3.2.3一元一次方程的应用(1)

合集下载

青岛版(新)数学七年级上册 7.4一元一次方程的应用

青岛版(新)数学七年级上册 7.4一元一次方程的应用

青岛版(新)数学七年级上册 7.4 一元一次方程的应用1. 引言一元一次方程是数学中常见的一种方程类型,它是由一次项和常数项组成的一元多项式方程。

在实际生活中,一元一次方程的应用非常广泛,可以用来解决各种问题。

本文将介绍在青岛版(新)数学七年级上册第7.4章节中涉及到的一元一次方程的应用。

2. 一元一次方程的基本概念回顾在介绍一元一次方程的应用之前,我们先来回顾一下一元一次方程的基本概念。

一元一次方程的一般形式为:ax+b=c,其中a、b、c为已知数,x为未知数。

解一元一次方程的基本步骤是通过逆运算把未知数x的系数变为1,然后将常数项移到等号的左边,得到形如x=的方程,即解方程。

3. 一元一次方程的实际应用在我们的日常生活中,一元一次方程可以应用于各种实际问题,例如:3.1 问题一小明买了一些饮料,每瓶饮料的价格是5元,他一共花了25元,问他买了多少瓶饮料?解法:设小明买了x瓶饮料,则花费的总金额可以表示为5x元。

根据题意,花费的总金额为25元,所以可以得到方程5x=25。

通过解方程,可以得到x=5。

所以小明一共买了5瓶饮料。

3.2 问题二甲、乙两人在一次长跑比赛中,甲跑得快,用时t分钟,乙跑得慢,用时t+3分钟。

如果甲比乙跑得快10分钟,求甲跑该段长跑的时间。

解法:设甲跑该段长跑的时间为x分钟,则乙跑该段长跑的时间为x+10分钟。

根据题意,甲的用时比乙快10分钟,所以可以得到方程x+10=t。

另外,已知乙的用时比甲慢3分钟,所以可以得到方程x=t+3。

通过解方程,可以得到x= 13,即甲跑该段长跑的时间为13分钟。

3.3 问题三某电话卡的资费标准如下:月租10元,国内长途市话每分钟0.2元。

某人使用该电话卡在一个月内共计通话210分钟,问他的费用是多少?解法:设该人通话的分钟数为x分钟,则通话费用可以表示为0.2x元。

另外,每个月还需支付10元的月租费用。

根据题意,通话费用加上月租费用等于总费用,所以可以得到方程0.2x+10=c。

第三章一元一次方程课件3.2.3解一元一次方程-去括号

第三章一元一次方程课件3.2.3解一元一次方程-去括号
分析:设船在净水中的速度为x千米/小时
时 间 顺 流 逆 流 2 速 度 (X + 3) 路 程 2(X + 3)
2.5
(X – 3)
2.5(X – 3)
在风速为24千米/小时的条件下,一 架飞机顺风从A机场飞到B机场要用2.8小
时,它逆风飞行同样的航线要用3小时.
求:﹤1﹥飞机无风时的航速是多少千米/小时? ﹤2﹥两个机场之间的航程是多少千米?
在化简多项式8a+2b-(5a-b) 时, 阿飞的做法如下:
解:原式= 8a+2b-5a-b =(8-5)a+(2-1)b =3a+b.
阿飞的做法有问题吗?
方程中有带括号的式子时,去括号是常用的化简步骤;
归纳:我们现在学过的解方程的一般步骤有:
去括号
移项
合并同类项
系数化为 1
去括号、移项、合并同类项、系数 为化1,要注意的几个问题: ①去括号要注意括号外的正、负符号。
2 x-10 x=18-40+2 -8x=-20 x=2.5
合并同类项,得
系数化为1,得
第二课时
某工厂加强节能措施,去年下半年 与上半年相比,月平均用电量减少2000 度,全年用电15万度,这个工厂去年上 半年每月平均用电多少度?
分析:若设上半年每月平均用电 x 度, 则下半年每月平均用电 度 (x-2000) 上半年共用电 度, 6x 下半年共用电 6(x-2000)度
乙地,原路返回需要11小时才能到达甲地,
11
Hale Waihona Puke (X – 2)11(X – 2)
顺 流 逆 流
一艘船在两个码头之间航行,水
流速度是3千米每小时,顺水航行需
要2小时,逆水航行需要3小时,求两

人教版数学七年级上册3.2《一元一次方程的应用》教学设计

人教版数学七年级上册3.2《一元一次方程的应用》教学设计

人教版数学七年级上册3.2《一元一次方程的应用》教学设计一. 教材分析《一元一次方程的应用》是人教版数学七年级上册3.2的内容。

本节内容是在学生学习了方程的解法的基础上,引导学生将实际问题转化为方程,培养学生的数学建模能力。

教材通过丰富的例题和习题,使学生掌握一元一次方程的应用,进一步体会数学与生活的紧密联系。

二. 学情分析七年级的学生已经具备了一定的数学基础,对方程的概念和解法有一定的了解。

但学生在解决实际问题时,往往不知道如何将问题转化为方程,对于如何选择合适的未知数也有所困惑。

因此,在教学本节内容时,教师需要引导学生将实际问题与方程联系起来,培养学生解决实际问题的能力。

三. 教学目标1.知识与技能目标:使学生掌握一元一次方程的应用,能够将实际问题转化为方程,求解未知数。

2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。

3.情感态度与价值观目标:让学生体会数学与生活的紧密联系,增强学生学习数学的兴趣。

四. 教学重难点1.教学重点:使学生掌握一元一次方程的应用,能够将实际问题转化为方程。

2.教学难点:如何引导学生选择合适的未知数,以及如何将实际问题转化为方程。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考,从而激发学生的学习兴趣;通过分析典型案例,使学生掌握一元一次方程的应用;通过小组合作学习,培养学生解决实际问题的能力。

六. 教学准备1.准备相关的例题和习题,以便进行课堂练习。

2.准备多媒体教学设备,以便进行案例展示。

七. 教学过程1.导入(5分钟)教师通过提出问题,引导学生思考:“在日常生活中,我们经常会遇到一些需要求解未知数的问题,如何用数学方法来解决这些问题呢?”从而引出一元一次方程的应用。

2.呈现(10分钟)教师通过多媒体展示典型案例,使学生了解一元一次方程的应用。

例如,展示一个有关购物的问题:“小王购买了一本书,价格为x元,他还购买了一个笔记本,价格为y元。

第三章《一元一次方程》教学设计(人教版初中数学七年级上册)

第三章《一元一次方程》教学设计(人教版初中数学七年级上册)

新人教版七年级上学期数学第三章一元一次方程教学内容本章主要内容包括:一元一次方程及其相关概念,一元一次方程的解法,利用一元一次方程分析和解决实际问题。

分析实际问题中的数量关系并用一元一次方程表示是始终贯穿这些内容的主线,而且始终渗透着“数学建模”和“化归”的思想方法。

通过丰富实例,从算式到方程建立一元一次方程,展开方程是刻划现实生活的有效数学模型;通过观察、归纳引出不等式的两条性质,为进一步讨论较复杂的一元一次方程的解法准备理论依据;从实际问题出发,运用等式的性质解方程,归纳“移项”、“合并”、“去括号”等法则,逐步展现求解方程的一般步骤;运用方程解决实际问题,通过探究活动,加强数学建模思想,提高学生分析问题和解决问题的能力。

本教案对列方程解决实际问题的内容作了较集中的归类讨论。

教学目标〔知识与技能〕1、理解一元一次方程及有关概念和等式的基本性质;2、熟练掌握一元一次方程的解法(数字系数)并学会运用一元一次方程解决简单的实际问题。

〔过程与方法〕经历解一元一次方程和列一元一次方程解决实际问题的过程,明确解一元一次方程和列一元一次方程的基本步骤,初步树立数学建模思想和体会化归思想的运用。

〔情感、态度与价值观〕在解决实际问题中,体会数学的应用价值,激发学习数学的欲望,提高分析问题和解决问题的能力。

重点难点一元一次方程的解法和运用是重点,列一元一次方程解决实际问题是难点。

课时分配3.1 从算式到方程…………………………………………2课时3.2 解一元一次方程的讨论(一)…………………………3课时3.3 解一元一次方程的讨论(一)…………………………4课时3.4 实际问题与一元一次方程…………………………3课时本章小结………………………………………… 2课时3.1.1一元一次方程[教学目标]理解一元一次方程的概念,会识别一元一次方程;了解方程的解,会验证方程的解;知道怎样列方程解决实际问题,感受方程作为刻画现实世界有效模型的意义。

3.2.3一元一次方程的应用(行程问题)

3.2.3一元一次方程的应用(行程问题)


400米 80x米
学 校
180x米
追 及 地
小明先行路程 + 小明后行路程 =爸爸的路程
精讲
例题



学 校
例2、小明每天早 上要在7:50之前赶到距 离家1000米的学校上学, 400米 80x米 一天,小明以80米/分 追 的速度出发,5分后, 小明的爸爸发现他忘了 及 180x米 带语文书,于是,爸爸 地 立即以180米/分的速度 去追小明,并且在途中 (1)解:设爸爸要 x分钟才追上小明, 追上他。 依题意得: (1)爸爸追上小明用 180x = 80x + 5×80 了多少时间? (2)追上小明时,距 解得 x=4 离学校还有多远? 答:爸爸追上小明用了4分钟。
小王、叔叔在400米 长的环形跑道上练习跑 步,小王每秒跑4米,叔 叔每秒跑7.5米。
(1)若两人同时同地反 向出发,多长时间两人
(2)同向
小王
首次相遇?
(2)若两人同时同地同 向出发,多长时间两人 首次相遇?
相等关系:
小王路程 + 400 = 叔叔路程
精讲
例题


例4 为了适应经 济发展,铁路运输再 次提速。如果客车行 驶的平均速度增加 40km/h,提速后由合 肥到北京1110km的路 程只需行驶10h。那 么,提速前,这趟客 车平均每时行驶多少 千米?
长时间后与A车相遇?
答:设B车行了3小时后与A车相遇。
精讲
例题


例1、 A、B两车分 别停靠在相距240千米 的甲、乙两地,甲车每
线段图分析: A
甲 第一种情况: A车路程+B车路程+相距80千米=
50 x
80千米

一元一次方程的应用(按比例分配问题)

一元一次方程的应用(按比例分配问题)
3.某工厂甲、乙、丙三个工人每天生产的零件数,甲乙之比是3:4, 乙丙之比是2:3。若乙每天所生产的件数比甲和丙两人的和少945件, 问每个工人各生产多少件?
4.甲、乙、丙三个粮仓共存粮80吨,已知甲、乙两仓存粮之比是1:2, 乙、丙两仓存粮数之比是1:2.5,求三个粮仓各存粮多少吨?
3.2一元一次方程的应用
沪科版数学七年级上册第3章
按比例分配——
根据需要,确定分配对象的不同份额,先算出 总份数,再求出每份的具体数量,然后根据不同份 额求出各自分配到的具体数量。这种分配方法叫按 比例分配.
按比例分配必须具有两个条件:
分配的总数:总量
分配的比:份数
3.2一元一次方程的应用 进阶练习(1)
沪科版数学七年级上册第3章
3.2一元一次方程的应用
沪科版数学七年级上册第3章
一元一次方程的应用:按比例分配问题
一般思路——
设其中一份为x,利用已知的比,写出相应的代数式。
常用等量关系——
各部分之和=总量
明湖学校数学课题组
沪科版数学七年级上册第3章
模块三:
新知巩固
3.2一元一次方程的应用
沪科版数学七年级上册第3章
进阶练习(2)
1.某洗衣机厂生产三种型号的洗衣机共1500台,已知A、B、C三种型 号的洗衣机的数量比是2:3:5,则三种型号的洗衣机各生产多少台?
2.甲、乙、丙三辆卡车所运货物的吨数比是6:7:4.5,已知甲车比丙车 多运货物12吨,则三辆卡车共运货物多少吨。
1.按人数比分配:
七年级共有1800本图书,要按人数分给七年级三个班,七一班有60人,七二 班有55人,七三班有65人,问七年级三个班每班应分得图书多少本?
2.按含量比分配 水泥、沙子和石子的比是2:3:5,要搅伴20吨这样的混凝土,需要水泥、沙 子和石子各多少吨?

人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》教案

人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》教案

人教版七年级数学上册:3.2《解一元一次方程(一)——移项》教案一. 教材分析《人教版七年级数学上册》第三单元《解一元一次方程(一)——移项》是学生在学习了方程与方程的解、一元一次方程的定义及解法的基础上进行学习的。

本节课的主要内容是让学生掌握移项的方法,并能运用移项法解一元一次方程。

教材通过例题和练习题的安排,使学生能够逐步掌握移项的方法,并能够灵活运用。

二. 学情分析学生在学习本节课之前,已经掌握了方程与方程的解、一元一次方程的定义及解法等知识,具备了一定的数学基础。

但是,对于移项的方法,学生可能还不太熟悉,需要通过例题和练习题的讲解和练习,才能够掌握。

三. 教学目标1.让学生掌握移项的方法,能够将方程中的项移动到等号的同一边。

2.能够运用移项法解一元一次方程。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.教学重点:移项的方法和解一元一次方程的方法。

2.教学难点:如何引导学生理解和掌握移项的方法,并能够灵活运用。

五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法,通过教师的讲解和示范,学生的练习和讨论,使学生能够理解和掌握移项的方法,并能够灵活运用。

六. 教学准备1.PPT课件七. 教学过程1.导入(5分钟)教师通过复习方程与方程的解、一元一次方程的定义及解法等知识,引出本节课的主题——移项。

2.呈现(10分钟)教师通过PPT课件,展示移项的方法,并通过示例进行讲解和示范。

示例中,教师引导学生观察方程的两边,找出需要移动的项,并说明移动的方向和规则。

3.操练(10分钟)教师给出一些练习题,让学生独立完成。

教师在学生完成练习的过程中,进行巡视指导,帮助学生理解和掌握移项的方法。

4.巩固(5分钟)教师通过PPT课件,给出一些巩固题,让学生进行练习。

教师在学生完成练习的过程中,进行巡视指导,帮助学生巩固理解和掌握移项的方法。

5.拓展(5分钟)教师通过PPT课件,给出一些拓展题,让学生进行练习。

人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》教学设计

人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》教学设计

人教版七年级数学上册:3.2《解一元一次方程(一)——移项》教学设计一. 教材分析人教版七年级数学上册3.2《解一元一次方程(一)——移项》是学生在掌握了方程的基本概念和一元一次方程的解法的基础上进行学习的内容。

本节内容主要介绍了解一元一次方程中移项的方法,是解决更复杂方程的基础。

教材通过具体的例子引导学生发现移项的规律,并通过练习让学生掌握移项的方法。

二. 学情分析七年级的学生已经具备了一定的代数基础,对一元一次方程的解法有一定的了解。

但是,学生在解决实际问题时,还不能熟练运用移项的方法。

因此,在教学过程中,需要通过具体的例子,让学生观察、思考、总结移项的规律,从而提高学生解决问题的能力。

三. 教学目标1.知识与技能:使学生掌握移项的方法,能够正确解一元一次方程。

2.过程与方法:通过观察、思考、总结移项的规律,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.重点:移项的方法。

2.难点:在解决实际问题时,如何灵活运用移项的方法。

五. 教学方法采用问题驱动法、合作学习法、练习法等,引导学生观察、思考、总结移项的规律,并通过练习让学生巩固所学知识。

六. 教学准备1.准备相关的例题和练习题。

2.准备黑板和粉笔。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的内容,引导学生思考如何解决这个问题。

2.呈现(10分钟)展示相关的例题,引导学生观察、思考,总结移项的规律。

3.操练(10分钟)让学生分组合作,解决一些类似的练习题,巩固移项的方法。

4.巩固(5分钟)对学生在练习中遇到的问题进行讲解,帮助学生巩固所学知识。

5.拓展(5分钟)引导学生思考如何在解决更复杂的问题时,灵活运用移项的方法。

6.小结(5分钟)对本节课的内容进行总结,强调移项的方法和注意事项。

7.家庭作业(5分钟)布置一些相关的练习题,让学生课后巩固所学知识。

8.板书(5分钟)板书本节课的主要内容和重点知识点。

沪科版数学七年级上册《3.2 一元一次方程的应用》教学设计1

沪科版数学七年级上册《3.2 一元一次方程的应用》教学设计1

沪科版数学七年级上册《3.2 一元一次方程的应用》教学设计1一. 教材分析《3.2 一元一次方程的应用》是沪科版数学七年级上册的一个重要章节。

本章主要通过实际问题引导学生学习一元一次方程的解法和应用。

教材内容主要包括:一元一次方程的定义、一元一次方程的解法、一元一次方程的应用等。

本节课的重点是一元一次方程的应用,难点是如何将实际问题转化为方程。

二. 学情分析七年级的学生已经具备了一定的数学基础,对代数知识有一定的了解。

但是,对于如何将实际问题转化为方程,以及如何运用方程解决实际问题,学生可能还比较陌生。

因此,在教学过程中,教师需要通过具体的例子,引导学生理解方程在实际问题中的应用。

三. 教学目标1.理解一元一次方程的定义,掌握一元一次方程的解法。

2.能够将实际问题转化为方程,运用方程解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重点:一元一次方程的应用。

2.难点:如何将实际问题转化为方程。

五. 教学方法1.讲授法:教师通过讲解,引导学生理解一元一次方程的定义和解法。

2.案例分析法:教师通过具体的例子,引导学生将实际问题转化为方程。

3.练习法:学生通过做练习题,巩固所学知识。

六. 教学准备1.教材:沪科版数学七年级上册。

2.教案:详细的教学设计。

3.课件:用于辅助教学的课件。

4.练习题:用于巩固所学知识的练习题。

七. 教学过程1.导入(5分钟)教师通过一个简单的实际问题,引导学生思考如何将问题转化为方程。

例如:小明买了一本书,价格为x元,他给了售货员10元,找回的钱为5元,请计算这本书的价格。

2.呈现(10分钟)教师引导学生分析问题,将问题转化为方程。

例如:小明买书的问题可以转化为方程 x + 5 = 10。

3.操练(15分钟)教师给出几个类似的实际问题,让学生独立解决。

例如:小红买了一支笔,价格为y元,她给了售货员15元,找回的钱为10元,请计算这支笔的价格。

4.巩固(10分钟)教师引导学生总结解题规律,巩固所学知识。

202年初中数学七年级上册第二单元一元一次方程03 一元一次方程(3)解法(一)移项合并同类项

202年初中数学七年级上册第二单元一元一次方程03 一元一次方程(3)解法(一)移项合并同类项

3.2解一元一次方程(一)合并同项与移项一、解一元一次方程的方法1、合并同类项2、移项3、去括号去分母二、移项的定义:把等式一边的某项变号后移到另一边,叫做移项三、移项的性质:把某一项移到式子的另一边,要改变这一项的符号a+b=c → a=c-ba-b=c → a=c+b四、去括号去分母(1)如果括号前的符号是正号,去括号后原括号内各项的符号与原来的符号相同,+(x-3)=x-3(2)如果括号前的符号是负号,去括号后原括号内各项的符号与原来的符号相反。

-(x-3)=-x+3(3)(3)等式两边乘同一个数,结果仍相等。

五、解一元一次方程的一般步骤包括:去分母、去括号、移项、合并同类项、系数化为1概念题一、解一元一次方程的方法1、2、3、二、移项的定义:把等式叫做移项三、移项的性质:把某一项移到式子的另一边,要a+b=c → a=a-b=c → a=四、去括号去分母(1)如果括号前的符号是正号,去括号后原括号内各项的符号与原来的符号号,+(x-3)=(2)如果括号前的符号是负号,去括号后原括号内各项的符号与原来的符号号。

-(x-3)=(3)等式两边乘同一个数,结果仍。

五、解一元一次方程的一般步骤包括:、、、、。

3.2.1 解法(一)合并同类项一、合并下列各式中可以合并的项:(1)2x+3x-4x= (2)3y-2y+y=(3)8x+7+2x= (4)7x-4.5x=(5)15x+4x-10x= (6)-6ab+8ab+ab=(7) -p2-p2-p2-p2= (8) m-n2+m-n2=(9) 4(a+b)+(a+b)-7(a+b)=(10)2(x+y)2-7(x+y)2+9(x+y)2=二、完成下面的解题过程:(1)解方程-3x+0.5x=10. (2)解方程3x-4x=-25-20.解:合并同类项,得 . 解:合并同类项,得 .两边,得两边,得∴=x;x;∴=(3)9x—5x=8 (4)4x-6x-x =-15解:合并同类项得:=解:合并同类项得:=两边,得两边,得∴=x;x;∴=(5) 3+-6-xxx(6)4x+3-3x-2=0x-=5.1⨯4315-7⨯5.2解:合并同类项得:=解:合并同类项得:=两边,得两边,得∴=x;x;∴=三、用合并同类法解下列方程:(1)6x —x =4 (2)-4x +6x -0.5x =-0.3 (3)9x -5x =8(4)4x -6x -x =-15 (5)2y -25y =6-8 (6)14x +12x =3(7)3(x -7)+5(x -4)=15 (8)7232=+x x (9)314125=-x x(10) 21)15(51=+x (11)3x -1.3x +5x -2.7x =-12×3-6+43.2.2 解法(二)移项把某一项移到式子的另一边,要 一、选择题1.下列变形中属于移项的是( )A.由572x y -=,得275y x --+ B.由634x x -=+,得634x x -=+ C.由85x x -=-,得58x x --=-- D.由931x x +=-,得319x x -=+ 2.解方程6x +1=-4,移项正确的是( )A.6x =4-1B.-6x =-4-1C.6x =1+4D.6x =-4-1 3.解方程-3x +5=2x -1, 移项正确的是( )A.3x -2x =-1+5B.-3x -2x =5-1C.3x -2x =-1-5D.-3x -2x =-1-5 4.下列变形正确的是( ) A.由3921x +=,得3219x =+B.由125x-=,得110x -=C.由105x -=,得15x = D.由747x +=,得41x +=5.方程3412x x -=+,移项,得3214x x -=+,也可以理解为方程两边同时( ) A.加上()24x -+ B.减去()24x -+ C.加上()24x + D.减去()24x + 二、填空(1)方程3y =2的解是y = ; (2)方程-x =5的解是x = ; (3)方程-8t =-72的解是t = ; (4)方程7x =0的解是x = ; (5)方程34x =-12的解是x = ;三、填空:(只写移项的变化,不用计算结果) (1) x +7=13移项得 ; (2) x -7=13移项得 ; (3) 5+x =-7移项得 ; (4) -5+x =-7移项得 ; (5) 4x =3x -2移项得 ;(6) 4x =2+3x 移项得 ; (7) -2x =-3x +2移项得 ; (8) -2x =-2-3x 移项得 ; (9) 4x +3=0移项得 ; (10) 0=4x +3移项得 .四、将下列方程中含有未知数的项移到方程的左边,•将常数项移方程的右边:(1)6+x =10 (2)5433xx -=(3)7-6x =5-4x (4) 11522x x -=-+五.完成下面的解题过程:(1)解方程6x -7=4x -5. 解:移项,得 . 合并同类项,得 . 系数化为1,得 .(2)解方程3x -4x =-25-20. 解:合并同类项,得 .系数化为1,得 .(3).解方程2x +5=25-8x. 解:移项,得 . 合并同类项,得 . 系数化为1,得 .(5)解方程:5x +2=7x -8解: ,得5x -7x =-8-2. ,得-2x =-10. ,得x =5.3.用先移项后合并的方法解下列方程。

一元一次方程,二元一次方程,三元一次方程

一元一次方程,二元一次方程,三元一次方程

一元一次方程,二元一次方程,三元一次方程1. 引言1.1 概述在数学领域中,方程是一种数学表达式,它包含了未知数和已知数之间的关系。

解决方程问题是数学中重要的基础问题之一。

从最简单的一元一次方程到更复杂的二元和三元一次方程,我们将逐步探讨它们的定义、性质以及解决方法。

1.2 目的本文旨在介绍并深入了解一元一次方程、二元一次方程和三元一次方程。

通过对这些不同类型方程的研究,我们将能够掌握它们的特征、求解方法以及实际应用。

通过深入理解这些方程,读者将能够更好地应用数学知识解决实际生活中遇到的问题,并培养逻辑推理和问题解决能力。

1.3 结构本文主要分为五个部分:引言、一元一次方程、二元一次方程、三元一次方程以及结论。

- 在第二部分“一元一次方程”中,我们将先介绍其定义和性质,然后探讨如何通过不同的解题方法来求解这类方程,并举例说明其实际应用。

- 第三部分“二元一次方程”将对此类方程进行概述,然后比较不同的解法,并介绍图形解法及其应用。

- 在第四部分“三元一次方程”中,我们将讨论其理论基础,探究求解方法,并提供应用举例。

- 最后,在结论部分我们将对全文进行总结回顾,并展望一元一次方程、二元一次方程和三元一次方程在未来的发展趋势。

通过阅读本文,读者将能够全面了解不同类型的一次方程以及它们在数学和实际生活中的应用。

希望本文能够对读者进一步提升数学水平和问题解决能力有所帮助。

2. 一元一次方程:2.1 定义与性质:一元一次方程是指只含有一个变量,并且该变量的最高次数为1的方程。

常见的一元一次方程的标准形式为ax + b = 0,其中a和b 为已知常数,x为待求变量。

一元一次方程具有以下特性:- 方程中只包含一个未知数x,并且x的最高次数为1;- 系数a不等于0;- 方程两边可以通过加减乘除等基本运算进行转化。

2.2 解题方法:解一元一次方程的常用方法包括:- 原则1: 对等式两边同时加减相同数字或字母,仍然相等;- 原则2: 对等式两边同时乘以(或除以)非零系数,仍然相等;下面是解一元一次方程的步骤:- 将方程根据需要进行整理,使其成为ax + b = 0的标准形式; - 运用原则1和原则2对方程进行逆向运算化简,使得x左侧只剩下一个x并系数为1;- 最后计算出未知数x的值即可。

2023-2024学年七年级上数学:解一元一次方程(一)—合并同类项与移项(精讲学生版)

2023-2024学年七年级上数学:解一元一次方程(一)—合并同类项与移项(精讲学生版)

A. x 1
B. x 1
C. x 5
D. x 5
【分析】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.
【答案】D
【解析】方程 3 x 2 ,
移项得: x 2 3 ,
合并得: x 5 ,
系数化为 1 得: x 5 .
故选:D.
【练习 1】方程 5 2x 1 的解是 ( )
名师点拨: 1.合并同类项的实质是系数的合并,字母及指数都不变; 2.系数合并时要连同前面的“±”号,如–3x+2x=5 应变成(–3+2)x=5,即–x=5; 3.系数合并的实质是有理数的加法运算;
【精讲 1】方程 x 2 3 的解是 ( )
A. x 1
B. x 1
C. x 2
D. x 3
【分析】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的
一般步骤:去分母、去括号、移项、合并同类项、系数化为 1. 【答案】B 【解析】 x 2 3 , x 1. 故选:B.
【精讲 2】若代数式 4x 5 与 2x 1 的值相等,则 x 的值是 ( )
A.1
B. 3
2
C. 2
3
D.2
2023-2024 学年七年级上数学:第三章 一元一次方程
3.2 解一元一次方程(一)——合并同类项与移项
1.解一元一次方程 (1)一般步骤:去分母、去括号、移项、合并同类项、系数化为 1,这 是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤 都是为使方程逐渐向 x=a 形式转化. (2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方 法并为一项即(a+b)x=c.使方程逐渐转化为 ax=b 的最简形式,体现 化归思想.

3.2.3一元一次方程应用—工程问题教案(公开课)

3.2.3一元一次方程应用—工程问题教案(公开课)

一元一次方程的应用——工程问题一、教学目标1、探索并掌握列一元一次方程解决实际问题的方法,找出已知量与未知量之间的关系,尤其是相等关系.2、培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.二、教学重难点1.教学重点:分析复杂问题中的数量关系和等量关系2.教学难点:体会间接设未知数的解题思路,从而建立方程解决实际问题.三、教学方法启发式、讲练结合四、教学过程(一)复习导入列方程解应用题的一般步骤:(1)审:弄清题意,分清已知量和未知量;(2)设:设未知数,其他的未知量用含未知数的代数式表示。

(3)找:分析题意找出等量关系,(4)列:根据等量关系列出方程(5)解:解方程,求出未知数的值。

(6)检:检验所求的解,并写出答工程问题中的数量关系:(1)工作总量=工作效率x 工作时间(2)工作时间=工作总量/工作效率(3)全部工作量之和=各队工作量之和(4)各队合作工作效率=各队工作效率之和(二)讲授新课例1:一条地下管线由甲工程队单独铺设需要12 天,由乙工程队单独铺设需要24天. 如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?解:设 要x 天可以铺好这条管线.根据题意,得:1241121=+x x解方程,得 x =8.答:两个工程队从两端同时施工,要8天可以铺好这条管线.例2:在某路段的工程招标中,工程指挥部接到甲、乙两个工程队的投标书.根据投标书测算:若让甲队单独完成这项工程需要40天,若由乙队单独完成这项工程需要60天,为了缩短工期方便行人,决定两队合作完成,但甲队因有事需晚来10天施工,那么这项工程需要多少天才能完成?解:这项工程需要x 天才能完成.根据题意,得1604010=+-x x解方程,得x=30答:这项工程需要30天才能完成.(三)巩固练习1.某地为了打造风光带,将一段长为360m 的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m ,乙工程队每天整治16m ,求甲、乙两个工程队分别整治了多长的河道.解:设甲工程队整治xm,那么乙工程队整治了(360-x) m.根据题意,得解方程 201636024=-+x x得 x=120所以乙工程队整治了360-120-240 (m)答:甲、乙两个工程队分整治了120m 、240m2.某服装厂有工人54人,每人每天可加工上衣8件,或裤子10条,应怎样分配人数,才能使每天生产的上衣和裤子配套?解:设每天有x 人生产上衣,那么每天有(54-x)人生产裤子.根据题意,得8x=10(54-x)解方程,得x=30所以每天生产裤子的人数为54-30=24 (人) .答:每天有30人生产上衣,24人生产裤子.(四)课后作业全品作业本。

一元一次方程的解法及应用拓展

一元一次方程的解法及应用拓展

一元一次方程的解法及应用拓展一、一元一次方程的概念1.1 定义:含有一个未知数,未知数的最高次数为1,且两边都为整式的等式称为一元一次方程。

1.2 形式:ax + b = 0(a, b为常数,a≠0)二、一元一次方程的解法2.1 公式法:将方程ax + b = 0两边同时除以a,得到x = -b/a。

2.2 移项法:将方程中的常数项移到等式的一边,未知数项移到等式的另一边。

2.3 因式分解法:将方程进行因式分解,使其成为两个一次因式的乘积等于0的形式,然后根据零因子定律求解。

三、一元一次方程的应用3.1 实际问题:将实际问题转化为一元一次方程,求解未知数。

3.2 线性方程组:由多个一元一次方程组成的方程组,可用代入法、消元法等方法求解。

3.3 函数图像:一元一次方程的图像为直线,可通过解析式分析直线与坐标轴的交点、斜率等性质。

四、一元一次方程的拓展4.1 比例方程:含有一元一次方程的等比例关系,可通过交叉相乘、解一元一次方程求解。

4.2 分式方程:含有一元一次方程的分式,可通过去分母、解一元一次方程求解。

4.3 绝对值方程:含有一元一次方程的绝对值,可分为两种情况讨论,求解未知数。

五、一元一次方程的练习题5.1 选择题:判断下列方程是否为一元一次方程,并选择正确的解法。

5.2 填空题:根据题目给出的条件,填空求解一元一次方程。

5.3 解答题:解答实际问题,将问题转化为一元一次方程,求解未知数。

六、一元一次方程的考试重点6.1 掌握一元一次方程的定义、形式及解法。

6.2 能够将实际问题转化为一元一次方程,求解未知数。

6.3 熟练运用一元一次方程解决线性方程组、函数图像等问题。

6.4 理解一元一次方程的拓展知识,如比例方程、分式方程、绝对值方程等。

七、一元一次方程的学习建议7.1 多做练习题:通过大量的练习题,熟练掌握一元一次方程的解法及应用。

7.2 深入理解实际问题:学会将实际问题转化为一元一次方程,提高解决问题的能力。

3.2解一元一次方程(一)教案(第1课时)

3.2解一元一次方程(一)教案(第1课时)

3 .2解一元一次方程(一)——合并同类项教学目标1.利用合并同类项,解“ax+bx=c ”类型的一元一次方程.2.能够找出实际问题中的等量关系,会列一元一次方程解决实际问题.重点:会利用合并同类项解一元一次方程.难点: 找出实际问题中的等量关系,列出方程解决实际问题..教学过程:一、复习旧知1.合并同类项(1)3a-5a (2)-5xy+4xy=(3-5)a =(-5+4)xy=-2a =-xy(3)3x-6x+4x (4)-5xy 2+2xy 2=(3-6+4)x =(-5+2)xy 2=x =-3xy 22.利用等式的基本性质解一元一次方程(1)-2x=6 (2)23x = 2-解:两边同除以 解:两边同乘32x 622-=-- x 3233⨯=⨯ 3x =-得 6x =得二、讲授新课问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买的数量又是去年的2倍。

前年这个学校购买了多少台计算机?问题1:如何列方程?师生讨论分析:(1)设未知数:前年购买计算机x 台,则去年购买计算机2x 台,今年购买计算机4x 台.(2)找相等关系:前年购买量+去年购买量+今年购买量=140台(3)列方程:x+2x+4x =140问题2:怎么解这个方程?学生观察、思考x+2x+4x=140(1+2+4)x=140合并同类项(依据乘法分配律)7x=140X=20化系数为1(依据等式的性质二)检验:检验答案是否正确答:前年这个学校购买了20台计算机.问题3:思考:上面解方程的过程中“合并同类项”起了什么作用?学生讨论、回答,师生共同整理:合并同类项的目的就是化简方程,它是一种恒等变形,把方程转化为Ax=B的形式,可以使方程变得简单,并逐步使方程向x=a的形式转化.(其中A、B是常数)三、范例精析例1:解下列方程(1)5x-3x=3-1解:合并同类项,得2x=2系数化为1,得x=1(2)7y+0.5y-3y-1.5y=2×(-1.5)-2×3解:合并同类项,得3y=-9系数化为1,得y=-3针对练习解下列方程(1)6x-4x=3 (2)79 22x x-=解:(1)合并同类项,得解:(2)合并同类项,得2x=3 -3x=9系数化为1,得系数化为1,得32x=x= -3(3)-3x+1.5x=9 (4)7x-3.5x-6x=-4.5×2-1解:(3)合并同类项,得解:(4)合并同类项,得1.5x=9 -2.5x=-10系数化为1,得系数化为1,得x=6 x=4例2 列方程解下列应用题:某公司一季度实现销售收入1600万元,其中二月的销售收入是一月的2倍,三月的销售收入是二月的2.5倍,则该公司一月的销售收入为多少万元?解:设一月的销售收入是x万元,则二月的销售收入是2x万元,三月的销售收入是(2.5×2x)万元。

部编数学七年级上册必刷基础练【3.23.3解一元一次方程】(解析版)含答案

部编数学七年级上册必刷基础练【3.23.3解一元一次方程】(解析版)含答案

2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)基础第3章《一元一次方程》3.2-3.3 解一元一次方程知识点1:利用合并同类项与移项解一元一次方程1.(2021七上·长兴月考)方程261x x -=-的解是( ).A .5B .52-C .5±D .53【答案】A【完整解答】解:261x x -=-,移项得,261x x -=-,合并同类项得,5x =,故答案为:A.【思路引导】根据解一元一次方程的解题步骤“移项、合并同类项”求出方程的解,即可得出答案.2.(2021七上·梁山期中)方程537x x -=+移项后正确的是( )A .375x x +=+B .357x x +=-+C .375x x -=-D .375x x -=+【答案】D【完整解答】解:移项,得:375x x -=+.故答案为:D .【思路引导】根据移项的计算方法和注意事项求解即可。

3.(2021七上·灵山期末)解一元一次方程 4125x x +=- 时,移项后,得到的式子正确的是( )A .4251x x -=--B .4251x x +=--C .4251x x -=-+D .4251x x +=-【答案】A【完整解答】解: 4125x x +=-移项得: 4251x x -=--故答案为:B 、C 、D 均错误;选项A 正确,故答案为:A.【思路引导】根据移项要变号可判断求解.4.(2021七上·廉江期末)方程434x x =-的解是x = .【答案】-4【完整解答】解:移项,4x-3x=-4,合并同类项得,x=-4.故答案是:-4.【思路引导】先移项、合并同类项,再系数化为1即可。

5.(2020七上·高明期末)当 x = 时, 28x + 的值为4.【答案】-2【完整解答】根据题意得: 2x+8= 4,移项合并得: 2x = -4,解得: x=-2故答案为:-2【思路引导】根据题意建立方程,求出方程的解即可.6.(2020七上·无棣期末)下面的框图表示了琳琳同学解方程421x x +=-的流程:你认为琳琳同学在解这个方程的过程中从第 步开始出现问题,正确完成这一步的依据是 .【答案】一;等式的基本性质1【完整解答】解:我认为琳琳同学在解这个方程的过程中从第一步开始出现问题,符合题意完成这一步的依据是等式的基本性质1.故答案为:一;等式的基本性质1.【思路引导】利用一元一次方程的解法和等式的性质求解即可。

3.2 解一元一次方程(一)—合并同类项与移项 教案-人教版七年级数学上册

3.2  解一元一次方程(一)—合并同类项与移项 教案-人教版七年级数学上册

3.2 解一元一次方程(一)——合并同类项与移项第1课时 用合并同类项的方法解一元一次方程学习目标:1.学会运用合并同类项解形如ax +bx = c 类型的一元一次方程,进一步体会方程中的“化归”思想.2. 能够根据题意找出实际问题中的相等关系,列出方程求解.重点:用合并同类项的方法解一元一次方程.难点:能够通过自主分析,找出实际问题中的等量关系.教学过程:要点探究探究点1:利用合并同类项解简单的一元一次方程合作探究:试一试:把一元一次方程x +2x +4x = 140转化为x = m 的形式.依据:______________ 依据:_________________归纳:解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax = b 的形式,其中a,b 是常数,“合并”的依据是逆用分配律.典例精析例1 解下列方程:(1) 1115;24x x x --= 221(2)423.32x x x -++=-⨯+.方法总结:合并同类项解方程的一般步骤如下:(1)合并同类项;(2)系数化为1.针对训练:解下列方程:(1) 5x -2x = 9; (2) 72321=+x x .\探究点2:根据“总量=各部分量的和”列方程解决问题例2 足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?方法总结:方法归纳:当题目中出现比例时,一般可通过间接设元,设其中的每一份为,然后用含x的代数式表示各数量,根据等量关系,列方程求解.例3 有一列数,按一定规律排列成1,-3,9,-27,81,-243 ,···. 其中某三个相邻数的和是-1701,这三个数各是多少?检测:1.下列方程合并同类项正确的是( )A. 由3x-x=-1+3,得2x=4B. 由2x+x=-7-4,得3x=-3C. 由15-2=-2x+x,得3=xD. 由6x-2-4x+2=0,得2x=02.如果2x与x-3的值互为相反数,那么x等于()A.-1 B.1 C.-3 D.33.某中学七年级(5)班共有学生56人,该班男生的人数是女生人数的2倍少1人.设该班有女生有x人,可列方程为_____________.4.解下列方程:(1) -3x + 0.5x =10;(2) 6m-1.5m-2.5m =3;(3) 3y-4y =-25-20.5.某洗衣厂2016年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量之比为1:2:14,这三种洗衣机计划各生产多少台?二、课堂小结1. 解形如“ax + bx + ···+ mx = p”的一元一次方程的步骤.2. 用方程解决实际问题的步骤.3.2 解一元一次方程(一)——合并同类项与移项第2课时用移项的方法解一元一次方程学习目标:1. 理解移项的意义,掌握移项的方法.2. 学会运用移项解形如“ax+b=cx+d”的一元一次方程.3. 能够抓住实际问题中的数量关系列一元一次方程解决实际问题.重点:理解移项法则,会用移项的方法解一元一次方程.难点:能够通过自主分析,找出实际问题中的等量关系,并能正确运用移项的方法进行解答.教学过程:一.要点探究探究点1:用移项解一元一次方程合作探究:请运用等式的性质解下列方程:(1) 4x-15 = 9①;(2) 2x = 5x-21③.两边同时_______,得两边同时_______,得②________________; ④________________;合并同类项,合并同类项,得________________; ________________;系数化为1,得系数化为1,得________________; ________________;比一比:从方程①到方程②,从方程③到方程④,有哪些项发生了变化,它们是如何变化的?说一说:利用移项解一元一次方程的步骤:__________ ____________ ______________.例1解下列方程:(1)5x-7=2x-10;(2)-0.3x+3=9+1.2x .要点归纳:移项得目的是为了把所有含有未知数的项移到方程的左边,把所有常数项移到方程的右边,使得一元一次方程更接近“x = a”的形式.针对训练由方程3x-5=2x-4变形得3x-2x=-4+5,那么这是根据()变形的.A.合并同类项法则B.乘法分配律C.移项D.等式性质22.若代数式y-7与2y-1的值相等,则y的值是.3.利用移项的方法解下列方程:(1) 3x=2x+2; (2) 4x=-x+25.探究点2:列方程解决问题例2我区期末考试一次数学阅卷中,阅B卷第28题(简称B28)的教师人数是阅A卷第18题(简称A18)教师人数的3倍,在阅卷过程中,由于情况变化,需要从阅B28题中调12人到A18阅卷,调动后阅B28剩下的人数比原先阅A18人数的一半还多3人,求阅B28题和阅A18题的原有教师人数各为多少?方法总结:列方程解决含有多个未知量的实际问题中,一般先根据题意找出这些未知量之间存在的数量关系,然后设合适的未知数列方程求解.针对训练:下面是两种移动电话计费方式:问:一个月内,通话时间是多少分钟时,两种移动电话计费方式的费用一样?解形如“ax +b = cx + d ”的方程的一般步骤:(1)移项;(2)合并同类项;(3)化未知数的系数为1.1. 通过移项将下列方程变形,正确的是 ( )A. 由5x -7=2,得5x =2-7B. 由6x -3=x +4,得3-6x =4+xC. 由8-x =x -5,得-x -x =-5-8D. 由x +9=3x -1,得3x -x =-1+92. 已知 2m -3=3n +1,则 2m -3n = .3. 如果415+m 与41+m 互为相反数,则m 的值为 . 4. 当x =_____时,式子2x -1的值比式子5x +6的值小1.5. 解下列一元一次方程:(1) 7-2x =3-4x ; (2) 1.8t =30+0.3t ;(3)x x +=+3121; (4) .383113435-=+x x6. 小明和小刚每天早晨坚持跑步,小明每秒跑4米,小刚每秒跑6米. 若小明站在百米起点处,小刚站在他前面10米处,两人同时同向起跑,几秒后小明追上小刚?课堂小结 (1) 一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.(2) 移项的依据是等式的性质1.3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程学习目标:1.了解“去括号”是解方程的重要步骤.2.准确而熟练地运用去括号法则解带有括号的一元一次方程.重点:能正确运用去括号法则解一元一次方程.难点:能够较为灵活、熟练地运用去括号法则解一元一次方程.教学过程:一,要点探究探究点1:利用去括号解一元一次方程合作探究:观察下面的方程,结合去括号法则,你能求得它的解吗?6x+ 6 ( x-2000 ) = 150000解:去括号,得_______________.移项,得____________.合并同类项,得_______________.系数化为1,得_____________.典例精析例1解下列方程:(1)x-2(x-2) = 3x+5(x-1); (2)312 71423x x x ⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭+8=3-6要点归纳:解含有括号的一元一次方程的一般步骤:去括号→移项→合并同类项→系数化为1.针对训练1.解方程3-5(x+2)=x去括号正确的是()A.3-x+2=x B.3-5x-10=x C.3-5x+10=x D.3-x-2=x2.若2(x+3)的值与4(1-x)的值相等,则x的值为.3.解下列方程:(1) 6x=-2 (3x-5) +10;(2)-2 (x+5) = 3 (x-5)-6 .探究点2:去括号解方程的应用例2一架飞机在两城之间航行,风速为24 km/h,顺风飞行要2小时50分,逆风飞行要3小时,求两城距离.方法总结:涉及水流或风速的行程问题,需要找准路程、时间、速度间的等量关系,且要注意顺流(风)和逆流(风)时的速度不同.例3 为鼓励居民节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度按0.50元收费;如果超过100度不超过200度,那么超过部分每度按0.65元收费;如果超过20度,那么超过部分每度按0.75元收费.若某户居民在9月份缴纳电费310元,那么他这个月用电多少度?方法总结:对于此类阶梯收费的题目,需要弄清楚各阶段的收费标准,以及各节点的费用.然后根据缴纳费用的金额,判断其处于哪个阶段,然后列方程求解即可. 针对训练1.某市出租车的收费标准是:起步价7元(行驶距离不超过3km ,都需付7元车费),超过3km每增加1km ,加收1.2元,小陈乘出租车到达目的地后共支付车费19元,那么小陈坐车可行驶的路最远是( )A .12km B.13km C .14km D .15km2.一艘轮船在A 、B 两港口之间行驶,顺水航行需要5h ,逆水航行需要7h ,水流的速度是5km/h ,则轮船在静水中航行的速度为 ,A 、B 两港口之间的路程是 .3.水浒中学要把420元奖学金分给22名获一、二等奖的学生,一等奖每人50元,二等奖每人10元.求获得一、二等奖的人数分别是多少?1. 对于方程 2( 2x -1 )-( x -3 ) =1 去括号正确的是 ( )A. 4x -1-x -3=1B. 4x -1-x +3=1C. 4x -2-x -3=1D. 4x -2-x +3=1 2. 若关于x 的方程 3x + ( 2a +1 ) = x -( 3a +2 ) 的解为x = 0,则a 的值等于 __3.爷爷现在的年龄是孙子的5倍,12年后,爷爷的年龄是孙子的3倍,现在孙子的年龄是___岁.4. 解下列方程: (1) 3x -5(x -3) = 9-(x +4); (2).12165326⎪⎭⎫ ⎝⎛+-=-⎪⎭⎫ ⎝⎛-x x x5. 某羽毛球协会组织一些会员到现场观看羽毛球比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?6. 当x 为何值时,代数式2(x 2-1)-x 2的值比代数式x 2+3x -2的值大6.二、课堂小结1. 解一元一次方程的步骤:去括号→移项→合并同类项→系数化为1.2. 若括号外的因数是负数,去括号时,原括号内各项的符号要改变.3.3 解一元一次方程(二)——去括号与去分母第2课时 利用去分母解一元一次方程学习目标:1.掌握含有分数系数的一元一次方程的解法.2. 熟练利用解一元一次方程的步骤解各种类型的方程.重点:利用去分母解一元一次方程.难点:熟练利用解一元一次方程的步骤解各种类型的方程.教学过程:一、要点探究探究点1:解含分母的一元一次方程合作探究:1.解方程:()()13128231-=-x x . 方法一: 方法二解:去括号,得 解:方程两边同时乘3, ________________________ ________________________移项,得 去括号,得________________________ ________________________合并同类项,得 移项,得________________________ ________________________合并同类项,得____________2.对比方法一与方法二,想一想如何解含分母的方程更简便?3.用你认为更简便的方法解方程:.5210232213x x x --=-+要点归纳: 解含分母的一元一次方程的一般步骤:去分母→去括号→移项→合并同类项→系数化为1. 观察与思考:下列方程的解法对不对?如果不对,你能找出错在哪里吗? 解方程:.122312=+--x x 解:去分母,得4x -1-3x + 6 = 1,移项,合并同类项,得x =4.如果上述解法错误,你能写出正确解法吗?典例精析例1 解下列方程:(1)121163x x -+-=; (2) 490.30.25.50.32x x x ++--=解法:_______(填“对”或“错”) 错误原因:_________________ _________________________________________________________________________________要点归纳:1. 去分母时,应在方程的左右两边乘以分母的 ;2. 去分母的依据是 ,去分母时不能漏乘 ;3. 去分母与去括号这两步分开写,不要跳步,防止忘记变号.针对训练:A .3(x+1)-2x-3=6B .3(x+1)-2x-3=1C .3(x+1)-(2x-3)=12D .3(x+1)-(2x-3)=6(1);34= (2) 1.32x +=-探究点2:去分母解方程的应用例2 火车用26秒的时间通过一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求火车的长度.方法总结:火车过桥问题中,火车行驶的路程等于桥的长度加上火车的长度.针对训练清人徐子云《算法大成》中有一首诗:巍巍古寺在山林,不知寺中几多僧.三百六十四只碗,众僧刚好都用尽.三人共食一碗饭,四人共吃一碗羹.请问先生名算者,算来寺内几多增?诗的意思:3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了364只碗,请问寺内有多少僧人?1. 方程4172753+-=+-x x 去分母正确的是 ( ) A. 3-2(5x +7) = -(x +17) B. 12-2(5x +7) = -x +17C. 12-2(5x +7) = -(x +17)D. 12-10x +14 = -(x +17)2. 若代数式21-x 与56的值互为倒数,则x = . 3. 解下列方程: (1)154353+=--x x ; (2).1255241345--=-++y y y4. 某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.该单位参加旅游的职工有多少人?5. 有一人问老师,他所教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩六位学生正在操场踢足球.”你知道这个班有多少学生吗?趣味拓展“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一.又过十二分之一,两颊长胡.再过七分之一,点燃结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.”你知道丢番图去世时的年龄吗?请你列出方程来算一算.二、课堂小结:3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题学习目标:1. 理解配套问题、工程问题的背景.2. 分清有关数量关系,能正确找出作为列方程依据的主要等量关系.3. 掌握用一元一次方程解决实际问题的基本过程.重点:掌握用一元一次方程解决实际问题的基本过程.难点:能够准确找出实际问题中的等量关系,并建立模型解决问题.教学过程:二、要点探究:探究点1:产品配套问题填一填:1.某厂欲制作一些方桌和椅子,1张方桌与4把椅子刚好配成一套,为了使桌椅刚好配套,商家应制作椅子的数量是桌子数量的倍. 方桌与椅子的数量之比是.2.一个油桶由两个圆形铁片和一个长方形铁片相配套.某车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.设安排x名工人生产圆形铁片,可使圆形铁片和长方形铁片刚好配套,请填写下表:等量关系:(1)每小时生产的圆形铁片=_____×每小时生产的长方形铁片.(2)生产的套数相等.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.典例精析例1 如图,足球是由32块黑白相间的牛皮缝制而成的,黑皮可看作正五边形,白皮可看作正六边形,求白皮,黑皮各多少块?针对训练1.某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.若每天每天生产的螺栓螺母刚好配套,设安排x人生产螺栓,可列方程为.2.一套仪器由一个A部件和三个B部件构成. 用1立方米钢材可做40个A部件或240个B部件. 现要用6立方米钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,才能恰好配成这种仪器?共配成多少套?人数每小时生产铁片的数量生产的套数生产圆形铁片x生产长方形铁片探究点2:工程问题填一填:一件工作,甲独做需要6天完成,乙独做需要5天完成.(1)若把工作总量设为1,则甲的工作效率(甲一天完成的工作量)是,乙的工作效率是.(2)甲做x天完成的工作量是,乙做x天完成的工作量是,甲乙合做x天完成的工作量是.议一议工程问题中,涉及哪些量?它们之间有什么数量关系?(1)工程问题中,涉及的量有工作量、_________________________________________;(2)请写出这些量之间存在的数量关系:___________________________________________________________________________________________ _______________________________________________________________.典例精析例2加工某种工件,甲单独作要20天完成,乙只要10就能完成任务,现在要求二人在12天内完成任务.问乙需工作几天后甲再继续加工才可正好按期完成任务?【提示:可运用表格列出题中存在的各种量.】工作效率工作时间工作量甲乙想一想:若要求二人在8天内完成任务,乙先加工几天后,甲加入合作加工,恰好能如期完成任务?要点归纳:解决工程问题的基本思路:1.三个基本量:工作量、工作效率、工作时间. 它们之间的关系是:工作量= 工作效率×工作时间;合作的工作效率=工作效率之和.2.相等关系:工作总量=各部分工作量之和=合作的工作效率×工作时间.3. 通常在没有具体数值的情况下,把工作总量看作1.针对训练一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天. 如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?1. 某人一天能加工甲种零件50个或加工乙种零件20个,1个甲种零件与2个乙种零件配成一套,30天制作最多的成套产品,若设x 天制作甲种零件,则可列方程为 . 2. 一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由 甲独做x 天完成,那么所列方程为 .3. 某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌腿,现有10立方 米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,共可 生产多少张方桌?(一张方桌有1个桌面,4条桌腿)4. 一件工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲、乙合做. 剩下的部分需要几小时完成?5. 一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?二、课堂小结用一元一次方程解决实际问题的基本过程如下:实际问题实际问题的答案 一元一次方程的解(x =a )设未知数,列方程检验3.4 实际问题与一元一次方程第2课时 销售中的盈亏学习目标:1. 理解商品销售中的相关概念及数量关系.2. 根据商品销售中的数量关系列一元一次方程解决与打折销售有关的实际 问题,并掌握解此类问题的一般思路.重点:掌握商品销售中成本(进价)、售价(卖价)、标价(原价)、利润、利润率、折 扣等量之间的数量关系,知道销售中的盈亏取决于售价与成本之差.难点:能够通过自主分析,建立一元一次方程模型解决同类型问题,并掌握解此类问题 的一般思路. 教学过程:三、要点探究:探究点:销售中的盈亏合作探究:连一连:正确理解销售问题中的几个重要概念进价 也称成交价,是商店销售商品时的销售价格. 标价 商店销售商品时所赚的钱. 售价 商店购进商品时的价格.利润 商店销售商品时标出的价格,也称定价. 填一填1. 商品原价200元,九折出售,卖价是 元.2. 商品进价是150元,售价是180元,则利润是 元,利润率是_____.3. 某商品原来每件零售价是a 元,现在每件降价10%,降价后每件零售价是 元.4. 某种品牌的彩电降价20%以后,每台售价为a 元,则该品牌彩电每台原价应为 元.5. 某商品按定价的八折出售,售价是12.8元,则原定售价是 元. 想一想:以上问题中有哪些量?你能说出它们之间的关系吗?要点归纳:销售问题中的常用数量关系:●售价、进价、利润的关系:商品利润= 商品售价-商品进价; ●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ;●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数; ●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率). 议一议:销售中存在盈亏,说一说销售盈亏中存在哪几种可能情况,并分别说明在该种情况下,售价与进价的大小. (1)盈利:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、“小 于”或“=”);(2)亏损:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、“小 于”或“=”);(3)不盈不亏:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、 “小于”或“=”).典例精析例1一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?要点归纳:销售的盈亏取决于总售价与总成本之间的关系:总售价>总成本时,盈利;总售价<总成本时,亏损;总售价=总成本时,不盈不亏.针对训练1.某琴行同时卖出两台钢琴,每台售价为960元. 其中一台盈利20%,另一台亏损20%.这次琴行是盈利还是亏损,或是不盈不亏?2.某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?例2某商品的零售价是900元,为适应竞争,商店按零售价打9折(即原价的90%),并再让利40元销售,仍可获利10%,求该商品的进价.方法归纳:利用一元一次方程解决销售问题时,熟练、准确地运用销售问题中常用的等量关系是解题关键.针对训练1. 某商场把进价为1980元的商品按标价的八折出售,仍获利10%,则该商品的标价为 元.2. 我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2005年涨 价30%后,2007降价70%至a 元,则这种药品在2005年涨价前价格为 元.20元,则这种商品的原价是( )A .500元B .400元C .300元D .200元4.某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售, 但又要保证利润率不低于5%,那么商店最多可打几折出售此商品?5.据了解个体商店销售中售价只要高出进价的20% 便可盈利,但老板们常以高出进价 50%~100% 标价,假若你准备买一双标价为600元的运动鞋,应在什么范围内还价?二、课堂小结●售价、进价、利润的关系:商品利润= 商品售价-商品进价●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率)3.4 实际问题与一元一次方程第3课时球赛积分表问题学习目标:1. 通过对实际问题的探究,认识到生活中数据信息传递形式的多样性.2. 会阅读、理解表格,并从表格中提取关键信息.3. 掌握解决“球赛积分表问题”的一般思路,并会根据方程的解的情况对实际问题作出判断.重点:能够阅读和理解表格中的信息.难点:能够通过自主分析,从表格中提取关键信息进行解题,并掌握解决“球赛积分表问题”的一般思路.教学过程:四、要点探究:探究点:比赛积分问题互动探究:某次篮球联赛积分榜如下:问题1你能从表格中了解到哪些信息?问题2你能从表格中看出负一场积多少分吗?问题3你能进一步算出胜一场积多少分吗?提示:设胜一场积x分,根据表中其他任何一行可以列方程求解.问题4怎样用式子表示总积分与胜、负场数之间的关系?问题5某队胜场总积分能等于它负场总积分吗?例某次篮球联赛共有十支队伍参赛,部分积分表如下:根据表格提供的信息,你能求出胜一场、负一场各积多少分吗?【提示:先观察C队的得分,可知胜场得分+负场得分=_____,然后再设未知数列方程求解】想一想:某队的胜场总积分能等于它的负场总积分吗?针对训练:某赛季篮球甲A 联赛部分球队积分榜如下:(1) 列式表示积分与胜、负场数之间的数量关系;(2) 某队的胜场总积分能等于它的负场总积分吗?为什么?1. 某球队参加比赛,开局9场保持不败,积21分,比赛规则:胜一场得3分,平一场得1分,则该队共胜( )A. 4场B. 5场C. 6场D. 7场2.中国男篮CBA职业联赛的积分办法是:胜一场积2分,负一场积1分,某支球队参加了12场比赛,总积分恰是所胜场数的4倍,则该球队共胜____场.3. 某次知识竞赛共20道题,每答对一题得8分,答错或不答要扣3分. 某选手在这次竞赛中共得116 分,那么他答对几道题?4.把互动探究中积分榜的最后一行删去(如下表),如何求出胜一场积几分,负一场积几分.二、课堂小结1. 解决有关表格的问题时,首先要根据表格中给出的相关信息,找出数量间的关系,然后再运用数学知识解决问题.2. 用方程解决实际问题时,要注意检验方程的解是否正确,且符合问题的实际意义.3.4 实际问题与一元一次方程第4课时 电话计费问题学习目标:1. 体会分类思想和方程思想在解决问题中的作用,能够根据已知条件选择 分类关键点对“电话计费问题”进行整体分析,从而得出整体选择方案. 2. 进一步深化对数学建模方法的体验,增强应用方程模型解决问题的意识和 能力.重点:能够理解题目信息,建立方程模型解决电话计费问题. 难点:关键点的选择,整体方案的确定.五、要点探究:探究点1:电话计费问题:下表中有两种移动电话计费方式:想一想 你觉得哪种计费方式更省钱?填填下面的表格,你有什么发现?问题1 设一个月内移动电话主叫为t min (t 是正整数),列表说明:当t 在不同时间范围内取值时,按方式一和方式二如何计费.想一想:计费多少是与__________有关;计费时,首先主要关注的是________________; 考虑t 值时,不同时间范围的划分点为_____________、___________________ 列表如下: 主叫时间t/min 方式一计费/元 方式二计费/元问题2 观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.结论:当t________________时,选择方式一省钱;当t________________时,两种方式费用相同; 当t________________时,选择方式二省钱. 想一想:(1)回顾问题的解决过程,谈谈你的收获.月使用 费/元 主叫限定 时间/分 主叫超时 费/(元/分) 被叫 方式一 58 150 0.25 免费方式二 88 350 0.19 免费主叫时间(分) 100 150 250 300 350 450 方式一计费(元)方式二计费(元)。

3.2.3合并同类项、移项解一元一次方程教案

3.2.3合并同类项、移项解一元一次方程教案
在课堂总结环节,虽然大部分学生表示掌握了今天所学的内容,但我仍需关注那些没有提问的学生。他们可能因为害羞或不确定自己的疑问是否“有价值”而没有发言。在以后的教学中,我要更加注重鼓励这些学生,让他们敢于提问,勇于表达自己的疑惑。
-系数不为1的方程求解:当系数不是1时,学生在求解过程中可能会忘记乘除的步骤。
-突破方法:通过重复练习,强调在移项过程中,若系数不为1,需要通过乘除操作将系数化为1,如2x = 6时,除以2得到x = 3。
四、们将要学习的是《合并同类项、移项解一元一次方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要分配或重新分配物品的情况?”比如分水果时,将两个人的苹果合并在一起。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索代数中合并同类项的奥秘。
-举例:强调从方程5x + 3 = 13中,先将3移至等号右边,得到5x = 10,再通过除以5得到x = 2的解题过程。
2.教学难点
-理解同类项的概念:学生对同类项的定义可能存在模糊认识,难以区分哪些项可以合并。
-突破方法:通过具体的例题和图示,帮助学生形成清晰的认识,例如展示3x^2与5x^2是同类项,而3x与3x^2不是同类项。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了合并同类项的基本概念、重要性以及它在解一元一次方程中的应用。通过实践活动和小组讨论,我们加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
然而,我也注意到在小组讨论环节,有些学生过于依赖同伴,自己思考不够。在今后的教学中,我需要更加关注这部分学生,引导他们独立思考,提高解决问题的能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.甲班有 人 乙班有 人 要使甲班人数是乙班的 倍 年利率是多少
54 , 48 , 2 , ?
第 课时 一元一次方程的应用
3 (1)
.能够通过列一元一次方程 解一元一次方程解答实际问题 总结 列 方 程 解 实 际
后扣除 的利息税 得到本息和 元 这种债券的
5% , 78400 ,
的 那么这个单位现在有 .
15%, ( )
m 人 m· 人
A.( -15%) B. 15%
千米的路 程 支 付 了 . 元 你 能 算 出 他 乘 坐 的 路
>6) , 27 2 ,
千米 元 以上 每千米 . 元.若某人乘坐了x x
2 ,6km , 28 (
2
6.小亮的爸爸购买了 元 某 公 司 的 三 年 期 债 券 三 年
70000 ,
x x
C.54- =2×48 D.48+ =2×54
2.某单位原有 m 人 现精简机构 减少工作人员数是原人数
, ,
子的 倍
Байду номын сангаас 2 ?
7.某地出租车的收费标准是 起步价 元 到 每
: 10 ,3km 6km,
设从乙班调往甲班人数x 可列方程 .
, ( )
x x x x
A.54+ =2(48- ) B.48+ =2(54- )
1 , ,
问题的一般步骤.
.能够正确求解一元一次方程并判断解的合理性.
m· 人 m 人
C. 85% D.( -85%)
3. 年妈妈 岁 儿子 岁 问几年后 妈妈的岁数是儿
2012 30 , 6 , ,
程吗
相关文档
最新文档