材料分析方法总结
材料分析方法重点总结

材料分析⽅法重点总结1.(1)试说明电⼦束⼊射固体样品表⾯激发的主要信号、主要特点和⽤途。
(2)扫描电镜的分辨率受哪些因素影响? 给出典型信号成像的分辨率(轻元素滴状作⽤体积),并说明原因。
(3)⼆次电⼦(SE)信号主要⽤于分析样品表⾯形貌,说明其衬度形成原理。
(4)⽤⼆次电⼦像和背散射电⼦像在显⽰表⾯形貌衬度时有何相同与不同之处?答:(1)背散射电⼦:能量⾼;来⾃样品表⾯⼏百nm深度范围;其产额随原⼦序数增⼤⽽增多.⽤作形貌分析、成分分析以及结构分析。
⼆次电⼦:能量较低;来⾃表层5-10nm深度范围;对样品表⾯形貌⼗分敏感.不能进⾏成分分析.主要⽤于分析样品表⾯形貌。
吸收电⼦:其衬度恰好和SE或BE信号调制图像衬度相反;与背散射电⼦的衬度互补.吸收电⼦能产⽣原⼦序数衬度,即可⽤来进⾏定性的微区成分分析.透射电⼦:透射电⼦信号由微区的厚度、成分和晶体结构决定.可进⾏微区成分分析.特征X射线: ⽤特征值进⾏成分分析,来⾃样品较深的区域俄歇电⼦: 各元素的俄歇电⼦能量值低;来⾃样品表⾯1-2nm范围。
适合做表⾯分析.(2)影响因素:电⼦束束斑⼤⼩,检测信号类型,检测部位原⼦序数.信号⼆次电⼦背散射电⼦吸收电⼦特征X射线俄歇电⼦分辨率 5~10 50~200 100~1000 100~1000 5~10对轻元素,电⼦束与样品作⽤产⽣⼀个滴状作⽤体积(P222图)。
⼊射电⼦在被样品吸收或散射出样品表⾯之前将在这个体积中活动。
AE和SE因其本⾝能量较低,平均⾃由程很短,因此,俄歇电⼦的激发表层深度:0.5~2 nm,激发⼆次电⼦的层深:5~10 nm,在这个浅层范围,⼊射电⼦不发⽣横向扩展,因此,AE和SE只能在与束斑直径相当的园柱体内被激发出来,因为束斑直径就是⼀个成象检测单元的⼤⼩,所以它们的分辨率就相当于束斑直径。
BE在较深的扩展体积内弹射出,其分辨率⼤为降低。
X射线在更深、更为扩展后的体积内激发,那么其分辨率⽐BE更低。
材料分析方法总结

材料分析方法总结材料分析方法是一种用于研究材料性质和品质的科学手段。
随着科技的不断进步,各种材料分析方法也不断涌现,为我们认识材料的微观结构和性能提供了强有力的工具。
本文将就几种常见的材料分析方法进行简要介绍和分析。
一、X射线衍射(XRD)X射线衍射是一种通过材料中晶体的结构信息而研究物质性质的方法。
当X射线照射到晶体上时,由于晶体的晶格结构,X射线会发生衍射现象,形成特定的衍射图样。
通过分析和解读衍射图样,我们可以获得晶体的晶胞参数、晶体结构和晶体取向等信息。
该方法非常适合用于分析晶体材料、无定形材料和薄膜等样品的结构特性。
二、扫描电子显微镜(SEM)扫描电子显微镜是一种利用电子束与物质相互作用产生的信号来观察和分析材料微观形貌和结构的仪器。
相比传统光学显微镜,SEM具有更高的分辨率和放大倍数,可以观察到更小尺寸的样品结构和表面形貌。
通过SEM的图像分析,可以得到材料表面形貌、粒径分布、表面缺陷和微观结构等信息,对于材料的微观性能研究和质量控制具有重要意义。
三、傅里叶变换红外光谱(FTIR)傅里叶变换红外光谱是一种通过检测材料在红外波段的吸收和散射谱线,来研究材料组成和化学结构的方法。
物质的分子具有特定的振动模式,当红外辐射通过样品时,根据样品对不同波长的红外辐射的吸收情况,我们可以获得样品分子的化学键、官能团和其他结构信息。
因此,FTIR可用于鉴定和分析有机物、聚合物和无机物等材料。
四、热重分析(TGA)热重分析是利用材料在升温或降温过程中质量的变化来研究材料热特性和失重行为的方法。
在TGA实验中,材料样品被加热,同时装有高精度天平的仪器记录样品质量的变化。
通过分析反应前后质量变化曲线,我们可以推断样品中的各类组分和反应过程。
TGA在材料的热稳定性、相变行为、降解特性和组分分析等方面起着重要作用。
五、原子力显微镜(AFM)原子力显微镜是利用探测器的探针扫描物体表面的力的变化来观察样品的表面形貌和研究材料的物理性质。
材料分析技术总结

材料分析技术总结材料分析技术是指通过对材料的组成、结构、物性等相关特征进行研究和分析的一系列技术方法。
这些技术方法主要用于材料的质量控制、性能评估、研发和改进等方面,对提高材料的质量和功能具有重要意义。
下面将对常见的材料分析技术进行总结。
1.光谱分析技术:包括紫外-可见-近红外光谱分析、红外光谱分析、拉曼光谱分析等。
这些技术通过测量材料在特定波长的光线作用下的光谱响应,可以获取材料的分子结构、化学键、官能团等信息。
2.质谱分析技术:通过测定物质中离子的质量和相对丰度来获得样品的化学组成和结构信息。
质谱技术可分为质谱法和质谱图谱两种类型,常见的质谱技术包括质谱仪、飞行时间质谱、四极杆质谱等。
3.热分析技术:如热重分析、差热分析等。
热分析技术通过测量材料在不同温度下的质量变化和热变化,可以获取材料的热性质、热稳定性等信息。
4.表面分析技术:如扫描电子显微镜、原子力显微镜等。
表面分析技术用于研究材料的表面形貌、结构、成分和性质等方面,可以观察材料表面的微观形态和纳米结构。
5.X射线分析技术:包括X射线衍射分析、X射线荧光光谱分析、X 射线光电子能谱分析等。
这些技术使用X射线相互作用与材料,获取材料的结晶结构、晶格参数、元素成分等信息。
6.电子显微分析技术:包括透射电子显微镜、扫描电子显微镜等。
电子显微分析技术通过对材料进行高分辨率的电子显微镜观察,可以获得材料的晶体结构、孔隙结构、粒度分布等信息。
7.表面等离子体共振技术:使用光或电等激发方式,利用表面等离子体共振效应对材料进行分析。
这些技术用于研究材料的表面电荷状态、吸附性能、化学反应过程等。
8.核磁共振技术:如核磁共振谱、电子自旋共振谱等。
核磁共振技术通过测量样品中原子核在不同磁场下的谱线分布,可以获取材料的化学环境、分子结构等信息。
9.纳米技术:纳米技术是一种通过改变材料的尺寸和形态来改变材料特性的技术。
纳米技术包括纳米材料制备、组装、表征等方面的技术。
材料分析方法总结

材料分析方法总结材料分析方法是指通过一系列科学技术手段对材料进行分析和测试,以获取材料的组成、结构、性能等信息的过程。
材料分析方法在材料科学领域具有重要意义,它为材料研究和工程应用提供了可靠的数据支持。
下面将对常见的材料分析方法进行总结和介绍。
一、光学显微镜。
光学显微镜是一种常用的材料分析仪器,它能够通过光学放大原理对材料进行观察和分析。
通过光学显微镜可以观察材料的表面形貌、结构特征和晶体形貌,对金相组织、晶体缺陷等进行分析。
光学显微镜操作简单,成本低,适用于金属、陶瓷、塑料等材料的分析。
二、扫描电子显微镜(SEM)。
扫描电子显微镜是一种高分辨率的显微镜,它通过电子束与样品相互作用,利用信号的不同来获取样品表面形貌、成分分布、晶体结构等信息。
SEM具有高放大倍数、高分辨率、能够对非导电材料进行分析等特点,适用于金属、陶瓷、复合材料等材料的表面形貌和微观结构分析。
三、X射线衍射(XRD)。
X射线衍射是一种利用X射线与材料相互作用来获取材料结构信息的方法。
通过X射线衍射可以确定材料的晶体结构、晶粒尺寸、晶格常数等信息,对于无机材料、金属材料、无机非金属材料的结构分析具有重要意义。
四、质谱分析。
质谱分析是一种通过对材料中各种元素进行分析和检测,以获取材料成分和含量信息的方法。
质谱分析具有高灵敏度、高分辨率、能够对微量元素进行分析的特点,适用于材料成分分析、材料表面成分分析等领域。
五、热分析。
热分析是一种通过对材料在控制温度条件下的物理、化学性质变化进行分析的方法。
常见的热分析方法包括热重分析(TG)、差热分析(DSC)、热膨胀分析(TMA)等,它们可以用于材料的热稳定性、热动力学参数、相变温度等方面的分析。
六、原子力显微镜(AFM)。
原子力显微镜是一种近场显微镜,它能够对材料表面进行原子尺度的表征和分析。
AFM具有高分辨率、三维表征、原子尺度的表面形貌分析等特点,适用于纳米材料、生物材料、薄膜材料等的表面形貌和性能分析。
材料分析方法

材料分析方法材料分析是指通过实验手段对材料的成分、结构和性质进行系统分析研究的方法。
根据分析样品的性质和需求,目前常用的材料分析方法主要有以下几种:1. 光谱分析方法:包括紫外可见光谱、红外光谱、拉曼光谱等。
紫外可见光谱主要用于分析材料的电子激发态和吸收特性,红外光谱用于分析材料的化学键的振动特性,拉曼光谱则分析物质的分子结构。
2. 热分析方法:主要是通过物质在加热过程中的热效应来测定样品的热稳定性、相变温度、热分解产物等。
常用的热分析方法有差热分析(DTA)、热重分析(TGA)、热量法、热导率法等。
3. 电子显微镜方法:包括扫描电子显微镜(SEM)和透射电子显微镜(TEM)。
SEM主要用于观察样品表面形貌和微观结构,TEM则用于研究材料的结晶性和纳米尺度的结构。
4. 色谱分析方法:包括气相色谱(GC)、液相色谱(LC)、离子色谱(IC)等。
色谱分析是基于物质在固定相和流动相间的分配和迁移作用进行分析的方法。
主要用于分离和定性分析有机化合物、离子等。
5. 质谱分析方法:以质谱仪为工具,将样品中的物质离子化和碎裂,通过测量质谱图,分析出物质的分子量、分子结构、同位素等信息。
常用的质谱分析方法有质谱仪、液质联用等。
6. 磁学分析方法:主要用于研究材料的磁性质。
包括磁化强度的测定、磁滞曲线的测定、磁致伸缩效应的测定等。
常用的磁学分析方法有霍尔效应法、磁滞回线法等。
7. 表面分析方法:主要用于研究材料表面的成分、形貌和性质。
常用的表面分析方法有X射线光电子能谱(XPS)、扫描隧道电镜(STM)、原子力显微镜(AFM)等。
除以上常用的材料分析方法外,还有众多其他的分析方法,如电化学分析方法、微波消解法、核磁共振(NMR)等。
这些方法能够为我们从不同角度对材料进行分析和研究,有助于揭示材料的组成、结构和性能,并为材料的改进和开发提供科学依据。
材料分析方法总结

材料分析方法总结材料是现代工业中不可缺少的一环,而材料的质量也直接影响着产品的性能和品质。
为了保证材料的质量,科学家们在不断探索新的材料分析方法。
本文将对几种常用的材料分析方法进行总结。
1. X射线衍射法X射线衍射法是一种广泛应用于材料分析的非破坏性测试方法。
它通过将X射线投射到材料上,并记录反射和散射的X射线来分析材料的晶体结构和化学成分。
这种方法适用于分析晶体,陶瓷、金属、粉末、涂料等材料的结构。
2. 扫描电子显微镜(SEM)扫描电子显微镜(SEM)是一种通过扫描专用电子束来实现高分辨率成像的仪器。
它主要用于表面形貌和微观结构的分析。
这种方法适用于分析金属、陶瓷、高分子材料、纳米颗粒等材料。
3. 原子力显微镜(AFM)原子力显微镜(AFM)是一种利用扫描探针进行表面成像的技术。
探针末端的尖端可以感知为表面提供足够的分辨率和精度。
这种方法适用于对纳米颗粒、表面形貌、物性、焊点和电性进行研究。
AFM在纳米领域的研究中应用广泛。
4. 操作模态分析(OMA)操作模态分析(OMA)是一种实验模态分析技术,通过对振动信号的处理和分析来实现材料的动态特性分析。
这种方法适用于设计振动器件、安装大型机器及其分析结构和疲劳寿命。
在固体、液体、气体中的物理情况下可以应用到OMA分析中。
5. 热重分析(TGA)热重分析(TGA)是一种非常有用的方法,可以在微观和宏观水平上实现对材料特性的分析。
它利用热重量差法分析在升温和等温条件下,材料的重量以及重量变化和热学性质。
这种方法适用于材料的分解、氧化和变化温度的测定。
同时还可以提供实际应用中需要的材料密度、表面面积、孔隙度及扰动过程参数等信息。
在工程领域中,材料分析是非常重要的一环,实现高质量,健康和可持续的生产会更加有挑战和漫长。
因此,科学家们一直在不断寻找新的材料分析方法,并不断完善现有的方法。
综合以上几种方法的优缺点,选择合适的方法来分析材料,可以有效提高材料质量,减少生产成本,提升产品品质。
材料分析方法总结

材料分析方法总结材料分析方法是指一套用于对材料进行结构、成分、性能等方面的分析与测试的手段和技术。
材料分析方法的选择和应用能够帮助科研人员、工程师等从不同的角度了解材料的实际情况,进一步改进材料的性能,提高材料的应用价值。
本文将从几个主要的材料分析方法进行总结。
1.光学分析方法光学分析方法是利用光学原理对材料进行观测、测量和分析的方法。
常见的光学分析方法包括光学显微镜观察、扫描电子显微镜(SEM)观察、透射电子显微镜(TEM)观察等。
这些方法可以用来观察材料的表面形貌、内部结构、晶体缺陷等,对材料的性能和结构进行分析。
2.物理分析方法物理分析方法是通过对物理性质的测量与测试来分析材料的方法。
常见的物理分析方法包括热分析、电学测试、磁学测试等。
热分析方法可以通过对材料在不同温度下的热行为进行测试,了解材料的热稳定性、热膨胀性等;电学测试可以通过测量材料的导电、绝缘性能等来了解材料的电学特性;磁学测试可以测量材料的磁性,包括磁化率、磁导率等。
这些方法可以用来分析材料的物理性质以及材料与外界的相互作用。
3.化学分析方法化学分析方法是通过对材料进行化学性质的测量与测试来分析材料的方法。
常见的化学分析方法包括光谱分析、质谱分析、电化学分析等。
光谱分析可以通过测量材料对光的吸收、发射等来推断其成分,可以用来分析材料的种类、含量等;质谱分析可以通过测量材料中的分子或原子的质谱图谱来分析其化学成分;电化学分析可以通过测量材料在电场或电流的作用下的化学反应来分析其化学性质。
这些方法可以用来分析材料的成分、结构和化学性质等。
4.结构分析方法结构分析方法是通过对材料的晶体结构、分子结构等进行表征和分析来了解材料的性质和性能。
常见的结构分析方法包括X射线衍射分析、核磁共振分析、电子衍射分析等。
X射线衍射分析可以通过测量材料对X射线的散射来推断其晶体结构;核磁共振分析可以通过测量材料中原子核的共振频率来了解其分子结构。
这些方法可以用来研究材料的晶体结构、分子结构、晶格缺陷等。
材料分析总结

材料分析总结材料分析是指通过对材料的性质、组成、结构和特征的观察和分析,对材料进行研究和评价的科学技术。
材料分析广泛应用于工业、生产、科研等领域,其重要性不言而喻。
在这篇文章中,我们将对材料分析的基本原理、方法和应用进行总结和探讨。
一、材料分析的基本原理材料分析的基本原理是通过测量材料的特性,了解材料的成分和结构,从而对材料的性能进行评价。
具体来说,材料分析主要基于以下的原理:1. 物理原理:包括光学、声学、电学、磁学等方面的原理。
比如,用X射线衍射和电子显微镜等技术,可以观察材料的晶体结构和微观组织;用电子和光的特性,可以测量材料的电性和光学性能;用声波的传播特性,可以研究材料的声学性能等。
2. 化学原理:主要包括化学分析和化学反应原理。
比如,用色谱和质谱等技术,可以检测出材料中的化学成分;用化学反应,可以测量材料的化学性质。
3. 统计原理:包括材料力学和热学等方面的原理。
通过测量材料的力学性能和热学性能等特性,可以计算出材料的强度、热膨胀系数等参数。
4. 其他原理:包括计算机模拟和数值分析等方面的原理。
通过使用计算机,可以模拟和分析材料的计算结果和数值实验等。
二、材料分析的方法材料分析涉及多个方面的知识和技术,因此也有多种分析方法。
下面是几种常见的材料分析方法:1. 光学显微镜:通过光学放大技术,观察样品中的微观结构和组织。
2. 扫描电子显微镜(SEM):通过扫描电子束,观察材料表面的形态和微观组织。
3. 透射电子显微镜(TEM):通过透射电子束,观察材料的晶体结构和微观组织。
4. X射线衍射:通过测量材料对X射线的反射和散射,确定材料的晶体结构。
5. 热膨胀测量:通过测量材料在不同温度下的热膨胀系数,确定材料的热学性能。
6. 质谱分析:通过将材料分解为它的化学成分,然后将其分离和测量,确定材料的化学成分。
7. 磁性测量:通过测量材料的磁性特性,了解材料的磁学性能。
8. 核磁共振:通过测量材料的核磁共振谱,确定材料的分子结构和化学成分。
材料分析方法(自总结)

第一章1 X 射线波谱连续X 射线谱:强度随波长连续变化的谱线称为连续X 射线谱。
连续X 射线谱实验规律(21iZU K I =,eUhc SWL =λ,ZU K 1=η): (1) 当提高管电压时,各波长X 射线的强度都升高,短波限和强度最大值对应的波长减小。
(2) 当保持管电压一定,提高管电流,胳膊长X 射线的强度一致提高,但短波限和强度最大值对应波长不变。
(3) 在相同的管电压和管电流下,阳极靶材原子序数Z 越高,连续谱强度越大,但短波限和强度最大值对应波长不变。
连续谱形成:大量电子多次碰撞靶材消耗能量,每碰撞一次产生一个光量子,且能量均小于短波限,产生了连续的不同波长的辐射,构成连续谱。
特征X 射线谱:在连续谱某些特定波长位置出现一系列强度很高、波长范围很窄的线状光谱,其波长是阳极靶材的特征,称为特征谱。
莫塞来定律:)(12σλ-=Z K ,原子序数越大,对应于同一系的特征谱波长越短。
特征X 射线形成(αK ):电子冲击阳极靶使K 层上电子变成自由电子,K 层出现空位,原子处于K 激发态,若L 层电子跃迁到K 层,原子转变为L 激发态,并辐射出X 射线光量子,此即为特征X 射线。
为了使连特/I I 尽可能高,管电压k 5)U ~(3=U 。
2 X 射线透射系数和吸收系数I I 为透射系数; l u 为线吸收系数,X 射线通过单位厚度物质的相对衰减量;m u 为质量吸收系数,X 射线通过单位面积上单位质量物质后强度的相对衰减量。
质量吸收系数334Z K m λμ≈,原子序数越大,对X 射线吸收能力越强;对一定的吸收体(Z ),X 射线波长越短,穿透能力越强。
吸收限:随波长的降低,m μ非连续变化,而是在某些波长位置突然升高,对应的波长即为吸收限。
吸收谱:带有特征吸收限的吸收系数曲线。
m u t u m l I I --==e e 03吸收系数突变现象解释光电效应:原子被入射辐射店里的现象。
材料分析总结

材料分析总结材料分析是指对不同类型的材料进行详细的研究和分析,以便更好地了解其性质、特点和应用。
通过材料分析,我们可以了解不同材料的组成、结构、性能等方面的信息,为材料的开发和应用提供有力的支持。
一、微观分析微观分析是材料分析中非常重要的一部分,它通过对材料的结构、形貌等细节进行观察和分析,以揭示材料的内部构造和性质。
常见的微观分析方法包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)等。
以SEM为例,它通过对材料表面的扫描和观察,可以获取高分辨率的显微图像。
借助SEM,我们可以得到材料的形貌特征、晶粒尺寸分布、孔隙结构等信息。
在材料科学中,SEM广泛应用于金属、陶瓷、聚合物等材料的表面形貌研究以及颗粒分析等方面。
透射电子显微镜则可以用来观察材料的内部结构和成分分布。
通过透射电子显微镜,我们可以看到材料中的微观构造、晶体缺陷、界面等信息。
这对于了解材料的晶体结构以及相变机制等有着重要的意义。
二、成分分析材料的成分分析是材料分析中不可或缺的内容。
通过对材料的成分进行分析,我们可以准确地知道材料的主要组分以及微量元素的存在情况,从而为后续的性能测试和应用提供依据。
常用的成分分析方法包括X射线荧光光谱仪(XRF)、能谱仪、电感耦合等离子体质谱(ICP-MS)等。
其中,X射线荧光光谱仪是一种快速、无损的分析方法,它可以同时分析样品中的多个元素。
ICP-MS则适用于微量元素的分析,其灵敏度高,同时也能获取更多的信息。
通过成分分析,我们可以对材料的纯度、杂质含量、特殊元素的存在等进行评估。
这对于材料的品质控制、溯源追踪等方面具有重要意义。
三、性能测试材料的性能测试是为了评价材料在不同条件下的性能表现,以便选择合适的材料用于特定的应用。
性能测试可以包括力学性能、热性能、电性能等方面。
力学性能是评价材料强度、硬度、韧性等方面的重要指标。
通过拉伸试验、冲击试验、硬度测试等,我们可以得到材料的力学性能参数。
材料分析方法总结

材料分析方法总结材料分析是一门重要的科学技术,它在工程、材料科学、地质学、化学等领域都有着广泛的应用。
在材料分析中,我们需要运用各种方法来对材料的成分、结构、性能进行分析,以便更好地理解和利用材料。
本文将对常见的材料分析方法进行总结,希望能够对相关领域的研究者和工程师有所帮助。
首先,光学显微镜是材料分析中常用的方法之一。
通过光学显微镜,我们可以观察材料的形貌、颗粒大小、晶粒结构等信息。
这对于金属、陶瓷、塑料等材料的分析都非常有帮助。
同时,透射电子显微镜和扫描电子显微镜也是常用的分析工具,它们可以提供更高分辨率的图像,帮助我们观察材料的微观结构。
除了显微镜,X射线衍射也是一种常用的材料分析方法。
通过X射线衍射,我们可以确定材料的晶体结构和晶格参数,从而了解材料的晶体学性质。
X射线衍射在材料科学、地质学和化学领域都有着广泛的应用,是一种非常有效的分析手段。
此外,光谱分析也是材料分析中常用的方法之一。
光谱分析包括紫外可见吸收光谱、红外光谱、拉曼光谱等,它们可以用于分析材料的组成、结构和性能。
光谱分析在材料科学、化学和生物学领域都有着重要的应用,是一种非常有力的分析工具。
在材料分析中,热分析也是一种常用的方法。
热分析包括热重分析、差热分析、热膨胀分析等,它们可以用于研究材料的热稳定性、热分解过程、相变行为等。
热分析在材料科学、化学工程和材料加工领域都有着广泛的应用,是一种非常重要的分析手段。
最后,表面分析也是材料分析中不可或缺的方法。
表面分析包括扫描电子显微镜、原子力显微镜、X射线光电子能谱等,它们可以用于研究材料的表面形貌、化学成分和电子结构。
表面分析在材料科学、电子工程和纳米技术领域都有着重要的应用,是一种非常有效的分析手段。
综上所述,材料分析是一门重要的科学技术,它涉及到多个领域的知识和技术。
在材料分析中,我们可以运用光学显微镜、X射线衍射、光谱分析、热分析和表面分析等方法来对材料进行分析,从而更好地理解和利用材料。
材料分析方法总结

材料分析方法总结材料分析是指通过对材料的组成、结构、性能等方面进行研究,以获取有关材料特性和行为的信息。
在工程、科学研究和生产中,材料分析是非常重要的一项工作。
本文将对常见的材料分析方法进行总结,以便广大研究人员和工程技术人员参考。
一、光学显微镜分析。
光学显微镜是一种常见的材料表征工具,通过观察材料的形貌、颜色、结晶性等特征,可以初步了解材料的性质。
透射光学显微镜可用于金属材料、陶瓷材料等的分析,而反射光学显微镜则适用于表面分析和颗粒分析等。
通过光学显微镜分析,可以获得材料的晶粒大小、晶体结构、缺陷等信息。
二、扫描电子显微镜(SEM)分析。
SEM是一种能够提供高分辨率表面形貌和成分信息的分析工具。
通过SEM观察样品表面的形貌,可以获得材料的微观形貌特征,如表面粗糙度、颗粒大小等。
同时,SEM还可以结合能谱分析(EDS),用于获得材料的成分信息,如元素含量、元素分布等。
三、X射线衍射(XRD)分析。
X射线衍射是一种常用的材料结构分析方法,通过分析材料对X射线的衍射图样,可以得到材料的晶体结构、晶体参数、晶面取向等信息。
XRD分析适用于晶体材料、粉末材料等的结构表征,对于材料的相变、析出相、晶体取向等研究具有重要意义。
四、热分析(TG-DTA)分析。
热分析是一种通过对材料在不同温度下的质量、热量变化进行分析的方法。
常见的热分析方法包括热失重分析(TG)、差热分析(DTA)等。
通过热分析,可以了解材料的热稳定性、热分解特性、相变温度等信息,对材料的热性能研究具有重要意义。
五、原子力显微镜(AFM)分析。
AFM是一种能够提供材料表面形貌和力学性质信息的分析工具。
通过AFM可以获得材料的表面形貌、表面粗糙度、力学性能等信息,对于纳米材料、薄膜材料的表征具有独特优势。
综上所述,材料分析方法涵盖了光学显微镜、扫描电子显微镜、X射线衍射、热分析、原子力显微镜等多种手段,每种方法都有其独特的优势和适用范围。
在实际应用中,可以根据具体分析的目的和要求,选择合适的分析方法进行研究,以获得准确、全面的材料信息。
材料成分分析方法

材料成分分析方法材料成分分析是指对材料的制备原料进行成分分析的方法。
材料成分的分析可以帮助我们了解材料的组成、结构和性质,为材料的制备和应用提供依据。
下面介绍几种常见的材料成分分析方法。
1. 元素分析:元素分析是材料成分分析的基础。
常用的元素分析方法有X射线荧光光谱法(XRF)、原子吸收光谱法(AAS)、电感耦合等离子体发射光谱法(ICP-OES)等。
这些方法可以快速准确地测定材料中各种元素的含量。
2. 红外光谱分析:红外光谱分析能够通过材料吸收红外光的特征峰来确定材料的组分。
这种方法常用于有机物的分析,通过测定红外光谱图可以确定材料中的官能团及化学键的种类和数量。
3. 质谱分析:质谱分析是利用质谱仪对材料进行成分分析的方法。
质谱技术可以测定材料中的各种元素、分子离子以及各种分子之间的相对分子质量,并可以确定材料的分子结构。
4. 热分析:热分析是通过对材料在不同温度下的物理和化学性质的变化进行分析的方法。
常用的热分析方法有差示扫描量热法(DSC)、热重分析法(TGA)等。
热分析可以确定材料的热稳定性、热分解温度、热膨胀系数等参数,从而了解材料的性能和适用范围。
5. 粒度分析:粒度分析是对材料颗粒大小进行分析的方法。
常用的粒度分析方法有激光粒度分析法(LPS)、光学显微镜等。
通过粒度分析可以了解材料颗粒的大小分布、均匀性和形状等参数。
6. 表面分析:表面分析是对材料表面化学和物理性质进行分析的方法。
常用的表面分析方法有扫描电子显微镜(SEM)、原子力显微镜(AFM)等。
表面分析可以观察和测定材料的表面形貌、结构和成分分布等信息。
综上所述,材料成分分析方法包括元素分析、红外光谱分析、质谱分析、热分析、粒度分析和表面分析等,通过这些方法可以了解材料的组成、结构和性质,为材料的制备和应用提供实验依据。
材质数据分析总结报告(3篇)

第1篇一、引言随着科技的不断进步和工业生产的需求,对材质性能的要求越来越高。
材质数据作为衡量材质性能的重要指标,对于材料科学、工程设计、质量控制等领域具有重要意义。
本报告旨在通过对各类材质数据的分析,总结材质性能的特点、规律及其在工程应用中的影响,为相关领域的科研人员和工程师提供参考。
二、材质数据分析方法1. 数据收集材质数据分析首先需要收集大量的材质数据,包括材料的化学成分、物理性能、力学性能、耐腐蚀性能、热性能等。
数据来源主要包括文献资料、实验数据、工业生产数据等。
2. 数据整理收集到的数据需要进行整理,包括数据的清洗、筛选、分类等。
清洗数据主要是去除错误、缺失、异常等数据,筛选数据是根据研究目的选择相关的数据,分类数据是为了便于后续分析。
3. 数据分析数据分析主要包括描述性分析、相关性分析、回归分析、聚类分析等。
描述性分析用于了解数据的整体情况,相关性分析用于研究变量之间的关系,回归分析用于建立变量之间的数学模型,聚类分析用于将数据划分为不同的类别。
4. 数据可视化数据可视化是将数据以图形、图像等形式展示出来,便于直观地理解和分析数据。
常用的数据可视化方法包括柱状图、折线图、散点图、热力图等。
三、材质数据分析结果1. 化学成分分析化学成分是影响材质性能的重要因素。
通过对不同材质的化学成分进行分析,可以发现某些元素对材料性能的显著影响。
例如,碳元素含量对钢材的强度和硬度有显著影响,而硅元素含量对玻璃的透明度和耐热性有显著影响。
2. 物理性能分析物理性能包括密度、熔点、热导率、电导率等。
通过对物理性能的分析,可以发现材料在不同条件下的性能变化规律。
例如,金属材料的熔点与其化学成分和晶体结构有关,而陶瓷材料的熔点则与其化学成分和烧结工艺有关。
3. 力学性能分析力学性能是衡量材料承载能力和变形能力的重要指标。
通过对力学性能的分析,可以发现材料在不同应力状态下的性能变化规律。
例如,金属材料的强度与其化学成分和热处理工艺有关,而橡胶材料的弹性与其化学成分和硫化工艺有关。
材料分析方法知识总结

材料分析方法第一部分一、X射线产生的基本条件。
1.产生自由电子;2.使自由电子做定向高速运动;3.在电子运动的路径上设置使其突然减速的障碍物。
二、连续X射线产生的实质。
答:假设管电流为10mA,则每秒到达阳极靶上的电子数可达6.25X10(16)个,如此之多的电子到达靶上的时间和条件不会相同,并且绝大多数达到靶上的电子要经过多次碰撞,逐步把能量释放到零,同时产生一系列能量为hv的光子序列,这样就形成了连续X射线。
三、特征X射线产生的物理机制。
答:原子系统中的电子遵从泡利不相容原理不连续的分布在K/L/M/N 等,不同能级的壳层上,而且按能量最低原理从里到外逐层填充。
当外来的高速粒子动能足够大时,可以将壳层中某个电子击出去,于是在原来的位置出现空位,原子系统的能量升高,处于激发态,这时原子系统就要向低能态转化,即向低能级上的空位跃迁,在跃迁时会有一能量产生,这一能量以光子的形式辐射出来,即为特征X射线。
四、短波限、吸收限。
1.短波限:X射线管不同管电压下的连续谱存在的一个最短波长值。
2.吸收限:把一特定壳层的电子击出所需要的入射光最长波长。
五、X射线相干散射和非相干散射现象。
1.相干散射:当X射线与原子中束缚较紧的内层电子相撞时,电子振动时向四周发射电磁波的散射过程。
2.非相干散射:当X射线光子与束缚不大的外层电子或价电子或金属晶体中的自由电子相撞时的散射过程。
六、光电子、荧光X射线以及俄歇电子的含义。
1.光电子:光电效应中由光子激发所产生的电子/或入射光量子与物质原子中电子相撞时被激发的电子。
2.荧光X射线:由X射线激发所产生的特征X射线。
3.俄歇电子:原子外层电子跃迁填补内层空位后释放能量并产生新的空位,这些能量被包括空位层在内的临近原子或较外层电子吸收,受激发逸出原子的电子叫做俄歇电子。
七、X射线吸收规律和线吸收系数。
1.X射线吸收规律:强度为1的特征X射线在均匀物质内部通过时,强度的衰减与在物质内通过的距离x成比例,即-dI/I=udx.2.线吸收系数:即为上式中的u,指在X射线传播方向上,单位长度上的X射线强弱衰减程度。
材料分析方法总结

材料分析方法总结材料分析是指对各种材料的成分、结构、性能等进行分析和研究的过程。
在工程领域中,材料分析是非常重要的一项工作,它可以帮助工程师们更好地了解材料的特性,从而选择合适的材料用于工程设计和制造。
本文将对常见的材料分析方法进行总结,以便工程师们在实际工作中能够更好地应用这些方法。
首先,光学显微镜是一种常用的材料分析工具。
通过光学显微镜,我们可以观察材料的表面形貌和结构,了解材料的晶粒结构、晶界分布等信息。
同时,光学显微镜还可以用于观察材料的断口形貌,从而分析材料的断裂特征和断裂机制。
其次,电子显微镜也是一种常见的材料分析工具。
电子显微镜具有较高的分辨率,可以观察到材料的微观结构,包括晶粒、晶界、位错等。
通过电子显微镜,我们可以进一步了解材料的微观组织和形貌,为材料性能的分析提供重要信息。
除了显微镜,X射线衍射分析也是一种常用的材料分析方法。
X射线衍射可以用于确定材料的晶体结构和晶体取向,从而分析材料的晶体学性质。
通过X射线衍射,我们可以了解材料的晶体结构参数,包括晶格常数、晶胞结构等信息。
此外,热分析方法也是常用的材料分析手段之一。
热分析可以用于分析材料的热性能,包括热膨胀、热导率、热稳定性等。
通过热分析,我们可以了解材料在高温下的性能表现,为材料的选用和设计提供参考依据。
最后,光谱分析是一种非常重要的材料分析方法。
光谱分析可以用于确定材料的成分和化学结构,包括红外光谱、紫外-可见光谱、拉曼光谱等。
通过光谱分析,我们可以了解材料的分子结构、化学键性质等信息,为材料的性能评价提供依据。
综上所述,材料分析方法包括光学显微镜、电子显微镜、X射线衍射、热分析和光谱分析等多种手段。
这些方法可以帮助工程师们全面了解材料的结构和性能,为工程设计和制造提供科学依据。
在实际工作中,工程师们可以根据具体情况选择合适的分析方法,以便更好地应用在工程实践中。
材料分析方法

材料分析方法材料分析方法是指对材料的成分、结构、性能等进行分析的方法。
材料分析方法的选择对于材料研究和应用具有重要意义,因为只有通过科学的分析方法,才能准确地了解材料的特性,为材料的开发、制备和应用提供可靠的依据。
一、物理分析方法。
物理分析方法是指通过对材料的物理性质进行测试和分析来获取材料信息的方法。
常见的物理分析方法包括X射线衍射分析、扫描电子显微镜分析、透射电子显微镜分析等。
这些方法可以用来确定材料的结构、晶体形貌、晶体取向等信息,为材料的性能和应用提供重要参考。
二、化学分析方法。
化学分析方法是指通过对材料的化学成分进行分析来获取材料信息的方法。
常见的化学分析方法包括元素分析、质谱分析、红外光谱分析等。
这些方法可以用来确定材料的成分、含量、结构等信息,为材料的制备和性能提供重要参考。
三、力学分析方法。
力学分析方法是指通过对材料的力学性能进行测试和分析来获取材料信息的方法。
常见的力学分析方法包括拉伸试验、硬度测试、冲击试验等。
这些方法可以用来确定材料的强度、韧性、硬度等性能,为材料的设计和选择提供重要参考。
四、热学分析方法。
热学分析方法是指通过对材料的热学性能进行测试和分析来获取材料信息的方法。
常见的热学分析方法包括热重分析、差示扫描量热分析、热导率测试等。
这些方法可以用来确定材料的热稳定性、热传导性等性能,为材料的应用和改性提供重要参考。
五、表面分析方法。
表面分析方法是指通过对材料表面的形貌、成分、结构等进行分析来获取材料信息的方法。
常见的表面分析方法包括原子力显微镜分析、电子能谱分析、表面等离子共振分析等。
这些方法可以用来确定材料表面的形貌、化学成分、电子结构等信息,为材料的表面改性和应用提供重要参考。
综上所述,材料分析方法是材料研究和应用中不可或缺的重要环节。
通过物理、化学、力学、热学和表面分析方法的综合运用,可以全面地了解材料的特性,为材料的开发、制备和应用提供科学的依据。
在材料研究和应用中,科学合理地选择和运用分析方法,对于提高材料的质量和性能具有重要意义。
材料分析方法

材料分析方法材料分析方法如下:1、化学分析法:利用物质化学反应为基础的分析方法,称为化学分析法。
每种物质都有其独特的化学特性,我们可以利用物质间的化学反应并将其以一种适当的方式进行表征,用以指示反应的进程,从而得到材料中某些组合成分的含量;2、原子光谱法:原子光谱是原子吸收或发出光子的强度关于光子能量(通常以波长表示)的图谱,可以提供关于样品化学组成的相关信息。
原子光谱分为三大类:原子吸收光谱、原子发射光谱和原子荧光光谱;3、X射线能量色散谱法(EDX):EDX常与电子显微镜配合使用,它是测量电子与试样相互作用所产生的特征X射线的波长与强度,从而对微小区域所含元素进行定性或定量分析。
每种元素都有一个特定波长的特征X射线与之相对应,它不随入射电子的能量而变化,测量电子激发试样所产生的特征X射线波长的种类,即可确定试样中所存在元素的种类。
元素的含量与该元素产生的特征X射线强度成正比,据此可以测定元素的含量;4、电子能谱分析法:电子能谱分析法是采用单色光源或电子束去照射样品,使样品中电子受到激发而发射出来,然后测量这些电子的强度与能量的分布,从而获得材料信息。
电子能谱的采样深度仅为几纳米,所以它仅仅是表面成分的反应;5、X射线衍射法(XRD):XRD也可以辅助用来进行物相的定量分析。
它的依据是,物相的衍射线强度随着含量的增加而提高。
但是并不成正比,需要加以修正,采用Jade程序就可以对物相进行定量分析;6、质谱法(MS):它是将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。
质量是物质的固有特征之一,不同的物质有不同的质量谱(简称质谱),利用这一性质,可以进行定性分析;谱峰强度也与它代表的化合物含量有关,可以用于定量分析;7、分光光度计法:分光光度计采用一个可以产生多个波长的光源,通过系列分光装置,从而产生特定波长的光源,光线透过测试的样品后,部分光线被吸收,计算样品的吸光值,从而转化成样品的浓度,吸光值与样品的浓度成正比。
材料分析方法

材料分析方法
1. 目视观察法:通过裸眼观察材料的外观特征,包括颜色、形状、纹理等,以初步判断材料的性质。
2. 显微镜观察法:使用光学显微镜观察材料的微观结构和特征,包括晶体结构、颗粒形貌等,以评估材料的晶化程度、颗粒尺寸等。
3. 热分析法:通过对材料在不同温度下的热响应进行分析,包括热重分析(TGA)、差热分析(DSC)等,以确定材料的
热稳定性、相变温度等。
4. 光谱分析法:利用光的吸收、发射、散射等性质对材料进行分析,常见的光谱分析包括紫外可见光谱、红外光谱、拉曼光谱等,用于分析材料的化学组成、分子结构等。
5. 电子显微镜观察法:使用扫描电子显微镜(SEM)或透射
电子显微镜(TEM)对材料的表面形貌、晶体结构进行观察,以获取高分辨率的图像和微区成分分析。
6. X射线衍射方法:利用材料对入射X射线的衍射现象,分
析材料的晶体结构、结晶度等,常见的方法包括X射线粉末
衍射(XRD)和单晶X射线衍射(XRD)。
7. 磁学分析法:通过对材料的磁性进行测试与分析,包括磁滞回线测量、霍尔效应测量等,以判断材料的磁性、磁结构等。
8. 电化学分析法:通过测量材料在电化学条件下的电流、电压等性质,以研究材料的电化学性能、电极活性等。
9. 分子模拟与计算方法:运用计算机模拟技术对材料的分子结构、物理性质进行分析与计算,包括分子力场模拟、密度泛函理论等。
10. X射线能量色散谱分析法:通过对X射线入射材料的能量散射进行分析,以确定材料的元素成分和含量,用于材料的定性与定量分析。
材料分析方法

材料分析方法材料分析方法是指对所研究的材料进行分析和检测的方法和技术。
在材料科学领域,材料分析是非常重要的一环,它可以帮助科研人员了解材料的组成、结构、性能等重要信息,为材料的设计、制备和应用提供重要依据。
一、光学显微镜分析。
光学显微镜是一种常见的材料分析仪器,它可以帮助科研人员观察材料的表面形貌、晶体结构等信息。
通过光学显微镜的观察,可以初步了解材料的组成和结构特征,为后续的分析提供基础数据。
二、扫描电子显微镜分析。
扫描电子显微镜是一种高分辨率的显微镜,可以帮助科研人员观察材料的微观形貌和结构。
通过扫描电子显微镜的分析,可以获取材料的表面形貌、晶粒大小、晶体结构等信息,为材料的性能和应用提供重要参考。
三、X射线衍射分析。
X射线衍射是一种常用的材料分析方法,可以帮助科研人员确定材料的晶体结构和晶体取向。
通过X射线衍射的分析,可以获取材料的晶格参数、晶面取向等信息,为材料的结构分析和性能评价提供重要数据。
四、质谱分析。
质谱是一种对材料进行组成分析的重要方法,可以帮助科研人员确定材料中元素的种类和含量。
通过质谱分析,可以获取材料的元素组成和同位素丰度等信息,为材料的成分分析和性能评价提供重要依据。
五、热分析。
热分析是一种通过对材料在不同温度条件下的物理和化学变化进行分析的方法,包括热重分析、差热分析等。
通过热分析,可以了解材料的热稳定性、热分解过程等信息,为材料的热性能和应用提供重要参考。
总结。
材料分析方法是材料科学研究的重要内容,通过不同的分析方法可以获取材料的组成、结构、性能等重要信息,为材料的设计、制备和应用提供重要依据。
在实际的材料研究工作中,科研人员可以根据具体的研究目的和材料特点选择合适的分析方法,综合运用多种分析手段,全面了解材料的特性,为材料科学研究和工程应用提供支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 X 射线物理学基础一、X 射线产生的主要装置和条件 主要装置:阳极靶材、阴极灯丝条件:a. 大量自由电子;b. 定向高速运动;c. 运动路径上遇到障碍(靶材)二、短波限一个电子在与阳极靶撞击时,把全部能量给予一个光子,这就是一个光量子所能获得的最大能量,即:h c/λ=eU ,此时光量子的波长即为短波限λSWL 。
三、连续X 射线(强度公式)大量电子在与靶材碰撞的过程中,能量不断减小,光子所获得的能量也不断减小,形成了一系列由短波限λSWL 向长波方向发展的连续波谱。
连续谱强度21iZU K I四、特征X 射线(莫塞莱定律)当X 射线管两端的电压增高到某一特定值U k 时,在连续谱的特定的波长位置上,会出现一系列强度很高,波长范围很窄的线状光谱,它们的波长对一定材料的阳极靶材有严格恒定的数值,此波长可作为阳极靶材的标志或特征,所以称为特征谱或标识谱。
莫塞莱定律:Z K 21) U - U ( i K I m n 3 (Un 为临界激发电压,原子序数Z 越大,Un 越大)五、X 射线吸收(透射)公式——(质量吸收系数:单质、化合物(固溶体、混合物)) 单质 m tm m e I eI I 00化合物ni i mim w 1六、光电效应、荧光辐射、俄歇效应光电效应:当入射X 射线光量子能量等于或略大于吸收体原子某壳层电子的结合能时,电子易获得能量从内层逸出,成为自由电子,称为光电子,这种光子击出电子的现象称为光电效应。
荧光辐射:因光电效应处于相应的激发态的原子,将随之发生如前所述的外层电子向内层跃迁的过程,同时辐射出特征X 射线,称X 射线激发产生的特征辐射为二次特征辐射,称这种光致发光的现象为荧光效应。
俄歇效应:原子K 层电子被击出后, L 层一个电子跃入 K 层填补空位,而另一个L 层电子获得能量逸出原子成为俄歇电子,称这种一个K 层空位被两个 L 层空位代替的过程为俄歇效应。
光电效应——光电子荧光辐射——荧光X 射线(二次X 射线) 俄歇效应——俄歇电子七、吸收限及其两个应用:滤波片的选择、靶材的选择吸收限:欲激发原子产生K、L、M等线系的荧光辐射,入射X 射线光量子的能量必须大于或至少等于从原子中击出一个K、L、M层电子所需的能量W K、W L、W M,如,W K= h K = hc / K,式中, K、 K是产生K系荧光辐射时,入射X射线须具有的频率和波长的临界值。
荧光辐射将导致入射X射线的大量吸收,故称 K、 L、 M 等为被照射物质的吸收限。
(理解)滤波片的作用:强烈吸收K 线,而对K 线吸收很少。
滤波片选择原则:使其吸收限恰好位于特征谱的K 和K 波长之间,且尽可能靠近K 线波长。
一般滤波片比靶材的原子序数小1~2。
靶材的选择目的:对X射线尽可能少的吸收。
靶材的选择原则:入射线波长 T略大于或远小于试样的 K,即根据样品选择靶材的原则是:Z靶≤Z样+1 或Z靶 Z样八、相干散射X射线在传播过程中,遇到一个电子,如果这个电子受原子核束缚较紧的话,光子的能力不足以使电子电离。
这个时候,电子就会在X射线交变电场作用下发生受迫振动。
电子就成为一个电磁波的发射源,向外发射散射射线。
散射线的波长与入射X射线波长相同。
这是一个电子对X射线的散射情况。
我们知道,一个原子核外有几个这样的电子,而晶体是由大量的原子组成的。
所以,当X射线照射到晶体上时,就会产生大量的散射线,这些射线的波长相同,它们有可能相互干涉,在某些方向被加强,某些方向被削弱。
所以我们把这种散射称为相干散射。
九、X射线的产生及其与物质的相互作用(系统掌握一,四~七)第二章 X 射线衍射方向一、晶带定律及其应用晶带定律:同一晶带中所有晶面的法线(hkl )都与晶带轴[uvw]垂直,即hu+kv+lw=0 应用:1、若已知某晶带[uvw]中的两个晶面的晶面指数(h1,k1,l1),(h2,k2,l2),求晶带指数 2、已知某个晶面(hkl )同时属于两个晶带[u1v1w1],[u2v2w2],求该晶面的晶面指数 二、布拉格方程及其应用 2dsin θ=n λ 三、干涉面(HKL ) 2dsin θ=λ;d=d hkl /n四、倒易矢量与正空间中晶面的关系(方向、大小) 方向:垂直于晶面;大小:1/d 五、倒易球(多晶体倒易点阵)多晶体同族{hkl}晶面的倒易矢量在三维空间任意分布,其端点的倒易阵点将落在以O *为球心、以 1/d hkl (g hkl )为半径的球面上,称为倒易球。
六、爱瓦尔德图解(与布拉格方程等同)爱瓦尔德图解描述:入射矢量的端点指向倒易原点O*,以入射方向上的C 点作为球心,半径为1/ 作球,球面过O*,此即为爱瓦尔德球(或反射球) 。
若某倒易点hkl 落在反射球面上,该晶面将发生衍射,衍射线的方向由反射球心指向该倒易点。
七、单晶、多晶衍射花样特点 单晶:规则排列的衍射斑点多晶:用垂直于入射线的底片记录,为一系列同心的衍射环;若用围绕试样的条形底片记录,为一系列衍射弧段;用绕试样扫描的计数管接收信号,则为一系列衍射谱线。
第三章 X 射线衍射强度一、衍射积分强度(相对强度)衍射积分强度 M HKL e A F P V V mc e R I I 2222202230cos sin 2cos 132相对强度 M HKLe A F P I 2222cos sin 2cos 1(多重性因数、结构因数、角因数、吸收因数、温度因数)二、常见晶体(简立方、面心立方、体心立方)消光规律存在的hkl衍射无衍射效应的hkl简单格子P h、k、l为任意数无体心格子I h+k+l=偶数h+k+l=奇数面心格子F h,k,l全奇或全偶h,k,l奇偶混杂第四章多晶体分析方法一、德拜花样二、德拜相机的安装方法正装、反装、偏装三、X射线衍射仪测量在入射光束、试样形状、试样吸收以及衍射线记录等方面与德拜法有何不同?(X射线衍射仪试样台与计数管联动关系1:2)入射光束 样品形状衍射线记录衍射花样样品吸收衍射装备德拜法 平行光束 圆柱状底片感光衍射弧 同时吸收所有衍射德拜相机衍射仪法 发散光束块状 辐射探测器衍射峰 逐一接收衍射测角仪 第五章 物相分析及点阵参数精确测定一、物相定量分析方法单线条法(外标法,或直接对比法),内标法,K 值法,参比强度法 二、精确测定点阵参数的方法 图解外推法( 2cos a ;-尼尔逊函数),最小二乘法(2XB X A XY X B A Y ),标准样校正法第六章 宏观残余应力的测定一、宏观残余应力的分类及其对X 射线的影响 第Ⅰ类内应力、第Ⅱ类内应力、第Ⅲ类内应力衍射线发生位移、衍射线宽化(也可能发生位移)、衍射线强度增大 二、X 射线衍射测定宏观应力常用的衍射几何方法 同倾法(固定 法、固定 0法) 侧倾法 三、定峰法半高宽法,1/8高宽法,抛物线法第八章 电子光学基础一、电磁透镜的作用,焦距,景深和焦长(影响因素,即公式) 作用:使电子束聚焦 焦距:2IN U Kf r景深:透镜物平面允许的轴向偏差。
02tan 2r r D f焦长:透镜像平面允许的轴向偏差。
2002tan 2M r M r D L二、电磁透镜的分辨率(影响因素) 由衍射效应和球面像差决定 衍射效应所限定的分辨率sin 61.00N r球面像差341s s C r第九章 透射电子显微镜一、成像操作将中间镜物平面与物镜像平面重合,则在荧光屏上获得一幅图像 二、衍射操作将其物平面与物镜背焦面重合,则在荧光屏上得到一幅电子衍射花样第十章 电子衍射一、电子衍射与X 射线衍射的不同之处1) 电子波波长 很小,故衍射角2 很小(约10-2rad)、反射球半径(1/ )很大,在倒易原点O *附近的反射球面接近平面2) 透射电镜样品厚度t 很小,导致倒易阵点扩展量(1/t )很大,使略偏离布拉格条件的晶面也能产生衍射3) 当晶带轴[uvw ]与入射束平行时,在与反射球面相切的零层倒易面上, 倒易原点O *附近的阵点均能与反射球面相截,从而产生衍射,所以单晶衍射花样是二维倒易平面的投影4) 原子对电子的散射因子比对X射线的散射因子约大4个数量级,故电子衍射强度较高,适用于微区结构分析,且拍摄衍射花样所需的时间很短二、零层倒易面(uvw)*0①通过倒易原点O*②与晶带轴[uvw]垂直。
三、产生衍射的充要条件充分:满足布拉格方程必要:强度不为零,即不产生消光四、选区电子衍射选区光阑位于物镜像平面处。
五、了解:已知晶体结构的单晶电子衍射花样的标定方法(步骤)尝试校核法、R2比值法尝试校核法1) 测量斑点间距R1,R2,R3 ,测量R1与R2之间的夹角2) 利用电子衍射基本公式(d=L /R),计算相应面间距d1,d2,d33) 对照物质卡片,由d 值确定{h1k1l1},{h2k2l2},{h3k3l3}4) 在{h 1k 1l 1} 晶面族中选定(h 1k 1l 1)为R 1对应衍射斑点指数5) 在 {h 2k 2l 2} 晶面族中选取(h 2k 2l 2)为R 2对应衍射斑点指数,用晶面间夹角公式计算(h 1k 1l 1)和(h 2k 2l 2)之间的夹角 。
若与测量值相符,说明(h 2k 2l 2)选取正确; 否则, 重新选取再进行校核,直至相符为止6) 根据已标定的两个斑点指数(h 1k 1l 1) 和 (h 2k 2l 2),用矢量运算标定其余各衍射斑点指数(hkl ) 7) 利用晶带定理计算晶带轴指数[uvw ] R 2比值法1) 测量衍射斑点间距R 1,R 2,R 3 ,R 4 ,并将R 值(222l k h )按递增顺序排列 2) 计算R 2,根据R 2比值规律(即N )确定点阵结构和晶面族指数{hkl } 六、超点阵斑点当晶体内部的原子或离子产生有规律的位移或不同种原子产生有序排列时,将引起其电子衍射结果的变化,即可以使本来消光的斑点出现,这种额外的斑点称为超点阵斑点。
Cu 3Au 面心立方固溶体为例,无序时当h,k,l 奇偶混合时,F hkl =0; 而在有序状态下,当h ,k ,l 奇偶混合时,F hkl = f Au f Cu 0,将出现超点阵斑点。
第十一章 晶体薄膜衍衬成像分析一、 衍射衬度由于样品中不同位向的晶体的衍射条件(位向)不同而造成的衬度差别称为衍射衬度。
二、明场像、暗场像、中心暗场像明场像:让透射光束通过物镜光阑而把衍射束挡掉得到图像衬度的方法称为明场成像,所得到的像称为明场像暗场像:把物镜光阑位置移动,使其套住hkl 斑点,而把透射束挡掉,可以得到暗场像。
中心暗场像:通过倾斜电子束,将某一衍射斑点移到荧光屏中心并用物镜光栏套住该衍射斑点成像第十三章扫描电子显微镜一、电子束轰击样品可能产生的几种信号主要有六种:1)背散射电子:能量高;来自样品表面几百nm深度范围;其产额随原子序数增大而增多.用作形貌分析、成分分析以及结构分析。