解题技巧专题平行线中作辅助线的方法

合集下载

平行线中常见作辅助线的技巧的九种类型

平行线中常见作辅助线的技巧的九种类型

( 2 ) 如 图 ① , 在 AB ∥ DE 的 条 件 下 , 你 能 得 出 ∠ B , ∠BCD,∠D之间的数量关系吗?请说明理由. 解:∠B+∠BCD+∠D=360°.理由如下: 因为CF∥AB,所以∠B+∠BCF=180°. 因为AB∥DE,所以CF∥DE. 所以∠FCD+∠D=180°. 所以∠B+∠BCF+∠FCD+∠D=180°+ 180°,即∠B+∠BCD+∠D=360°.
6.如图,AB∥DE,则∠BCD,∠B,∠D有何关系?为什么?
解:∠BCD=∠B-∠D.理由如下: 如图,过点C作CF∥AB,所以∠B=∠BCF. 因为AB∥DE,CF∥AB,所以CF∥DE. 所以∠DCF=∠D.所以∠B-∠D=∠BCF-∠DCF. 因为∠BCD=∠BCF-∠DCF, 所以∠BCD=∠B-∠D.
解:AB∥CD.理由如下: 如图,连接 BD. 在三角形 BDE 中,∠1+∠2+∠E=180°. 因为∠E=∠3+∠4, 所以∠1+∠2+∠3+∠4=180°, 即∠ABD+∠CDB=180°. 所以 AB∥CD.
2.【2020·攀枝花】如图,平行线AB,CD被直线EF所截, 过点B作BG⊥EF于点G,已知∠1=50°,则∠B= ( C) A.20° B.30° C.40° D.50°
BS版平行线中常见作辅助线的技巧的九种
类型
提示:点击 进入习题
1 见习题 2C 3 见习题 4 见习题
5 见习题 6 见习题 7 见习题 8 见习题 9 见习题
答案显示
1.如图,∠E=∠B+∠D,猜想AB与CD有怎样的位 置关系,并说明理由.
【点拨】本题可通过连接 B,D 两点构造截线,进而利用平行线 的判定说明 AB∥CD.
4 . ( 1 ) 如 图 ① , 若 AB ∥ DE , ∠ B = 135° , ∠ D = 145°,求∠BCD的度数.

平行线中添辅助线的方法

平行线中添辅助线的方法

平行线中添辅助线的方法在几何学中,平行线是指在同一个平面内,永远不会相交的线。

平行线可以用于解决许多几何问题。

有时,为了更好地理解和解决问题,我们可能需要在已知的平行线中添加辅助线。

这篇文章将介绍一些经常在平行线中添加辅助线的方法,以及如何利用这些辅助线解决几何问题。

方法一:创建平行线之间的等距线段这是最常见的方法之一,可以通过创建平行线之间的等距线段来添加辅助线。

这个方法可以在几何证明中使用,以创建所需的形状或角度。

下面是一个例子:假设有两个平行线AB和CD,在这两条平行线上选择两个等距点E和F。

然后,通过连接EF,你就创建了一个辅助线,使得EF平行于AB和CD。

这样,你就可以利用这个平行四边形来证明或解决其他几何问题。

方法二:使用交叉线段这个方法涉及到在平行线上选择一个点,并通过它绘制一条与其他平行线相交的线段。

这种方法通常用于证明几何性质。

例如,假设有两个平行线AB和CD,我们可以在AB上选择一个点E,并通过它绘制一条线段EF与CD相交。

然后,通过观察EF与AB的关系,可以证明一些三角形的性质或者其他几何关系。

方法三:利用平行线之间的相似三角形利用平行线之间的相似三角形是另一种常用的方法。

通过观察平行线和与它们相交的第三条线,可以找到相似的三角形。

然后,利用这些相似三角形的性质来解决几何问题。

例如,假设有两个平行线AB和CD,以及一条与它们相交的第三条线EF。

通过观察,可以发现三角形ADE与三角形BCF相似。

这意味着可以使用相似三角形的性质来计算未知角度或线段的长度。

方法四:利用中位线和对角线这个方法通常涉及到在平行线形成的平行四边形中绘制中位线或对角线。

中位线是连接平行四边形两对相对顶点的线段,对角线是连接两对非相邻顶点的线段。

这些辅助线可以帮助我们找到形状的性质,或计算线段的长度。

例如,假设有一个平行四边形ABCD,你可以通过绘制对角线AC来创建两个互相重叠的三角形ABC和ADC。

通过观察这些三角形的性质,可以得出许多结论,例如它们的面积相等或角度相等。

几何证明题辅助线基本方法

几何证明题辅助线基本方法

几何证明题辅助线基本方法几何证明题是数学中的一种重要题型,需要通过逻辑推理和几何知识来证明给定的几何关系。

在解决几何证明题时,辅助线是一种常用的策略,可以帮助我们简化问题、构建更简洁的证明过程。

本文将介绍几何证明题中常用的辅助线基本方法。

1. 平行辅助线法当我们需要证明两条线段平行时,可以在图形中引入一条辅助线来构建平行关系。

具体步骤如下:1. 观察图形,找到可能存在平行关系的线段。

2. 在相应的位置引入一条辅助线。

3. 利用平行线的性质进行推理,证明所需的平行关系。

2. 相等辅助线法当我们需要证明两个线段相等时,可以通过引入一条相等的辅助线来简化证明过程。

具体步骤如下:1. 观察图形,找到可能具有相等关系的线段。

2. 在相应的位置引入一条相等的辅助线。

3. 利用等边、等角等性质进行推理,证明所需的相等关系。

3. 垂直辅助线法当我们需要证明两条线段垂直时,可以通过引入一条垂直的辅助线来简化证明过程。

具体步骤如下:1. 观察图形,找到可能具有垂直关系的线段。

2. 在相应的位置引入一条垂直的辅助线。

3. 利用垂直线的性质进行推理,证明所需的垂直关系。

4. 同位角辅助线法当我们需要证明两条直线的同位角相等时,可以通过引入同位角的辅助线来简化证明过程。

具体步骤如下:1. 观察图形,找到可能存在同位角的直线。

2. 在相应的位置引入同位角的辅助线。

3. 利用同位角的性质进行推理,证明所需的同位角相等关系。

5. 其他辅助线方法除了上述介绍的常用辅助线方法外,还可以根据具体的几何证明题目选择其他辅助线的方法。

例如,可以利用中位线、角平分线、内切圆、外接圆等辅助线,根据题目要求灵活运用。

综上所述,几何证明题辅助线基本方法包括平行辅助线法、相等辅助线法、垂直辅助线法、同位角辅助线法等。

通过合理引入辅助线,可以帮助我们简化问题、构建更简洁的证明过程,提高解题效率。

在实际解题中,我们需要综合运用不同的辅助线方法,根据题目要求灵活选择适合的策略。

数学作辅助线的方法

数学作辅助线的方法

作辅助线的方法一:中点、中位线,延线,平行线.如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的.二:垂线、分角线,翻转全等连.如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生.其对称轴往往是垂线或角的平分线.三:边边若相等,旋转做实验.如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生.其对称中心,因题而异,有时没有中心.故可分“有心”和“无心”旋转两种.四:造角、平、相似,和、差、积、商见.如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关.在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移.故作歌诀:“造角、平、相似,和差积商见.”(托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦.如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦.六:两圆相切、离,连心,公切线.如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线.七:切线连直径,直角与半圆.如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线.即切线与直径互为辅助线.如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线.即直角与半圆互为辅助线.八:弧、弦、弦心距;平行、等距、弦.如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线.如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦成立.如遇平行弦,则平行线间的距离相等,所夹的弦亦相等,距离和所夹的弦都可视为辅助线,反之,亦成立.有时,圆周角,弦切角,圆心角,圆内角和圆外角也存在因果关系互相联想作辅助线.九:面积找底高,多边变三边.如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键.如遇多边形,想法割补成三角形;反之,亦成立.另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”。

人教版七年级数学下册解题技巧专题

人教版七年级数学下册解题技巧专题

人教版七年级数学下册解题技巧专题目录:目录:【专题一】平行线中作辅助线的方法【专题一】平行线中作辅助线的方法【专题二】相交线与平行线中的思想方法【专题三】开方运算及无理数判断中的易错题【专题四】平面直角坐标系中的图形面积【专题五】平面直角坐标系中的变化规律【专题六】解二元一次方程组【专题六】解二元一次方程组【专题七】一元一次不等式(组)与学科内知识的综合【专题八】一元一次不等式(组)中含字母系数的问题【专题一】平行线中作辅助线的方法——形成思维定式,快速解题◆类型一类型一 含一个拐点的平行线问题含一个拐点的平行线问题 1.(2017·南充中考)如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放.若∠1=58°,则∠2的度数为( ) A .30°B .32°C .42°D .58°第1题图 第2题图题图2.(2017·潍坊中考)如图,∠BCD =90°,AB ∥DE ,则∠α与∠β满足( ) A .∠α+∠β=180°B .∠β-∠α=90°C .∠β=3∠αD .∠α+∠β=90° 3.阅读下列解题过程,然后解答后面的问题.如图①,已知AB ∥CD ,∠B =35°,∠D =32°,求∠BED 的度数.的度数. 解:过E 作EF ∥AB .∵AB ∥CD ,∴CD ∥EF .∵AB ∥EF ,∴∠1=∠B =35°35°..又∵CD ∥EF ,∴∠2=∠D =32°,∴∠BED =∠1+∠2=35°+32°=67°67°. . 如图②、如图②、图③,图③,图③,是明明设计的智力拼图玩具的一部分,是明明设计的智力拼图玩具的一部分,是明明设计的智力拼图玩具的一部分,现在明明遇到两个问现在明明遇到两个问题,请你帮他解决.题,请你帮他解决.(1)如图②,已知∠D =30°,∠ACD =65°,为了保证AB ∥DE ,∠A 应多大?应多大? (2)如图③,要使GP ∥HQ ,则∠G ,∠GFH ,∠H 之间有什么关系?之间有什么关系?◆类型二类型二 含多个拐点的平行线问题含多个拐点的平行线问题4.如图,已知AB ∥DE ,∠ABC =70°,∠CDE =140°,则∠BCD 的大小为( ) A .20°B .30°C .40°D .70°第4题图 第5题图题图5.如图,直线l 1∥l 2,∠α=∠β,∠1=40°,则∠2的度数为________. 6.如图,给出下列三个论断:①∠B +∠D =180°;②AB ∥CD ;③BC ∥DE .请你以其中两个论断作为已知条件,请你以其中两个论断作为已知条件,填入“已知”栏中,填入“已知”栏中,以剩余一个论断作为结论,填入“结论”栏中,使之成为一道由已知可得到结论的题目,并解答该题.已知:______________,结论:______________. 解:解:7.如图①,AB ∥CD ,EOF 是直线AB ,CD 间的一条折线.间的一条折线. (1)试说明:∠EOF =∠BEO +∠DFO ;(2)如果将折一次改为折两次,如图②,则∠BEO ,∠EOP ,∠OPF ,∠PFC 之间会满足怎样的数量关系?并说明理由.【专题二】相交线与平行线中的思想方法——明确解题思想,体会便捷渠道◆类型一方程思想类型一 方程思想1.如图,直线AB,CD相交于点O,∠AOC=60°,OE把∠BOD分成两部分,且∠BOE∶∠EOD=1∶2,则∠AOE的度数为() A.180°B.160°C.140°D.120°题图第1题图第2题图2.(2017·无棣县期末)如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠EOD=4∶1,则∠AOF的度数为________.3.如图,已知FC∥AB∥DE,∠α∶∠D∶∠B=2∶3∶4.求∠α,∠D,∠B 的度数.的度数.4.(2017·启东市期末)如图,AD∥BC,BE平分∠ABC交AD于点E,BD平分∠EBC. (1)若∠DBC=30°,求∠A的度数;的度数;(2)若点F在线段AE上,且7∠DBC-2∠ABF=180°,请问图中是否存在与∠DFB相等的角?若存在,请写出这个角,并说明理由;若不存在,请说明理由.由.◆类型二分类讨论思想类型二 分类讨论思想5.若∠α与∠β的两边分别平行,∠α比∠β的3倍少36°,则∠α的度数是() A.18°B.126°C.18°或126°D.以上都不对.以上都不对6.(2017·玄武区期末)在直线MN上取一点P,过点P作射线P A、PB.若P A⊥PB,MPA A=40°,则∠NPB的度数是________________.当∠MP7.(2017·江干区一模)一副直角三角尺按如图①所示方式叠放,现将含45°角的三角尺ADE固定不动,将含30°角的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图②,当∠BAD=15°时,BC∥DE,则180°))其他所有可能符合条件的度数为________________.∠BAD(0°<∠BAD<180°8.如图,已知直线l1∥l2,直线l3交l1于C点,交l2于D点,P是线段CD 上的一个动点.当P在直线CD上运动时,请你探究∠1,∠2,∠3之间的关系.之间的关系.第9题图题图第10题图。

初中平面几何常见添加辅助线的方法

初中平面几何常见添加辅助线的方法

初中平面几何常见添加辅助线的方法平面几何是数学中的一个重要分支,通过在平面上描述和研究几何图形之间的关系和性质。

在解决平面几何问题中,添加辅助线是一种常见且有效的方法,可以帮助我们更好地理解和分析问题。

下面是初中平面几何常见的添加辅助线的方法:1.使用垂直辅助线:垂直辅助线是指与已知线段垂直的辅助线,可以用来分割和构造几何图形。

比如,在矩形中,可以通过连接矩形的对角线来构造一条垂直辅助线,从而将矩形分割为两个等腰直角三角形。

2.使用平行辅助线:平行辅助线是指与已知线段平行的辅助线,可以用来帮助构造平行线段和证明平行性质。

例如,在平行四边形中,可以通过连接相邻顶点和平行线段的端点来构造平行辅助线,从而证明平行四边形的对边相等。

3.使用角平分线:角平分线是指将一个角平分为两个等角的辅助线。

在解决涉及角的等分、相等或相似性质问题时,添加角平分线是非常有用的方法。

例如,在等腰三角形中,可以通过连结底边中点和顶角顶点的直线来构造角平分线,从而证明等腰三角形的顶角相等。

4.使用中线:中线是指连接一个几何图形的两边中点的辅助线。

在解决涉及几何图形的中点、平行四边形和三角形性质问题时,添加中线是一种常见的方法。

例如,在四边形中,可以通过连接相对边的中点来构造中线,从而证明中线互相平分。

5.使用高线:高线是指从多边形的一个顶点向对边所引的垂线。

在解决多边形的高、重心、垂心和外心问题时,添加高线是非常有用的方法。

例如,在三角形中,可以通过从一个顶点向对边引垂线来构造高线,从而证明高线汇聚于三角形的垂心。

6.使用辅助图形:有时,我们可以通过在平面上添加一些辅助图形来辅助解决几何问题。

例如,在求解平行四边形的面积时,可以通过添加一个垂直边和一个三角形来将平行四边形划分为两个高度相等的矩形,从而方便计算面积。

在实际应用中,我们可以根据具体问题的要求来灵活地选择合适的辅助线方法。

添加辅助线不仅可以帮助我们更好地理解和分析问题,还可以提高解题效率和准确性。

第3讲 平行线辅助线(学生版)

第3讲 平行线辅助线(学生版)

第3讲平行线辅助线一、知识回顾:在解决平行线的问题时,当无法直接得到角的关系或两条线之间的位置关系时,通常借助辅助线来帮助解答,如何作辅助线需根据已知条件确定,辅助线的添加既可以产生新的条件,又能将题目中原有的条件联系在一起.一、加截线(连接两点或延长线段)1.如图,已知AB∥CD,∠ABF=∠DCE.∠BFE与∠FEC有何关系?并说明理由.(第1题)【解析】:∠BFE=∠FEC.理由一:连接BC,如图①.∵AB∥CD,∴∠ABC=∠BCD(两直线平行,内错角相等).又∵∠ABF=∠DCE,∴∠ABC-∠ABF=∠BCD-∠DCE,即∠FBC=∠ECB.∴BF∥CE(内错角相等,两直线平行).∴∠BFE=∠FEC(两直线平行,内错角相等).(第1题)理由二:延长AB,CE相交于点G,如图②.∵AB∥CD,∴AG∥CD.∴∠DCE=∠G(两直线平行,内错角相等).又∵∠ABF=∠DCE,∴∠ABF=∠G.∴BF∥CG(同位角相等,两直线平行).∴∠BFE=∠FEC(两直线平行,内错角相等).二、过“拐点”作平行线a.“”形图2.如图,AB∥CD,P为AB,CD之间的一点,已知∠1=32°,∠2=25°,求∠BPC的度数.(第2题)【解析】:方法一:过点P作射线PN∥AB,如图①.∵AB∥CD,∴PN∥CD.∴∠4=∠2=25°.∵PN∥AB,∴∠3=∠1=32°.∴∠BPC=∠3+∠4=57°.(第2题)方法二:过点P作射线PM∥AB,如图②.∵AB∥CD,∴PM∥CD.∴∠4=180°-∠2=180°-25°=155°.∵AB∥PM,∴∠3=180°-∠1=180°-32°=148°.∴∠BPC=360°-∠3-∠4=360°-148°-155°=57°. 方法三:连接BC,略。

人教版七年级下册 第五章 平行线中辅助线的作法 讲义

人教版七年级下册 第五章 平行线中辅助线的作法 讲义

平行线中辅助线的作法辅助线在几何证明中起着重要的作用,如何添加辅助线对于几何刚入门的七年级学生来说是难点。

一、例题例1 如图,直线a∥b,∠1=45°,∠2=30°,则∠P= °.解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=75°,故答案为:75.例2 如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的值为() A.20° B.30° C.40° D.70°过点C作CG∥AB,则∠BCG=∠ABC=70°,又∵AB∥DE,∴DE∥CG∴∠CDE+∠DCG=180°,∵∠CDE=140°,∴∠DCG=40°,∴∠BCD=30°.故选B.二、练习(一)选择题1、如图,将一副三角形和一张对边平行的纸条按下列方式摆放,两个三角析的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°2、直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为( )A .60°B .50°C .40°D .30°3、如图,把一块含45°角的直角三角板的直角顶点放在直尺的—边上,如果∠1=33°,那么∠2为( )A .33°B .57°C .67°D .60°4、如图,AB ∥EF ,CD ⊥EF 于点D ,若∠ABC=40°,则∠BCD=( ) A .140° B .130° C .120° D .110°5、如图,∠BCD =90°,AB ∥DE ,则∠α与∠β满足( )A .∠α+∠β=180°B .∠β-∠α=90°C .∠β=3∠αD .∠α+∠β=90°6、学习平行线的性质后,老师给小明出了一道题:如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A 是120°,第二次拐的角∠B 是150°,第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 是多少度?请你帮小明求出( )A .120°B .130°C .140°D . 150°ABCDE α β7、如图,AB ∥CD ,有图中α,β,γ三角之间的关系是( ) A .α+β+γ=180° B .α-β+γ=180° C .α+β-γ=180° D .α+β+γ=3608、如图,∠BCD=90°,AB ∥DE ,则α与β一定满足的等式是( ) A .α+β=180°B .α+β=90°C .β=3αD .α-β=90°9、如图,直线l 1∥l 2,∠A =125°,∠B =85°,则∠1+∠2=A. 30°B. 35°C. 36°D. 40°10、如图,直线a ‖b ,直角三角形ABC 的顶点B 在直线a 上,∠C =90°,∠β=55°,则∠α的度数为( )A .o 15B .o 25C .o 35D .o 552l 1A 125° 85°B l 21(二)填空题1、如图,AB ∥EF ,CD ⊥EF ,∠BAC =50°,则∠ACD=2、如图,AB ∥CD ,则∠1、∠2、∠3的关系是3、如图,直线l 1∥l 2,∠α=∠β, ∠1=40°,则∠2= °.4、一个小区大门的栏杆如图所示,BA 垂直地面AE 于A ,CD 平行于地面AE ,那么∠ABC+∠BCD=5如图,AB ∥CD ,ED ∥BC .∠A=20°,∠C=120°,则∠AED 的度数是6如图,AB ∥CD ,⊥于C ,CF 交于B ,已知∠2=29°,则∠1的度数是2βα1l 1l 2 C32βα1l 1l 2BADE7、如图所示,AB∥CD,CE⊥CD.若∠E=20°,则∠ABE的度数为8、如图所示,一条公路修到湖边时,为了保护生态环境,需拐弯绕湖而过,如果图中的拐角∠A=150°,∠B=120°,三次拐弯后的道路CE与原来公路DA平行,则∠C=(三)解答题1、已知如图,AB∥CD,试解决下列问题:(1)∠1+∠2=(2)∠1+∠2+∠3=(3)∠1+∠2+∠3+∠4=(4)探究∠1+∠2+∠3+∠4+…+∠n=2、问题情境:如图1,AB∥CD,判断∠ABP,∠CDP,∠BPD之间的数量关系.小明的思路:如图2,过点P作PE∥AB,通过平行线性质,可得∠ABP+∠CDP+∠BPD=问题迁移:AB∥CD,直线EF分别与AB,CD交于点E,F,点P在直线EF上(点P与点E,F不重合)运动.(1)当点P在线段EF上运动时,如图3,判断∠ABP,∠CDP,∠BPD之间的数量关系,并说明理由;(2)当点P不在线段EF上运动时,(1)中的结论是否成立,若成立,请你说明理由;若不成立,请你在备用图上画出图形,并直接写出∠ABP,∠CDP,∠BPD 之间的数量关系.3、如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED、∠EAB、∠EDC的关系并说明理由.(2)拓展应用,如图2,线段FE与长方形ABCD的边AB交于点E,与边CD 交于点F.图2中①②分别是被线段FE隔开的2个区域(不含边界),P是位于以上两个区域内的一点,猜想∠PEB,∠PFC,∠EPF的关系(不要求说明理由)练习答案(一)选择题ACBBBDCBAC(二)填空题1、140°2、∠3=∠1+∠23、1404、2705、 80°6、61°7、110°8、150°(三)解答题1解:(1)∵AB∥CD,∴∠1+∠2=180°(两直线平行,同旁内角互补);(2)过点E作一条直线EF平行于AB,∵AB∥CD,∵AB∥EF,CD∥EF,∴∠1+∠AEF=180°,∠FEC+∠3=180°,∴∠1+∠2+∠3=360°;(3)过点E、F作EG、FH平行于AB,∵AB∥CD,∵AB∥EG∥FH∥CD,∴∠1+∠AEG=180°,∠GEF+∠EFH=180°,∠HFC+∠4=180°;∴∠1+∠2+∠3+∠4=540°;(4)中,根据上述规律,显然作(n-2)条辅助线,运用(n-1)次两条直线平行,同旁内角互补.即可得到n个角的和是180°(n-1).2 解:∵过点P作PE∥AB,则PE∥CD∴∠B+∠BPE=∠D+∠DPE=180°,∴∠ABP+∠CDP+∠BPD=360°,故答案为:360;,;证明:如图②,过P作PQ∥AB,∵AB∥CD,∴AB∥PQ∥CD,∴∠B=∠1,∠D=∠2,∴∠BPD=∠1+∠2=∠B+∠D;(3)不成立,关系式是:∠B-∠D=∠BPD,或∠D-∠B=∠BPD,(2)∠ABP+∠CDP=∠BPD理由:如图4,过P作PQ∥AB,∵AB∥CD,∴AB∥PQ∥CD,∴∠BPQ=∠B,∠D=∠DPQ,∴∠B-∠D=∠BPQ-∠DPQ=∠BPD,∠BPQ=∠B-∠D.如图5,同理∠D-∠B=∠BPD.3、解:(1)①过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∵∠A=30°,∠D=40°,∴∠1=∠A=30°,∠2=∠D=40°,∴∠AED=∠1+∠2=70°;②过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∵∠A=20°,∠D=60°,∴∠1=∠A=20°,∠2=∠D=60°,∴∠AED=∠1+∠2=80°;③猜想:∠AED=∠EAB+∠EDC.理由:过点E作EF∥CD,∵AB∥DC∴EF∥AB(平行于同一条直线的两直线平行),∴∠1=∠EAB,∠2=∠EDC(两直线平行,内错角相等),∴∠AED=∠1+∠2=∠EAB+∠EDC(等量代换).(2)如图2,当点P在①区域时,∵AB∥CD,∴∠BEF+∠CFE=180°,∴∠PEF+∠PFE=(∠PEB+∠PFC)-180°.∵∠PEF+∠PFE+∠EPF=180°,∴∠EPF=180°-(∠PEF+∠PFE)=180°-(∠PEB+∠PFC)+180°=360°-(∠PEB+∠PFC);当点P在区域②时,如图3所示,∵AB∥CD,∴∠BEF+∠CFE=180°,∵∠EPF+∠FEP+∠PFE=180°,∴∠EPF=∠PEB+∠PFC.。

初中数学中考几何如何巧妙做辅助线大全

初中数学中考几何如何巧妙做辅助线大全

人教版北师大初中数学中考几何如何巧妙做辅助线大全人们从来就就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这就是解决问题常用的策略。

一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往就是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线就是个基本图形:当几何中出现平行线时添辅助线的关键就是添与二条平行线都相交的等第三条直线(2)等腰三角形就是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段就是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段就是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点就是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

平行线中添辅助线的方法

平行线中添辅助线的方法

平行线中添辅助线的方法平行线中常见的添辅助线的方法:(1) 在平行线内(或外)一点作直线的平行线;(2) 加截线(连接两点、延长线段相交)例:探究:(1) 、如图1,若AB//CD ,则/ B+ / D= / E ,你能说明为什么吗?(2) 、反之,若/ B+ / D= / E ,直线AB 与CD 有什么位置关系?请证明(3) 、若将点E 移至图2所示位置,此时之间有什么关系?请证明。

(4) 、若将点E 移至图3所示位置,情况又如何?(5) 、若将点E 移至图4所示位置,情况又如何?(6) 、在图5中,AB//CD ,/ B+ / D+ / F 与/ E+ / G 又有何关系?平行线拓展延伸题、填空题BDA 、10° B 、15° C 、20° A L ________ ~B A —-------------------- B \E ZP C z f --------------------— — C D CD图1图2 1 如图,已知 AB // CD ,若/ A=20。

,/ E=35°,则/ C 等于____________2、如图,I 1//I 2,/ 1=120°,/ 2=100°,则/ 3= ________________ 。

4、如图,AB // CD , 1 50°, 2 110°,则 3 ______________ 。

6、如图,已知 AB // EF ,/ BAC=p ,/ ACD=x ,/ CDE=y ,/ DEF=q,用 p 、q 、 y 来表示x 得 ___________________________ 。

、选择题如图1, AB / CD ,且/BAP=60° —a ,Z APC=45° + a ,2、 如图2, AB//CD ,且 A 25 , C 45,贝U E 的度数是(A. 60B. 70C. 110D. 80 3、如图3,已知AB // CD ,则角a 、B 、丫之间的关系为( )BD/ PCD=30°—a ,贝U a (),证明:BC丄CD。

初中数学几何做辅助线方法技巧

初中数学几何做辅助线方法技巧

初中数学几何做辅助线方法技巧初中数学里面,几何这个部分是比较重要的,因为对我们日后的学习和生活有一定的帮助。

在学习几何的过程中,我们常常需要用到做辅助线的方法来帮助我们更好的理解和解决问题。

下面是关于初中数学几何做辅助线方法技巧的介绍。

1. 画出平行线在处理一些证明题或求几何中的相关数据时,使用画一条平行线的方法,这条线起到辅助线的作用。

具体来说,我们可以根据题目已知的条件,画出一条平行于两条线的直接过这两条线的平行线。

这样做可以帮助我们更好的理解题目所需要求解的问题。

2. 画出垂线在几何中,垂线是非常重要的一种线。

垂线可以将一条线分成两段,并且在某些时候可以帮助我们求解一些困难的问题。

具体的做法是在需要求解的点上,画出一条线段与目标线段垂直相交。

3. 构造相似三角形有时候在处理一些题目时,不好直接得出一个结论或者一些数据,使用相似三角形来帮助我们更好的理解和求解问题。

相似三角形有一个共同的特点就是它们的对应角度相等,边长成比。

具体的做法是在画图的时候,根据题目条件构造一个相似三角形,利用等比例关系求解相关数据或者结论。

4. 利用勾股定理在解析几何中,勾股定理是一个非常重要的公式,它在很多问题中都有很大的帮助。

利用勾股定理可以求出直角三角形的三个边长。

同时在画图的时候,也可以利用勾股定理来帮助画出直角三角形。

5. 使用比例关系在某些问题中,我们可能需要根据已知条件来求出一些距离或长度之类的数据。

在这种情况下,我们可以通过比例关系来帮助我们快速求解。

具体的做法是在画图的时候,根据已知条件构造出一定的比例关系,在求出需要的数据。

6. 构造平行四边形和等边三角形利用平行四边形和等边三角形来帮助我们求解问题也是一个非常不错的方法。

具体的做法是在求解相关问题时,根据已知条件或者所求的条件,在画出平行四边形或者等边三角形,利用它们的性质来求解所需要求解的问题。

几何学是一个非常重要的数学分支,它在我们的生活中起着非常重要的作用。

等边三角形如何巧做辅助线--平行线

等边三角形如何巧做辅助线--平行线

等边三角形中如何巧作辅助线长沙市湘一芙蓉二中胡孟本节内容在教材中的地位和作用学习了等腰三角形、等边三角形、全等三角形后,发现同学们对知识点的接受比较单一,不能很快找到各知识点之间的内在联系,更谈不上综合运用。

为了把初中几何中的几个重要的知识点等腰三角形、等边三角形与全等三角形很好的联系起来,提高同学们的数学思维能力和解题能力,特意设计了本节习题课。

教学目标1.通过对课本习题的延伸探究,进一步巩固等边三角形的有关知识的理解,达到灵活应用。

2.在辅助线添加的探究中体会转化思想,构造能力,掌握添加平行线可以产生新的角度、线段长度等量关系,有助于问题的解决。

3.在复习中温故知新,在例习题的变式中,体会数学的一题多解,一题多问,一题多变,感悟数学中变和不变的无穷魅力。

教学重点掌握添加平行线构造全等解决等边三角形有关问题教学难点探究添加平行线构造全等解决等边三角形有关问题重难点突破讲练结合、合作探究、运用投影仪、几何画板演示使抽象的内容变得具体形象有助于理解技术手段学案、几何画板课件、投影仪等多媒体教学过程设计一、问题引入:前面我们已经学习了等腰三角形,等边三角形以及两个三角形全等的相关知识,这节课我们来学习等边三角形中如何巧作辅助线。

出示ppt,这是八上教材93页第13题,我们来看这道题:八上教材93页第13题:如图△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD,求证:DB=DE。

问:题中有哪些已知条件?要证明什么?你找到解题思路了吗?学生回答:(学生回答时,老师配合演示多媒体,强调已知和求证)。

学生分析思路后,师生一起小结:由此题可知,要证明两线段相等,当这两线段在同一三角形中时,我们会很自然想到用“等角对等边”来证。

老师板书,证明两线段相等的方法:①等角对等边二、变式提升老师把条件稍做改变,请同学们看到学案上的变式1,先审题(老师利用同学们审题的时间把变式1板书到黑板上):变式1:如图:△ABC是等边三角形,D是AC上一点,延长BC至E,使CE=AD,求证:DB=DE。

高中立体几何辅助线技巧简述

高中立体几何辅助线技巧简述

高中立体几何辅助线技巧简述高中立体几何是数学中的一门重要分支,它主要研究空间中各种几何体的性质和相互关系。

在解决立体几何问题时,辅助线技巧是非常实用的工具。

通过巧妙地引入辅助线,可以简化问题的解决过程,提高解题效率。

本文将简要介绍一些常用的高中立体几何辅助线技巧,帮助读者更好地理解和应用这些方法。

一、平行线辅助线技巧在解决与平行线相关的立体几何问题时,可以尝试通过引入平行线辅助线来简化问题。

具体而言,可以考虑以下两种情况:1. 使用平行线比例关系当需要求解立体几何体的长度比或面积比时,可以尝试通过引入平行线辅助线来构造相应的比例关系。

在求解平行四边形的面积比时,可以通过连接对角线,将平行四边形分割成两个三角形,从而利用三角形面积公式求解面积比。

2. 使用平行线截线关系当需要求解立体几何体内部的长度或角度关系时,可以考虑通过引入平行线截线关系来简化问题。

在求解空间中两条直线的夹角时,可以通过引入一条与之平行的辅助线,从而将问题转化为求解两条平行线与辅助线的夹角,利用平行线夹角定理求解出所需的夹角值。

二、相似三角形辅助线技巧在解决与相似三角形相关的立体几何问题时,可以尝试通过引入相似三角形辅助线来简化问题。

具体而言,可以考虑以下两种情况:1. 使用相似三角形比例关系当需要求解立体几何体的长度比或面积比时,可以尝试通过引入相似三角形辅助线来构造相应的比例关系。

在求解棱锥的体积或表面积比时,可以通过在棱锥中引入一条高线,构造出两个相似三角形,从而利用相似三角形的边比关系求解出所需的比例值。

2. 使用相似三角形角度关系当需要求解立体几何体内部的角度关系时,可以尝试通过引入相似三角形辅助线来简化问题。

在求解棱锥的顶角时,可以通过在棱锥中引入一条高线,构造出一个与之相似的三角形,从而将该问题转化为求解相似三角形的对应角度关系,进而得到所需的顶角值。

三、垂线辅助线技巧在解决与垂线相关的立体几何问题时,可以尝试通过引入垂线辅助线来简化问题。

几何证明题辅助线的技巧和方法

几何证明题辅助线的技巧和方法

几何证明题辅助线的技巧和方法
在解决几何证明题时,辅助线是一种常用且有效的工具。

它可以帮助我们发现
隐藏的几何关系,简化证明过程,并提供新的角度来解决问题。

以下是几种常见的辅助线技巧和方法,可用于解决几何证明题。

1. 平行线辅助线法:当题目涉及到平行线时,我们可以通过引入一条平行线作
为辅助线,从而构建出平行线之间的相似三角形或平行四边形。

这样,我们可以得出相应的角度和边的关系,进而证明几何问题。

2. 三角形中线辅助线法:三角形的中线是连接一个顶点与对应中点的线段。


过引入三角形中线作为辅助线,我们可以将原问题转化为直角三角形的性质或平行线的性质。

这种方法常常用于证明三角形的等边、等腰等性质。

3. 垂直线辅助线法:当题目涉及到垂直线时,我们可以通过引入一条垂直线作
为辅助线,从而构建出垂直角、直角三角形或平行四边形。

通过利用垂直线的性质,我们可以得到角度、边长等关系,进而解决问题。

4. 内切圆辅助线法:对于一个给定的三角形,可以通过引入其内切圆作为辅助线,来简化证明过程。

内切圆与三角形的的边相切于三个点,这些点可以提供有用的几何关系,如正方形的性质、垂直线的性质等。

5. 类似三角形辅助线法:当计算角度或证明形状相似时,引入类似三角形作为
辅助线可以大大简化证明过程。

通过找到两个或多个类似的三角形,我们可以得到两个三角形的边长比例,并据此解决问题。

总之,辅助线是几何证明中的有效工具,它们可以帮助我们发现关键的几何关系,简化证明过程,并提供新的角度来解决问题。

通过灵活运用各种辅助线技巧和方法,我们可以更加轻松地解决各种几何证明题。

平行线常用辅助线知识点_概述说明以及解释

平行线常用辅助线知识点_概述说明以及解释

平行线常用辅助线知识点概述说明以及解释1. 引言1.1 概述在几何学中,平行线是指在同一个平面内永远不会相交的两条直线。

对于平行线的研究,人们发现通过引入一些辅助线能够更好地理解和证明平行线的性质,从而简化许多几何问题的解决过程。

1.2 说明平行线的性质平行线具有一些重要的性质。

首先,它们具有共面性,即两条平行线存在于同一个平面上。

其次,在给定直线外,与该直线平行的直线只有唯一一条。

此外,在给定直线上,存在无数与该直线平行且互不相交的直线。

利用这些性质,我们可以快速判断两条直线是否平行,并进行相关推断和证明。

1.3 辅助线的重要性辅助线在几何推导和证明中起到了至关重要的作用。

通过合理选择和应用辅助线,我们可以将原本复杂的几何问题转化为更简单、直观且易于解决的形式。

辅助线还能够帮助我们揭示隐藏在复杂图形背后的规律和特点,并为后续分析提供有效途径。

总之,在本文中,我们将重点介绍平行线常用的辅助线知识点,并通过实例来解析其应用。

通过全面理解和熟练运用这些辅助线知识点,读者将能够更好地理解平行线的特性,并在几何学习和问题解决中获得更高的效率和成果。

2. 平行线的辅助线知识点:2.1 垂直平分线:垂直平分线是指一个线段的中垂线与另一个线段相交于垂直平分线上。

在平行线的几何证明中,使用垂直平分线可以帮助我们得到一些有用的性质和结论。

例如,如果两条平行线被一条垂直平分线所截断,则截断处所形成的各对应角相等。

2.2 角平分线:角平分线是指从一个角的顶点出发,将这个角划分为两个相等的角,并且其划分位置在这个角的内部。

在证明平行关系时,使用角平分线能够帮助我们找到具有特定性质的几何图形。

例如,在证明两条直线平行时,当一条辅助角平分线与已知直线及其延长线相交时,可以推导出其他相关性质。

2.3 对称线:对称线是指将一个图形折叠成两半时能完全重合的折痕所在的那根过对称中心点(通常为一条直线)。

在使用对称性进行几何证明时,对称辅助会被广泛应用。

(完整版)初中数学添加辅助线的方法汇总

(完整版)初中数学添加辅助线的方法汇总

初中数学添加辅助线的方法汇总作辅助线的基本方法一:中点、中位线,延长线,平行线。

如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

二:垂线、分角线,翻转全等连。

如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。

其对称轴往往是垂线或角的平分线。

三:边边若相等,旋转做实验。

如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。

其对称中心,因题而异,有时没有中心。

故可分“有心”和“无心”旋转两种。

四:造角、平、相似,和、差、积、商见。

如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。

在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。

故作歌诀:“造角、平、相似,和差积商见。

”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。

如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。

六:两圆相切、离,连心,公切线。

如条件中出现两圆相切(外切,内切),或相离(内含、夕卜离),那么,辅助线往往是连心线或内外公切线。

七:切线连直径,直角与半圆。

如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。

即切线与直径互为辅助线。

如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角一一直角为辅助线。

即直角与半圆互为辅助线。

八:弧、弦、弦心距;平行、等距、弦。

如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。

初中数学常见辅助线的做法

初中数学常见辅助线的做法

初中数学常见辅助线的做法一、中点模型的构造1.已知任意三角形一边上的中点,可以考虑:(1)倍长中线或类中线(与中点有关的线段)构造全等三角形.如图1、图2所示.(2)三角形中位线定理.2.已知直角三角形斜边中点,可以考虑构造斜边中线.3.已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一二4.有些题目的中点不直接给出,此时需要我们挖掘题目中的隐含中点,例如:直角三角形中斜边中点, 等腰三角形底边上的中点,当没有这些条件的时候,可以用辅助线添加.二、角平分线模型的构造与角平分线有关的常用辅助线作法,即角平分线的四大基本模型.已知。

是4MON平分线上一点,(1)若以_L 0M于点4 ,如图1,可以过户点作PB1ON于点&则与二以.可记为“图中有角平分线, 可向两边作垂线”.(2)若点4是射线0M上任意一点,如图2,可以在ON上截取(用=0/1 ,连接/7人构造△()*?三△ /%.可记为“图中有角平分线,可以将图对折看,对称以后关系现二⑶若翼妆舔踹嚼鼠3耳以黠部交0N于点从周造A4 0H基尊健三角形/是底边4加勺中点.可记为“角平分线加垂线,三线合一试试看二(4)若过P点作PQ//0N交0M于点0,如图4,可以构造△P0Q是等腰三角形,可记为“角平分线+平行线,等腰三角形必呈现二三、轴对称模型的构造下面给出几种常见考虑要用或作轴对称的基本图形.(1 )线段或角度存在2倍关系的,可考虑对称.(2)有互余、互补关系的图形,可考虑对称.(3)角度和或差存在特殊角度的,可考虑对称.(4)路径最短问题,基本上运用轴对称,将分散的线段集中到两点之间,从而运用两点之间线段最短,来实现最短路径的求解.所以最短路径问题,需考虑轴对称.几何最值问题的儿种题型及解题作图方法如下表所示.四、圆中辅助线构造在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此, 灵活掌握作辅助线的一般规律和常见方法,对.提高学生分析问题和解决问题的能力是大有帮助的。

湘教版七年级数学下册解题技巧专题:平行线中作辅助线的方法

湘教版七年级数学下册解题技巧专题:平行线中作辅助线的方法

解题技巧专题:平行线中作辅助线的方法◆类型一含一个拐点的平行线问题【方法17】1.(天门中考)如图,将一块含有60°角的直角三角板的两个顶点放在两条平行的直线a,b上,如果∠2=50°,那么∠1的度数为()A.10°B.20°C.30°D.40°第1题图第2题图2.如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的度数为()A.20°B.30°C.40°D.70°3.(金华中考)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是________.第3题图第4题图4.如图,AB∥CD,∠A=120°,∠1=70°,则∠D的度数为________.5.小柯同学平时学习善于自己动手操作,以加深对知识的理解和掌握.学习了相交线与平行线的知识后,他又探索起来:如图,按虚线剪去长方形纸片的相邻两角,并使∠1=115°,AB⊥CB于B,那么∠2的度数是多少呢?请你帮他计算出来.◆类型二含多个拐点的平行线问题【方法17】6.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=()A.30°B.35°C.36°D.40°第6题图第7题图7.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=________.8.如图,如果AB∥CD,则∠α,∠β,∠γ之间的关系为______________.第8题图9.★如图①,AB∥CD,EOF是直线AB,CD间的一条折线.(1)试说明:∠EOF=∠BEO+∠DFO;(2)如果将平行线间的1个拐点改为2个拐点,如图②,则∠BEO,∠EOP,∠OPF,∠PFC 之间会满足怎样的数量关系,请说明理由.参考答案与解析1.A2.B解析:如图,过C作CF∥DE,∴∠CDE+∠DCF=180°.∵∠CDE=140°,∴∠DCF =40°.∵AB∥DE,∴CF∥AB,∴∠FCB=∠ABC=70°,∴∠BCD=70°-40°=30°.3.80° 4.50°5.解:过点B向左作BE∥AD.∵AD∥CF,∴AD∥BE∥CF,∴∠1+∠ABE=180°,∠2+∠CBE=180°,∴∠1+∠2+∠ABC=360°.∵∠1=115°,∠ABC=90°,∴∠2=360°-∠1-∠ABC=155°.6.A解析:如图,作AC∥l1,BD∥l2,∴∠1=∠3,∠2=∠4.∵l1∥l2,∴AC∥BD,∴∠CAB+∠ABD=180°,∴∠3+∠4=125°+85°-180°=30°,∴∠1+∠2=30°.7.140°解析:如图,延长AE交l2于点B.∵l1∥l2,∴∠3=∠1=40°.∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°-∠3=180°-40°=140°.8.∠α+∠β-∠γ=180°解析:如图,过点E作EF∥AB,∴∠α+∠AEF=180°.∵AB∥CD,∴EF∥CD,∴∠FED=∠γ,∴∠AEF=∠β-∠FED=∠β-∠γ,∴∠α+∠β-∠γ=180°.9.解:(1)过点O作OM∥AB,如图①,∴∠1=∠BEO.∵AB∥CD,∴OM∥CD,∴∠2=∠DFO,∴∠1+∠2=∠BEO+∠DFO,即∠EOF=∠BEO+∠DFO.(2)∠EOP+∠PFC=∠BEO+∠OPF.理由如下:分别过点O,P作OM∥AB,PN∥CD,如图②.∵AB∥CD,∴OM∥PN∥AB∥CD,∴∠1=∠BEO,∠2=∠3,∠4=∠PFC,∴∠1+∠2+∠PFC=∠BEO+∠3+∠4,即∠EOP+∠PFC=∠BEO+∠OPF.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档