解析】【分析】根据二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2)和二次函数的性质可以判断y 1 和y 2的大小关系.【详解】解:∵二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,∴当x >1时,y 随x 的增大而增大,当x <1时,y 随x 的增大而减小,∵该函数经过点(﹣1,y 1),(2,y 2),|﹣1﹣1|=2,|2﹣1|=1,∴y 1>y 2,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.三、解答题31.(1)7;(2)日最低气温波动大.【解析】【分析】(1)根据温差=最高温度-最低温度,再根据有理数的减法进行计算即可得出答案(2)利用方差公式直接求出最高气温与最低气温的方差,再进行比较即可.【详解】解:(1)5-(-2)=5+2=7所以1月1日当天的日温差为7℃(2)最高气温的平均数:5768465x ++++==高 最高气温的方差为:()()()()()222222567666864625S -+-+-+-+-==高同理得出, 最低气温的平均数:0x =低最低气温的方差为:2 3.6S =低∵22S S <低高∴日最低气温波动大.【点睛】本题考查的知识点是求数据的平均数与方差,熟记方差公式是解题的关键.32.(1)16,17;(2)14;(3)2800.【解析】【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;(2)根据平均数的概念,将所有数的和除以10即可;(3)用样本平均数估算总体的平均数.【详解】(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,故答案为16,17;(2)10791215173202610⨯+++++⨯++=()14, 答:这10位居民一周内使用共享单车的平均次数是14次;(3)200×14=2800答:该小区居民一周内使用共享单车的总次数为2800次.【点睛】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.33.(1)13-,13;(2)52530,,21111t =;(3)511(,)24 【解析】【分析】(1)直接利用待定系数法求二次函数解析式得出即可;(2)分三种情况:①当BM=BN 时,即5-t=t ,②当BM=NM=5-t 时,过点M 作ME ⊥OB ,因为AO ⊥BO ,所以ME ∥AO ,可得:BM BE BA BO =即可解答;③当BE=MN=t 时,过点E 作EF ⊥BM 于点F ,所以BF=12BM=12(5-t ),易证△BFE ∽△BOA ,所以BE BF BA BO =即可解答;(3)设BP 交y 轴于点G ,过点G 作GH ⊥AB 于点H ,因为BP 恰好平分∠ABC ,所以OG=GH ,BH=BO=3,所以AH=2,AG=4-OG ,在Rt △AHG 中,由勾股定理得:OG=32,设出点P 坐标,易证△BGO ∽△BPD ,所以BO GO BD PD=,即可解答. 【详解】解:解:(1)∵抛物线过点B (-3 ,0) 和C (4 ,0),∴9340 16440a ba b-+⎧⎨++⎩==,解得:1313ab⎧=-⎪⎪⎨⎪=⎪⎩;(2)∵B (-3 ,0),y=ax2+bx+4,∴A(0,4),0A=4,OB=3,在Rt△ABO中,由勾股定理得:AB=5,t秒时,AM=t,BN=t,BM=AB-AM=5-t,①如图:当BM=BN时,即5-t=t,解得:t=52;,②如图,当BM=NM=5-t时,过点M作ME⊥OB,因为BN=t,由三线合一得:BE=12BN=12t,又因为AO⊥BO,所以ME∥AO,所以BM BEBA BO=,即15-253tt=,解得:t=3011;③如图:当BE=MN=t时,过点E作EF⊥BM于点F,所以BF=12BM=12(5-t),易证△BFE∽△BOA,所以BE BFBA BO=,即5t253t-=,解得:t=2511.(3)设BP 交y 轴于点G ,过点G 作GH ⊥AB 于点H ,因为BP 恰好平分∠ABC ,所以OG=GH ,BH=BO=3,所以AH=2,AG=4-OG ,在Rt △AHG 中,由勾股定理得:OG=32,设P (m ,-13m 2+13m+4),因为GO ∥PD ,∴△BGO ∽△BPD ,∴BO GO BD PD= ,即2332113+433m m m =-++ ,解得:m 1=52,m 2=-3(点P 在第一象限,所以不符合题意,舍去),m 1=52时,-13m 2+13m+4=114 故点P 的坐标为511(,)24 【点睛】本题考查用待定系数法求二次函数解析式,还考查了等腰三角形的判定与性质、相似三角形的性质和判定.34.(1)29;(2)59. 【解析】【分析】(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于放回实验.列举出符合题意:“两张卡片上的数字恰好相同”的各种情况的个数,再根据概率公式解答即可.(2)列举出符合题意:“两张卡片组成的两位数能被3整除”的各种情况的个数,再根据概率公式解答即可。