解题技巧专题:平行线中作辅助线的方法
初中数学作辅助线的方法
初中数学作辅助线的方法在数学中,辅助线是指在解题过程中,为了更加清晰地理解和解答问题,而额外添加的辅助线条。
辅助线能够帮助我们识别几何形状的性质、简化题目、发现问题的特点,进而解决问题。
下面将介绍一些初中数学中常用的辅助线的方法。
1.直线的辅助线:1.1利用等角性质:当一道题目中出现两条或多条直线之间存在相等角度的关系时,可以通过画一条平行于其中一条直线的辅助线,从而使问题更加清晰。
例如,当一道题目中有两条平行线上辅助线之间的交角等于已知夹角时,我们可以通过画一条与两条线垂直的辅助线,从而找到问题的解决方法。
1.2利用中点性质:当一道题目中出现一个直线段上存在中点的情况时,可以通过连接这个中点和其它的点,并利用中点将辅助线分成两等分的方式,简化问题。
例如,当一道题目中需要证明一个线段平分另一个线段时,可以通过在两个线段的中点之间画一条辅助线,从而将问题转化为证明两个等腰三角形。
2.圆的辅助线:2.1利用相切性质:当一道题目中出现一个圆和另一个圆间存在相切的情况时,可以通过在两个圆的相切点处引出切线,并连接相切点和圆心的辅助线来简化问题。
例如,当一道题目中有两个圆相切于一个点,需要求证两个圆的半径之比时,可以通过连接两个圆心之间的辅助线,并利用切线及其垂直性质来求解。
2.2利用内接性质:当一道题目中出现一个圆内接于一个图形的情况时,可以通过在圆和图形的交点处引出辅助线,并利用内接四边形的特点来简化问题。
例如,当一道题目中有一个圆内切于一个正方形,需要证明半径与正方形边长之比时,可以通过连接正方形的对角线并利用内接四边形的性质来证明。
3.三角形的辅助线:3.1利用中位线性质:当一道题目中有一个三角形的中位线时,可以通过连接三角形的中位线两端点与对应边上其他点的辅助线,来简化问题。
例如,当一道题目中需要证明两个三角形形状相似时,可以通过连接两个三角形的中位线,然后利用垂直性质来证明。
3.2利用高线性质:当一道题目中有一个三角形的高线时,可以通过连接三角形的高线两端点与对应边上其他点的辅助线,来简化问题。
平行线中常见作辅助线的技巧的九种类型
( 2 ) 如 图 ① , 在 AB ∥ DE 的 条 件 下 , 你 能 得 出 ∠ B , ∠BCD,∠D之间的数量关系吗?请说明理由. 解:∠B+∠BCD+∠D=360°.理由如下: 因为CF∥AB,所以∠B+∠BCF=180°. 因为AB∥DE,所以CF∥DE. 所以∠FCD+∠D=180°. 所以∠B+∠BCF+∠FCD+∠D=180°+ 180°,即∠B+∠BCD+∠D=360°.
6.如图,AB∥DE,则∠BCD,∠B,∠D有何关系?为什么?
解:∠BCD=∠B-∠D.理由如下: 如图,过点C作CF∥AB,所以∠B=∠BCF. 因为AB∥DE,CF∥AB,所以CF∥DE. 所以∠DCF=∠D.所以∠B-∠D=∠BCF-∠DCF. 因为∠BCD=∠BCF-∠DCF, 所以∠BCD=∠B-∠D.
解:AB∥CD.理由如下: 如图,连接 BD. 在三角形 BDE 中,∠1+∠2+∠E=180°. 因为∠E=∠3+∠4, 所以∠1+∠2+∠3+∠4=180°, 即∠ABD+∠CDB=180°. 所以 AB∥CD.
2.【2020·攀枝花】如图,平行线AB,CD被直线EF所截, 过点B作BG⊥EF于点G,已知∠1=50°,则∠B= ( C) A.20° B.30° C.40° D.50°
BS版平行线中常见作辅助线的技巧的九种
类型
提示:点击 进入习题
1 见习题 2C 3 见习题 4 见习题
5 见习题 6 见习题 7 见习题 8 见习题 9 见习题
答案显示
1.如图,∠E=∠B+∠D,猜想AB与CD有怎样的位 置关系,并说明理由.
【点拨】本题可通过连接 B,D 两点构造截线,进而利用平行线 的判定说明 AB∥CD.
4 . ( 1 ) 如 图 ① , 若 AB ∥ DE , ∠ B = 135° , ∠ D = 145°,求∠BCD的度数.
平行线中添辅助线的方法
平行线中添辅助线的方法在几何学中,平行线是指在同一个平面内,永远不会相交的线。
平行线可以用于解决许多几何问题。
有时,为了更好地理解和解决问题,我们可能需要在已知的平行线中添加辅助线。
这篇文章将介绍一些经常在平行线中添加辅助线的方法,以及如何利用这些辅助线解决几何问题。
方法一:创建平行线之间的等距线段这是最常见的方法之一,可以通过创建平行线之间的等距线段来添加辅助线。
这个方法可以在几何证明中使用,以创建所需的形状或角度。
下面是一个例子:假设有两个平行线AB和CD,在这两条平行线上选择两个等距点E和F。
然后,通过连接EF,你就创建了一个辅助线,使得EF平行于AB和CD。
这样,你就可以利用这个平行四边形来证明或解决其他几何问题。
方法二:使用交叉线段这个方法涉及到在平行线上选择一个点,并通过它绘制一条与其他平行线相交的线段。
这种方法通常用于证明几何性质。
例如,假设有两个平行线AB和CD,我们可以在AB上选择一个点E,并通过它绘制一条线段EF与CD相交。
然后,通过观察EF与AB的关系,可以证明一些三角形的性质或者其他几何关系。
方法三:利用平行线之间的相似三角形利用平行线之间的相似三角形是另一种常用的方法。
通过观察平行线和与它们相交的第三条线,可以找到相似的三角形。
然后,利用这些相似三角形的性质来解决几何问题。
例如,假设有两个平行线AB和CD,以及一条与它们相交的第三条线EF。
通过观察,可以发现三角形ADE与三角形BCF相似。
这意味着可以使用相似三角形的性质来计算未知角度或线段的长度。
方法四:利用中位线和对角线这个方法通常涉及到在平行线形成的平行四边形中绘制中位线或对角线。
中位线是连接平行四边形两对相对顶点的线段,对角线是连接两对非相邻顶点的线段。
这些辅助线可以帮助我们找到形状的性质,或计算线段的长度。
例如,假设有一个平行四边形ABCD,你可以通过绘制对角线AC来创建两个互相重叠的三角形ABC和ADC。
通过观察这些三角形的性质,可以得出许多结论,例如它们的面积相等或角度相等。
最新湘教版七年级数学下册 解题技巧专题:平行线中作辅助线的方法
解题技巧专题:平行线中作辅助线的方法◆类型一含一个拐点的平行线问题【方法17】1.(天门中考)如图,将一块含有60°角的直角三角板的两个顶点放在两条平行的直线a,b上,如果∠2=50°,那么∠1的度数为()A.10°B.20°C.30°D.40°第1题图第2题图2.如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的度数为()A.20°B.30°C.40°D.70°3.(金华中考)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是________.第3题图第4题图4.如图,AB∥CD,∠A=120°,∠1=70°,则∠D的度数为________.5.小柯同学平时学习善于自己动手操作,以加深对知识的理解和掌握.学习了相交线与平行线的知识后,他又探索起来:如图,按虚线剪去长方形纸片的相邻两角,并使∠1=115°,AB⊥CB于B,那么∠2的度数是多少呢?请你帮他计算出来.◆类型二含多个拐点的平行线问题【方法17】6.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=()A.30°B.35°C.36°D.40°第6题图第7题图7.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=________.8.如图,如果AB∥CD,则∠α,∠β,∠γ之间的关系为______________.第8题图9.★如图①,AB∥CD,EOF是直线AB,CD间的一条折线.(1)试说明:∠EOF=∠BEO+∠DFO;(2)如果将平行线间的1个拐点改为2个拐点,如图②,则∠BEO,∠EOP,∠OPF,∠PFC 之间会满足怎样的数量关系,请说明理由.参考答案与解析1.A2.B解析:如图,过C作CF∥DE,∴∠CDE+∠DCF=180°.∵∠CDE=140°,∴∠DCF =40°.∵AB∥DE,∴CF∥AB,∴∠FCB=∠ABC=70°,∴∠BCD=70°-40°=30°.3.80° 4.50°5.解:过点B向左作BE∥AD.∵AD∥CF,∴AD∥BE∥CF,∴∠1+∠ABE=180°,∠2+∠CBE=180°,∴∠1+∠2+∠ABC=360°.∵∠1=115°,∠ABC=90°,∴∠2=360°-∠1-∠ABC=155°.6.A解析:如图,作AC∥l1,BD∥l2,∴∠1=∠3,∠2=∠4.∵l1∥l2,∴AC∥BD,∴∠CAB+∠ABD=180°,∴∠3+∠4=125°+85°-180°=30°,∴∠1+∠2=30°.7.140°解析:如图,延长AE交l2于点B.∵l1∥l2,∴∠3=∠1=40°.∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°-∠3=180°-40°=140°.8.∠α+∠β-∠γ=180°解析:如图,过点E作EF∥AB,∴∠α+∠AEF=180°.∵AB∥CD,∴EF∥CD,∴∠FED=∠γ,∴∠AEF=∠β-∠FED=∠β-∠γ,∴∠α+∠β-∠γ=180°.9.解:(1)过点O作OM∥AB,如图①,∴∠1=∠BEO.∵AB∥CD,∴OM∥CD,∴∠2=∠DFO,∴∠1+∠2=∠BEO+∠DFO,即∠EOF=∠BEO+∠DFO.(2)∠EOP+∠PFC=∠BEO+∠OPF.理由如下:分别过点O,P作OM∥AB,PN∥CD,如图②.∵AB∥CD,∴OM∥PN∥AB∥CD,∴∠1=∠BEO,∠2=∠3,∠4=∠PFC,∴∠1+∠2+∠PFC=∠BEO+∠3+∠4,即∠EOP+∠PFC=∠BEO+∠OPF.。
人教版七年级数学下册解题技巧专题
人教版七年级数学下册解题技巧专题目录:目录:【专题一】平行线中作辅助线的方法【专题一】平行线中作辅助线的方法【专题二】相交线与平行线中的思想方法【专题三】开方运算及无理数判断中的易错题【专题四】平面直角坐标系中的图形面积【专题五】平面直角坐标系中的变化规律【专题六】解二元一次方程组【专题六】解二元一次方程组【专题七】一元一次不等式(组)与学科内知识的综合【专题八】一元一次不等式(组)中含字母系数的问题【专题一】平行线中作辅助线的方法——形成思维定式,快速解题◆类型一类型一 含一个拐点的平行线问题含一个拐点的平行线问题 1.(2017·南充中考)如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放.若∠1=58°,则∠2的度数为( ) A .30°B .32°C .42°D .58°第1题图 第2题图题图2.(2017·潍坊中考)如图,∠BCD =90°,AB ∥DE ,则∠α与∠β满足( ) A .∠α+∠β=180°B .∠β-∠α=90°C .∠β=3∠αD .∠α+∠β=90° 3.阅读下列解题过程,然后解答后面的问题.如图①,已知AB ∥CD ,∠B =35°,∠D =32°,求∠BED 的度数.的度数. 解:过E 作EF ∥AB .∵AB ∥CD ,∴CD ∥EF .∵AB ∥EF ,∴∠1=∠B =35°35°..又∵CD ∥EF ,∴∠2=∠D =32°,∴∠BED =∠1+∠2=35°+32°=67°67°. . 如图②、如图②、图③,图③,图③,是明明设计的智力拼图玩具的一部分,是明明设计的智力拼图玩具的一部分,是明明设计的智力拼图玩具的一部分,现在明明遇到两个问现在明明遇到两个问题,请你帮他解决.题,请你帮他解决.(1)如图②,已知∠D =30°,∠ACD =65°,为了保证AB ∥DE ,∠A 应多大?应多大? (2)如图③,要使GP ∥HQ ,则∠G ,∠GFH ,∠H 之间有什么关系?之间有什么关系?◆类型二类型二 含多个拐点的平行线问题含多个拐点的平行线问题4.如图,已知AB ∥DE ,∠ABC =70°,∠CDE =140°,则∠BCD 的大小为( ) A .20°B .30°C .40°D .70°第4题图 第5题图题图5.如图,直线l 1∥l 2,∠α=∠β,∠1=40°,则∠2的度数为________. 6.如图,给出下列三个论断:①∠B +∠D =180°;②AB ∥CD ;③BC ∥DE .请你以其中两个论断作为已知条件,请你以其中两个论断作为已知条件,填入“已知”栏中,填入“已知”栏中,以剩余一个论断作为结论,填入“结论”栏中,使之成为一道由已知可得到结论的题目,并解答该题.已知:______________,结论:______________. 解:解:7.如图①,AB ∥CD ,EOF 是直线AB ,CD 间的一条折线.间的一条折线. (1)试说明:∠EOF =∠BEO +∠DFO ;(2)如果将折一次改为折两次,如图②,则∠BEO ,∠EOP ,∠OPF ,∠PFC 之间会满足怎样的数量关系?并说明理由.【专题二】相交线与平行线中的思想方法——明确解题思想,体会便捷渠道◆类型一方程思想类型一 方程思想1.如图,直线AB,CD相交于点O,∠AOC=60°,OE把∠BOD分成两部分,且∠BOE∶∠EOD=1∶2,则∠AOE的度数为() A.180°B.160°C.140°D.120°题图第1题图第2题图2.(2017·无棣县期末)如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠EOD=4∶1,则∠AOF的度数为________.3.如图,已知FC∥AB∥DE,∠α∶∠D∶∠B=2∶3∶4.求∠α,∠D,∠B 的度数.的度数.4.(2017·启东市期末)如图,AD∥BC,BE平分∠ABC交AD于点E,BD平分∠EBC. (1)若∠DBC=30°,求∠A的度数;的度数;(2)若点F在线段AE上,且7∠DBC-2∠ABF=180°,请问图中是否存在与∠DFB相等的角?若存在,请写出这个角,并说明理由;若不存在,请说明理由.由.◆类型二分类讨论思想类型二 分类讨论思想5.若∠α与∠β的两边分别平行,∠α比∠β的3倍少36°,则∠α的度数是() A.18°B.126°C.18°或126°D.以上都不对.以上都不对6.(2017·玄武区期末)在直线MN上取一点P,过点P作射线P A、PB.若P A⊥PB,MPA A=40°,则∠NPB的度数是________________.当∠MP7.(2017·江干区一模)一副直角三角尺按如图①所示方式叠放,现将含45°角的三角尺ADE固定不动,将含30°角的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图②,当∠BAD=15°时,BC∥DE,则180°))其他所有可能符合条件的度数为________________.∠BAD(0°<∠BAD<180°8.如图,已知直线l1∥l2,直线l3交l1于C点,交l2于D点,P是线段CD 上的一个动点.当P在直线CD上运动时,请你探究∠1,∠2,∠3之间的关系.之间的关系.第9题图题图第10题图。
第3讲 平行线辅助线(学生版)
第3讲平行线辅助线一、知识回顾:在解决平行线的问题时,当无法直接得到角的关系或两条线之间的位置关系时,通常借助辅助线来帮助解答,如何作辅助线需根据已知条件确定,辅助线的添加既可以产生新的条件,又能将题目中原有的条件联系在一起.一、加截线(连接两点或延长线段)1.如图,已知AB∥CD,∠ABF=∠DCE.∠BFE与∠FEC有何关系?并说明理由.(第1题)【解析】:∠BFE=∠FEC.理由一:连接BC,如图①.∵AB∥CD,∴∠ABC=∠BCD(两直线平行,内错角相等).又∵∠ABF=∠DCE,∴∠ABC-∠ABF=∠BCD-∠DCE,即∠FBC=∠ECB.∴BF∥CE(内错角相等,两直线平行).∴∠BFE=∠FEC(两直线平行,内错角相等).(第1题)理由二:延长AB,CE相交于点G,如图②.∵AB∥CD,∴AG∥CD.∴∠DCE=∠G(两直线平行,内错角相等).又∵∠ABF=∠DCE,∴∠ABF=∠G.∴BF∥CG(同位角相等,两直线平行).∴∠BFE=∠FEC(两直线平行,内错角相等).二、过“拐点”作平行线a.“”形图2.如图,AB∥CD,P为AB,CD之间的一点,已知∠1=32°,∠2=25°,求∠BPC的度数.(第2题)【解析】:方法一:过点P作射线PN∥AB,如图①.∵AB∥CD,∴PN∥CD.∴∠4=∠2=25°.∵PN∥AB,∴∠3=∠1=32°.∴∠BPC=∠3+∠4=57°.(第2题)方法二:过点P作射线PM∥AB,如图②.∵AB∥CD,∴PM∥CD.∴∠4=180°-∠2=180°-25°=155°.∵AB∥PM,∴∠3=180°-∠1=180°-32°=148°.∴∠BPC=360°-∠3-∠4=360°-148°-155°=57°. 方法三:连接BC,略。
平行线中添辅助线的方法
平行线中添辅助线的方法平行线中常见的添辅助线的方法:(1) 在平行线内(或外)一点作直线的平行线;(2) 加截线(连接两点、延长线段相交)例:探究:(1) 、如图1,若AB//CD ,则/ B+ / D= / E ,你能说明为什么吗?(2) 、反之,若/ B+ / D= / E ,直线AB 与CD 有什么位置关系?请证明(3) 、若将点E 移至图2所示位置,此时之间有什么关系?请证明。
(4) 、若将点E 移至图3所示位置,情况又如何?(5) 、若将点E 移至图4所示位置,情况又如何?(6) 、在图5中,AB//CD ,/ B+ / D+ / F 与/ E+ / G 又有何关系?平行线拓展延伸题、填空题BDA 、10° B 、15° C 、20° A L ________ ~B A —-------------------- B \E ZP C z f --------------------— — C D CD图1图2 1 如图,已知 AB // CD ,若/ A=20。
,/ E=35°,则/ C 等于____________2、如图,I 1//I 2,/ 1=120°,/ 2=100°,则/ 3= ________________ 。
4、如图,AB // CD , 1 50°, 2 110°,则 3 ______________ 。
6、如图,已知 AB // EF ,/ BAC=p ,/ ACD=x ,/ CDE=y ,/ DEF=q,用 p 、q 、 y 来表示x 得 ___________________________ 。
、选择题如图1, AB / CD ,且/BAP=60° —a ,Z APC=45° + a ,2、 如图2, AB//CD ,且 A 25 , C 45,贝U E 的度数是(A. 60B. 70C. 110D. 80 3、如图3,已知AB // CD ,则角a 、B 、丫之间的关系为( )BD/ PCD=30°—a ,贝U a (),证明:BC丄CD。
初中 几何 辅助线 思路
初中几何辅助线思路
在初中几何中,当我们遇到一些看似复杂的问题时,常常需要添加辅助线来帮助我们解决问题。
以下是一些常见的添加辅助线的思路:
1. 构造中点:通过构造中点,我们可以利用中点定理来解决问题。
中点定理告诉我们,如果一条线段的中点被找到,那么可以通过这条中点作一条垂线或平行线,将问题简化为一个更简单的问题。
2. 延长或截取:在某些情况下,通过延长或截取线段,我们可以使图形的形状更加明显,从而更容易找到解题思路。
3. 平行线构造:平行线的性质可以为我们提供很多有用的信息。
通过构造平行线,我们可以利用平行线的性质来解决问题。
4. 作垂线:在处理与矩形、菱形等四边形有关的问题时,我们可以通过作垂线来构造直角三角形,从而利用勾股定理等三角函数性质来解决问题。
5. 利用30度角:在一些与30度角有关的问题中,我们可以构造一条过30度角的线段,从而利用30度角的一些特殊性质来解决问题。
6. 连接两点:连接两点构造一条线段,可以通过这条线段找到一些与问题相关的信息,从而更容易解决问题。
7. 作平行四边形:通过作平行四边形,我们可以利用平行四边形的性质来解决问题。
8、在添加辅助线时,我们需要注意以下几点:
要明确添加辅助线的目的,不要为了添加而添加。
要根据题目的条件和要求,选择合适的方法添加辅助线。
在添加辅助线后,要仔细分析图形的形状和性质,从而找到解决问题的关键点。
总之,在初中几何中添加辅助线是一项非常重要的技能。
通过不断练习和掌握常见的辅助线方法,我们可以更好地解决各种几何问题,提高自己的数学水平。
湘教版 七年级数学下册专题训练(附答案)
湘教版七年级数学下册专题训练(附答案) 湘教版七年级数学下册专题训练(附答案解析)本套专题训练包含6个训练专题。
类比归纳专题:二元一次方程组的解法选择类比归纳专题:因式分解的方法思想方法专题:相交线与平行线中的思想方法解题技巧专题:方程组中较复杂的实际问题解题技巧专题:平行线中作辅助线的方法解题技巧专题:整式乘法及乘法公式中公式的巧用类比归纳专题:二元一次方程组的解法选择——学会选择最优的解法类型一解未知数系数含1或-1的方程组1.(湘潭期末)方程组{x-1=,x+1=y}的解是()。
A。
{x=1,y=2}。
B。
{x=1,y=-2}C。
{x=2,y=1}。
D。
{x=,y=-1}改写:解如下方程组{x-1=0,x+1=y}。
A。
{x=1,y=2}。
B。
{x=1,y=-2}C。
{x=2,y=1}。
D。
{x=,y=-1}2.(冷水江期末)方程组{ x+y=4,2x-y=2 }的解是________。
改写:解如下方程组{ x+y=4,2x-y=2 }。
3.解方程组:1) { x-y=2,x+2y=5 };2) { 2x+y=3,3x-5y=11 }。
改写:解如下方程组:1) { x-y=2,x+2y=5 };2) { 2x+y=3,3x-5y=11 }。
4.下面是老师在XXX的数学作业本上截取的部分内容:解方程组{ 2x-y=3,x+y=-12 }。
解:将方程2x-y=3变形,得y=2x-3③,……第一步把方程③代入方程2x-y=3,得2x-(2x-3)=3,……第二步整理,得3=3,……第三步因为x可以取任意实数,所以原方程组有无数个解……第四步问题:1)这种解方程组的方法叫“代入法”.XXX的解法正确吗?若不正确,错在哪一步?请你指出错误的原因,求出正确的解;2)请用不同于(1)中的方法解这个方程组。
改写:解方程组{ 2x-y=3,x+y=-12 }。
解:1)这种解方程组的方法叫“代入法”.XXX的解法正确。
初中数学常见辅助线做法
初中数学常用辅助线一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往就是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线就是个基本图形:当几何中出现平行线时添辅助线的关键就是添与二条平行线都相交的等第三条直线(2)等腰三角形就是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段就是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段就是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点就是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
几何证明题辅助线的技巧和方法
几何证明题辅助线的技巧和方法
在解决几何证明题时,辅助线是一种常用且有效的工具。
它可以帮助我们发现
隐藏的几何关系,简化证明过程,并提供新的角度来解决问题。
以下是几种常见的辅助线技巧和方法,可用于解决几何证明题。
1. 平行线辅助线法:当题目涉及到平行线时,我们可以通过引入一条平行线作
为辅助线,从而构建出平行线之间的相似三角形或平行四边形。
这样,我们可以得出相应的角度和边的关系,进而证明几何问题。
2. 三角形中线辅助线法:三角形的中线是连接一个顶点与对应中点的线段。
通
过引入三角形中线作为辅助线,我们可以将原问题转化为直角三角形的性质或平行线的性质。
这种方法常常用于证明三角形的等边、等腰等性质。
3. 垂直线辅助线法:当题目涉及到垂直线时,我们可以通过引入一条垂直线作
为辅助线,从而构建出垂直角、直角三角形或平行四边形。
通过利用垂直线的性质,我们可以得到角度、边长等关系,进而解决问题。
4. 内切圆辅助线法:对于一个给定的三角形,可以通过引入其内切圆作为辅助线,来简化证明过程。
内切圆与三角形的的边相切于三个点,这些点可以提供有用的几何关系,如正方形的性质、垂直线的性质等。
5. 类似三角形辅助线法:当计算角度或证明形状相似时,引入类似三角形作为
辅助线可以大大简化证明过程。
通过找到两个或多个类似的三角形,我们可以得到两个三角形的边长比例,并据此解决问题。
总之,辅助线是几何证明中的有效工具,它们可以帮助我们发现关键的几何关系,简化证明过程,并提供新的角度来解决问题。
通过灵活运用各种辅助线技巧和方法,我们可以更加轻松地解决各种几何证明题。
初中数学做辅助线的方法总结
初中数学做辅助线的方法总结初中数学中,辅助线是解题的一种重要方法,可以帮助我们清晰地理解题意和问题,并找到解题的思路。
下面是关于初中数学做辅助线的方法总结。
一、直线法1.作垂线:当题目中出现垂直关系时,我们可以通过作垂线来解决问题。
例如,求两个直线的垂直平分线、两个线段的中垂线等。
2.作平行线:当需要证明两条直线平行时,可以通过作一条与已知直线平行的辅助线,再应用平行线的性质进行证明。
二、角度法1.作角平分线:当需要求一个角平分线时,可以通过作一个角的辅助线将该角分成两个相等的角,进而求出角平分线。
2.作等角:当题目中需要证明两个角相等时,可以通过作一条等角的辅助线,将两个角变成等角,然后再应用等角的性质进行证明。
三、三角形法1.作高:当需要求一个三角形的高时,可以通过作条辅助线,形成一个矩形或直角三角形,从而利用高的性质求解。
2.作中线:当需要求一个三角形的中线时,可以通过作条辅助线,形成一个平行四边形或直角三角形,从而利用中线的性质求解。
3.作角平分线:当需要求一个三角形的角平分线时,可以通过作条辅助线,将该角分成两个相等的角,进而求出角平分线。
四、平行四边形法1.作对角线:当题目中出现平行四边形时,可以通过作对角线来将该平行四边形分成两个相等的三角形,进而利用三角形的性质进行求解。
五、轴对称法1.关于对称轴作对称点:当题目中出现轴对称图形时,可以通过作关于对称轴的对称点,将原图形和对称点所成的线段连结起来,形成对称图形,从而利用对称性进行求解。
六、相似三角形法1.作比例:当需要求解两个三角形相似的比例时,可以通过作条辅助线,形成相似三角形,并利用相似三角形的性质求解。
七、图形拓展法1.分割图形:当需要对一个复杂的图形进行分析时,可以通过作一些辅助线,将复杂图形分割成若干个简单的图形,进而分别求解。
总之,在初中数学中,辅助线是解题的有力工具,可以帮助我们合理分析题目,找到解题的思路,解决数学问题。
人教版七年级数学下册专题训练(含答案与解析)
人教版七年级数学下册专题训练(含参考答案与解析)说明:本套训练题包含以下7个专题解题技巧专题:一元一次不等式(组)中含字母系数的问题 考点综合专题:一元一次不等式(组)与学科内知识的综合 难点探究专题:平面直角坐标系中的变化规律 解题技巧专题:平面直角坐标系中的图形面积 解题技巧专题:平行线中作辅助线的方法 思想方法专题:相交线与平行线中的思想方法 解题技巧专题:解二元一次方程组解题技巧专题:一元一次不等式(组)中含字母系数的问题——类比不同条件,体会异同◆类型一 已知解集求字母系数的值或取值范围1.(2017·毕节中考)关于x 的一元一次不等式m -2x3≤-2的解集为x ≥4,则m 的值为( )A.14B.7C.-2D.22.(2017·金华中考)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -1>3(x -2),x <m 的解集是x <5,则m 的取值范围是【易错11】( )A.m ≥5B.m >5C.m ≤5D.m <53.已知关于x 的不等式组⎩⎪⎨⎪⎧x ≥-a -1①,-x ≥-b ②的解集在数轴上表示如图所示,则a b 的值为 .4.若不等式组⎩⎪⎨⎪⎧2x -a <1,x -2b >3的解集为-1<x <1,求代数式(b -1)a +1的值.◆类型二 已知整数解的情况求字母系数的取值范围5.关于x 的不等式x -b >0恰有两个负整数解,则b 的取值范围是( ) A.-3<b <-2 B.-3<b ≤-2 C.-3≤b ≤-2 D.-3≤b <-26.对于任意实数m ,n ,定义一种新运算m ※n =mn -m -n +3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a <2※x <7,且解集中有两个整数解,则a 的取值范围是 W.7.(2017·黄石中考)已知关于x 的不等式组⎩⎪⎨⎪⎧5x +1>3(x -1)①,12x ≤8-32x +2a ②恰好有两个整数解,求实数a 的取值范围.◆类型三 已知不等式组有、无解求字母系数的取值范围8.若关于x 的不等式组⎩⎪⎨⎪⎧5-3x ≥0,x -m ≥0有实数解,则实数m 的取值范围是( )A.m ≤53B.m <53C.m >53D.m ≥539.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥0,5-2x >1无解,则实数a 的取值范围是 .10.若关于x 的不等式组⎩⎪⎨⎪⎧x +1<a ①,3x +5>x -7②有解,求实数a 的取值范围.【易错11】参考答案与解析1.D 2.A3.1 解析:由不等式②得x ≤b ,由数轴可得,原不等式组的解集是-2≤x ≤3,∴⎩⎪⎨⎪⎧-a -1=-2,b =3,解得⎩⎪⎨⎪⎧a =1,b =3,∴a b =13=1. 4.解:⎩⎪⎨⎪⎧2x -a <1①,x -2b >3②,解不等式①得x <a +12 .解不等式②得x >2b +3.根据题意得⎩⎪⎨⎪⎧a +12=1,2b +3=-1,解得⎩⎪⎨⎪⎧a =1,b =-2,则(b -1)a +1=(-3)2=9. 5.D6.4≤a <5 解析:根据题意得2※x =2x -2-x +3=x +1.∴a <x +1<7,即a -1<x <6.又∵解集中有两个整数解,∴3≤a -1<4,∴a 的取值范围为4≤a <5.7.解:解不等式①得x >-2,解不等式②得x ≤4+a .∴不等式组的解集是-2<x ≤4+a .∵不等式组恰好有两个整数解,∴0≤4+a <1,解得-4≤a <-3.8.A 9.a ≥210.解:解不等式①得x <a -1.解不等式②得x >-6.∵不等式组有解,∴-6<a -1,∴a >-5.考点综合专题:一元一次不等式(组)与学科内知识的综合——综合运用,全面提升◆类型一 不等式(组)与平面直角坐标系1.(2017·江岸区模拟)已知点P (2a +1,1-a )在第一象限,则a 的取值范围在数轴上表示正确的是( )2.(2017·贵港中考)在平面直角坐标系中,点P (m -3,4-2m )不可能在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知点M (3a -9,1-a )在第三象限,且它的横、纵坐标都是整数,则a 的值是 W.4.在平面直角坐标系中,点A (1,2a +3)在第一象限.(1)若点A 到x 轴的距离与到y 轴的距离相等,求a 的值; (2)若点A 到x 轴的距离小于到y 轴的距离,求a 的取值范围.◆类型二 不等式(组)与方程(组)的综合5.(2017·宜宾中考)若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x -y =2m -1,x +3y =3的解满足x +y >0,则m 的取值范围是 W.6.(2017·南城县模拟)已知不等式组⎩⎪⎨⎪⎧x +1<2a ,x -b >1的解集是2<x <3,则关于x 的方程ax+b =0的解为 W.7.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =2m +1①,x -2y =4m -3②的解是一对正数.(1)试确定m 的取值范围;(2)化简|3m -1|+|m -2|.◆类型三 不等式(组)与新定义型问题的综合8.(2017·东胜区二模)我们定义⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,例如⎪⎪⎪⎪⎪⎪2345=2×5-3×4=10-12=-2,则不等式组1<⎪⎪⎪⎪⎪⎪1x 34<3的解集是 W. 9.(2017·龙岩模拟)定义新运算“⊕”如下:当a >b 时,a ⊕b =ab +b ;当a <b 时,a ⊕b =ab -b .若3⊕(x +2)>0,则x 的取值范围是( )A.-1<x <1或x <-2B.x <-2或1<x <2C.-2<x <1或x >1D.x <-2或x >210.(2017·杭州模拟)阅读以下材料:对于三个数a ,b ,c ,用M {a ,b ,c }表示这三个数的平均数,用min{a ,b ,c }表示这三个数中最小的数.例如:M {-1,2,3}=-1+2+33=43;min{-1,2,3}=-1;min{-1,2,a }=⎩⎪⎨⎪⎧a (a ≤-1),-1(a >-1).(1)填空:若min{2,2x +2,4-2x }=2,则x 的取值范围是 ; (2)如果M {2,x +1,2x }=min{2,x +1,2x },求x 的值.参考答案与解析1.C 2.A3.2 解析:由题意得⎩⎪⎨⎪⎧3a -9<0,1-a <0,解得1<a <3.∵横、纵坐标都是整数,∴a 必为整数,∴a =2.4.解:(1)∵点A 到x 轴的距离与到y 轴的距离相等,且点A 在第一象限,∴2a +3=1,解得a =-1.(2)∵点A 到x 轴的距离小于到y 轴的距离,点A 在第一象限,∴⎩⎪⎨⎪⎧2a +3>0,2a +3<1,解得-32<a <-1.5.m >-1 6.x =-127.解:(1)①+②,得2x =6m -2,x =3m -1.①-②得4y =-2m +4,则y =-12m +1.依题意有⎩⎪⎨⎪⎧3m -1>0,-12m +1>0,解得13<m <2.(2)由(1)知13<m <2,∴3m -1>0,m -2<0,∴|3m -1|+|m -2|=3m -1+[-(m -2)]=3m -1-m +2=2m +1.8.13<x <1 9.C 解析:当3>x +2,即x <1时,由题意得3(x +2)+x +2>0,解得x >-2,∴-2<x <1;当3<x +2,即x >1时,由题意得3(x +2)-(x +2)>0,解得x >-2,∴x >1.综上所述,x 的取值范围是-2<x <1或x >1,故选C.10.解:(1)0≤x ≤1 解析:由题意得⎩⎪⎨⎪⎧2x +2≥2,4-2x ≥2,解得0≤x ≤1.(2)方法一:M {2,x +1,2x }=2+x +1+2x3=x +1.当x ≥1时,则min{2,x +1,2x }=2,则x +1=2,∴x =1.当x <1时,则min{2,x +1,2x }=2x ,则x +1=2x ,∴x =1(舍去).∴x =1.方法二:∵M {2,x +1,2x }=2+x +1+2x3=x +1=min{2,x +1,2x },∴⎩⎪⎨⎪⎧2≥x +1,2x ≥x +1,∴⎩⎪⎨⎪⎧x ≤1,x ≥1,∴x =1.难点探究专题:平面直角坐标系中的变化规律——掌握不同规律,以不变应万变◆类型一 沿坐标轴方向运动的点的坐标规律探究1.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2016次运动后,动点P 的坐标是________.2.(2017·阿坝州中考)如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位,依次得到点P 1(0,1),P 2(1,1),P 3(1,0),P 4(1,-1),P 5(2,-1),P 6(2,0),…,则点P 2017的坐标是________.◆类型二 绕原点呈“回”字形运动的点的坐标规律探究3.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.如图,由里向外数第2个正方形开始,分别是由第1个正方形各顶点的横坐标和纵坐标都乘2,3,…得到的,请你观察图形,猜想由里向外第10个正方形四条边上的整点个数共有( )A .10个B .20个C .40个D .80个第3题图 第4题图4.(2017·温州中考)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧P 1P 2︵,P 2P 3︵,P 3P 4︵,…得到斐波那契螺旋线,然后顺次连接P 1P 2,P 2P 3,P 3P 4,…得到螺旋折线(如图),已知点P 1(0,1),P 2(-1,0),P 3(0,-1),则该折线上的点P 9的坐标为( )A .(-6,24)B .(-6,25)C .(-5,24)D .(-5,25)◆类型三 图形变化中的点的坐标探究5.(2017·河南模拟)如图,点A(2,0),B(0,2),将扇形AOB沿x轴正方向做无滑动的滚动,在滚动过程中点O的对应点依次记为点O1,点O2,点O3…,则O10的坐标是()A.(16+4π,0) B.(14+4π,2)C.(14+3π,2) D.(12+3π,0)6.如图,在直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1变换成三角形OA2B2,第三次将三角形OA2B2变换成三角形OA3B3.已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换后的三角形有何变化,找出规律,按此变换规律再将三角形OA3B3变换成三角形OA4B4,则A4的坐标是__________,B4的坐标是__________;(2)若按(1)中找到的规律将三角形OAB进行了n次变换,得到三角形OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测点A n的坐标是__________,点B n的坐标是__________.参考答案与解析1.(2016,0)解析:结合图象可知,当运动次数为偶数次时,P点运动到x轴上,且横坐标与运动次数相等.∵2016为偶数,∴运动2016次后,动点P的坐标是(2016,0).2.(672,1)解析:由已知得P7(2,1),P13(4,1),所以P6n+1(2n,1).因为2017÷6=336……1,所以P2017(336×2,1),即P2017(672,1).3.C解析:每个正方形四个顶点一定为整点,由里向外第n个正方形每条边上除顶点外的整点个数如下表所示:可见,第n个正方形每条边上除顶点外还有(n-1)个整点,四条边上除顶点外有4(n-1)个整点,加上4个顶点,共有4(n-1)+4=4n(个)整点.当n=10时,4n=4×10=40,即由里向外第10个正方形的四条边上共有40个整点.故选C.4.B解析:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离为21+5=26,所以P9的坐标为(-6,25),故选B.5.C6.(1)(16,3)(32,0)(2)(2n,3)(2n+1,0)解析:(1)∵A1(2,3),A2(4,3),A3(8,3),∴A4的横坐标为24=16,纵坐标为3.故点A4的坐标为(16,3).又∵B1(4,0),B2(8,0),B3(16,0),∴B4的横坐标为25=32,纵坐标为0.故点B4的坐标为(32,0).(2)由A1(2,3),A2(4,3),A3(8,3),可以发现它们各点坐标的关系为横坐标是2n,纵坐标都是3.故点A n的坐标为(2n,0).由B1(4,0),B2(8,0),B3(16,0),可以发现它们各点坐标的关系为横坐标是2n+1,纵坐标都是0.故点B n的坐标为(2n+1,0).解题技巧专题:平面直角坐标系中的图形面积——代几结合,突破面积及点的存在性问题◆类型一直接利用面积公式求图形的面积1.如图,在平面直角坐标系中,三角形ABC的面积是()A.2 B.4 C.8 D.6第1题图第2题图2.如图,在平面直角坐标系xOy中,已知A(-1,5),B(-1,0),C(-4,3),则三角形ABC的面积为________.◆类型二利用分割法求图形的面积3.如图,在平面直角坐标系中,点A(4,0),B(3,4),C(0,2),则四边形ABCO的面积为________.4.观察下图,图中每个小正方形的边长均为1,回答以下问题:【方法14】(1)写出多边形ABCDEF各个顶点的坐标;(2)线段BC,CE的位置各有什么特点?(3)求多边形ABCDEF的面积.◆类型三利用补形法求图形的面积5.在如图所示的正方形网格中,每个小正方形的边长均为1,三角形ABC的三个顶点恰好是正方形网格的格点.【方法14】(1)写出三角形ABC各顶点的坐标;(2)求出此三角形的面积.◆类型四与图形面积相关的点的存在性问题6.(2017·定州市期中)如图,A(-1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求三角形ABC的面积;(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案与解析1.B 2.1523.11 解析:过点B 作BD ⊥x 轴于D .∵A (4,0),B (3,4),C (0,2),∴OC =2,BD =4,OD =3,OA =4,∴AD =OA -OD =1,则S 四边形ABCO =S 梯形OCBD +S 三角形ABD =12×(4+2)×3+12×1×4=9+2=11. 4.解:(1)A (-2,0),B (0,-3),C (3,-3),D (4,0),E (3,3),F (0,3).(2)线段BC 平行于x 轴(或线段BC 垂直于y 轴),线段CE 垂直于x 轴(或线段CE 平行于y 轴).(3)S多边形ABCDEF =S三角形ABF +S长方形BCEF +S三角形CDE =12×(3+3)×2+3×(3+3)+12×(3+3)×1=6+18+3=27.5.解:(1)A (3,3),B (-2,-2),C (4,-3).(2)如图,分别过点A ,B ,C 作坐标轴的平行线,交点分别为D ,E ,F .S 三角形ABC =S 正方形DECF-S 三角形BEC -S 三角形ADB -S 三角形AFC =6×6-12×6×1-12×5×5-12×6×1=352.6.解:(1)点B 在点A 的右边时,-1+3=2,点B 在点A 的左边时,-1-3=-4,所以点B 的坐标为(2,0)或(-4,0).(2)S 三角形ABC =12×3×4=6.(3)存在这样的点P .设点P 到x 轴的距离为h ,则12×3h =10,解得h =203.点P 在y 轴正半轴时,P ⎝⎛⎭⎫0,203,点P 在y 轴负半轴时,P ⎝⎛⎭⎫0,-203,综上所述,点P 的坐标为⎝⎛⎭⎫0,203或⎝⎛⎭⎫0,-203.解题技巧专题:平行线中作辅助线的方法——形成思维定式,快速解题。
(完整版)初中数学添加辅助线的方法汇总
初中数学添加辅助线的方法汇总作辅助线的基本方法一:中点、中位线,延长线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。
其对称中心,因题而异,有时没有中心。
故可分“有心”和“无心”旋转两种。
四:造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。
在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。
故作歌诀:“造角、平、相似,和差积商见。
”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。
如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。
六:两圆相切、离,连心,公切线。
如条件中出现两圆相切(外切,内切),或相离(内含、夕卜离),那么,辅助线往往是连心线或内外公切线。
七:切线连直径,直角与半圆。
如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。
即切线与直径互为辅助线。
如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角一一直角为辅助线。
即直角与半圆互为辅助线。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。
湘教版七年级数学下册解题技巧专题:平行线中作辅助线的方法
解题技巧专题:平行线中作辅助线的方法◆类型一含一个拐点的平行线问题【方法17】1.(天门中考)如图,将一块含有60°角的直角三角板的两个顶点放在两条平行的直线a,b上,如果∠2=50°,那么∠1的度数为()A.10°B.20°C.30°D.40°第1题图第2题图2.如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的度数为()A.20°B.30°C.40°D.70°3.(金华中考)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是________.第3题图第4题图4.如图,AB∥CD,∠A=120°,∠1=70°,则∠D的度数为________.5.小柯同学平时学习善于自己动手操作,以加深对知识的理解和掌握.学习了相交线与平行线的知识后,他又探索起来:如图,按虚线剪去长方形纸片的相邻两角,并使∠1=115°,AB⊥CB于B,那么∠2的度数是多少呢?请你帮他计算出来.◆类型二含多个拐点的平行线问题【方法17】6.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=()A.30°B.35°C.36°D.40°第6题图第7题图7.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=________.8.如图,如果AB∥CD,则∠α,∠β,∠γ之间的关系为______________.第8题图9.★如图①,AB∥CD,EOF是直线AB,CD间的一条折线.(1)试说明:∠EOF=∠BEO+∠DFO;(2)如果将平行线间的1个拐点改为2个拐点,如图②,则∠BEO,∠EOP,∠OPF,∠PFC 之间会满足怎样的数量关系,请说明理由.参考答案与解析1.A2.B解析:如图,过C作CF∥DE,∴∠CDE+∠DCF=180°.∵∠CDE=140°,∴∠DCF =40°.∵AB∥DE,∴CF∥AB,∴∠FCB=∠ABC=70°,∴∠BCD=70°-40°=30°.3.80° 4.50°5.解:过点B向左作BE∥AD.∵AD∥CF,∴AD∥BE∥CF,∴∠1+∠ABE=180°,∠2+∠CBE=180°,∴∠1+∠2+∠ABC=360°.∵∠1=115°,∠ABC=90°,∴∠2=360°-∠1-∠ABC=155°.6.A解析:如图,作AC∥l1,BD∥l2,∴∠1=∠3,∠2=∠4.∵l1∥l2,∴AC∥BD,∴∠CAB+∠ABD=180°,∴∠3+∠4=125°+85°-180°=30°,∴∠1+∠2=30°.7.140°解析:如图,延长AE交l2于点B.∵l1∥l2,∴∠3=∠1=40°.∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°-∠3=180°-40°=140°.8.∠α+∠β-∠γ=180°解析:如图,过点E作EF∥AB,∴∠α+∠AEF=180°.∵AB∥CD,∴EF∥CD,∴∠FED=∠γ,∴∠AEF=∠β-∠FED=∠β-∠γ,∴∠α+∠β-∠γ=180°.9.解:(1)过点O作OM∥AB,如图①,∴∠1=∠BEO.∵AB∥CD,∴OM∥CD,∴∠2=∠DFO,∴∠1+∠2=∠BEO+∠DFO,即∠EOF=∠BEO+∠DFO.(2)∠EOP+∠PFC=∠BEO+∠OPF.理由如下:分别过点O,P作OM∥AB,PN∥CD,如图②.∵AB∥CD,∴OM∥PN∥AB∥CD,∴∠1=∠BEO,∠2=∠3,∠4=∠PFC,∴∠1+∠2+∠PFC=∠BEO+∠3+∠4,即∠EOP+∠PFC=∠BEO+∠OPF.。
数学作辅助线的方法
作辅助线的方法一:中点、中位线,延线,平行线.如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的.二:垂线、分角线,翻转全等连.如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生.其对称轴往往是垂线或角的平分线.三:边边若相等,旋转做实验.如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生.其对称中心,因题而异,有时没有中心.故可分“有心”和“无心”旋转两种.四:造角、平、相似,和、差、积、商见.如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关.在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移.故作歌诀:“造角、平、相似,和差积商见.”(托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦.如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦.六:两圆相切、离,连心,公切线.如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线.七:切线连直径,直角与半圆.如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线.即切线与直径互为辅助线.如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线.即直角与半圆互为辅助线.八:弧、弦、弦心距;平行、等距、弦.如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线.如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦成立.如遇平行弦,则平行线间的距离相等,所夹的弦亦相等,距离和所夹的弦都可视为辅助线,反之,亦成立.有时,圆周角,弦切角,圆心角,圆内角和圆外角也存在因果关系互相联想作辅助线.九:面积找底高,多边变三边.如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键.如遇多边形,想法割补成三角形;反之,亦成立.另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”。
人教版七年级下册 第五章 平行线中辅助线的作法 讲义
平行线中辅助线的作法辅助线在几何证明中起着重要的作用,如何添加辅助线对于几何刚入门的七年级学生来说是难点。
一、例题例1 如图,直线a∥b,∠1=45°,∠2=30°,则∠P= °.解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=75°,故答案为:75.例2 如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的值为() A.20° B.30° C.40° D.70°过点C作CG∥AB,则∠BCG=∠ABC=70°,又∵AB∥DE,∴DE∥CG∴∠CDE+∠DCG=180°,∵∠CDE=140°,∴∠DCG=40°,∴∠BCD=30°.故选B.二、练习(一)选择题1、如图,将一副三角形和一张对边平行的纸条按下列方式摆放,两个三角析的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°2、直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为( )A .60°B .50°C .40°D .30°3、如图,把一块含45°角的直角三角板的直角顶点放在直尺的—边上,如果∠1=33°,那么∠2为( )A .33°B .57°C .67°D .60°4、如图,AB ∥EF ,CD ⊥EF 于点D ,若∠ABC=40°,则∠BCD=( ) A .140° B .130° C .120° D .110°5、如图,∠BCD =90°,AB ∥DE ,则∠α与∠β满足( )A .∠α+∠β=180°B .∠β-∠α=90°C .∠β=3∠αD .∠α+∠β=90°6、学习平行线的性质后,老师给小明出了一道题:如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A 是120°,第二次拐的角∠B 是150°,第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 是多少度?请你帮小明求出( )A .120°B .130°C .140°D . 150°ABCDE α β7、如图,AB ∥CD ,有图中α,β,γ三角之间的关系是( ) A .α+β+γ=180° B .α-β+γ=180° C .α+β-γ=180° D .α+β+γ=3608、如图,∠BCD=90°,AB ∥DE ,则α与β一定满足的等式是( ) A .α+β=180°B .α+β=90°C .β=3αD .α-β=90°9、如图,直线l 1∥l 2,∠A =125°,∠B =85°,则∠1+∠2=A. 30°B. 35°C. 36°D. 40°10、如图,直线a ‖b ,直角三角形ABC 的顶点B 在直线a 上,∠C =90°,∠β=55°,则∠α的度数为( )A .o 15B .o 25C .o 35D .o 552l 1A 125° 85°B l 21(二)填空题1、如图,AB ∥EF ,CD ⊥EF ,∠BAC =50°,则∠ACD=2、如图,AB ∥CD ,则∠1、∠2、∠3的关系是3、如图,直线l 1∥l 2,∠α=∠β, ∠1=40°,则∠2= °.4、一个小区大门的栏杆如图所示,BA 垂直地面AE 于A ,CD 平行于地面AE ,那么∠ABC+∠BCD=5如图,AB ∥CD ,ED ∥BC .∠A=20°,∠C=120°,则∠AED 的度数是6如图,AB ∥CD ,⊥于C ,CF 交于B ,已知∠2=29°,则∠1的度数是2βα1l 1l 2 C32βα1l 1l 2BADE7、如图所示,AB∥CD,CE⊥CD.若∠E=20°,则∠ABE的度数为8、如图所示,一条公路修到湖边时,为了保护生态环境,需拐弯绕湖而过,如果图中的拐角∠A=150°,∠B=120°,三次拐弯后的道路CE与原来公路DA平行,则∠C=(三)解答题1、已知如图,AB∥CD,试解决下列问题:(1)∠1+∠2=(2)∠1+∠2+∠3=(3)∠1+∠2+∠3+∠4=(4)探究∠1+∠2+∠3+∠4+…+∠n=2、问题情境:如图1,AB∥CD,判断∠ABP,∠CDP,∠BPD之间的数量关系.小明的思路:如图2,过点P作PE∥AB,通过平行线性质,可得∠ABP+∠CDP+∠BPD=问题迁移:AB∥CD,直线EF分别与AB,CD交于点E,F,点P在直线EF上(点P与点E,F不重合)运动.(1)当点P在线段EF上运动时,如图3,判断∠ABP,∠CDP,∠BPD之间的数量关系,并说明理由;(2)当点P不在线段EF上运动时,(1)中的结论是否成立,若成立,请你说明理由;若不成立,请你在备用图上画出图形,并直接写出∠ABP,∠CDP,∠BPD 之间的数量关系.3、如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED、∠EAB、∠EDC的关系并说明理由.(2)拓展应用,如图2,线段FE与长方形ABCD的边AB交于点E,与边CD 交于点F.图2中①②分别是被线段FE隔开的2个区域(不含边界),P是位于以上两个区域内的一点,猜想∠PEB,∠PFC,∠EPF的关系(不要求说明理由)练习答案(一)选择题ACBBBDCBAC(二)填空题1、140°2、∠3=∠1+∠23、1404、2705、 80°6、61°7、110°8、150°(三)解答题1解:(1)∵AB∥CD,∴∠1+∠2=180°(两直线平行,同旁内角互补);(2)过点E作一条直线EF平行于AB,∵AB∥CD,∵AB∥EF,CD∥EF,∴∠1+∠AEF=180°,∠FEC+∠3=180°,∴∠1+∠2+∠3=360°;(3)过点E、F作EG、FH平行于AB,∵AB∥CD,∵AB∥EG∥FH∥CD,∴∠1+∠AEG=180°,∠GEF+∠EFH=180°,∠HFC+∠4=180°;∴∠1+∠2+∠3+∠4=540°;(4)中,根据上述规律,显然作(n-2)条辅助线,运用(n-1)次两条直线平行,同旁内角互补.即可得到n个角的和是180°(n-1).2 解:∵过点P作PE∥AB,则PE∥CD∴∠B+∠BPE=∠D+∠DPE=180°,∴∠ABP+∠CDP+∠BPD=360°,故答案为:360;,;证明:如图②,过P作PQ∥AB,∵AB∥CD,∴AB∥PQ∥CD,∴∠B=∠1,∠D=∠2,∴∠BPD=∠1+∠2=∠B+∠D;(3)不成立,关系式是:∠B-∠D=∠BPD,或∠D-∠B=∠BPD,(2)∠ABP+∠CDP=∠BPD理由:如图4,过P作PQ∥AB,∵AB∥CD,∴AB∥PQ∥CD,∴∠BPQ=∠B,∠D=∠DPQ,∴∠B-∠D=∠BPQ-∠DPQ=∠BPD,∠BPQ=∠B-∠D.如图5,同理∠D-∠B=∠BPD.3、解:(1)①过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∵∠A=30°,∠D=40°,∴∠1=∠A=30°,∠2=∠D=40°,∴∠AED=∠1+∠2=70°;②过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∵∠A=20°,∠D=60°,∴∠1=∠A=20°,∠2=∠D=60°,∴∠AED=∠1+∠2=80°;③猜想:∠AED=∠EAB+∠EDC.理由:过点E作EF∥CD,∵AB∥DC∴EF∥AB(平行于同一条直线的两直线平行),∴∠1=∠EAB,∠2=∠EDC(两直线平行,内错角相等),∴∠AED=∠1+∠2=∠EAB+∠EDC(等量代换).(2)如图2,当点P在①区域时,∵AB∥CD,∴∠BEF+∠CFE=180°,∴∠PEF+∠PFE=(∠PEB+∠PFC)-180°.∵∠PEF+∠PFE+∠EPF=180°,∴∠EPF=180°-(∠PEF+∠PFE)=180°-(∠PEB+∠PFC)+180°=360°-(∠PEB+∠PFC);当点P在区域②时,如图3所示,∵AB∥CD,∴∠BEF+∠CFE=180°,∵∠EPF+∠FEP+∠PFE=180°,∴∠EPF=∠PEB+∠PFC.。
初二数学辅助线做法技巧
初二数学辅助线做法技巧初二数学中,辅助线是一个重要的解题技巧。
通过合理地引入辅助线,可以将原本复杂的问题转化为简单的几何关系,从而更容易求解。
本文将介绍几种常见的数学问题,以及如何运用辅助线来解决。
第一种情况是平行线的性质。
在解决平行线相关问题时,我们可以通过引入辅助线来发现和利用平行线之间的特定几何关系。
例如,当我们需要证明两条线段平行时,可以先引入一条与这两条线段相交的辅助线,然后利用三角形内角和为180度的性质来得出结论。
第二种情况是相似三角形的性质。
相似三角形是初中数学中经常出现的一个概念,它们具有相等的对应角度,并且对应边长成比例。
当我们遇到相似三角形相关的问题时,可以通过引入辅助线来发现一些相似三角形之间的特殊关系。
例如,在求解相似三角形的边长比例时,可以通过引入辅助线将问题转化为两个相似三角形的边长比例相等的问题,从而简化计算。
第三种情况是垂直角的性质。
垂直角是两条相交直线所夹的角,它们的度数相等。
当我们遇到垂直角相关的问题时,可以通过引入辅助线来利用垂直角的性质。
例如,在证明两条线段垂直时,可以通过引入一条与这两条线段相交的辅助线,然后利用垂直角的性质来得出结论。
除了上述情况外,还有一些其他的问题可以通过引入辅助线来解决。
例如,在求解三角形的面积时,可以通过引入一条高线来将三角形分割为两个简单的几何图形,然后分别求解它们的面积,最后相加得到三角形的总面积。
在求解多边形的面积时,也可以通过引入一条或多条对角线来将多边形分割为若干个简单的三角形,然后分别求解它们的面积,最后相加得到多边形的总面积。
总结来说,辅助线是初二数学中常用的解题技巧之一。
通过合理地引入辅助线,我们可以将原本复杂的问题转化为简单的几何关系,从而更容易求解。
在解决平行线、相似三角形、垂直角以及求解面积等问题时,我们可以灵活运用辅助线的方法,发现和利用几何图形之间的特定关系,从而得出准确的结果。
希望通过学习和掌握辅助线的使用技巧,能够在数学学习中取得更好的成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档 用心整理
X*千里之行 始于足下
解题技巧专题:平行线中作辅助线的方法
某城市的两座高楼顶部各装有一个射灯,当光柱相交在同一个平面时,/ O
4. (2017枣庄中考)将一副三角板和一张对边平行的纸条按如图所示方式摆放,两个三 角板的一直角边重合,含 30°角的直角三角板的斜边与纸条一边重合,含 45°角的三角板
的
一个顶点在纸条的另一边上,则/
1的度数是 ________ .
5.如图,AB // CD ,分别探讨下面四个图形中/ 从所得
到的关系中任选一个加以说明. 【方法8】
♦类型一 含一个拐点的平行线问题
1.如图, AB // EF , CD 丄 EF 于点 D.若/ ABC = 40 ° 则/ BCD 的度数为
( A . 140
B . 130 °
C . 120 °
D . 110
第2题图
2.如图, 已知 AB // DE , / ABC = 70 ° / CDE =
140 ° 则/ BCD 的度数为(
A . 20
B . 30 °
C . 40
D . 70
第4题图
图②
图®
1
3.如图, + /
2+/ 3 =
APC 与/ PAB , / PCD 的关系,请你
实用文档 用心整理
2
之行始于足下
♦类型二 含两个或多个拐点的平行线问题
6.如图,AB // CD ,用含/ 1,/ 2,/ 3的式子表示/ 4,则/ 4的值为( A ./ 1 + / 2 — / 3 B ./ 1 + / 3—/ 2 C . 180。
+/ 3—/ 1 — / 2 D . / 2+/3 — /
⑶如图③,/
2+/ 3 +/ 4 =
1 + /
2 + /3+/ 4+••• + / n =
第7题图
7.如图,直线 11// 12,/ a=/ 3, / 1 =
40 °
则/ 2 =
&如图,AB //CD ,试解决下列问题:
⑴如图①,/ 2= (2)如图②,/
2+/ 3 = 1 — 180
⑷如图④,试探究/
3
千里之行 始于足下
9. (1)如图①,AB // CD ,则/ 2+/4与/ 1 + / 3+/ 5有何关系?请说明理由;
(2)如图②,AB // CD ,试问/ 2 +/ 4+/ 6与/ 1 + / 3+/ 5+/ 7还有类似的数量关系 吗?
若有,请直接写出,并将它们推广到一般情况,用一句话写出你的结论.
D
图②
C D
图③
C D
图®
参考答案与解析
图②
4
^千里之行
始于足下
1.B 解析:过点C 向右作CG // AB ,由题意可得 AB // EF // CG , A / B = / BCG ,/GCD =90° 则/ BCD = 40° + 90°= 130°故选 B.
2. B 解析:如图,过点 C 作CF // DE , / CDE + / DCF = 180° A / DCF = 180° -/ -/ DCF = 70° - 40°= 30°.故选 B. 贝U AB // DE // CF , A / BCF = / ABC = 70 CDE = 180° - 140° = 40° A/ BCD = / BCF
3.
360
4. 15 ° 解析:如图,过 A 点作 AB // a,A/ 1 = / 2. v a // b,A AB / b,A/ 3 =/ 4 =30°.v/ 2+/ 3 = 45° A/
5. 解:女 0图①,过点 P 作 PF // AB ,贝y AB // PF // CD. A / PAB =/ APF , / PCD = / FPC , A. / APC = / APF + / FPC
= / D
C 图③
「图④D
如图②,
=180° A/ 过点 P 作 PF // AB ,贝 y AB // PF // CD. A / PAB +/ APF = 180° APC + / PAB +/ PCD = 360°
/ PCD + / FPC
过点 -o
如图③, + / PCD = 180° P 作 PF // AB,贝 U PF // AB// CD.A / FPA +/ PAB = 180° •••/ PAB = / APC+/ PCD ;
/ FPA +/ APC
如图④,过点 / PCD , A / PAB+/ APC = / PCD.
P 作 PF // AB 」PF // AB // CD. A / FPA=/ PAB, / FPA +/ APC =
解析:如图,过点 E 作 EG // AB ,过点F 作FH // CD.v AB // CD ,
A. AB // CD // EG// FH , A / 1 = / AEG , A / GEF = / 2-/ 1. v EG // FH , A / EFH = 180° 1, A. / CFH =/ 3-/ EFH =/ 3 — (180 ° — A. / 4 =/ CFH =/ 3 +/ 2-/ 1 — 180°.故选 -/ GEF = 180° - (/ 2-/ 1) = 180°—/ 2+/ / 2 +/ 1) =/ 3+/ 2-/ 1- 180°. •/ FH // CD , D.
FAB +/ PCD ;
5
千里之行 始于足下
AE 交 12 于点 B.V l 1 / l 2, •/ 3 =/ 1 = 40 °. •// a=/ 3,
2 = 180° — / 3= 180° — 40°= 140°
(2)如图②,过点E 作直线 =180° / FEC +/ 3 = 180° •/ 1 + / 2+/ 3= 360°
(3)过点 E , F 作 EG , FH 平行于 AB.v AB / CD , •• AB // EG // FH // CD ,
•/
=180° , / GEF + / EFH = 180° / HFC +/ 4= 180° ••/ 1 + / 2 + / 3 + / 4= 540° ⑷根据上述规律,显然作(n — 2)条辅助线,运用(n — 1)次两条直线平行,同旁内角互补, 即可得到n 个角的和是(n — 1)-180°
9.解:⑴/ 2+/ 4=/ 1 + / 3 +/5.理由如下:如图,分别过点 E , G , M 作EF // AB , GH // AB , MN // AB. ••• AB // CD , • AB // CD // EF // GH // MN ,•/ 1 =/ BEF , / FEG = / EGH , / HGM =/ GMN , / CMN =/ 5,•/ 2+/ 4=/ BEF + / FEG + / GMN +/ CMN =/ 1 + / EGH +/ MGH +/ 5=/ 1 + / 3+/ 5.
7. ••• AB 140解析:如图,延长
CD..../ 2+/ 3 = 180° •••/ (1)180 ° (2)360 ° (3)540 解析:(1)如图①,••• AB //CD , 图①
⑷(n — 1) 180
•••/ 1+/ 2= 180°
fl
A
B
G
二 H
~D 图③
A B E ------ F N ______
C 图④
EF 平行于 AB.TAB // CD , A AB // 1 + / AEF
1 + / AEG
A
(2)/ 2 +/ 4+/ 6=/ 1 + / 3+/ 5+/ 7.结论:开口朝左的所有角的度数之和与开口朝右的所有角的度数之和相等.
6
^千里之行始于足下。