河南省开封市金明区水稻中学2019年中考数学二模试卷解析版

合集下载

2019届河南省九年级下学期第二次模拟考试数学试卷【含答案及解析】

2019届河南省九年级下学期第二次模拟考试数学试卷【含答案及解析】

2019届河南省九年级下学期第二次模拟考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 已知-2的相反数是a,则a是()A. 2B. -C.D. -22. 函数y=的自变量x的取值范围是()A. x>0B. x≠1C. x>1且x≠1D. x≥0且x≠13. 解集在数轴上表示为如图所示的不等式组是()A. B. C. D.4. .小明把如图所示的4张扑克牌放在一张桌子上,请一位同学避开他任意将其中一张牌旋转倒过来.然后小明很快辨认了哪张牌被倒过来了,那么图中被倒过来的扑克牌点数是()A. 8B. 6C. 8和5D. 55. 如图是五个棱长为“1”的立方块组成的一个几何体,不是三视图之一的是()A. B. C. D.6. 如图,⊙O的直径AB=10,E在⊙O内,且OE=4,则过E点所有弦中,长度为整数的条数为()A. 4B. 6C. 8D. 10二、填空题7. 随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:=13, =13,,,则小麦长势比较整齐的试验田是 __________.8. 如图,P是∠的边OA上一点,且点P的坐标为(3,4),则sinα=__________.9. 分解因式: ______________.三、解答题10. =_________________四、填空题11. 在平面直角坐标系中,将点P(﹣1,4)向右平移2个单位长度后,再向下平移3个单位长度,得到点,则点的坐标为____________.12. 如图,Rt△AOB中,O为坐标原点,∠AOB=90°,OA∶OB=1∶2,如果点A在反比例函数y=(x>0)的图像上运动,那么点B在函数 (填函数解析式)的图像上运动.13. 如图,直线y = kx + b经过A(–2,–1)和B(–3,0)两点,则不等式0<kx + b的解集是___________.五、解答题14. 如图测量电线杆AB的高度,发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4 m,BC=10 m,CD与地面成30°角,且此时测得1m杆的影子长为2 m,则电线杆的高度约为多少m?六、填空题15. 已知点A(1,5),B(3,-1),点M在x轴上,当AM-BM最大时,点M的坐标为__.七、解答题16. 先化简,再求值:,其中;17. 某公司组织部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,不放回再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.” 请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.18. 如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.(1)求证:AN=MB;(2)求证:△CEF为等边三角形;(3)将△ACM绕点C按逆时针方向旋转90°,其他条件不变,在(2)中画出符合要求的图形,并判断(1)(2)题中的两结论是否依然成立.并说明理由.19. 因长期干旱,甲水库蓄水量降到了正常水位的最低值,为灌溉需要,由乙水库向甲水库匀速供水,20h后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h,甲水库打开另一个排灌闸同时灌溉,再经过40h,乙水库停止供水.甲水库每个排灌闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q(万m3)与时间t(h)之间的函数关系.求: (1)线段BC的函数表达式;(2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值?20. 台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30°方向往C移动,且台风中心风力不变,若城市所受风力达到或超过四级,则称为受台风影响。

河南省开封市2019-2020学年中考数学第二次调研试卷含解析

河南省开封市2019-2020学年中考数学第二次调研试卷含解析

河南省开封市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.小亮家与姥姥家相距24 km ,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是( )A .小亮骑自行车的平均速度是12 km/hB .妈妈比小亮提前0.5 h 到达姥姥家C .妈妈在距家12 km 处追上小亮D .9:30妈妈追上小亮2.下列各数中,最小的数是( )A .3-B .()2--C .0D .14- 3.如图,在四边形ABCD 中,AD ∥BC ,∠ABC+∠DCB=90°,且BC=2AD ,分别以AB 、BC 、DC 为边向外作正方形,它们的面积分别为S 1、S 2、S 1.若S 2=48,S 1=9,则S 1的值为( )A .18B .12C .9D .14.在1、﹣1、3、﹣2这四个数中,最大的数是( )A .1B .﹣1C .3D .﹣25.若代数式22x x -有意义,则实数x 的取值范围是( ) A .x =0 B .x =2 C .x≠0 D .x≠26.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )A.12B.14C.16D.1167.据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A.3.9×1010B.3.9×109C.0.39×1011D.39×1098.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.9.如图,点A、B、C在⊙O上,∠OAB=25°,则∠ACB的度数是()A.135°B.115°C.65°D.50°10.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )A.60海里B.45海里C.203海里D.303海里11.如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE1=1(AD1+AB1)﹣CD1.其中正确的是()A.①②③④B.②④C.①②③D.①③④12.如图,两个反比例函数y 1=1k x (其中k 1>0)和y 2=3x 在第一象限内的图象依次是C 1和C 2,点P 在C 1上.矩形PCOD 交C 2于A 、B 两点,OA 的延长线交C 1于点E ,EF ⊥x 轴于F 点,且图中四边形BOAP 的面积为6,则EF :AC 为( )A .3:1B .2:3C .2:1D .29:14二、填空题:(本大题共6个小题,每小题4分,共24分.)13.关于x 的分式方程721511x m x x -+=--有增根,则m 的值为__________. 14.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =V ,则图中阴影部分面积是 .15.Rt △ABC 中,AD 为斜边BC 上的高,若, 则AB BC= . 16.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P (﹣1,1),Q (2,3),则P ,Q 的“实际距离”为1,即PS+SQ=1或PT+TQ=1.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (1,﹣3),C (﹣1,﹣1),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为_____.17.圆锥的底面半径是4cm ,母线长是5cm ,则圆锥的侧面积等于_____cm 1.18.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC 内接与⊙O ,AB 是直径,⊙O 的切线PC 交BA 的延长线于点P ,OF ∥BC 交AC 于AC 点E ,交PC 于点F ,连接AF .判断AF与⊙O的位置关系并说明理由;若⊙O的半径为4,AF=3,求AC的长.20.(6分)如图,AB为⊙O直径,C为⊙O上一点,点D是»BC的中点,DE⊥AC于E,DF⊥AB于F.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)若OF=4,求AC的长度.21.(6分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线点F.问:图中△APD与哪个三角形全等?并说明理由;求证:△APE∽△FPA;猜想:线段PC,PE,PF之间存在什么关系?并说明理由.22.(8分)解不等式组:1(1)1213xx⎧-≤⎪⎨⎪-<⎩,并求出该不等式组所有整数解的和.23.(8分)如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)数轴上点B对应的数是______.经过几秒,点M、点N分别到原点O的距离相等?24.(10分)如图,二次函数232(0) 2y ax x a=-+≠的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).求抛物线与直线AC的函数解析式;若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系式;若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请求出满足条件的所有点E的坐标.25.(10分)为了了解某校学生对以下四个电视节目:A《最强大脑》,B《中国诗词大会》,C《朗读者》,D《出彩中国人》的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:本次调查的学生人数为________;在扇形统计图中,A部分所占圆心角的度数为________;请将条形统计图补充完整:若该校共有3000名学生,估计该校最喜爱《中国诗词大会》的学生有多少名?26.(12分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元求甲、乙型号手机每部进价为多少元?该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值27.(12分)如图1,已知抛物线y=﹣3x2+233x+与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求线段DE的长度;(2)如图2,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少;(3)在(2)问的条件下,将得到的△CFP沿直线AE平移得到△C′F′P′,将△C′F′P′沿C′P′翻折得到△C′P′F″,记在平移过称中,直线F′P′与x轴交于点K,则是否存在这样的点K,使得△F′F″K为等腰三角形?若存在求出OK的值;若不存在,说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.【详解】解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选D.【点睛】本题考查函数图像的应用,从图像中读取关键信息是解题的关键.2.A【解析】【分析】应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.解:因为在数轴上-3在其他数的左边,所以-3最小;故选A.【点睛】此题考负数的大小比较,应理解数字大的负数反而小.3.D【解析】【分析】过A作AH∥CD交BC于H,根据题意得到∠BAE=90°,根据勾股定理计算即可.【详解】∵S2=48,∴BC=43,过A作AH∥CD交BC于H,则∠AHB=∠DCB.∵AD∥BC,∴四边形AHCD是平行四边形,∴CH=BH=AD=23,AH=CD=1.∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.故选D.【点睛】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.4.C【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:根据有理数比较大小的方法,可得-2<-1<1<1,∴在1、-1、1、-2这四个数中,最大的数是1.故选C.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.5.D【解析】【分析】根据分式的分母不等于0即可解题.【详解】解:∵代数式22xx有意义,∴x-2≠0,即x≠2,故选D.【点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键.6.B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.7.A【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】39000000000=3.9×1.故选A.【点睛】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.8.D【解析】试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得.故选D.考点:由实际问题抽象出二元一次方程组9.B【解析】【分析】由OA=OB得∠OAB=∠OBA=25°,根据三角形内角和定理计算出∠AOB=130°,则根据圆周角定理得∠P= 12∠AOB,然后根据圆内接四边形的性质求解.【详解】解:在圆上取点 P ,连接 PA 、 PB. ∵OA=OB ,∴∠OAB=∠OBA=25°,∴∠AOB=180°−2×25°=130°,∴∠P=12∠AOB=65°,∴∠ACB=180°−∠P=115°.故选B.【点睛】本题考查的是圆,熟练掌握圆周角定理是解题的关键.10.D【解析】【分析】根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【详解】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:22303AB AP-=故选:D.【点睛】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.11.A【解析】分析:只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;详解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE1=BC1-EC1=1AB1-(CD1-DE1)=1AB1-CD1+1AD1=1(AD1+AB1)-CD1.故④正确,故选A.点睛:本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.12.A【解析】试题分析:首先根据反比例函数y 2=3x 的解析式可得到ODB OAC S S =V V =12×3=32,再由阴影部分面积为6可得到PDOC S 矩形=9,从而得到图象C 1的函数关系式为y=6x ,再算出△EOF 的面积,可以得到△AOC 与△EOF 的面积比,然后证明△EOF ∽△AOC ,根据对应边之比等于面积比的平方可得到EF ﹕AC=3. 故选A .考点:反比例函数系数k 的几何意义二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】去分母得:7x+5(x-1)=2m-1,因为分式方程有增根,所以x-1=0,所以x=1,把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,解得:m=1,故答案为1.14.4【解析】试题分析:由中线性质,可得AG=2GD ,则11212111222232326BGF CGE ABG ABD ABC S S S S S ===⨯=⨯⨯=⨯=V V V V V ,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的.考点:中线的性质.15.12【解析】【分析】利用直角三角形的性质,判定三角形相似,进一步利用相似三角形的面积比等于相似比的性质解决问题.【详解】如图,∵∠CAB=90°,且AD ⊥BC ,∴∠ADB=90°,∴∠CAB=∠ADB,且∠B=∠B,∴△CAB∽△ADB,∴(AB:BC)1=△ADB:△CAB,又∵S△ABC=4S△ABD,则S△ABD:S△ABC=1:4,∴AB:BC=1:1.16.(1,﹣2).【解析】【详解】若设M(x,y),则由题目中对“实际距离”的定义可得方程组:3-x+1-y=y+1+x+1=1-x+3+y,解得:x=1,y=-2,则M(1,-2).故答案为(1,-2).17.10π【解析】【分析】【详解】解:根据圆锥的侧面积公式可得这个圆锥的侧面积=12•1π•4•5=10π(cm1).故答案为:10π【点睛】本题考查圆锥的计算.18.64.410【解析】试题分析:将4400000用科学记数法表示为:4.4×1.故答案为4.4×1.考点:科学记数法—表示较大的数.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.解:(1)AF与圆O的相切.理由为:如图,连接OC,∵PC为圆O切线,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF为圆O的切线,即AF与⊙O的位置关系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E为AC中点,即AE=CE=12AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根据勾股定理得:OF=1.∵S△AOF=12•OA•AF=12•OF•AE,∴AE=245.∴AC=2AE=.【解析】试题分析:(1)连接OC,先证出∠3=∠2,由SAS证明△OAF≌△OCF,得对应角相等∠OAF=∠OCF,再根据切线的性质得出∠OCF=90°,证出∠OAF=90°,即可得出结论;(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE.试题解析:(1)连接OC,如图所示:∵AB是⊙O直径,∴∠BCA=90°,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF ⊥AC ,∵OC=OA ,∴∠B=∠1,∴∠3=∠2,在△OAF 和△OCF 中,{32OA OCOF OF=∠=∠=,∴△OAF ≌△OCF (SAS ),∴∠OAF=∠OCF ,∵PC 是⊙O 的切线,∴∠OCF=90°,∴∠OAF=90°,∴FA ⊥OA ,∴AF 是⊙O 的切线;(2)∵⊙O 的半径为4,AF=3,∠OAF=90°,∴OF=222234OF OA +=+=1∵FA ⊥OA ,OF ⊥AC ,∴AC=2AE ,△OAF 的面积=12AF•OA=12OF•AE , ∴3×4=1×AE , 解得:AE=125, ∴AC=2AE=245. 考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质.20.(1)DE 与⊙O 相切,证明见解析;(2)AC=8.【解析】(1)解:(1)DE 与⊙O 相切.证明:连接OD 、AD ,∵点D 是的中点,∴=,∴∠DAO=∠DAC ,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE与⊙O相切.(2)连接BC,根据△ODF与△ABC相似,求得AC的长.AC=821.(1)△CPD.理由参见解析;(2)证明参见解析;(3)PC2=PE•PF.理由参见解析.【解析】【分析】(1)根据菱形的性质,利用SAS来判定两三角形全等;(2)根据第一问的全等三角形结论及已知,利用两组角相等则两三角形相似来判定即可;(3)根据相似三角形的对应边成比例及全等三角形的对应边相等即可得到结论.【详解】解:(1)△APD≌△CPD.理由:∵四边形ABCD是菱形,∴AD=CD,∠ADP=∠CDP.又∵PD=PD,∴△APD≌△CPD(SAS).(2)∵△APD≌△CPD,∴∠DAP=∠DCP,∵CD∥AB,∴∠DCF=∠DAP=∠CFB,又∵∠FPA=∠FPA,∴△APE∽△FPA(两组角相等则两三角形相似).(3)猜想:PC2=PE•PF.理由:∵△APE∽△FPA,∴AP PEFP PA即PA2=PE•PF.∵△APD≌△CPD,∴PA=PC.∴PC2=PE•PF.【点睛】本题考查1.相似三角形的判定与性质;2.全等三角形的判定;3.菱形的性质,综合性较强.22.1【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:()111213xx⎧-≤⎪⎨⎪-<⎩①②,解不等式①得:x≤3,解不等式②得:x>﹣2,所以不等式组的解集为:﹣2<x≤3,所以所有整数解的和为:﹣1+0+1+2+3=1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(1)1;(2)经过2秒或2秒,点M、点N分别到原点O的距离相等【解析】试题分析:(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.试题解析:(1)∵OB=3OA=1,∴B对应的数是1.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x-2,点N对应的数为2x.①点M、点N在点O两侧,则2-3x=2x,解得x=2;②点M 、点N 重合,则,3x-2=2x ,解得x=2.所以经过2秒或2秒,点M 、点N 分别到原点O 的距离相等.24.(1)122y x =+(1)S=﹣m 1﹣4m+4(﹣4<m <0)(3)(﹣3,1)、,﹣1)、,﹣1)【解析】【分析】(1)把点A 的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A ,C 两点的坐标,可求得直线AC 的函数解析式;(1)先过点D 作DH ⊥x 轴于点H ,运用割补法即可得到:四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积,据此列式计算化简就可求得S 关于m 的函数关系;(3)由于AC 确定,可分AC 是平行四边形的边和对角线两种情况讨论,得到点E 与点C 的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E 的坐标.【详解】(1)∵A (﹣4,0)在二次函数y=ax 1﹣32x+1(a≠0)的图象上, ∴0=16a+6+1,解得a=﹣12, ∴抛物线的函数解析式为y=﹣12x 1﹣32x+1; ∴点C 的坐标为(0,1),设直线AC 的解析式为y=kx+b ,则04{2k b b=-+=, 解得1{22k b ==, ∴直线AC 的函数解析式为:122y x =+; (1)∵点D (m ,n )是抛物线在第二象限的部分上的一动点,∴D(m,﹣12m1﹣32m+1),过点D作DH⊥x轴于点H,则DH=﹣12m1﹣32m+1,AH=m+4,HO=﹣m,∵四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,∴S=12(m+4)×(﹣12m1﹣32m+1)+12(﹣12m1﹣32m+1+1)×(﹣m),化简,得S=﹣m1﹣4m+4(﹣4<m<0);(3)①若AC为平行四边形的一边,则C、E到AF的距离相等,∴|y E|=|y C|=1,∴y E=±1.当y E=1时,解方程﹣12x1﹣32x+1=1得,x1=0,x1=﹣3,∴点E的坐标为(﹣3,1);当y E=﹣1时,解方程﹣12x1﹣32x+1=﹣1得,x1=3412--,x1=3412-+,∴点E的坐标为(3412--,﹣1)或(3412-+,﹣1);②若AC为平行四边形的一条对角线,则CE∥AF,∴y E=y C=1,∴点E的坐标为(﹣3,1).综上所述,满足条件的点E的坐标为(﹣3,1)、(341--,﹣1)、(341-+,﹣1).25.(1)120;(2)54o;(3)答案见解析;(4)1650. 【解析】(1)依据节目B 的数据,即可得到调查的学生人数;(2)依据A 部分的百分比,即可得到A 部分所占圆心角的度数;(3)求得C 部分的人数,即可将条形统计图补充完整;(4)依据喜爱《中国诗词大会》的学生所占的百分比,即可得到该校最喜爱《中国诗词大会》的学生数量.【详解】()16655%120÷=,故答案为120;()182********⨯=o o , 故答案为54o ;()3C :12025%30⨯=,如图所示:()4300055%1650⨯=,答:该校最喜爱《中国诗词大会》的学生有1650名. 【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合思想解答.26. (1) 甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元;(2) 共有四种方案;(3) 当m =80时,w 始终等于8000,取值与a 无关【解析】【分析】(1)设甲种型号手机每部进价为x 元,乙种型号手机每部进价为y 元根据题意列方程组求出x 、y 的值即可;(2)设购进甲种型号手机a 部,这购进乙种型号手机(20-a)部,根据题意列不等式组求出a 的取值范围,根据a 为整数求出a 的值即可明确方案(3)利用利润=单个利润⨯数量,用a 表示出利润W ,当利润与a 无关时,(2)中的方案利润相同,求出m 值即可;(1) 设甲种型号手机每部进价为x 元,乙种型号手机每部进价为y 元,22800324600x y x y +=⎧⎨+=⎩,解得1000800x y =⎧⎨=⎩, (2) 设购进甲种型号手机a 部,这购进乙种型号手机(20-a)部,17400≤1000a +800(20-a)≤18000,解得7≤a≤10,∵a 为自然数,∴有a 为7、8、9、10共四种方案,(3) 甲种型号手机每部利润为1000×40%=400,w =400a +(1280-800-m)(20-a)=(m -80)a +9600-20m ,当m =80时,w 始终等于8000,取值与a 无关.【点睛】本题考查了列二元一次方程组解实际问题的运用,根据题意找出等量关系列出方程是解题关键. 27. (1)23 ;(2) 17312;(3)见解析. 【解析】 分析:(1)根据解析式求得C 的坐标,进而求得D 的坐标,即可求得DH 的长度,令y=0,求得A ,B 的坐标,然后证得△ACO ∽△EAH ,根据对应边成比例求得EH 的长,进继而求得DE 的长;(2)找点C 关于DE 的对称点N (4,3),找点C 关于AE 的对称点G (-2,-3),连接GN ,交AE 于点F ,交DE 于点P ,即G 、F 、P 、N 四点共线时,△CPF 周长=CF+PF+CP=GF+PF+PN 最小,根据点的坐标求得直线GN 的解析式:y=3x-3;直线AE 的解析式:y= -3x-3,过点M 作y 轴的平行线交FH 于点Q ,设点M (m ,-3m²+23m+3),则Q (m ,3m-3),根据S △MFP=S △MQF+S △MQP ,得出S △MFP= -33m²+33m+43,根据解析式即可求得,△MPF 面积的最大值;(3)由(2)可知C (0,3),F (0,3),P (2,3),求得CF=433,CP=433,进而得出△CFP 为等边三角形,边长为43,翻折之后形成边长为43的菱形C′F′P′F″,且F′F″=4,然后分三种情况讨论求得即可. 本题解析:(1)对于抛物线y=﹣x 2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,则DE=2;(2)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN 最小,直线GN的解析式:y=x﹣;直线AE的解析式:y=﹣x﹣,联立得:F (0,﹣),P(2,),过点M作y轴的平行线交FH于点Q,设点M(m,﹣m2+m+),则Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵对称轴为:直线m=<2,开口向下,∴m=时,△MPF面积有最大值:;(3)由(2)可知C(0,),F(0,),P(2,),∴CF=,CP==,∵OC=,OA=1,∴∠OCA=30°,∵FC=FG,∴∠OCA=∠FGA=30°,∴∠CFP=60°,∴△CFP为等边三角形,边长为,翻折之后形成边长为的菱形C′F′P′F″,且F′F″=4,1)当K F′=KF″时,如图3,点K在F′F″的垂直平分线上,所以K与B重合,坐标为(3,0),∴OK=3;2)当F′F″=F′K时,如图4,∴F′F″=F′K=4,∵FP的解析式为:y=x﹣,∴在平移过程中,F′K与x轴的夹角为30°,∵∠OAF=30°,∴F′K=F′A∴AK=4∴OK=4﹣1或者4+1;3)当F″F′=F″K时,如图5,∵在平移过程中,F″F′始终与x轴夹角为60°,∵∠OAF=30°,∴∠AF′F″=90°,∵F″F′=F″K=4,∴AF″=8,∴AK=12,∴OK=1,综上所述:OK=3,4﹣1,4+1或者1.点睛:本题是二次函数的综合题,考查了二次函数的交点和待定系数法求二次函数的解析式以及最值问题,考查了三角形相似的判定与性质,等边三角形的判定与性质,等腰三角形的性质等,分类讨论的思想是解题的关键.。

2019年河南省中考数学模拟试卷(二)含答案解析

2019年河南省中考数学模拟试卷(二)含答案解析

2019年河南省中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。

)1.﹣2的绝对值是()A.2 B.C.﹣2 D.﹣2.将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.3.下列各式变形中,正确的是()A.x2•x3=x6B. =|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=48°,则∠2的度数为( )A.48° B.42° C.40° D.45°5.函数y=中自变量x的取值范围是()A.x≥2 B.x>2 C.x≤2 D.x≠26.在某校“我的中国梦"演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣58.如图,在▱ABCD中,E为AD的三等分点,AE=AD,连接BE交AC于点F,AC=12,则AF为()A.4 B.4。

8 C.5.2 D.69.星期天,小明从家出发,以15千米/小时的速度骑车去郊游,到达目的地休息一段时间后原路返回,已知小明行驶的路程s(千米)与时间t(小时)之间的函数关系如图所示,则小明返程的速度为()A.15千米/小时B.10千米/小时C.6千米/小时D.无法确定10.如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O 交于点E,则下列结论中不一定正确的是()A.AC⊥BC B.BE平分∠ABC C.BE∥CD D.∠D=∠A二、填空题(本小题共5小题,每小题3分,共15分)11.计算:2﹣2﹣= .12.写出一个二次函数解析式,使它的图象的顶点在y轴上:.13.课外活动中,九(1)班准备把全班男生随机分成两个小组进行拔河比赛,则甲、乙、丙三位同学恰好被分在同一小组的概率为.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB 于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为.三、解答题(本题共8小题,共75分.)16.先化简,再求值:(﹣)÷,其中实数a,b满足(a﹣2)2+|b﹣2a|=0.17.每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是;(2)补全频数分布直方图,求扇形图中“6吨﹣﹣9吨"部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?18.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.(1)试判断四边形DEFG的形状,并说明理由;(2)填空:①若AB=3,当CA=CB时,四边形DEFG的面积是;②若AB=2,当∠CAB的度数为时,四边形DEFG是正方形.19.某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1。

2019年河南省中考数学模拟卷(二)含答案解析

2019年河南省中考数学模拟卷(二)含答案解析

2019年河南省中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。

)1.﹣2的绝对值是()A.2 B.C.﹣2 D.﹣2.将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.3.下列各式变形中,正确的是()A.x2•x3=x6B. =|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=48°,则∠2的度数为()A.48° B.42° C.40° D.45°5.函数y=中自变量x的取值范围是()A.x≥2 B.x>2 C.x≤2 D.x≠26.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣58.如图,在▱ABCD中,E为AD的三等分点,AE=AD,连接BE交AC于点F,AC=12,则AF 为()A.4 B.4.8 C.5.2 D.69.星期天,小明从家出发,以15千米/小时的速度骑车去郊游,到达目的地休息一段时间后原路返回,已知小明行驶的路程s(千米)与时间t(小时)之间的函数关系如图所示,则小明返程的速度为()A.15千米/小时B.10千米/小时C.6千米/小时D.无法确定10.如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O 交于点E,则下列结论中不一定正确的是()A.AC⊥BC B.BE平分∠ABC C.BE∥CD D.∠D=∠A二、填空题(本小题共5小题,每小题3分,共15分)11.计算:2﹣2﹣= .12.写出一个二次函数解析式,使它的图象的顶点在y轴上:.13.课外活动中,九(1)班准备把全班男生随机分成两个小组进行拔河比赛,则甲、乙、丙三位同学恰好被分在同一小组的概率为.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为.三、解答题(本题共8小题,共75分.)16.先化简,再求值:(﹣)÷,其中实数a,b满足(a﹣2)2+|b ﹣2a|=0.17.每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是;(2)补全频数分布直方图,求扇形图中“6吨﹣﹣9吨”部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?18.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.(1)试判断四边形DEFG的形状,并说明理由;(2)填空:①若AB=3,当CA=CB时,四边形DEFG的面积是;②若AB=2,当∠CAB的度数为时,四边形DEFG是正方形.19.某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)20.如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点.(1)求b,k的值;(2)在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,直接写出自变量x的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.21.某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?22.如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.(1)发现①线段DE、BG之间的数量关系是;②直线DE、BG之间的位置关系是.(2)探究如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)应用如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.23.如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(﹣1,0),与y轴交于点C(0,4),作直线AC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标为m,求m的值;(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.2019年河南省中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。

河南省开封市2019-2020学年中考数学二模考试卷含解析

河南省开封市2019-2020学年中考数学二模考试卷含解析

河南省开封市2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB 是⊙O 的直径,点C ,D ,E 在⊙O 上,若∠AED =20°,则∠BCD 的度数为( )A .100°B .110°C .115°D .120°2.如图,△ABC 内接于⊙O ,AD 为⊙O 的直径,交BC 于点E ,若DE=2,OE=3,则tan ∠ACB·tan ∠ABC=( )A .2B .3C .4D .53.下列计算结果等于0的是( )A .11-+B .11--C .11-⨯D .11-÷4.已知二次函数y=ax 2+bx+c (a≠1)的图象如图所示,则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=1;④当y=﹣2时,x 的值只能取1;⑤当﹣1<x <5时,y <1.其中,正确的有( )A .2个B .3个C .4个D .5个5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点M 是AB 的中点,若OM =4,AB =6,则BD 的长为( )A .4B .5C .8D .106.如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是( )A .10B .12C .20D .247.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A .9分B .8分C .7分D .6分8.若代数式238M x =+,224N x x =+,则M 与N 的大小关系是( )A .M N ≥B .M N ≤C .M N >D .M N <9.下列图形中,线段MN 的长度表示点M 到直线l 的距离的是( )A .B .C .D .10.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为()A .1(1)282x x -=B .1(1)282x x +=C .(1)28x x -=D .(1)28x x +=11.抛物线y=ax 2﹣4ax+4a ﹣1与x 轴交于A ,B 两点,C (x 1,m )和D (x 2,n )也是抛物线上的点,且x 1<2<x 2,x 1+x 2<4,则下列判断正确的是( )A .m <nB .m≤nC .m >nD .m≥n 12.在312,0,-2这四个数中,最小的数是( ) A 3 B .12 C .0 D .-2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.方程31x -=4x的解是____. 14.已知ab=﹣2,a ﹣b=3,则a 3b ﹣2a 2b 2+ab 3的值为_______. 15.不等式42x ->4﹣x 的解集为_____. 16.一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是____.17.如图,网格中的四个格点组成菱形ABCD ,则tan ∠DBC 的值为___________ .18.如果点P 1(2,y 1)、P 2(3,y 2) 在抛物线22y x x =-+上,那么 y 1 ______ y 2.(填“>”,“<”或“=”).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某市旅游部门统计了今年“五•一”放假期间该市A 、B 、C 、D 四个旅游景区的旅游人数,并绘制出如图所示的条形统计图和扇形统计图,根据图中的信息解答下列问题:(1)求今年“五•一”放假期间该市这四个景点共接待游客的总人数;(2)扇形统计图中景点A 所对应的圆心角的度数是多少,请直接补全条形统计图;(3)根据预测,明年“五•一”放假期间将有90万游客选择到该市的这四个景点旅游,请你估计有多少人会选择去景点D 旅游?20.(6分)问题提出(1)如图1,正方形ABCD 的对角线交于点O ,△CDE 是边长为6的等边三角形,则O 、E 之间的距离为 ;问题探究(2)如图2,在边长为6的正方形ABCD 中,以CD 为直径作半圆O ,点P 为弧CD 上一动点,求A 、P 之间的最大距离;问题解决(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MN⊥AD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离.21.(6分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;四边形BFDE是平行四边形.22.(8分)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富.某班模拟开展“中国诗词大赛”比赛,对全班同学成绩进行统计后分为“A优秀”、“B一般”、“C较差”、“D良好”四个等级,并根据成绩绘制成如下两幅不完整的统计图.请结合统计图中的信息,回答下列问题:(1)本班有多少同学优秀?(2)通过计算补全条形统计图.(3)学校预全面推广这个比赛提升学生的文化素养,估计该校3000人有多少人成绩良好?23.(8分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)24.(10分)计算:101()2sin601tan60(2019)2π--+-+-o o ; 解方程:24(3)9x x x +=- 25.(10分)在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.26.(12分)计算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)2018 27.(12分)先化简:2222421121x x x x x x x ---÷+--+,然后在不等式2x ≤的非负整数解中选择一个适当的数代入求值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】连接AD ,BD ,由圆周角定理可得∠ABD =20°,∠ADB =90°,从而可求得∠BAD =70°,再由圆的内接四边形对角互补得到∠BCD=110°. 【详解】如下图,连接AD ,BD ,∵同弧所对的圆周角相等,∴∠ABD=∠AED =20°,∵AB 为直径,∴∠ADB =90°,∴∠BAD =90°-20°=70°,∴∠BCD=180°-70°=110°.故选B【点睛】本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.2.C【解析】【分析】如图(见解析),连接BD 、CD ,根据圆周角定理可得,ACB ADB ABC ADC ∠=∠∠=∠,再根据相似三角形的判定定理可得ACE BDE ∆~∆,然后由相似三角形的性质可得AC CE BD DE =,同理可得AB AE CD CE =;又根据圆周角定理可得90ABD ACD ∠=∠=︒,再根据正切的定义可得tan tan ,tan tan AB AC ACB ADB ABC ADC BD CD∠=∠=∠=∠=,然后求两个正切值之积即可得出答案. 【详解】如图,连接BD 、CD ,ACB ADB ABC ADC ∴∠=∠∠=∠在ACE ∆和BDE ∆中,ACE BDE AEC BED ∠=∠⎧⎨∠=∠⎩ACE BDE ∴∆~∆AC CE BD DE∴= 2,3DE OE ==Q5,8OA OD DE OE AE OA OE ∴==+==+=2AC CE BD ∴= 同理可得:ABE CDE ∆~∆ AB AE CD CE ∴=,即8AB CD CE = AD Q 为⊙O 的直径90ABD ACD ∠∴∠==︒tan tan ,tan tan AB AC ACB ADB ABC ADC BD CD∴∠=∠=∠=∠=8tan tan 42AB AC AC AB CE ACB ABC BD CD BD CD CE∴∠⋅∠=⋅=⋅=⋅= 故选:C .【点睛】本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键.3.A【解析】【分析】各项计算得到结果,即可作出判断.【详解】解:A 、原式=0,符合题意;B 、原式=-1+(-1)=-2,不符合题意;C 、原式=-1,不符合题意;D 、原式=-1,不符合题意,故选:A . 【点睛】本题考查了有理数的运算,熟练掌握运算法则是解本题的关键.4.A【解析】【分析】根据二次函数的性质和图象可以判断题目中各个小题是否成立.【详解】由函数图象可得,a >1,b <1,即a 、b 异号,故①错误,x=-1和x=5时,函数值相等,故②错误,∵-1522b a -+==2,得4a+b=1,故③正确, 由图象可得,当y=-2时,x=1或x=4,故④错误,由图象可得,当-1<x<5时,y<1,故⑤正确,故选A.【点睛】考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.5.D【解析】【分析】利用三角形中位线定理求得AD的长度,然后由勾股定理来求BD的长度.【详解】解:∵矩形ABCD的对角线AC,BD相交于点O,∴∠BAD=90°,点O是线段BD的中点,∵点M是AB的中点,∴OM是△ABD的中位线,∴AD=2OM=1.∴在直角△ABD中,由勾股定理知:.故选:D.【点睛】本题考查了三角形中位线定理和矩形的性质,利用三角形中位线定理求得AD的长度是解题的关键.6.B【解析】【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【详解】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC 的面积为:12×4×6=12. 故选:B.【点睛】 本题考查动点问题的函数图象,解题关键是注意结合图象求出BC 与AC 的长度,本题属于中等题型. 7.C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为 :7分,故答案为:C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.C【解析】∵223824M x N x x =+=+,,∴222238(24)48(2)40M N x x x x x x -=+-+=-+=-+>,∴M N >.故选C.9.A【解析】解:图B 、C 、D 中,线段MN 不与直线l 垂直,故线段MN 的长度不能表示点M 到直线l 的距离;图A 中,线段MN 与直线l 垂直,垂足为点N ,故线段MN 的长度能表示点M 到直线l 的距离.故选A .10.A【解析】【分析】根据应用题的题目条件建立方程即可.【详解】 解:由题可得:1(1)472x x -=⨯ 即:1(1)282x x -= 故答案是:A.【点睛】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.11.C【解析】分析:将一般式配方成顶点式,得出对称轴方程2x =,根据抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,得出()()244410a a a =--⨯->V ,求得 0a >,距离对称轴越远,函数的值越大,根据121224x x x x <<+<,,判断出它们与对称轴之间的关系即可判定.详解:∵()2244121y ax ax a a x =-+-=--,∴此抛物线对称轴为2x =,∵抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,∴当24410ax ax a -+-=时,()()244410a a a =--⨯->V ,得0a >, ∵121224x x x x <<+<,,∴1222x x ,->-∴m n >,故选C .点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大, 12.D【解析】【分析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.【详解】12,0,﹣1这四个数中,﹣10<12, 故最小的数为:﹣1.故选D .【点睛】本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,特别是两个负数的大小比较.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x=1【解析】【分析】观察可得方程最简公分母为x (x−1),去分母,转化为整式方程求解,结果要检验.【详解】方程两边同乘x(x−1)得:3x=1(x−1),整理、解得x=1.检验:把x=1代入x(x−1)≠2.∴x=1是原方程的解,故答案为x=1.【点睛】解分式方程的基本思想是把分式方程转化为整式方程,具体方法是方程两边同时乘以最简公分母,在此过程中有可能会产生增根,增根是转化后整式的根,不是原方程的根,因此要注意检验.14.﹣18【解析】【分析】要求代数式a3b﹣2a2b2+ab3的值,而代数式a3b﹣2a2b2+ab3恰好可以分解为两个已知条件ab,(a﹣b)的乘积,因此可以运用整体的数学思想来解答.【详解】a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2,当a﹣b=3,ab=﹣2时,原式=﹣2×32=﹣18,故答案为:﹣18.【点睛】本题考查了因式分解在代数式求值中的应用,熟练掌握因式分解的方法以及运用整体的数学思想是解题的关键.15.x>1.【解析】【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:x﹣1>8﹣2x,移项合并得:3x>12,解得:x>1,故答案为:x>1【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.16.1 3 .【解析】【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】∵一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,∴从中任意摸出一个球恰好是红球的概率为:21 243=+,故答案为13.【点睛】本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.17.3【解析】试题分析:如图,连接AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=12BD,CO=12AC,由勾股定理得,AC=2233+=32,BD=2211+=2,所以,BO=122⨯=22,CO=1322⨯=322,所以,tan∠DBC=COBO=3222=3.故答案为3.考点:3.菱形的性质;3.解直角三角形;3.网格型.18.>【解析】分析:首先求得抛物线y=﹣x2+2x的对称轴是x=1,利用二次函数的性质,点M、N在对称轴的右侧,y 随着x的增大而减小,得出答案即可.详解:抛物线y=﹣x2+2x的对称轴是x=﹣22-=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y1>y2.故答案为>.点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)60人;(2)144°,补全图形见解析;(3)15万人.【解析】【分析】(1)用B景点人数除以其所占百分比可得;(2)用360°乘以A景点人数所占比例即可,根据各景点人数之和等于总人数求得C的人数即可补全条形图;(3)用总人数乘以样本中D景点人数所占比例【详解】(1)今年“五•一”放假期间该市这四个景点共接待游客的总人数为18÷30%=60万人;(2)扇形统计图中景点A所对应的圆心角的度数是360°×=144°,C景点人数为60﹣(24+18+10)=8万人,补全图形如下:(3)估计选择去景点D旅游的人数为90×=15(万人).【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(1)333;(2)353;(2110553.【解析】【分析】(1)连接AC,BD,由OE垂直平分DC可得DH长,易知OH、HE长,相加即可;(2)补全⊙O,连接AO并延长交⊙O右半侧于点P,则此时A、P之间的距离最大,在Rt△AOD中,由勾股定理可得AO长,易求AP长;(1)小贝的说法正确,补全弓形弧AD所在的⊙O,连接ON,OA,OD,过点O作OE⊥AB于点E,连接BO并延长交⊙O上端于点P,则此时B、P之间的距离即为门角B到门窗弓形弧AD的最大距离,在Rt△ANO中,设AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO长,易知BP长. 【详解】解:(1)如图1,连接AC,BD,对角线交点为O,连接OE交CD于H,则OD=OC.∵△DCE为等边三角形,∴ED=EC,∵OD=OC∴OE垂直平分DC,∴DH12=DC=1.∵四边形ABCD为正方形,∴△OHD为等腰直角三角形,∴OH=DH=1,在Rt△DHE中,HE3=DH=13,∴OE=HE+OH=13+1;(2)如图2,补全⊙O,连接AO并延长交⊙O右半侧于点P,则此时A、P之间的距离最大,在Rt△AOD中,AD=6,DO=1,∴AO 22AD DO =+=15,3OP DO ==Q∴AP=AO+OP=15+1;(1)小贝的说法正确.理由如下,如图1,补全弓形弧AD 所在的⊙O ,连接ON ,OA ,OD ,过点O 作OE ⊥AB 于点E ,连接BO 并延长交⊙O 上端于点P ,则此时B 、P 之间的距离即为门角B 到门窗弓形弧AD 的最大距离,由题意知,点N 为AD 的中点, 3.2,AD BC OA OD ===,∴AN 12=AD=1.6,ON ⊥AD , 在Rt △ANO 中,设AO=r ,则ON=r ﹣1.2.∵AN 2+ON 2=AO 2,∴1.62+(r ﹣1.2)2=r 2,解得:r 53=, ∴AE=ON 53=-1.2715=, 在Rt △OEB 中,OE=AN=1.6,BE=AB ﹣AE 2315=, ∴BO 221105OE BE =+= ∴BP=BO+PO 11055153=+, ∴门角B 到门窗弓形弧AD 的最大距离为11055153+. 【点睛】本题考查了圆与多边形的综合,涉及了圆的有关概念及性质、等边三角形的性质、正方形和长方形的性质、勾股定理等,灵活的利用两点之间线段最短,添加辅助线将题中所求最大距离转化为圆外一点到圆上的最大距离是解题的关键.21.(1)见解析;(2)见解析;【解析】【分析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.22.(1)本班有4名同学优秀;(2)补图见解析;(3)1500人.【解析】【分析】(1)根据统计图即可得出结论;(2)先计算出优秀的学生,再补齐统计图即可;(3)根据图2的数值计算即可得出结论.【详解】(1)本班有学生:20÷50%=40(名),本班优秀的学生有:40﹣40×30%﹣20﹣4=4(名),答:本班有4名同学优秀;(2)成绩一般的学生有:40×30%=12(名),成绩优秀的有4名同学,补全的条形统计图,如图所示;(3)3000×50%=1500(名),答:该校3000人有1500人成绩良好.【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的知识点. 23.(1)5.6(2)货物MNQP 应挪走,理由见解析.【解析】【详解】(1)如图,作AD ⊥BC 于点DRt △ABD 中,AD=ABsin45°=42=222在Rt △ACD 中,∵∠ACD=30°∴2 5.6≈即新传送带AC 的长度约为5.6米.(2)结论:货物MNQP 应挪走.在Rt △ABD 中,BD=ABcos45°=42=22 在Rt △ACD 中,CD=ACcos30°= 342=26∴CB=CD —BD=(26-22=26-2 2.1≈∵PC=PB —CB ≈4—2.1=1.9<2∴货物MNQP 应挪走.24.(1)2 (2)123,1x x =-=-【解析】【分析】(1)原式第一项利用负指数幂法则计算,第二项利用特殊角的三角函数值化简,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算可得到结果;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)原式=211+=2;(2)24(3)9x x x +=- 4(3)(3)(3)+=+-x x x x()33(3)0++=x x∴123,1x x =-=-【点睛】本题考查了实数运算以及平方根的应用,正确掌握相关运算法则是解题的关键.25.(1):()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析【解析】【分析】(1)利用列举法,列举所有的可能情况即可;(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.【详解】(1)所有可能出现的结果如下:()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种;(1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,∴在规划1中,P (小黄赢)59=; 红心牌点数是黑桃牌点数的整倍数有4种可能, ∴在规划2中,P (小黄赢)49=.∵5499>,∴小黄要在游戏中获胜,小黄会选择规则1.【点睛】考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比. 26.-1【解析】【分析】原式利用乘方的意义,特殊角的三角函数值,零指数幂法则计算即可求出值.【详解】解:原式=﹣4+1+1+1=﹣1.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.27.21x+;2.【解析】【分析】先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式=()()()()2221 21112x xxx x x x---⋅++--=()21 211xxx x--++=21 x+2x≤的非负整数解有:2,1,0,其中当x取2或1时分母等于0,不符合条件,故x只能取0∴将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.。

2019年河南省开封市中考第二次模拟考试数学试卷

2019年河南省开封市中考第二次模拟考试数学试卷

A 第14题图开封市2019年中考第二次模拟考试数学试卷一.选择题(3分×8=24分) 1. 5-的倒数是( )A 5-B 15- C 5 D 152.下列运算中,正确的是( )A 2+= B 632x x x ÷= C 122-=- D ()325a a a -=-3.不等式组31112x x -<-⎧⎪⎨-≥⎪⎩的解集在数轴上表示正确的是( ) A2BCD4.已知样本数据0,1,6,2,1下列说法不正确的是( )A 中位数是6B 平均数是2C 众数是1D 极差是6 5.如图是由几个相同的小正方形搭成的几何体的主视图与左视图,则搭成这个 几何体的小正方体的个数最多是( )A 6B 7C 8D 9 6.如图,菱形纸片ABCD 中,∠A=60°,折叠菱形纸片ABCD ,使点C 落在DP (P 为AB 中点)所在直线上的'C 处,得到经过点D 的折痕DE.则∠DEC 的大小 为( )A 45°B 60°C 75°D 80°7.如图,Rt △OAB 的顶点A (-2,4)在抛物线2y ax =上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与抛物线交于点P , 则点P 的坐标为( )AB ()2,2 C),2 D (2,8.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的 正半轴上.反比例函数()0ky x x=>的图像经过顶点B ,则k 的值为( ) A 12 B 16 C 24 D 32二.填空题(3分×7=21分) 9.计算:()213-+-= .10.小明同学把一个含有45°角的直角三角板放在如图所示的两条平行 线m 、n 上,测得110α∠=︒,则β∠的度数是 .11.我市龙亭公园在2019年菊花文化节中成功营造了“外在古典,内在时尚,宋风菊韵,和谐自然”的菊花园林景观.10月18日至11月25日,共接待中外赏菊游客40.2万人次.游客人数用科学记数法可表示为 .12.已知一圆锥底面圆的周长为10π,母线长为1013.如图,在4×4黑色部分的图形构成一个轴对称图形的概率是 .G FE DC B A 14.如图,在O 中,AB 为O 的直径,弦CD ⊥AB ,∠AOC=50°, 则∠B= .15.如图,在矩形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE 折叠 后得到△AFE ,且点F 在矩形ABCD 内部.AF 的延长线交BC 于点G.若18CG GB =,则ADAB= .三.解答题(本大题共8小题,共75分) 16.(8分)先化简,再求值:23111x x x x -⎛⎫÷+- ⎪--⎝⎭,其中2x =-.17.(9分)某企业500名员工参加安全知识测试,成绩记为A ,B ,C ,D ,E 共5个等级,为了解本次测试的成绩(等级)情况,现从中随机抽取部分员工的成绩(等级),统计整理并制作了如下的统计图:⑴求这次抽样调查的样本容量,并补全图①;⑵如果测试成绩(等级)为A ,B ,C 级的定位优秀,请估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数.⑶在成绩为C 级的5人中有两人为小明和小刚,公司准备从这5人中随机抽调两人参加外出培训,请问小明和小刚同时被抽调的概率是多少?(直接写出结果)18.(9分)如图,在平行四边形ABCD 中,AE 是BC 边上的高,将△ABE 沿BC 方向平移,使点E 与点C 重合,得△GFC.⑴求证:BE=DG.⑵若ABCD 的边长AB=10㎝,△ABE 的面积242cm ,求△ABE 的周长.19.(9分)安全高于一切,责任重于泰山.我市某幼儿园为了加强安全管理, 决定将园内的滑梯的倾角由45°降为30°,已知原滑滑板AB 的长为4米, 点D 、B 、C 在同一水平面上,且AC ⊥BC.⑴改善后滑滑板会加长多少?(精确到0.01)⑵若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方 有6米长的空地,像这样改造是否可行?说明理由 .(=2.449)20.(9分)如图,一次函数2y kx =+的图像与反比例函数my =的图像交于21.(10分)某商店需要购进甲、乙两种商品共160件,其进货价和售价如下表:(注:获利=售价-进价)⑴若商店计划售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?⑵若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方22.(10分)在锐角△ABC 中,AB=4,BC=5,∠ACB=45°,将△ABC 按逆时针方向旋转,得到 △A 1BC 1.(1)尝试探究:如图1,当点C 1在线段CA 的延长线上时,则∠CC 1A 1的度数 ; (2)类比延伸:如图2,连接AA 1,CC 1.①求证:1ABA ∽1CBC ;②若△ABA 1的面积为4,求△CBC 1的面积;(3)拓展迁移:如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.23.(11分)如图,已知抛物线2y x bx c =++与x 轴交于A 、B 两点(A 点在B 点左侧),与 y 轴交于点C (0,-3),对称轴是直线x=1,直线BC 与抛物线的对称轴交于点D 。

2019年河南省中考数学模拟卷含答案解析

2019年河南省中考数学模拟卷含答案解析

2019年河南省中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。

)1.﹣2的绝对值是()A.2 B.C.﹣2 D.﹣2.将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.3.下列各式变形中,正确的是()A.x2•x3=x6B. =|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=48°,则∠2的度数为()A.48° B.42° C.40° D.45°5.函数y=中自变量x的取值范围是()A.x≥2 B.x>2 C.x≤2 D.x≠26.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣58.如图,在▱ABCD中,E为AD的三等分点,AE=AD,连接BE交AC于点F,AC=12,则AF 为()A.4 B.4.8 C.5.2 D.69.星期天,小明从家出发,以15千米/小时的速度骑车去郊游,到达目的地休息一段时间后原路返回,已知小明行驶的路程s(千米)与时间t(小时)之间的函数关系如图所示,则小明返程的速度为()A.15千米/小时B.10千米/小时C.6千米/小时D.无法确定10.如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O 交于点E,则下列结论中不一定正确的是()A.AC⊥BC B.BE平分∠ABC C.BE∥CD D.∠D=∠A二、填空题(本小题共5小题,每小题3分,共15分)11.计算:2﹣2﹣= .12.写出一个二次函数解析式,使它的图象的顶点在y轴上:.13.课外活动中,九(1)班准备把全班男生随机分成两个小组进行拔河比赛,则甲、乙、丙三位同学恰好被分在同一小组的概率为.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为.三、解答题(本题共8小题,共75分.)16.先化简,再求值:(﹣)÷,其中实数a,b满足(a﹣2)2+|b ﹣2a|=0.17.每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是;(2)补全频数分布直方图,求扇形图中“6吨﹣﹣9吨”部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?18.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.(1)试判断四边形DEFG的形状,并说明理由;(2)填空:①若AB=3,当CA=CB时,四边形DEFG的面积是;②若AB=2,当∠CAB的度数为时,四边形DEFG是正方形.19.某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)20.如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点.(1)求b,k的值;(2)在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,直接写出自变量x的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.21.某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?22.如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.(1)发现①线段DE、BG之间的数量关系是;②直线DE、BG之间的位置关系是.(2)探究如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)应用如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.23.如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(﹣1,0),与y轴交于点C(0,4),作直线AC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标为m,求m的值;(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.2019年河南省中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。

【精品】2019年河南省中考数学模拟试卷(二)含答案解析

【精品】2019年河南省中考数学模拟试卷(二)含答案解析

2019年河南省中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。

)1.﹣2的绝对值是()A.2 B.C.﹣2 D.﹣2.将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.3.下列各式变形中,正确的是()A.x2•x3=x6B. =|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=48°,则∠2的度数为()A.48° B.42° C.40° D.45°5.函数y=中自变量x的取值范围是()A.x≥2 B.x>2 C.x≤2 D.x≠26.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣58.如图,在▱ABCD中,E为AD的三等分点,AE=AD,连接BE交AC于点F,AC=12,则AF为()A.4 B.4.8 C.5.2 D.69.星期天,小明从家出发,以15千米/小时的速度骑车去郊游,到达目的地休息一段时间后原路返回,已知小明行驶的路程s(千米)与时间t(小时)之间的函数关系如图所示,则小明返程的速度为()A.15千米/小时B.10千米/小时C.6千米/小时D.无法确定10.如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O交于点E,则下列结论中不一定正确的是()A.AC⊥BC B.BE平分∠ABC C.BE∥CD D.∠D=∠A二、填空题(本小题共5小题,每小题3分,共15分)11.计算:2﹣2﹣= .12.写出一个二次函数解析式,使它的图象的顶点在y轴上:.13.课外活动中,九(1)班准备把全班男生随机分成两个小组进行拔河比赛,则甲、乙、丙三位同学恰好被分在同一小组的概率为.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B 为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为.三、解答题(本题共8小题,共75分.)16.先化简,再求值:(﹣)÷,其中实数a,b满足(a﹣2)2+|b﹣2a|=0.17.每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是;(2)补全频数分布直方图,求扇形图中“6吨﹣﹣9吨”部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?18.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.(1)试判断四边形DEFG的形状,并说明理由;(2)填空:①若AB=3,当CA=CB时,四边形DEFG的面积是;②若AB=2,当∠CAB的度数为时,四边形DEFG是正方形.19.某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)20.如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点.(1)求b,k的值;(2)在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,直接写出自变量x的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.21.某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?22.如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.(1)发现①线段DE、BG之间的数量关系是;②直线DE、BG之间的位置关系是.(2)探究如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)应用如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.23.如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(﹣1,0),与y轴交于点C (0,4),作直线AC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标为m,求m的值;(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.2019年河南省中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。

2019年河南省中考数学模拟试卷(二)含答案解析

2019年河南省中考数学模拟试卷(二)含答案解析

2019年河南省中考数学模拟试卷(二)一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。

)1.﹣2的绝对值是()A.2 B.C.﹣2 D.﹣2.将一根圆柱形的空心钢管任意放置,它的主视图不可能是()A.B.C.D.3.下列各式变形中,正确的是()A.x2•x3=x6B. =|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=48°,则∠2的度数为()A.48° B.42° C.40° D.45°5.函数y=中自变量x的取值范围是()A.x≥2 B.x>2 C.x≤2 D.x≠26.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣58.如图,在▱ABCD中,E为AD的三等分点,AE=AD,连接BE交AC于点F,AC=12,则AF 为()A.4 B.4.8 C.5.2 D.69.星期天,小明从家出发,以15千米/小时的速度骑车去郊游,到达目的地休息一段时间后原路返回,已知小明行驶的路程s(千米)与时间t(小时)之间的函数关系如图所示,则小明返程的速度为()A.15千米/小时B.10千米/小时C.6千米/小时D.无法确定10.如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O 交于点E,则下列结论中不一定正确的是()A.AC⊥BC B.BE平分∠ABC C.BE∥CD D.∠D=∠A二、填空题(本小题共5小题,每小题3分,共15分)11.计算:2﹣2﹣= .12.写出一个二次函数解析式,使它的图象的顶点在y轴上:.13.课外活动中,九(1)班准备把全班男生随机分成两个小组进行拔河比赛,则甲、乙、丙三位同学恰好被分在同一小组的概率为.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为.三、解答题(本题共8小题,共75分.)16.先化简,再求值:(﹣)÷,其中实数a,b满足(a﹣2)2+|b﹣2a|=0.17.每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是;(2)补全频数分布直方图,求扇形图中“6吨﹣﹣9吨”部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?18.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.(1)试判断四边形DEFG的形状,并说明理由;(2)填空:①若AB=3,当CA=CB时,四边形DEFG的面积是;②若AB=2,当∠CAB的度数为时,四边形DEFG是正方形.19.某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)20.如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点.(1)求b,k的值;(2)在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,直接写出自变量x的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.21.某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?22.如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.(1)发现①线段DE、BG之间的数量关系是;②直线DE、BG之间的位置关系是.(2)探究如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)应用如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.23.如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(﹣1,0),与y轴交于点C(0,4),作直线AC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标为m,求m的值;(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.2019年河南省中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。

河南省开封市2019-2020学年中考数学仿真第二次备考试题含解析

河南省开封市2019-2020学年中考数学仿真第二次备考试题含解析

河南省开封市2019-2020学年中考数学仿真第二次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,反比例函数y=-的图象与直线y=-x的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则△ABC的面积为( )A.8 B.6 C.4 D.22.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.1200012000100 1.2x x=+B.12000120001001.2x x=+C.1200012000100 1.2x x=-D.12000120001001.2x x=-3.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为()A.43.510⨯米B.43.510-⨯米C.53.510-⨯米D.93.510-⨯米4.下列各数中,相反数等于本身的数是()A.–1 B.0 C.1 D.25.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.6.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+7.一个多边形的内角和比它的外角和的3倍少180°,那么这个多边形的边数是()A.7 B.8 C.9 D.108.不等式组123122xx-<⎧⎪⎨+≤⎪⎩的正整数解的个数是()A.5 B.4 C.3 D.29.若函数2yx=与y=﹣2x﹣4的图象的交点坐标为(a,b),则12a b+的值是()A.﹣4 B.﹣2 C.1 D.210.如图,将函数y=12(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.y=12(x﹣2)2-2 B.y=12(x﹣2)2+7C.y=12(x﹣2)2-5 D.y=12(x﹣2)2+411.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A .①②B .②③C .①③D .②④12.2017年,太原市GDP 突破三千亿元大关,达到3382亿元,经济总量比上年增长了426.58亿元,达到近三年来增量的最高水平,数据“3382亿元”用科学记数法表示为( )A .3382×108元B .3.382×108元C .338.2×109元D .3.382×1011元二、填空题:(本大题共6个小题,每小题4分,共24分.)13.圆锥的底面半径是4cm ,母线长是5cm ,则圆锥的侧面积等于_____cm 1.14.如图,已知 OP 平分∠AOB ,∠AOB=60°,CP=2,CP ∥OA ,PD ⊥OA 于点D ,PE ⊥OB 于点E .如果点M 是OP 的中点,则DM 的长是_________.15.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.16.已知扇形的弧长为π,圆心角为45°,则扇形半径为_____.17. “若实数a ,b ,c 满足a <b <c ,则a+b <c”,能够说明该命题是假命题的一组a ,b ,c 的值依次为_____.18.自2008年9月南水北调中线京石段应急供水工程通水以来,截至2018年5月8日5时52分,北京市累计接收河北四库来水和丹江口水库来水达50亿立方米.已知丹江口水库来水量比河北四库来水量的2倍多1.82亿立方米,求河北四库来水量.设河北四库来水量为x 亿立方米,依题意,可列一元一次方程为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解方程: +=1.20.(6分)如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠的图象经过(1,0)M 和(3,0)N 两点,且与y 轴交于(0,3)D ,直线l 是抛物线的对称轴,过点(1,0)A -的直线AB 与直线相交于点B ,且点B 在第一象限.(2)若直线AB和直线l、x轴围成的三角形面积为6,求此直线的解析式;(3)点P在抛物线的对称轴上,Pe与直线AB和x轴都相切,求点P的坐标.21.(6分)如图1,在矩形ABCD中,AD=4,AB=23,将矩形ABCD绕点A逆时针旋转α(0<α<90°)得到矩形AEFG.延长CB与EF交于点H.(1)求证:BH=EH;(2)如图2,当点G落在线段BC上时,求点B经过的路径长.22.(8分)如图,已知:正方形ABCD,点E在CB的延长线上,连接AE、DE,DE与边AB交于点F,FG∥BE交AE于点G.(1)求证:GF=BF;(2)若EB=1,BC=4,求AG的长;(3)在BC边上取点M,使得BM=BE,连接AM交DE于点O.求证:FO•ED=OD•EF.23.(8分)如图,AB为⊙O直径,过⊙O外的点D作DE⊥OA于点E,射线DC切⊙O于点C、交AB 的延长线于点P,连接AC交DE于点F,作CH⊥AB于点H.(1)求证:∠D=2∠A;(2)若HB=2,cosD=35,请求出AC的长.=80m ,DE =10m ,求障碍物B ,C 两点间的距离.(结果保留根号)25.(10分)(1)|﹣2|+327•tan30°+(2018﹣π)0-(15)-1 (2)先化简,再求值:(2x x x +﹣1)÷22121x x x -++,其中x 的值从不等式组23241x x -≤⎧⎨-⎩<的整数解中选取. 26.(12分)(1)计算:0|2|8(2)2cos45π︒----+.(2)解方程:x 2﹣4x+2=027.(12分)矩形ABCD 一条边AD=8,将矩形ABCD 折叠,使得点B 落在CD 边上的点P 处.(1)如图1,已知折痕与边BC 交于点O ,连接AP 、OP 、OA .①求证:△OCP ∽△PDA ;②若△OCP 与△PDA 的面积比为1:4,求边AB 的长.(2)如图2,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(不与点P 、A 重合),动点N 在线段AB 的延长线上,且BN=PM ,连接MN 交PB 于点F ,作ME ⊥BP 于点E .试问动点M 、N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)试题解析:由于点A、B在反比例函数图象上关于原点对称,则△ABC的面积=2|k|=2×4=1.故选A.考点:反比例函数系数k的几何意义.2.B【解析】【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:12000120001001.2x x=+故选B.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.3.C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】35000纳米=35000×10-9米=3.5×10-5米.故选C.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.B【解析】【分析】根据相反数的意义,只有符号不同的数为相反数.【详解】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,1的相反数是1.5.B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.6.D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.7.A【解析】【分析】设这个正多边形的边数是n,就得到方程,从而求出边数,即可求出答案.【详解】设这个多边形的边数为n,依题意得:180(n-2)=360×3-180,解之得n=7.故选A.【点睛】本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和与外角和,根据题目中的等量关系,【分析】先解不等式组得到-1<x≤3,再找出此范围内的正整数.【详解】解不等式1-2x <3,得:x >-1, 解不等式12x +≤2,得:x≤3, 则不等式组的解集为-1<x≤3,所以不等式组的正整数解有1、2、3这3个,故选C .【点睛】本题考查了一元一次不等式组的整数解,解题的关键是正确得出 一元一次不等式组的解集.9.B【解析】【分析】求出两函数组成的方程组的解,即可得出a 、b 的值,再代入12a b+求值即可. 【详解】 解方程组224y x y x ⎧=⎪⎨⎪=--⎩①②, 把①代入②得:2x=﹣2x ﹣4, 整理得:x 2+2x+1=0,解得:x=﹣1,∴y=﹣2,交点坐标是(﹣1,﹣2),∴a=﹣1,b=﹣2, ∴12a b+=﹣1﹣1=﹣2, 故选B .【点睛】本题考查了一次函数与反比例函数的交点问题和解方程组等知识点,关键是求出a 、b 的值. 10.D∵函数()21212y x =-+的图象过点A (1,m ),B (4,n ), ∴m=()211212-+=32,n=()214212-+=3, ∴A (1,32),B (4,3), 过A 作AC ∥x 轴,交B′B 的延长线于点C ,则C (4,32), ∴AC=4﹣1=3,∵曲线段AB 扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数()21212y x =-+的图象沿y 轴向上平移3个单位长度得到一条新函数的图象, ∴新图象的函数表达式是()21242y x =-+. 故选D .11.B【解析】【详解】A 、∵四边形ABCD 是平行四边形,当①AB=BC 时,平行四边形ABCD 是菱形,当②∠ABC=90°时,菱形ABCD 是正方形,故此选项正确,不合题意;B 、∵四边形ABCD 是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD 是矩形,当AC=BD 时,这是矩形的性质,无法得出四边形ABCD 是正方形,故此选项错误,符合题意;C 、∵四边形ABCD 是平行四边形,当①AB=BC 时,平行四边形ABCD 是菱形,当③AC=BD 时,菱形ABCD 是正方形,故此选项正确,不合题意;D 、∵四边形ABCD 是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD 是矩形,当④AC ⊥BD 时,矩形ABCD 是正方形,故此选项正确,不合题意.故选C .【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】3382亿=338200000000=3.382×1.故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.10π【解析】【分析】【详解】解:根据圆锥的侧面积公式可得这个圆锥的侧面积=12•1π•4•5=10π(cm1).故答案为:10π【点睛】本题考查圆锥的计算.14【解析】【分析】由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【详解】∵OP 平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∵∠PCE=∠AOB=60°,PE ⊥OB ,∴∠CPE=30°, ∴112CE CP ==,∴PE ==∴2OP PE ==∵PD ⊥OA ,点M 是OP 的中点,∴12DM OP ==【点睛】此题考查了等腰三角形的性质与判定、含 30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,属于中考常见题型,求出 OP 的长是解题关键.15.2【解析】分析:根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围,再进一步根据第三边是整数求解.详解:根据三角形的三边关系,得第三边>4,而<1.又第三条边长为整数,则第三边是2.点睛:此题主要是考查了三角形的三边关系,同时注意整数这一条件.16.1【解析】【分析】根据弧长公式l=n πr 180代入求解即可. 【详解】 解:∵n πr l 180=, ∴180l r 4n π==. 故答案为1.【点睛】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=n πr 180. 17.答案不唯一,如1,2,3;【解析】分析:设a ,b ,c 是任意实数.若a<b<c ,则a+b<c”是假命题,则若a<b<c ,则a+b≥c”是真命题,举例即可,本题答案不唯一详解:设a ,b ,c 是任意实数.若a<b<c ,则a+b<c”是假命题,则若a<b<c ,则a+b≥c”是真命题,可设a ,b ,c 的值依次1,2,3,(答案不唯一),故答案为1,2,3.点睛:本题考查了命题的真假,举例说明即可,18.()2 1.8250x x ++=【解析】【分析】河北四库来水量为x 亿立方米,根据等量关系:河北四库来水和丹江口水库来水达50亿立方米,列方程即可得.【详解】河北四库来水量为x 亿立方米,则丹江口水库来水量为(2x+1.82)亿立方米,由题意得:x+(2x+1.82)=50,故答案为x+(2x+1.82)=50.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列出方程是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.-3【解析】试题分析:解得x=-3经检验: x=-3是原方程的根.∴原方程的根是x=-3考点:解一元一次方程点评:在中考中比较常见,在各种题型中均有出现,一般难度不大,要熟练掌握.20.(1)243y x x =-+;(2)4433y x =+;(3)32,2P ⎛⎫ ⎪⎝⎭或(2,6)P -. 【解析】【分析】(1)根据图象经过M (1,0)和N (3,0)两点,且与y 轴交于D (0,3),可利用待定系数法求出二次函数解析式;(2)根据直线AB 与抛物线的对称轴和x 轴围成的三角形面积为6,得出AC ,BC 的长,得出B 点的坐标,即可利用待定系数法求出一次函数解析式;(3)利用三角形相似求出△ABC ∽△PBF ,即可求出圆的半径,即可得出P 点的坐标.【详解】(1)Q 抛物线2y ax bx c =++的图象经过(1,0)M ,(3,0)N ,(0,3)D , ∴把(1,0)M ,(3,0)N ,(0,3)D 代入得:00933a b c a b c c =++⎧⎪=++⎨⎪=⎩解得:143a b c =⎧⎪=-⎨⎪=⎩,∴抛物线解析式为243y x x =-+;(2)Q 抛物线243y x x =-+改写成顶点式为2(2)1y x =--,∴抛物线对称轴为直线:2l x =,∴对称轴与x 轴的交点C 的坐标为(2,0)(1,0)A -Q ,2(1)3AC ∴=--=,设点B 的坐标为(2,)y ,(0)y >,则BC y =,12ABC S AC BC ∴=⋅⋅△, ∴4y = ∴点B 的坐标为(2,4),设直线AB 解析式为:(0)y kx b k =+≠,把(1,0)A -,(2,4)B 代入得:042k b k b =-+⎧⎨=+⎩, 解得:4343k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线AB解析式为:4433y x=+.(3)①∵当点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,设⊙P与AB相切于点F,与x轴相切于点C,如图1;∴PF⊥AB,AF=AC,PF=PC,∵AC=1+2=3,BC=4,∴222234AC BC+=+,AF=3,∴BF=2,∵∠FBP=∠CBA,∠BFP=∠BCA=90︒,∴△ABC∽△PBF,∴BF PF PC BC AC AC==,∴243PC =,解得:32 PC=,∴点P的坐标为(2,32 );②设⊙P与AB相切于点F,与x轴相切于点C,如图2:∴PF ⊥AB ,PF=PC ,∵AC=3,BC=4, AB=5,∵∠FBP=∠CBA ,∠BFP=∠BCA=90︒,∴△ABC ∽△PBF , ∴AB AC PB PF=, ∴534PC PC =+, 解得:6PC =,∴点P 的坐标为(2,-6),综上所述,P e 与直线AB 和x 都相切时,32,2P ⎛⎫ ⎪⎝⎭或(2,6)P -. 【点睛】本题考查了二次函数综合题,涉及到用待定系数法求一函数的解析式、二次函数的解析式及相似三角形的判定和性质、切线的判定和性质,根据题意画出图形,利用数形结合求解是解答此题的关键. 21.(1)见解析;(2)B 点经过的路径长为233π. 【解析】【分析】(1)、连接AH ,根据旋转图形的性质得出AB=AE ,∠ABH=∠AEH=90°,根据AH 为公共边得出Rt △ABH和Rt △AEH 全等,从而得出答案;(2)、根据题意得出∠EAB 的度数,然后根据弧长的计算公式得出答案.【详解】(1)、证明:如图1中,连接AH,由旋转可得AB=AE,∠ABH=∠AEH=90°,又∵AH=AH,∴Rt△ABH≌Rt△AEH,∴BH=EH.(2)、解:由旋转可得AG=AD=4,AE=AB,∠EAG=∠BAC=90°,在Rt△ABG中,AG=4,AB=23,∴cos∠BAG=3ABAG=,∴∠BAG=30°,∴∠EAB=60°,∴弧BE的长为6023π⋅⋅=23π,即B点经过的路径长为23π.【点睛】本题主要考查的是旋转图形的性质以及扇形的弧长计算公式,属于中等难度的题型.明白旋转图形的性质是解决这个问题的关键.22.(1)证明见解析;(2)AG=175;(3)证明见解析.【解析】【分析】(1)根据正方形的性质得到AD∥BC,AB∥CD,AD=CD,根据相似三角形的性质列出比例式,等量代换即可;(2)根据勾股定理求出AE,根据相似三角形的性质计算即可;(3)延长GF交AM于H,根据平行线分线段成比例定理得到GF FHBE BM=,由于BM=BE,得到GF=FH,由GF∥AD,得到EF GFED AD=,FH FOAD OD=等量代换得到EF FHED AD=,即EF GFED AD=,于是得到结论.【详解】解:(1)∵四边形ABCD是正方形,∴AD∥BC,AB∥CD,AD=CD,∵GF∥BE,∴GF∥BC,∴GF∥AD,∴GF EF AD ED=,∵AB∥CD,BF EFCD ED=,∵AD=CD,∴GF=BF;(2)∵EB=1,BC=4,∴DF BCFE EB==4,AE=2217EB AB+=,∴AG DFGE FE==4,∴AG=417;(3)延长GF交AM于H,∵GF∥BC,∴FH∥BC,∴GF AF BE AB=,∴GF FH BE BM=,∵BM=BE,∴GF=FH,∵GF∥AD,∴EF GFED AD=,FH FOAD OD=,∴EF FH ED AD=,∴EF GF ED AD=,∴FO•ED=OD•EF.【点睛】本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等.23.(1)证明见解析;(2)AC=45. 【解析】 【分析】 (1)连接OC ,根据切线的性质得到90OCP ∠=︒,根据垂直的定义得到90DEP ∠=︒,得到COB D ∠=∠,然后根据圆周角定理证明即可;(2)设O e 的半径为r ,根据余弦的定义、勾股定理计算即可.【详解】(1)连接OC .∵射线DC 切O e 于点C ,90OCP ∴∠=︒.DE AP ⊥Q ,90DEP ∴∠=︒,90P D ∴∠+∠=︒,90P COB ∠+∠=︒,COB D ∴∠=∠,由圆周角定理得:2COB A ∠=∠,2D A ∴∠=∠;(2)由(1)可知:90OCP ∠=︒,COP D ∠=∠,3cos cos 5COP D ∴∠=∠=,CH OP ⊥Q ,90CHO ∴∠=︒,设O e 的半径为r ,则2OH r =-,在Rt CHO ∆中,23cos 5OH r HOC OC r -∠===,5r ∴=,523OH ∴=-=,∴由勾股定理可知:4CH =,1028AH AB HB ∴=-=-=. 在Rt AHC ∆中,90CHA =︒∠,由勾股定理可知:2245AC AH CH =+=.【点睛】本题考查了切线的性质、圆周角定理以及解直角三角形,掌握切线的性质定理、圆周角定理、余弦的定义是解题的关键.24.(70﹣3m .【解析】【分析】过点D 作DF ⊥AB 于点F ,过点C 作CH ⊥DF 于点H.通过解Rt ADF V 得到DF 的长度;通过解Rt CDE△得到CE 的长度,则BC BE CE =-.【详解】如图,过点D 作DF ⊥AB 于点F ,过点C 作CH ⊥DF 于点H.则DE=BF=CH=10m ,在Rt ADF V 中,∵AF=80m−10m=70m,45ADF ∠=o ,∴DF=AF=70m.在Rt CDE △中,∵DE=10m,30DCE ∠=o ,∴103()tan3033DE CE m ===o , ∴(70103).BC BE CE m =-=-答:障碍物B ,C 两点间的距离为(703).m -25.(13-1(1)-1【解析】【分析】(1)先根据根据绝对值的意义、立方根的意义、特殊角的三角函数值、零指数幂、负整数指数幂的意义化简,然后按照实数的运算法则计算即可;(1)把括号里通分,把22121x x x -++的分子、分母分解因式约分,然后把除法转化为乘法计算;然后求出不等式组的整数解,选一个使分式有意义的值代入计算即可.【详解】(1)原式=1+3×33+1﹣5 3+1﹣5 31;(1)原式=()()()()()2211111x x x x x x x x x x ⎡⎤+-+-÷⎢⎥+++⎢⎥⎣⎦=()2111x x x x x --÷++ =111x x x x -++-n=﹣1x x -, 解不等式组23241x x -≤⎧⎨-<⎩得:-1≤x 52< 则不等式组的整数解为﹣1、0、1、1,∵x (x+1)≠0且x ﹣1≠0,∴x≠0且x≠±1,∴x=1,则原式=﹣221-=﹣1. 【点睛】本题考查了实数的运算,分式的化简求值,不等式组的解法.熟练掌握各知识点是解答本题的关键,本题的易错点是容易忽视分式有意义的条件.26.(1)-1;(2)x 1=2+2,x 2=2﹣2【解析】【分析】(1)按照实数的运算法则依次计算即可;(2)利用配方法解方程.【详解】(1)原式=2﹣22﹣1+2×22=﹣1; (2)x 2﹣4x+2=0,x 2﹣4x =﹣2,x 2﹣4x+4=﹣2+4,即(x ﹣2)2=2,∴x ﹣2=±2,∴x 1=2+2,x 2=2﹣2.【点睛】此题考查计算能力,(1)考查实数的计算,正确掌握绝对值的定义,零次幂的定义,特殊角度的三角函数值是解题的关键;(2)是解一元二次方程,能根据方程的特点选择适合的解法是解题的关键.27.(1)①证明见解析;②10;(2)线段EF 的长度不变,它的长度为2. .【解析】试题分析:(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8﹣x,由勾股定理得列方程,求出x,最后根据CD=AB=2OP即可求出边CD的长;(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB 的长,最后代入EF=PB即可得出线段EF的长度不变.试题解析:(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA 的面积比为1:4,∴=,∴CP=AD=4,设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得:,解得:x=5,∴CD=AB=AP=2OP=10,∴边CD的长为10;(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ 和△NFB中,∵∠QFM=∠NFB,∠QMF=∠BNF,MQ=BN,∴△MFQ≌△NFB(AAS),∴QF=QB,∴EF=EQ+QF=PQ+QB=PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴PB==,∴EF=PB=,∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为.考点:翻折变换(折叠问题);矩形的性质;相似形综合题.。

2019年河南省中考数学二模试卷

2019年河南省中考数学二模试卷

((2019年河南省中考数学二模试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的1.(3分)﹣的相反数是()A.﹣B.﹣C.D.2.3分)春暖花开,走在郑州中原西路上,不禁感慨“郑州的路越来越漂亮了“感慨背后,是对郑州从2012年起建设生态廊道的由衷认可.目前,郑州累计增绿超3亿平方米,相当于140个碧沙岗公园.我们把3亿用科学记数法表示为()A.3×1010B.3×109C.3×108D.3x1073.(3分)如图,若添上一个正方形,使它能折叠成一个正方体,且使相对面上的数字之和相等,则共有几种不同的添法()A.5B.4C.3D.64.(3分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)35.3分)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分6.(3分)不等式组A..2<x<3B.20分,17分C.20分,19分D.20分,20分的解集为()B..2<x≤3C..x<2或x≥3D.无解7.(3分)如图,在△ABC中,按以下步骤作图:①分别以点B,C为圆心,大于BC的长为半径作弧,两弧相交于点M,N;②作直线MN,交AB于点D,连接CD若AC=AD,∠A=80°,则∠ACB的度数为()(A .65°B .70°C .75°D .80°8.(3 分)在﹣2,﹣1,0,1,2 这五个数中任取两数 m ,n ,则二次函数 y =(x ﹣m )2+n的顶点在坐标轴上的概率为()A .B .C .D .9.3 分)二次函数 y =ax 2+b x +c 的图象如图所示,以下结论:①abc >0; ②4ac <b 2;③2a +b>0;④其顶点坐标为( ,﹣2); ⑤当 x < 时,y 随 x 的增大而减小;⑥a +b +c >0中正确的有()A .3 个B .4 个C .5 个D .6 个10.(3 分)如图 1,在矩形 ABCD 中,动点 E 从点 A 出发,沿 AB →BC 方向运动,当点 E到达点 C 时停止运动,过点 E 作 FE ⊥AE ,交 CD 于点 F ,设点 E 的运动路程为 x ,FC=y ,如图 2 所表示的是 y 与 x 的函数关系的大致图象,当点 E 在 BC 上运动时,FC 的最大长度是 ,则矩形 ABCD 的面积是()A .16B .6C .20D .8二、填空题(每小题 3 分,共 15 分)11.(3分)﹣(﹣)0=.12.(3分)一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是.13.(3分)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=△BC,AOB的面积为,则k的值为.14.(3分)如图,在△ABC中,AC=AB,∠CAB=30°,AC=2.以AB的中点O为圆心、AB的长为直径,在AB的上方作半圆,再以点A为圆心、AC的长为半径,作扇形DAC,且∠DAC=30°,则图中阴影部分的面积为.15.(3分)如图,在R t△ABC中,∠ACB=90°,BC=6,AC=8.点D为AB边上的一动点(点D不与点A,点B重合),过点D作DE∥BC,交AC于点E,把△ADE沿直线DE折叠,点A落在点A'处,连接△BA′,若A′DB为直角三角形,则AD的长为三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值(1+)÷,其中x是满足﹣1<x<2的整数.17.(9分)近几年,中学生过生日互送礼物甚至有部分家长为庆贺孩子生日大摆宴席攀比之风已成为社会关注热点.为此某媒体记者就中学生攀比心理的成因对某市城区若干名市民进行了调查,调查结果分为四组:A.社会环境的影响;B.学校正确引导的缺失;( 、 (C .家长榜样示范的不足;D .其他.并将调查结果绘制成如下条形统计图和扇形统计图(均不完整)请根据图中提供的信息,解答下列问题:(1)扇形统计图中,B 组所在扇形的圆心角度数是;(2)将条形统计图补充完整;(3)根据抽样调查结果,请你估计该市城区 120000 名市民中有多少名市民持 C 组观点;(4)针对现在部分同学因举行生日宴会而造成极大浪费的现象,请你简单说说中学生大操大办庆祝生日的危害性,并提出合理化的建议.18. 9 分)如图,在 Rt △ABC 中,∠ACB =90°,以 AC 为直径的⊙O 与斜边 AB 交于点 D ,点 E 为边 BC 的中点,连接 DE .(1)求证:DE 是⊙O 的切线;(2)填空①若∠B =30°,AC =,则 DE = ;②当∠B =°时,以 O ,D ,E ,C 为顶点的四边形是正方形.19.(9 分)郑州大学(ZhengzhouUniversity ),简称“郑大” 是中华人民共和国教育部与河南省人民政府共建的全国重点大学,首批“双一流”世界一流大学“211 工程”.某学校兴趣小组 3 人来到郑州大学门口进行测量,如图,在大楼 AC 的正前方有一个舞台,舞台前的斜坡 DE =4 米,坡角∠DEB =41°,小红在斜坡下的点 E 处测得楼顶 A 的仰角为60°,在斜坡上的点 D 处测得楼顶 A 的仰角为 45°,其中点 B ,C ,E 在同一直线上求大楼 AC 的高度. 结果精确到整数.参考数据:tan41°≈0.87)≈1.73,sin41°≈0.6,cos41°≈0.75,20.(9分)如图,在平面直角坐标系中,点A(﹣,1)在反比例函数y=的图象上,AB⊥x轴于点C,过点O作OB⊥OA,交直线AB于点B.(1)求反比例函数y=的表达式;(2)在x轴上有一点P,使得△S AOP=△S AOB,求点P的坐标21.(10分)党的十九大提出实施乡村振兴战略,将生态宜居作为乡村振兴的总目标之一,《乡村振兴战略规划(2018﹣2022年)中更是把建设生态宜居美丽乡村作为重要内容以具体化.某县富强加工厂响应“产业兴旺、生态宜居、生活富裕”的号召,拟计划投资兴建2条全自动生产线和1条半自动生产线共用资金260万元;而投资兴建1条全自动生产线和3条半自动生产线共用资金280万元.(1)求每条全自动生产线和半自动生产线的成本各为多少万元?(2)据预测,2019年每条全自动生产线的毛利润为260万元,每条半自动生产线的毛利润为160万元这一年,该加工厂共投资兴建10条生产线,若想获得不少于1200万元的纯利润,则2019年该加工厂至少需投资兴建多少条全自动生产线?22.(10分)已知,点C为线段AB外一动点,且AB=4,AC=2.问题发现(1)图1,当点C位于时,线段BC的长取最大值,且最大值为.扩展探究(2)如图2,若以BC为斜边向上构造等腰直角三角形BCD,以点A为圆心,AC为半(径,在转过程中,当 A ,C ,D 三点共线时,求 CD 的长度;解决问题(3)在(2)的条件下,以点 A 为圆心,AC 为半径,在旋转过程中,试求 AD 的最大值和最小值.23. 11 分)如图,抛物线 y =﹣ x 2+b x +c 经过点 A (1,0),点 B ,交 y 轴于点 C (0,2).连接 BC ,AC(1)求抛物线的解析式;(2)点 D 为抛物线第二象限上一点,满足 △S BCD = S △ABC ,求点 D 的坐标;(3)将直线 BC 绕点 B 顺时针旋转 45°,与抛物线交于另一点 E ,求点 E 的坐标.(2019年河南省中考数学二模试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的1.(3分)﹣的相反数是()A.﹣B.﹣C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是.故选:C.【点评】本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.2.3分)春暖花开,走在郑州中原西路上,不禁感慨“郑州的路越来越漂亮了“感慨背后,是对郑州从2012年起建设生态廊道的由衷认可.目前,郑州累计增绿超3亿平方米,相当于140个碧沙岗公园.我们把3亿用科学记数法表示为()A.3×1010B.3×109C.3×108D.3x107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3亿=3×108,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图,若添上一个正方形,使它能折叠成一个正方体,且使相对面上的数字之和相等,则共有几种不同的添法()A.5B.4C.3D.6【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上的数字之和相等解答.( 【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“5”是相对面,“2”与“4”是相对面,所以,要添加的是“3”的相对面,∴要添加一个正方形,使它能折叠成一个正方体,且使相对面上的数字之和相等,则共有 4 种不同的添法.故选:B .【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3 分)下列计算结果为 a 6 的是()A .a 2•a 3B .a 12÷a 2C .(a 2)3D .(﹣a 2)3【分析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.【解答】解:A 、a 2•a 3=a 5,此选项不符合题意;B 、a 12÷a 2=a 10,此选项不符合题意;C 、(a 2)3=a 6,此选项符合题意;D 、(﹣a 2)3=﹣a 6,此选项不符合题意;故选:C .【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则.5. 3 分)某篮球运动员在连续 7 场比赛中的得分(单位:分)依次为 20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A .18 分,17 分B .20 分,17 分C .20 分,19 分D .20 分,20 分【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为 17、18、18、20、20、20、23,所以这组数据的众数为 20 分、中位数为 20 分,故选:D .【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.6.(3分)不等式组A..2<x<3的解集为()B..2<x≤3C..x<2或x≥3D.无解【分析】一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.【解答】解:由不等式①,得x>2,由不等式②,得x≤3,所以原不等式组的解集为2<x≤3.故选:B.【点评】本题考查了解不等式组,熟练掌握一元一次不等式组的解法是解题的关键,7.(3分)如图,在△ABC中,按以下步骤作图:①分别以点B,C为圆心,大于BC的长为半径作弧,两弧相交于点M,N;②作直线MN,交AB于点D,连接CD若AC=AD,∠A=80°,则∠ACB的度数为()A.65°B.70°C.75°D.80°【分析】利用等腰三角形的性质和三角形内角和计算出∴∠ACD=∠ADC=50°,再利用基本作图得到MN垂直平分BC,所以DB=DC,利用三角形外角性质和等腰三角形的性质计算出∠DCB=25°,然后计算∠ACD+∠DCB即可.【解答】解:∵AC=AD,∴∠ACD=∠ADC=(180°﹣∠A)=(180°﹣80°)=50°,由作法得MN垂直平分BC,∴DB=DC,∴∠B=∠DCB,而∠ADC=∠B+∠DCB,∴∠DCB=∠ADC=25°,∴∠ACB=∠ACD+∠DCB=50°+25°=75°.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).8.(3分)在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n 的顶点在坐标轴上的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及坐标轴上的点的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵﹣2,﹣1,0,1,2这五个数中任取两数m,n,一共有20种可能,其中取到0的有8种可能,∴顶点在坐标轴上的概率为=.故选:A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与( 总情况数之比,属于中考常考题型.9. 3 分)二次函数 y =ax 2+b x +c 的图象如图所示,以下结论:①abc >0; ②4ac <b 2;③2a +b>0;④其顶点坐标为( ,﹣2); ⑤当 x < 时,y 随 x 的增大而减小;⑥a +b +c >0中正确的有()A .3 个B .4 个C .5 个 【分析】根据二次函数的性质即可求出答案.【解答】解:①由图象开口可知:a >0,c <0,∵>0,∴b <0,∴abc >0,故①正确;②由图象可知: >△0,∴b 2﹣4ac >0,∴b 2>4ac ,故②正确;③抛物线与 x 轴交于点 A (﹣1,0),B (2,0),∴抛物线的对称轴为:x = ,∴<1,∴2a +b >0,故③正确;④由图象可知顶点坐标的纵坐标小于﹣2,故④错误;⑤由③可知抛物线的对称轴为 x = ,∴由图象可知:x < 时,y 随着 x 的增大而减小,D .6 个故⑤正确;⑥由图象可知:x=1时,y<0,∴a+b+c<0,故⑥错误;故选:B.【点评】本题考查二次函数的性质,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.10.(3分)如图1,在矩形ABCD中,动点E从点A出发,沿AB→BC方向运动,当点E 到达点C时停止运动,过点E作FE⊥AE,交CD于点F,设点E的运动路程为x,FC =y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()A.16B.6C.20D.8【分析】易证△CFE∽△BEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题.【解答】解:若点E在BC上时,如图∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB,∵在△CFE和△BEA中,∠CFE=∠AEB,∠C=∠B=90°,∴△CFE∽△BEA,由二次函数图象对称性可得E在BC中点时,CF有最大值,此时,BE=CE=x( ﹣5,即∴y =,,当 y = 时,代入方程式解得:x 1=3(不合题意,舍去),x 2=7,∴BE =CE =2,∴BC =4,AB =5,∴矩形 ABCD 的面积为 5×4=20.故选:C .【点评】本题考查了二次函数动点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出 E 为 BC 中点是解题的关键.二、填空题(每小题 3 分,共 15 分)11.(3 分)﹣(﹣ )0= 3 .【分析】直接利用二次根式的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=4﹣1=3.故答案为:3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12. 3 分)一元二次方程 kx 2﹣2x ﹣1=0 有实数根,则 k 的取值范围是k ≠0 且 k ≥﹣1 .【分析】让 =△b 2﹣4ac ≥0,且二次项的系数不为 0 以保证此方程为一元二次方程.【解答】解:由题意得:4+4k ≥0,k ≠0,解得:k ≠0 且 k ≥﹣1.【点评】一元二次方程有实数根应注意两种情况:≥△0,二次项的系数不为 0.13.(3 分)如图,点 C 在反比例函数 y = (x >0)的图象上,过点 C 的直线与 x 轴,y 轴分别交于点 A ,B ,且 AB =△BC , AOB 的面积为 ,则 k 的值为 ﹣6 .【分析】根据题意可以设出点 A 的坐标,从而以得到点 B 和点 C 的坐标,即可求得 k 的值.【解答】解:设点A的坐标为(a,△0),AOB的面积为,∴B(0,)∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC∴点C(﹣a,),∵点C在反比例函数y=(x>0)的图象上,∴k=(﹣a)×=﹣6故答案为:﹣6.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.(3分)如图,在△ABC中,AC=AB,∠CAB=30°,AC=2.以AB的中点O为圆心、AB的长为直径,在AB的上方作半圆,再以点A为圆心、AC的长为半径,作扇形DAC,且∠DAC=30°,则图中阴影部分的面积为.【分析】设半圆O交AD于E交AC于F,连接OE,OF,EF,根据圆周角定理得到∠EOF=△60°,推出EOF是等边三角形,得到∠EFO=60°,推出EF∥AB,求得△SAEF =△S EOF,根据扇形的面积公式即可得到结论.【解答】解:设半圆O交AD于E交AC于F,连接OE,OF,EF,∵∠CAD=30°,∴∠EOF=60°,∴△EOF是等边三角形,∴∠EFO=60°,∵∠BAC=30°,∴∠BOF=60°,∴EF∥AB,∴△S AEF=△S EOF,∴图中阴影部分的面积=SCAD﹣S扇形EOF=﹣=π﹣=扇形,故答案为:.【点评】本题考查了扇形的面积的计算,等腰三角形的性质,圆周角定理,正确的作出辅助线是解题的关键.15.(3分)如图,在R t△ABC中,∠ACB=90°,BC=6,AC=8.点D为AB边上的一动点(点D不与点A,点B重合),过点D作DE∥BC,交AC于点E,把△ADE沿直线DE折叠,点A落在点A'处,连接△BA′,若A′DB为直角三角形,则AD的长为或【分析】分两种情况进行讨论,当∠DA'B为直角时,设AD=A'D=△x,通过证AED∽△ACB,求出A'C,A'B的长度,然后在△Rt A'DB中,利用勾股定理可求出x的值;当∠DBA△'为直角时,证ABC∽△AA'B,求出A'B的值,然后在△Rt A'BD中,利用勾股定理可求出x的值.【解答】解:如图1,当∠DA'B为直角时,在△Rt ABC中,AB===10,由折叠知,△ADE≌△A'DE,∴AD=A'D,AE=A'E,∠AED=∠A'ED=×180°=90°,∴∠AED=∠ACB=90°,又∵∠A=∠A,∴△AED∽△ACB,∴,设AD=A'D=x,∴∴AE=,,∴A'C=AC﹣AA'=8﹣在△Rt A'CB中,A'B2=A'C2+BC2=(8﹣,)2+36,在△Rt A'DB中,BD=AB﹣AD=10﹣x,A'D=x,A'B2+A'D2=BD2,∴x2+(8﹣)2+36=(10﹣x)2,解得,x1=0(舍去),x2=,∴AD=;如图2,当∠DBA'为直角时,∵∠ABA'=∠ACB=90°,∠A=∠A∴△ABC∽△AA'B,∴∴∴AA'=,,,在△Rt AA'B中A'B==,设AD=A'D=x,在△Rt A'BD中,DB2+A'B2=A'D2,∴(10﹣x)2+()2=x2,解得,x=,∴AD=;故答案为:或.【点评】本题考查了勾股定理,轴对称的性质,相似三角形的判定与性质等,解题关键是能够根据题意画出两种情况的草图.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值(1+)÷,其中x是满足﹣1<x<2的整数.【分析】根据分式的加法和除法可以化简题目中的式子,然后﹣1<x<2中选取一个使得( 原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:(1+)÷==,当 x =0 时,原式==0.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.(9 分)近几年,中学生过生日互送礼物甚至有部分家长为庆贺孩子生日大摆宴席攀比之风已成为社会关注热点.为此某媒体记者就中学生攀比心理的成因对某市城区若干名市民进行了调查,调查结果分为四组:A .社会环境的影响;B .学校正确引导的缺失;C .家长榜样示范的不足;D .其他.并将调查结果绘制成如下条形统计图和扇形统计图(均不完整)请根据图中提供的信息,解答下列问题:(1)扇形统计图中,B 组所在扇形的圆心角度数是90° ;(2)将条形统计图补充完整;(3)根据抽样调查结果,请你估计该市城区 120000 名市民中有多少名市民持 C 组观点;(4)针对现在部分同学因举行生日宴会而造成极大浪费的现象,请你简单说说中学生大操大办庆祝生日的危害性,并提出合理化的建议.【分析】 1)根据题目中的数据可以求得本次调查的人数,从而可以求得扇形统计图中,B 组所在扇形的圆心角度数;(2)根据(1)中的结果和条形统计图中的数据可以求得 C 组的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得该市城区120000 名市民中有多少名市民持 C 组观点;(4)根据题意写出几条为孩子和合理化建议即可,本题答案不唯一,只要合理即可.( ( 【解答】解:(1)本次调查的人数为:40÷20%=200,扇形统计图中,B 组所在扇形的圆心角度数是:360°×=90°,故答案为:90°;(2)C 组人数为:200﹣40﹣50﹣30=80,补充完整的条形统计图如右图所示;(3)120000×=48000(人),答:计该市城区 120000 名市民中有 48000 名市民持 C 组观点;(4)中学生大操大办庆祝生日的危害性:第一,造成孩子们的互相攀比现象;第二,给很多家庭带来负担;第三,不利于孩子们树立正确的价值观;合理化建议:可以一家人给孩子在家里办一个生日宴,这样可以和孩子拉近感情,又让孩子感受到父母对他们的关注.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.18. 9 分)如图,在 Rt △ABC 中,∠ACB =90°,以 AC 为直径的⊙O 与斜边 AB 交于点 D ,点 E 为边 BC 的中点,连接 DE .(1)求证:DE 是⊙O 的切线;(2)填空①若∠B =30°,AC =,则 DE = ;②当∠B = 45 °时,以 O ,D ,E ,C 为顶点的四边形是正方形.【分析】 1)AC 是直径,则∠ADC =∠CDB =90°,点 E 为边 BC 的中点,连接 OD ,、 ( 则∠OCD =∠ODC ,则∠ODC +∠EDC =∠OCD +∠ECD =∠ACB =90°,即可证明;(2)①CB == =3,则 DE = BC = ,即可求解;②只要 DE ⊥BC ,以 O ,D ,E ,C 为顶点的四边形就是正方形,即可求解.【解答】解:(1)∵AC 是直径,则∠ADC =∠CDB =90°,∵点 E 为边 BC 的中点,∴∠ECD =∠EDC ,∠B =∠BDE ,连接 OD ,则∠OCD =∠ODC ,∴∠ODC +∠EDC =∠OCD +∠ECD =∠ACB =90°,∴DE 是⊙O 的切线;(2)①CB == =3,则 DE = BC = ,故答案是 ;②只要 DE ⊥BC ,以 O ,D ,E ,C 为顶点的四边形就是正方形,则∠B =∠BDE = ×90°=45°,故答案为 45.【点评】本题为圆的综合题,涉及到直角三角形中线定理、正方形的性质,直角三角形中线定理的应用,是本题解题的关键.19.(9 分)郑州大学(ZhengzhouUniversity ),简称“郑大” 是中华人民共和国教育部与河南省人民政府共建的全国重点大学,首批“双一流”世界一流大学“211 工程”.某学校兴趣小组 3 人来到郑州大学门口进行测量,如图,在大楼 AC 的正前方有一个舞台,舞台前的斜坡 DE =4 米,坡角∠DEB =41°,小红在斜坡下的点 E 处测得楼顶 A 的仰角为60°,在斜坡上的点 D 处测得楼顶 A 的仰角为 45°,其中点 B ,C ,E 在同一直线上求大楼 AC 的高度. 结果精确到整数.参考数据:tan41°≈0.87)≈1.73,sin41°≈0.6,cos41°≈0.75,【分析】设CE=x,根据正弦的定义求出BD,根据余弦的定义求出BE,根据正切的定义用x表示出AC,根据等腰直角三角形的性质列方程,解方程得到答案.【解答】解:设CE=x,在△Rt DEB中,sin∠DEB=,∴DB=DE•sin∠DEB≈4×0.6=2.4,cos∠DEB=,∴BE=DE•cos∠DEB≈4×0.75=3,在△Rt AEC中,tan∠AEC=,x,∴AC=CE•tan∠AEC=∵∠ADF=45°,∴F A=FD,∴x﹣2.4=x+3,解得,x=,∴AC=x≈13,答:大楼AC的高度约为13米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度的概念、熟记锐角三角函数的定义是解题的关键.( 20.(9 分)如图,在平面直角坐标系中,点 A (﹣,1)在反比例函数 y = 的图象上,AB ⊥x 轴于点 C ,过点 O 作 OB ⊥OA ,交直线 AB 于点 B .(1)求反比例函数 y = 的表达式;(2)在 x 轴上有一点 P ,使得 △S AOP = △S AOB ,求点 P 的坐标【分析】 1)将点 A (﹣达式;,1)代入 y = ,利用待定系数法即可求出反比例函数的表(2)先由射影定理求出 BC =3,那么 B (﹣,﹣3),计算求出 △S AOB = × ×4=2.则 S △AOP = △S AOB =【解答】解:(1)∵点 A (﹣∴k =﹣×1=﹣ ,.设点 P 的坐标为(m ,0),列出方程求解即可. ,1)在反比例函数 y = 的图象上, ∴反比例函数的表达式为 y =﹣;(2)∵A (﹣,1),AB ⊥x 轴于点 C , ∴OC = ,AC =1,由射影定理得 OC 2=AC •BC ,可得 BC =3,B (﹣△S AOB = × ×4=2 . ,﹣3),∴△S AOP = △S AOB =.设点 P 的坐标为(m ,0),∴ ×|m |×1=,∴|m |=2∴m =±2 , ,(∴点 P 的坐标为(﹣2,0)或(2 ,0).【点评】本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,三角形的面积,正确求出解析式是解题的关键.21.(10 分)党的十九大提出实施乡村振兴战略,将生态宜居作为乡村振兴的总目标之一,《乡村振兴战略规划(2018﹣2022 年)中更是把建设生态宜居美丽乡村作为重要内容以具体化.某县富强加工厂响应“产业兴旺、生态宜居、生活富裕”的号召,拟计划投资兴建 2 条全自动生产线和 1 条半自动生产线共用资金 260 万元;而投资兴建 1 条全自动生产线和 3 条半自动生产线共用资金 280 万元.(1)求每条全自动生产线和半自动生产线的成本各为多少万元?(2)据预测,2019 年每条全自动生产线的毛利润为 260 万元,每条半自动生产线的毛利润为 160 万元这一年,该加工厂共投资兴建 10 条生产线,若想获得不少于 1200 万元的纯利润,则 2019 年该加工厂至少需投资兴建多少条全自动生产线?【分析】 1)可设每条全自动生产线的成本为 x 万元,每条半自动生产线的成本为 y 万元,根据等量关系:投资兴建 2 条全自动生产线和 1 条半自动生产线共需资金 260 万元;投资兴建 1 条全自动生产线 3 条半自动生产线共需资金 280 万元;列出方程组求解即可;(2)可设 2019 年该加工厂需兴建全自动生产线 a 条,根据不等关系:获得不少于 1200万元的纯利润,列出不等式求解即可.【解答】解:(1)设每条全自动生产线的成本为 x 万元,每条半自动生产线的成本为 y万元,根据题意,得,解得.答:每条全自动生产线的成本为 100 万元,每条半自动生产线的成本为 60 万元.(2)设 2019 年该加工厂需兴建全自动生产线 a 条,根据题意,得(260﹣100)a +(160﹣60)(10﹣a )≥1200,解得 a ≥3 ,由于 a 是正整数,所以 a 至少取 4.即 2019 年该加工厂至少需投资兴建 4 条全自动生产线.【点评】本题考查二元一次方程组的应用,一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出等量关系和不等式关系式是解题的关键.( 22.(10 分)已知,点 C 为线段 AB 外一动点,且 AB =4,AC =2.问题发现(1)图 1,当点 C 位于 线段 BA 的延长线上 时,线段 BC 的长取最大值,且最大值为 6 .扩展探究(2)如图 2,若以 BC 为斜边向上构造等腰直角三角形 BCD ,以点 A 为圆心,AC 为半径,在转过程中,当 A ,C ,D 三点共线时,求 CD 的长度;解决问题(3)在(2)的条件下,以点 A 为圆心,AC 为半径,在旋转过程中,试求 AD 的最大值和最小值.【分析】 1)当点 C 位于线段 BA 的延长线上时,线段 BC 的长度最大,最大值为 6; (2)以点 A 为圆心,AC 为半径,在转过程中,当 A ,C ,D 三点共线,且点 A 在线段CD 上时或点 A 在线段 DC 的延长线上时,设 CD =x ,在 △RtADB 中,利用勾股定理可分别求出两种情况下 CD 的长度;(3)当 AC ⊥AB 且点 C 在 AB 上方时,AD 取最大值,将△DCA 以点 D 为圆心逆时针旋转 △90°得到 DBE ,证明△ADE 为等腰直角三角形,通过解直角三角形可求出 AD 的最大值;当 AC ⊥AB 且点 C 在 AB 下方时,AD 取最小值,将△DCA 以点 D 为圆心逆时针旋转 △90°得到 DFB ,且 A ,F ,B 三点在同一直线上,证明△ADF 为等腰直角三角形,可通过解直角三角形可求出 AD 的最小值.【解答】解:(1)如图 1,当点 C 位于线段 BA 的延长线上时,线段 BC 的长度最大,BC =AB +AC =4+2=6,故答案为:线段 BA 的延长线上,6;(2)① 如图 2﹣1,以点 A 为圆心,AC 为半径,在转过程中,当 A ,C ,D 三点共线,且点A在线段CD上时,设CD=x,则DB=x,AD=CD﹣AC=x﹣2,在△Rt ADB中,AD2+DB2=AB2,即(x﹣2)2+x2=42,解得,x1=1﹣(负值舍去),x2=1+,∴CD=1+;②如图2﹣2,以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线,且点A 在线段DC的延长线上时,设CD=x,则DB=x,AD=CD+AC=x+2,在△Rt ADB中,AD2+DB2=AB2,即(x+2)2+x2=42,解得,x1=﹣1﹣∴CD=﹣1;∴CD的长度为1+(负值舍去),x2=﹣1,或﹣1;(3)①如图3﹣1,当AC⊥AB且点C在AB上方时,AD取最大值,将△DCA以点D为圆心逆时针旋转△90°得到DBE,则∠ADE=△90°,DCA≌△DBE,∴DA=DE,BE=AC=2,∴△ADE为等腰直角三角形,∴AE=AB+BE=4+2=6,∴在等腰直角△ADE中,AD=AE=3,∴AD的最大值是3;。

河南省开封市2019-2020学年第二次中考模拟考试数学试卷含解析

河南省开封市2019-2020学年第二次中考模拟考试数学试卷含解析

河南省开封市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.内角和为540°的多边形是( )A .B .C .D .2.下图是某几何体的三视图,则这个几何体是( )A .棱柱B .圆柱C .棱锥D .圆锥3.如图,直立于地面上的电线杆 AB ,在阳光下落在水平地面和坡面上的影子分别是BC 、CD ,测得 BC=6 米,CD=4 米,∠BCD=150°,在 D 处测得电线杆顶端 A 的仰 角为 30°,则电线杆 AB 的高度为( )A .2+23B .4+23C .2+32D .4+324.下列方程中,两根之和为2的是( )A .x 2+2x ﹣3=0B .x 2﹣2x ﹣3=0C .x 2﹣2x+3=0D .4x 2﹣2x ﹣3=05.如果340x y -=,那么代数式23()x y y x y-⋅+的值为( ) A .1 B .2 C .3 D .465 )A .0与1之间B .1与2之间C .2与3之间D .3与4之间7.下列几何体中,主视图和俯视图都为矩形的是( )A.B.C.D.8.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为()A.64×105B.6.4×105C.6.4×106D.6.4×1079.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.10.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O为圆心,任意长为半径所画的弧;弧②是以P为圆心,任意长为半径所画的弧;弧③是以A为圆心,任意长为半径所画的弧;弧④是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A.4 B.3 C.2 D.111.山西有着悠久的历史,远在100 多万年前就有古人类生息在这块土地上.春秋时期,山西大部分为晋国领地,故山西简称为“晋”,战国初韩、赵、魏三分晋,山西又有“三晋”之称,下面四个以“晋”字为原型的Logo 图案中,是轴对称图形的共有()A.B.C.D.12.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为()A.4.25分钟B.4.00分钟C.3.75分钟D.3.50分钟二、填空题:(本大题共6个小题,每小题4分,共24分.)13.△ABC中,∠A、∠B都是锐角,若sinA=32,cosB=12,则∠C=_____.14.某校体育室里有球类数量如下表:球类篮球排球足球数量 3 5 4如果随机拿出一个球(每一个球被拿出来的可能性是一样的),那么拿出一个球是足球的可能性是_____.15.如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C 是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是_____.16.写出一个经过点(1,2)的函数表达式_____.17.如图,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是_____,第(2018)个三角形的直角顶点的坐标是______.18.如图,线段AB 是⊙O 的直径,弦CD⊥AB,AB=8,∠CAB=22.5°,则CD的长等于___________________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知O e 是ABC ∆的外接圆,圆心O 在ABC ∆的外部,4AB AC ==,43BC =,求O e 的半径.20.(6分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.请你用画树状图或列表的方法,求出这两数和为6的概率.如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.21.(6分)解不等式组:12231x x x -⎧⎨+≥-⎩<. 22.(8分)在矩形ABCD 中,AB =6,AD =8,点E 是边AD 上一点,EM ⊥EC 交AB 于点M ,点N 在射线MB 上,且AE 是AM 和AN 的比例中项.如图1,求证:∠ANE =∠DCE ;如图2,当点N 在线段MB 之间,联结AC ,且AC 与NE 互相垂直,求MN 的长;连接AC ,如果△AEC 与以点E 、M 、N 为顶点所组成的三角形相似,求DE 的长.23.(8分)在平面直角坐标系中,抛物线y =(x ﹣h )2+k 的对称轴是直线x =1.若抛物线与x 轴交于原点,求k 的值;当﹣1<x <0时,抛物线与x 轴有且只有一个公共点,求k 的取值范围.24.(10分)如图,在Y ABCD 中,点E 是AB 边的中点,DE 与CB 的延长线交于点F(1)求证:△ADE≌△BFE;(2)若DF平分∠ADC,连接CE,试判断CE和DF的位置关系,并说明理由.25.(10分)如图,直线y=﹣x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D.(1)求抛物线y=x2+bx+c的解析式.(2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>1.①结合函数的图象,求x3的取值范围;②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.26.(12分)如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,求旗杆AB的高度.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)27.(12分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:设它是n边形,根据题意得,(n﹣2)•180°=140°,解得n=1.故选C.考点:多边形内角与外角.2.D【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥.故选D.【点睛】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.3.B【解析】【分析】【详解】延长AD交BC的延长线于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,22CD DF -3由题意得∠E=30°,∴EF=23tan DF E= , ∴3∴AB=BE×tanE=(3×3(3+4)米, 即电线杆的高度为(3+4)米.点睛:本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.4.B【解析】【分析】由根与系数的关系逐项判断各项方程的两根之和即可.【详解】在方程x 2+2x-3=0中,两根之和等于-2,故A 不符合题意;在方程x 2-2x-3=0中,两根之和等于2,故B 符合题意;在方程x 2-2x+3=0中,△=(-2)2-4×3=-8<0,则该方程无实数根,故C 不符合题意; 在方程4x 2-2x-3=0中,两根之和等于--21=42,故D 不符合题意, 故选B .【点睛】本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于-b a 、两根之积等于c a是解题的关键. 5.A【解析】【分析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x=4y 代入即可得.【详解】解:∵原式=223 x yy x y-•+=()()3 x y x yy x y +-•+=33 x yy-∵3x-4y=0,∴3x=4y原式=43y yy-=1故选:A.【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.6.C【解析】【分析】【详解】解:∵459<<,<<,即23<<2~3之间故选C.【点睛】本题考查估计无理数的大小.7.B【解析】A、主视图为等腰三角形,俯视图为圆以及圆心,故A选项错误;B、主视图为矩形,俯视图为矩形,故B选项正确;C、主视图,俯视图均为圆,故C选项错误;D、主视图为矩形,俯视图为三角形,故D选项错误.故选:B.8.C【解析】【分析】由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:6400000=6.4×106,故选C.点睛:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.D【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.考点:由三视图判断几何体.视频10.C【解析】【分析】根据基本作图的方法即可得到结论.【详解】解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;(2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;(3)弧③是以A为圆心,大于12AB的长为半径所画的弧,错误;(4)弧④是以P为圆心,任意长为半径所画的弧,正确.故选C.【点睛】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.11.D【解析】【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确.故选D.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.C【解析】【分析】根据题目数据求出函数解析式,根据二次函数的性质可得.【详解】根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:930.7 1640.8 2550.5a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩解得:a=−0.2,b=1.5,c=−2,即p=−0.2t2+1.5t−2,当t=−1.5-0.22⨯=3.75时,p取得最大值,故选C.【点睛】本题考查了二次函数的应用,熟练掌握性质是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.60°.【解析】【分析】先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【详解】∵△ABC中,∠A、∠B都是锐角sinA=2,cosB=12,∴∠A=∠B=60°.∴∠C=180°-∠A-∠B=180°-60°-60°=60°.故答案为60°.【点睛】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.14.1 3【解析】【分析】先求出球的总数,再用足球数除以总数即为所求. 【详解】解:一共有球3+5+4=12(个),其中足球有4个,∴拿出一个球是足球的可能性=41 123.【点睛】本题考查了概率,属于简单题,熟悉概率概念,列出式子是解题关键.15.(2,0)【解析】【分析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE≌△PAF,根据PE=AF=3,列式可得结论.【详解】连接PB、PA,过B作BE⊥x轴于E,过A作AF⊥x轴于F,∵A(m,﹣3)和点B(﹣1,n),∴OE=1,AF=3,∵∠ACB=45°,∴∠APB=90°,∴∠BPE+∠APF=90°,∵∠BPE+∠EBP=90°,∴∠APF=∠EBP,∵∠BEP=∠AFP=90°,PA=PB,∴△BPE≌△PAF,∴PE=AF=3,设P(a,0),∴a+1=3,a=2,∴P(2,0),故答案为(2,0).【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.16.y=x+1(答案不唯一)【解析】【分析】本题属于结论开放型题型,可以将函数的表达式设计为一次函数、反比例函数、二次函数的表达式.答案不唯一.【详解】解:所求函数表达式只要图象经过点(1,2)即可,如y=2x,y=x+1,…答案不唯一.故答案可以是:y=x+1(答案不唯一).【点睛】本题考查函数,解题的关键是清楚几种函数的一般式.17.(1645,125)(806845,125)【解析】【分析】利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可.【详解】∵点A(﹣4,0),B(0,3),∴OA=4,OB=3,∴2243,∴第(2)个三角形的直角顶点的坐标是(445,125);∵5÷3=1余2,∴第(5)个三角形的直角顶点的坐标是(1645,125),∵2018÷3=672余2,∴第(2018)个三角形是第672组的第二个直角三角形,其直角顶点与第672组的第二个直角三角形顶点重合,∴第(2018)个三角形的直角顶点的坐标是(806845,125).故答案为:(1645,125);(806845,125)【点睛】本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环.18.【解析】【分析】连接OC,如图所示,由直径AB 垂直于CD,利用垂径定理得到E 为CD 的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE 为等腰直角三角形,求出CE 的长,进而得出CD.【详解】连接OC,如图所示:∵AB 是⊙O 的直径,弦CD⊥AB,∴OC= 12AB=4,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE 为△AOC 的外角,∴∠COE=45°,∴△COE 为等腰直角三角形,∴CE=2OC=∴CD=2CE=故答案为【点睛】考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.4【解析】【分析】已知△ABC 是等腰三角形,根据等腰三角形的性质,作AH BC ⊥于点H ,则直线AH 为BC 的中垂线,直线AH 过O 点,在Rt △OBH 中,用半径表示出OH 的长,即可用勾股定理求得半径的长.【详解】作AH BC ⊥于点H ,则直线AH 为BC 的中垂线,直线AH 过O 点,2OH OA AH r =-=-,23BH =,222OH BH OB +=,即()()222223r r -+=,4r =.【点睛】考查垂径定理以及勾股定理,掌握垂径定理是解题的关键.20. (1)列表见解析;(2)这个游戏规则对双方不公平.【解析】【分析】(1)首先根据题意列表,然后根据表求得所有等可能的结果与两数和为6的情况,再利用概率公式求解即可;(2)分别求出和为奇数、和为偶数的概率,即可得出游戏的公平性.【详解】(1)列表如下:由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率3193=; (2)这个游戏规则对双方不公平.理由如下: 因为P (和为奇数)49=,P (和为偶数)59=,而4599≠,所以这个游戏规则对双方是不公平的. 【点睛】 本题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.21.﹣4≤x <1【解析】【分析】先求出各不等式的【详解】12231x x x -⎧⎨+≥-⎩< 解不等式x ﹣1<2,得:x <1,解不等式2x+1≥x ﹣1,得:x≥﹣4,则不等式组的解集为﹣4≤x <1.【点睛】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(1)见解析;(2)4924;(1)DE 的长分别为92或1. 【解析】【分析】(1)由比例中项知AM AE AE AN=,据此可证△AME ∽△AEN 得∠AEM =∠ANE ,再证∠AEM =∠DCE 可得答案; (2)先证∠ANE =∠EAC ,结合∠ANE =∠DCE 得∠DCE =∠EAC ,从而知DE DC DC AD=,据此求得AE =8﹣92=72,由(1)得∠AEM =∠DCE ,据此知AM DE AE DC =,求得AM =218,由求得AM AE AE AN =MN =4924; (1)分∠ENM =∠EAC 和∠ENM =∠ECA 两种情况分别求解可得.【详解】解:(1)∵AE 是AM 和AN 的比例中项∵∠A=∠A,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC与NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴DE DC DC AD=,∵DC=AB=6,AD=8,∴DE=92,∴AE=8﹣92=72,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴AM DE AE DC=,∴AM=218,∴AN=143,∴MN=49 24;(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,∴∠AEC=∠NME,当△AEC与以点E、M、N为顶点所组成的三角形相似时①∠ENM=∠EAC,如图2,∴∠ANE=∠EAC,由(2)得:DE=92;②∠ENM=∠ECA,如图1,过点E作EH⊥AC,垂足为点H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE=68 EH DCAH AD==,设DE=1x,则HE=1x,AH=4x,AE=5x,又AE+DE=AD,∴5x+1x=8,解得x=1,∴DE=1x=1,综上所述,DE的长分别为92或1.【点睛】本题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点.23.(1)k=﹣1;(2)当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.【解析】【分析】(1)由抛物线的对称轴直线可得h,然后再由抛物线交于原点代入求出k即可;(2)先根据抛物线与x轴有公共点求出k的取值范围,然后再根据抛物线的对称轴及当﹣1<x<2时,抛物线与x轴有且只有一个公共点,进一步求出k的取值范围即可.【详解】解:(1)∵抛物线y=(x﹣h)2+k的对称轴是直线x=1,∴h=1,把原点坐标代入y=(x﹣1)2+k,得,(2﹣1)2+k=2,解得k=﹣1;(2)∵抛物线y=(x﹣1)2+k与x轴有公共点,∴对于方程(x﹣1)2+k=2,判别式b2﹣4ac=﹣4k≥2,∴k≤2.当x=﹣1时,y=4+k;当x=2时,y=1+k,∵抛物线的对称轴为x=1,且当﹣1<x<2时,抛物线与x轴有且只有一个公共点,∴4+k>2且1+k<2,解得﹣4<k<﹣1,综上,当﹣4<k<﹣1时,抛物线与x轴有且只有一个公共点.【点睛】抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.24.(1)见解析;(1)见解析.【解析】【分析】(1)由全等三角形的判定定理AAS证得结论.(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.【详解】解:(1)证明:如图,∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF.∴∠1=∠1.∵点E是AB边的中点,∴AE=BE,∵在△ADE与△BFE中,12DEA FEB AE BE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如图,连接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.25.(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值为113172-2.【解析】【分析】(2)由直线y=﹣x+3分别与x轴、y交于点B、C求得点B、C的坐标,再代入y=x2+bx+c求得b、c的值,即可求得抛物线的解析式;(2)①先求得抛物线的顶点坐标为D(2,﹣2),当直线l2经过点D时求得m=﹣2;当直线l2经过点C时求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分当直线l2在x轴的下方时,点Q在点P、N之间和当直线l2在x轴的上方时,点N在点P、Q之间两种情况求m的值即可.【详解】(2)在y=﹣x+3中,令x=2,则y=3;令y=2,则x=3;得B(3,2),C(2,3),将点B(3,2),C(2,3)的坐标代入y=x2+bx+c得:,解得∴y=x2﹣4x+3;(2)∵直线l2平行于x轴,∴y2=y2=y3=m,①如图①,y=x2﹣4x+3=(x﹣2)2﹣2,∴顶点为D(2,﹣2),当直线l2经过点D时,m=﹣2;当直线l2经过点C时,m=3∵x2>x2>2,∴﹣2<y3<3,即﹣2<﹣x3+3<3,得2<x3<4,②如图①,当直线l2在x轴的下方时,点Q在点P、N之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QN.∵x2>x2>2,∴x3﹣x2=x2﹣x2,即x3=2x2﹣x2,∵l2∥x轴,即PQ∥x轴,∴点P、Q关于抛物线的对称轴l2对称,又抛物线的对称轴l2为x=2,∴2﹣x2=x2﹣2,即x2=4﹣x2,∴x3=3x2﹣4,将点Q(x2,y2)的坐标代入y=x2﹣4x+3得y2=x22﹣4x2+3,又y2=y3=﹣x3+3∴x22﹣4x2+3=﹣x3+3,∴x22﹣4x2=﹣(3x2﹣4)即x22﹣x2﹣4=2,解得x2=,(负值已舍去),∴m=()2﹣4×11317如图②,当直线l2在x轴的上方时,点N在点P、Q之间,若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ.由上可得点P、Q关于直线l2对称,∴点N在抛物线的对称轴l2:x=2,又点N在直线y=﹣x+3上,∴y3=﹣2+3=2,即m=2.故m的值为11317或2.【点睛】本题是二次函数综合题,本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识.在(2)中注意待定系数法的应用;在(2)①注意利用数形结合思想;在(2)②注意分情况讨论.本题考查知识点较多,综合性较强,难度较大.26.7.6 m.【解析】【分析】利用CD及正切函数的定义求得BC,AC长,把这两条线段相减即为AB长【详解】解:由题意,∠BDC=45°,∠ADC=50°,∠ACD=90°,CD=40 m.∵在Rt△BDC中,tan∠BDC=.∴BC=CD=40 m.∵在Rt△ADC中,tan∠ADC=.∴.∴AB≈7.6(m).答:旗杆AB的高度约为7.6 m.【点睛】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.27.(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】【分析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.【详解】(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.【点睛】本题主要考查数据的收集、处理以及统计图表.。

河南省开封市金明区南郊中学2019年中考数学模拟试题(含解析)

河南省开封市金明区南郊中学2019年中考数学模拟试题(含解析)

河南省开封市金明区南郊中学2019年中考数学模拟试题一.选择题(共10小题,满分30分,每小题3分)1.在﹣,﹣,﹣2,﹣1中,最小的数是()A.B.C.﹣2 D.﹣12.用百度搜索关键词“十九大”,百度为我们找到相关结果约18 600 000个,把18 600 000这个数用科学记数法表示为()A.0.186×108B.1.86×107C.18.6×106D.186×1053.下列4个平面图形中,哪一个是由图中正方体纸盒展开得到的()A.B.C.D.4.下列计算正确的是()A.2m3+3m2=5m5B.﹣5(﹣x3)﹣2=﹣C.(3a3b3)2=6a6b6D.=﹣25.若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1 B.2 C.D.6.已知l1∥l2∥l3,直线AB和CD分别交l1、l2、l3于点A、E、B和点C、F、D.若AE=2,BE=4,则的值为()A.B.C.D.7.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.人数 2 5 13 10 7 3 成绩(分)50 60 70 80 90 100全班40名同学的成绩的中位数和众数分别是()A.75,70 B.70,70 C.80,80 D.75,808.一元二次方程x2+6x+9=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根9.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b2﹣4ac=0;③a>2;④ax2+bx+c=﹣2的根为x1=x2=﹣1;⑤若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1>y2.其中正确的个数是()A.2 B.3 C.4 D.510.如图,AB为半圆O的直径,点C是半圆O的三等分点,CD⊥AB于点D,将△ACD沿AC翻折得到△ACE,AE与半圆O交于点F,若OD=1,则图中阴影部分的面积为()A.B.C.D.二.填空题(共5小题,满分15分,每小题3分)11.计算(﹣π)0﹣(﹣1)2018的值是.12.如图,在平行四边形ABCD中,已知AD=12cm,AB=8m,AE平分∠BAD交BC边于点E,则CE的长等于厘米.13.我校八年一班甲、乙两名同学10次投篮命中的平均数均为7,方差=1.45,=2.3,教练想从中选一名成绩较稳定的同学加入校篮球队,那么应选.14.如图,正方形ABCD中,M为BC上一点,ME⊥AM,垂足为M,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为.15.如图所示,∠AOB=41°,点P为∠AOB内的一点,分别作出P点关于OA,OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为,∠MPN=°.三.解答题(共8小题,满分75分)16.(8分)先化简,再求值:÷(﹣1),其中a=3+,b=3﹣.17.(9分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标(x,y)(1)画树状图或列表,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=x+1的图象上的概率.18.(9分)如图,已知AB是⊙O的直径,PC切⊙O于点P,过A作直线AC⊥PC交⊙O于另一点D,连接PA、PB.(1)求证:AP平分∠CAB;(2)若P是直径AB上方半圆弧上一动点,⊙O的半径为2,则①当弦AP的长是时,以A,O,P,C为顶点的四边形是正方形;②当的长度是时,以A,D,O,P为顶点的四边形是菱形.19.(9分)如图是某工厂货物传送带的平面示意图,为提高传送过程的安全性,工厂计划改造传动带与地面的夹角,使其AB的坡角由原来的43°改为30°.已知原传送带AB长为5米.求新旧货物传送带着地点B、C之间相距多远?(结果保留整数,参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93,≈1.41,≈1.73)20.(9分)小明爸爸销售A、B两种品牌的保暖衣服,10月份第一周售出A品牌保暖衣服3件和B 品牌保暖衣服4件,销售额为1000元,第二周售出A品牌保暖衣服17件和B品牌保暖衣服8件,销售额为4200元.(1)求A、B两种品牌保暖衣服的售价各是多少元?(2)已知10月份A品牌保暖衣服和B品牌保暖衣服的销售量分别为1000件、500件,11月份是保暖衣服销售的旺季,为拓展市场、薄利多销,小明爸爸决定11月份将A品牌保暖衣服和B 品牌保暖衣服的销售价格在10月份的础上分别降低m%, %,11月份的销售量比10月份的销售量分别增长30%、20%.若11月份的销售额不低于233000元,求m的最大值.21.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.22.(10分)问题原型:如图①,在锐角△ABC中,∠ABC=45°,AD⊥BC于点D,在AD上取点E,使DE=CD,连结BE.求证:BE=AC.问题拓展:如图②,在问题原型的条件下,F为BC的中点,连结EF并延长至点M,使FM=EF,连结CM.(1)判断线段AC与CM的大小关系,并说明理由.(2)若AC=,直接写出A、M两点之间的距离.23.(11分)点P为拋物线y=x2﹣2mx+m2(m为常数,m>0)上任意一点,将抛物线绕顶点G逆时针旋转90℃后得到的图象与y轴交于A、B两点(点A在点B的上方),点Q为点P旋转后的对应点.(1)抛物线y=x2﹣2mx+m2的对称轴是直线,当m=2,点P的横坐标为4时,点Q的坐标为;(2)设点Q(a,b),请你用含b的代数式表示a,则a=;(3)如图,点Q在第一象限,点D在x轴的正半轴上,点C为OD的中点,QO平分∠AQC,当AQ =2QC,QD=m时,求m的值.2019年河南省开封市金明区南郊中学中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据有理数的大小比较法则比较即可.【解答】解:在﹣,﹣,﹣2,﹣1中,最小的数是﹣2,故选:C.【点评】本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.2.【分析】根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:18 600 000=1.86×107,故选:B.【点评】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】在验证立方体的展开图时,要细心观察每一个标志的位置是否一致,然后进行判断.【解答】解:把四个选项的展开图折叠,能复原的是C.故选:C.【点评】本题考查正方体的表面展开图及空间想象能力.易错易混点:学生对相关图的位置想象不准确,从而错选,解决这类问题时,不妨动手实际操作一下,即可解决问题.4.【分析】根据幂的乘方和积的乘方,即可解答.【解答】解:A、2m3与3m2不是同类项,不能合并,故错误;B、,正确;C、(3a2b3)2=9a4b6,故错误;D、,故错误;故选:B.【点评】本题考查了幂的乘方和积的乘方,解决本题的关键是熟记幂的乘方和积的乘方的法则.5.【分析】首先解不等式组求得不等式组的解集,然后根据不等式组的整数解的个数从而确定a的范围,进而求得最小值.【解答】解:解不等式x﹣a≤0,得:x≤a,解不等式2x+3a≥0,得:x≥﹣a,则不等式组的解集为﹣a≤x≤a,∵不等式至少有6个整数解,则a+a≥5,解得a≥2.a的最小值是2.故选:B.【点评】本题考查一元一次不等式组的整数解,确定a的范围是本题的关键.6.【分析】由l1∥l2∥l3,推出==即可解决问题;【解答】解:∵l1∥l2∥l3,∴====,故选:B.【点评】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数据从小到大排列,最中间的两个数是第20、21个数的平均数,∴全班40名同学的成绩的中位数是:=75;70出现了13次,出现的次数最多,则众数是70;故选:A.【点评】此题考查了中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.8.【分析】根据方程的系数结合根的判别式,可得出△=0,进而即可得出原方程有两个相等的实数根.【解答】解:∵△=62﹣4×1×9=0,∴一元二次方程x2+6x+9=有两个相等的实数根.故选:A.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.9.【分析】根据二次函数的图象与性质即可求出答案.【解答】解:①由抛物线的对称轴可知:<0,∴ab>0,由抛物线与y轴的交点可知:c+2>2,∴c>0,∴abc>0,故①正确;②抛物线与x轴只有一个交点,∴△=0,∴b2﹣4ac=0,故②正确;③令x=﹣1,∴y=a﹣b+c+2=0,∵=﹣1,∴b=2a,∴a﹣2a+c+2=0,∴a=c+2,∵c+2>2,∴a>2,故③正确;④由图象可知:令y=0,即0=ax2+bx+c+2的解为x1=x2=﹣1,∴ax2+bx+c=﹣2的根为x1=x2=﹣1,故④正确;⑤∵﹣1<<,∴y1>y2,故⑤正确;故选:D.【点评】本题考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想,本题属于中等题型.10.【分析】先由点C是半圆O的三等分点,得出∠BOC=60°,∠BAC=30°.解直角△OCD,求出OC=2,CD=,则AD=3.根据折叠的性质得出△ACD≌△ACE,那么可得∠BAE=∠BOC,再证明△AOF是等边三角形,求出AF=OA=2,EF=AE﹣AF=1,然后根据S阴影=S梯形OCEF﹣S扇形OCF即可求解.【解答】解:∵点C是半圆O的三等分点,∴∠BOC=60°,∠BAC=30°.在△OCD中,∵CD⊥AB于点D,OD=1,∠DOC=60°,∴OC=2,CD=,∴AD=AO+OD=2+1=3.∵将△ACD沿AC翻折得到△ACE,∴△ACD≌△ACE,∴∠EAC=∠DAC=30°,AE=AD=3,CE=CD=.∴∠BAE=∠DAC+∠EAC=60°=∠BOC,∴OC∥AE.∵OA=OF,∠OAF=60°,∴△AOF是等边三角形,∴AF=OA=2,∴EF=AE﹣AF=3﹣2=1,∴S阴影=S梯形OCEF﹣S扇形OCF=(1+2)×﹣=﹣.故选:D.【点评】本题考查了翻折变换(折叠问题),扇形面积的计算,解直角三角形,等边三角形的判定与性质,综合性较强,难度适中.求出半径是解题的关键.二.填空题(共5小题,满分15分,每小题3分)11.【分析】根据零指数幂的意义以及实数的运算法则即可求出答案.【解答】解:原式=1﹣1=0,故答案为:0【点评】本题考查实数的运算,解题的关键熟练运用实数的运算法则,本题属于基础题型.12.【分析】由平行四边形的性质得出BC=AD=12cm,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=12cm,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8cm,∴CE=BC﹣BE=4cm;故答案为:4【点评】本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.13.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵=1.45,=2.3,∴<,∴甲同学成绩稳定,故答案为:甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.【分析】由勾股定理可先求得AM,利用条件可证得△ABM∽△EMA,则可求得AE的长,进一步可求得DE【解答】解:∵正方形ABCD,∴∠B=90°,∵AB=12,BM=5,∴AM=13,∵ME⊥AM,∴∠AME=90°=∠B,∵∠BAE=90°,∴∠BAM+∠MAE=∠MAE+∠E,∴∠BAM=∠E,∴△ABM∽△EMA,∴=,即=,∴AE=,∴DE=AE﹣AD=﹣12=,故答案为:.【点评】本题主要考查相似三角形的判定和性质,利用条件证得△ABM∽△EMA是解题的关键.15.【分析】P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN=P2N.【解答】解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N,∠P2=∠P2PN,∠P1=∠P1PM,∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.∵∠AOB=41°,∴∠P2PP1=139°,∴∠P1+∠P2=41°,∴∠MPN=180°﹣41°﹣41°=98°,故答案为:15,98.【点评】本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.三.解答题(共8小题,满分75分)16.【分析】原式先根据分式混合运算顺序和运算法则化简,再将a、b的值代入计算可得.【解答】解:原式=÷(﹣)=•=,把a=3+,b=3﹣代入,原式===.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.17.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)找到点(x,y)在函数y=x+1的图象上的情况,利用概率公式即可求得答案.【解答】解:(1)画树状图得:共有12种等可能的结果(1,2)、(1,3)、(1,4)、(2,1)、(2,3)、(2,4)、(3,1)、(3,2)、(3,4)、(4,1)、(4,2)、(4,3);(2)∵在所有12种等可能结果中,在函数y=x+1的图象上的有(1,2)、(2,3)、(3,4)这3种结果,∴点M(x,y)在函数y=x+1的图象上的概率为=.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.18.【分析】(1)利用切线的性质得OP⊥PC,再证明AC∥OP得到∠1=∠3,加上∠2=∠3,所以∠1=∠2;(2)①当∠AOP=90°,根据正方形的判定方法得到四边形AOPC为正方形,从而得到AP=2;②根据菱形的判定方法,当AD=AP=OP=OD时,四边形ADOP为菱形,所以△AOP和△AOD为等边三角形,然后根据弧长公式计算的长度.当AD=DP=PO=OA时,四边形ADPO为菱形,△AOD 和△DOP为等边三角形,则∠AOP=120°,根据弧长公式计算的长度.【解答】(1)证明:∵PC切⊙O于点P,∴OP⊥PC,∵AC⊥PC,∴AC∥OP,∴∠1=∠3,∵OP=OA,∴∠2=∠3,∴∠1=∠2,∴AP平分∠CAB;(2)解:①当∠AOP=90°,四边形AOPC为矩形,而OA=OP,此时矩形AOPC为正方形,AP=OP =2;②当AD=AP=OP=OD时,四边形ADOP为菱形,△AOP和△AOD为等边三角形,则∠AOP=60°,的长度==π.当AD=DP=PO=OA时,四边形ADPO为菱形,△AOD和△DOP为等边三角形,则∠AOP=120°,的长度==π.故答案为2,π或π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了正方形和菱形的判定.19.【分析】过A作BC的垂线AD.在构建的直角三角形中,首先求出两个直角三角形的公共直角边,进而在Rt△ACD中,求出AC的长.再通过解直角三角形,可求出BD、CD的长,进而可求出BC的长.【解答】解:过点A作AD垂直于CB的延长线于点D.在Rt△ADB中,AB=5米,∠ABD=43°,∵sin∠ABD=,cos∠ABD=,∴AD=AB•sin∠ABD=5×sin43°≈3.41米,BD=AB•cos∠ABD=5×cos43°≈3.66米.在Rt△ADC中,∵sin∠ACD=,AC==6.82米,在Rt△ACD中,AC=6.82,∠ACD=30°,∵cos∠ACD=,CD=AC•cos∠ACD≈6.82×cos30°≈5.91米.∴BC=CD﹣BD≈2米.答:新旧货物传送带着地点B、C之间大约相距2米.【点评】本题考查了坡度坡角问题,应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.在两个直角三角形有公共直角边时,先求出公共边的长是解答此类题的基本思路.20.【分析】(1)根据“A品牌保暖衣服3件和B品牌保暖衣服4件,销售额为1000元,第二周售出A品牌保暖衣服17件和B品牌保暖衣服8件,销售额为4200元”建立方程组求解即可得出结论;(2)先确定出11月份两种品牌的保暖衣服的单价和销售量,最后用“11月份的销售额不低于233000元,”建立不等式求解即可得出结论.【解答】解:(1)设A品牌的保暖衣服x元,B品牌的保暖衣服y元,根据题意知,,解得,,经检验:符合题意,答:A、B两种品牌保暖衣服的售价各是200元和100元;(2)由题意得,11月份A品牌保暖衣服销售量为1000(1+30%)=1300件B品牌保暖衣服的销售量为500(1+20%)=600件,则1300×200(1﹣m%)+600×100(1﹣m%)≥233000,解得,m≤30,即:m的最大值为30.【点评】此题主要考查了一元一次不等式和二元一次方程组的应用,审题题意,找出相等关系和不等关系是解本题的关键.21.【分析】(1)把点A坐标分别代入反比例函数y=,一次函数y=x+b,求出k、b的值,再把点B的坐标代入反比例函数解析式求出n的值,即可得出答案;(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案.【解答】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想.22.【分析】问题原型:由AD⊥BC可得∠ADB=∠ADC=90°,又∠ABC=45°易得∠ABC=∠BAD,可得AD=BD,由SAS定理可得△BDE≌△ADC;问题拓展:(1)利用SAS判断出△BEF≌△CMF,得出BE=CM,即可得出结论;(2)借助问题原型与问题延伸的结论判断出△ACM是等腰直角三角形,即可得出结论.【解答】解:问题原型:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°,∴∠ABC=∠BAD,∴AD=BD,在△BDE和△ADC中,∵,∴△BDE≌△ADC(SAS),∴BE=AC,问题拓展:(1)AC=CM,理由:∵点F是BC中点,∴BF=CF,在△BEF和△CMF中,∵,∴△BEF≌△CMF(SAS),∴BE=CM,由(1)知,BE=AC,∴AC=CM;(2)如图②,连接AM,由(1)知,△BDE≌△ADC,∴∠BED=∠ACD,由(2)知,△BEF≌△CMF,∴∠EBF=∠BCM,∴∠ACM=∠ACD+∠BCM=∠BED+∠EBF=90°,∵AC=CM,∴AM=AC=.【点评】本题是三角形的综合问题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,中点的性质,勾股定理,判断出两对三角形全等是解本题的关键.23.【分析】(1)对称轴x=﹣=m,当m=2时,点P坐标(4,4),逆时针向旋转90度,坐标为(﹣2,2),即可求解;(2)如图所示,设图象旋转前Q点的位置在点P处,过点P、Q分别作x轴的垂线,因为图象旋转角为90度,则:EG=m﹣a,GF=QE=b,即可求解;(3)证明△DCQ≌△OCE(SAS)、△AQO≌△EQO(SAS)即可求解.【解答】解:(1)对称轴x=﹣=m,当m=2时,点P坐标(4,4),逆时针向旋转90度,坐标为(﹣2,2),即:点Q坐标为(﹣2,2),故:答案是:x=m,(﹣2,2);(2)如图所示,设图象旋转前Q点的位置在点P处,过点P、Q分别作x轴的垂线,因为图象旋转角为90度,则:PF=GE,QE=GF,则:EG=m﹣a,GF=QE=b,则:点P坐标为(m+b,m﹣a),将点P坐标代入二次函数表达式,解得:a=m﹣b2,故:答案是m﹣b2;(3)延长QC到E,使QC=CE,则:QE=2QC=2m=AQ,∵OC=CD,QC=CE,∠QCE=∠QCD,∴△DCQ≌△OCE(SAS),∴OE=QD=m,∵QE=AQ,QO=QO,QO平分∠AQC,∴△AQO≌△EQO(SAS),∴OE=OA=m,由(2)知,a=m﹣b2,即:0=m﹣m2,解得:m=1(m=0舍去),答:m的值为1.【点评】本题考查的是二次函数综合运用,涉及到图线的旋转、三角形全等相关知识点,核心是确定旋转前后图象所处的位置.。

河南省开封市金明区水稻中学2019年中考数学二模试卷(含解析)

河南省开封市金明区水稻中学2019年中考数学二模试卷(含解析)

2019年河南省开封市金明区水稻中学中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.下列各数中,最小的数是()A.﹣2019 B.2019 C.D.2.2018年我市粮食总产量为69520000000斤,69520000000科学记数法表示为()A.6.952×106B.6.952×109C.6.952×1010D.695.2×1083.下列不是正三棱柱的表面展开图的是()A.B.C.D.4.下列计算正确的是()A.2﹣2=﹣4 B.=2C.2a3+3a2=5a5D.(a5)2=a75.已知关于x的不等式组只有5个整数解,则实数a的取值范围是()A.﹣3≤x≤﹣2 B.﹣3<x≤﹣2 C.﹣4<x≤﹣3 D.﹣4≤x<﹣36.已知在△ABC中,点D、E、F分别在边AB、AC和BC上,且DE∥BC,DF∥AC,那么下列比例式中,正确的是()A.=B.=C.=D.=7.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是()A.50,50 B.50,30 C.80,50 D.30,508.关于x的一元二次方程4x2﹣4kx+k2=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根9.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是()A.﹣1<x<1 B.﹣3<x<﹣1 C.x<1 D.﹣3<x<110.如图,把半径为2的⊙O沿弦AB,AC折叠,使和都经过圆心O,则阴影部分的面积为()A.B.C.2 D.4二.填空题(共5小题,满分15分,每小题3分)11.﹣12018+(﹣1)0=.12.如图,▱ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M.如果△CDM的周长为8,那么▱ABCD的周长是.13.已知一组数据10,15,10,x,18,20的平均数为15,则这组数据的方差为.14.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为.15.如图,在等边三角形ABC中,AB=2cm,点M为边BC的中点,点N为边AB上的任意一点(不与点A,B重合),若点B关于直线MN的对称点B'恰好落在等边三角形ABC的边上,则BN的长为cm.三.解答题(共8小题,满分75分)16.(8分)先化简,再求值:( +)÷﹣,其中a=,b=.17.(9分)在甲、乙两个不透明的布袋中,甲袋装有3个完全相同的小球,分别标有数字0,1,2;乙袋装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,小球上的数字记为x,再从乙袋中随机抽取一个小球,小球上的数字记为y,设点M的坐标为(x,y).(1)用树形图或列表法求出点M的所有等可能个数;(2)分别求点M在函数y=﹣x+1图象上的概率和点M在第四象限的概率.18.(9分)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA、PB,切点分别为A、B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当的长为cm时,四边形AOBD是菱形;②当DP=cm时,四边形AOBP是正方形.19.(9分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)20.(9分)2018年4月8日﹣11日,博鳌亚洲论坛2018年年会在海南省博鳌镇召开.本届博鳌亚洲论坛的主题为“开放创新的亚洲,繁荣发展的世界”.围绕这一主题,年会设置了“全球化与一带一路”“开放的亚洲”“创新”“改革再出发”四大板块,展开60多场正式讨论.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?21.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y1=﹣2x的图象与反比例函数y2=的图象交于A(﹣1,n),B两点.(1)求出反比例函数的解析式及点B的坐标;(2)观察图象,请直接写出满足y≤2的取值范围;(3)点P是第四象限内反比例函数的图象上一点,若△POB的面积为1,请直接写出点P的横坐标.22.(10分)【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,连接AE,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE 易证得△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.根据上述解题思路,请直接写出DA、DB、DC之间的数量关系是;【拓展延伸】(2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC.若点D是边BC下方一点,∠BDC=90°,探索线段DA、DB、DC之间的数量关系,并说明理由;【知识应用】(3)如图3,两块斜边长都为14cm的三角板,把斜边重叠摆放在一起,则两块三角板的直角顶点之间的距离PQ的长分别为cm.23.(11分)如图,直线y=﹣x+4与抛物线y=﹣x2+bx+c交于A,B两点,点A在y轴上,点B在x轴上.(1)求抛物线的解析式;(2)在x轴下方的抛物线上存在一点P,使得∠ABP=90°,求出点P坐标;(3)点E是抛物线对称轴上一点,点F是抛物线上一点,是否存在点E和点F使得以点E,F,B,O为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,请说明理由.2019年河南省开封市金明区水稻中学中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】先在数轴上表示出各数,根据数轴的特点即可得出结论.【解答】解:如图所示,,故最小的是:﹣2019.故选:A.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.2.【分析】根据科学记数法的方法可以将题目中的数据用科学记数法表示出来.【解答】解:69520000000=6.952×1010,故选:C.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确题意,利用科学记数法的方法解答.3.【分析】利用棱柱及其表面展开图的特点解题.【解答】解:A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.故选:D.【点评】本题考查几何体的展开图,记住棱柱表面展开图中,上、下两底面应在侧面展开图长方形的两侧.4.【分析】根据负整数指数幂、算术平方根定义、合并同类项法则、幂的乘方的运算法则逐一判断即可得.【解答】解:A、2﹣2=,此选项错误;B、=2,此选项正确;C、2a3与3a2不是同类项,不能合并,此选项错误;D、(a5)2=a10,此选项错误;故选:B.【点评】本题主要考查整式的运算,解题的关键是掌握负整数指数幂、算术平方根定义、合并同类项法则、幂的乘方的运算法则.5.【分析】先解每一个不等式,再根据不等式组有5个整数解,确定含a的式子的取值范围.【解答】解:解不等式x﹣a≥0,得:x≥a,解不等式5﹣2x>1,得:x<2,则不等式组的解集为a≤x<2,∵不等式组的整数解只有5个,∴不等式组的整数解为﹣3、﹣2、﹣1、0、1,则﹣4<a≤﹣3,故选:C.【点评】本题考查了一元一次不等式组的整数解.关键是先解每一个不等式,再根据整数解的个数,确定含a的代数式的取值范围.6.【分析】根据平行线分线段成比例定理,可得A正确.【解答】解:∵DE∥BC,DF∥AC,∴=,=,∴=.故选:A.【点评】此题考查了平行线分线段成比例定理.解题的关键是注意根据题意作图,利用数形结合思想求解.7.【分析】根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.【解答】解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元);故选:A.【点评】本题考查了扇形统计图,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.8.【分析】根据方程的系数结合根的判别式,找出△=(﹣4k)2﹣4×4×k2=16k2﹣16k2=0,由此即可得出方程有两个相等的实数根.【解答】解:在方程4x2﹣4kx+k2=0中,△=(﹣4k)2﹣4×4×k2=16k2﹣16k2=0,∴有两个相等的实数根,故选:A.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.9.【分析】根据抛物线的对称性得到抛物线与x轴的另一交点坐标,然后结合函数图象可以直接得到答案.【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,∴抛物线与x轴的另一交点坐标是(﹣3,0),∴当y>0时,x的取值范围是﹣3<x<1.故选:D.【点评】本题考查了抛物线的对称性,抛物线与x轴的交点,二次函数图象上点的坐标特征.解题时,利用了“数形结合”的数学思想.10.【分析】作OD⊥AC于点D,连接AO,BO,CO,求出∠OAD=30°,得到∠AOB=2∠AOD=120°,进而求得∠AOC=120°,再利用阴影部分的面积=2S△AOC求出即可.【解答】解:作OD⊥AC于D,连接AO、BO、CO,∵OD=AO==1,AD=AC=,∴∠OAD=30°,∴∠AOC=2∠AOD=120°,同理∠AOB=120°,∴∠BOC=120°,∴阴影部分的面积=2S△AOC=2××2×1=2,故选:C.【点评】本题主要考查了翻折变换的性质、扇形面积以及圆的面积公式等知识,解题的关键是确定∠AOC=120°.二.填空题(共5小题,满分15分,每小题3分)11.【分析】直接利用幂的性质以及零指数幂的性质分别化简得出答案.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.【分析】根据题意,OM垂直平分AC,所以MC=MA,因此△CDM的周长=AD+CD,可得平行四边形ABCD的周长.【解答】解:∵ABCD是平行四边形,∴OA=OC,∵OM⊥AC,∴AM=MC.∴△CDM的周长=AD+CD=8,∴平行四边形ABCD的周长是2×8=16.故答案为16.【点评】此题考查了平行四边形的性质及周长的计算,根据线段垂直平分线的性质,证得AM=MC 是解题的关键.13.【分析】先根据平均数为15列出关于x的方程,解之求得x即可知完整的数据,再根据方差公式计算可得.【解答】解:∵数据10,15,10,x,18,20的平均数为15,∴=15,解得:x=17,则这组数据为10,15,10,17,18,20,∴这组数据的方差是: [2×(10﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(20﹣15)2]=,故答案为:.【点评】本题主要考查算术平均数、方差,解题的关键是熟练掌握算术平均数的定义与方差的计算公式.14.【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【解答】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案是:12.【点评】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.15.【分析】如图1,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边AB上时,于是得到MN⊥AB,BN=BN′,根据等边三角形的性质得到=AC=BC,∠ABC=60°,根据线段中点的定义得到BN=BM=,如图2,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边A,C 上时,则MN⊥BB′,四边形BMB′N是菱形,根据线段中点的定义即可得到结论.【解答】解:如图1,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边AB上时,则MN⊥AB,BN=BN′,∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=60°,∵点M为边BC的中点,∴BM=BC=AB=,∴BN=BM=,如图2,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边A,C上时,则MN⊥BB′,四边形BMB′N是菱形,∵∠ABC=60°,点M为边BC的中点,∴BN=BM=BC=AB=,故答案为:或.【点评】本题考查了轴对称的性质,等边三角形的性质,菱形的判定和性质,分类讨论是解题的关键.三.解答题(共8小题,满分75分)16.【分析】根据分式混合运算顺序和运算法则化简原式,再将a、b的值代入计算可得.【解答】解:原式=(+)•﹣=(a﹣b+a+b)﹣b=a﹣b,当a=,b=﹣时,原式=﹣+=2.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.17.【分析】(1)通过列表展示所有9种等可能的结果数;(2)找出满足点(x,y)落在函数y=﹣x+1的图象上及点M在第四象限的结果数,然后根据概率公式求解【解答】解:(1)列表如下:所以点M的所有等可能的个数是9;(2)满足点(x,y)落在函数y=﹣x+1图象上的结果有2个,即(2,﹣1),(1,0),所以点M(x,y)在函数y=﹣x+1图象上的概率是,因为点(1,﹣1),(2,﹣1),(1,﹣2)和(2,﹣2)落在第四象限,所以点M在第四象限的概率是.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.18.【分析】(1)如图1,连接AO,根据切线的性质得到∠PAO=90°,根据三角形内角和得到∠AOP=60°,根据等腰三角形的性质得到∠C=∠CAO=30°,即可得到结论;(2)①由四边形AOBD是菱形,得到AO=AD,由于AO=OD,推出△AOD是等边三角形,根据等边三角形的性质得到∠AOD=60°,易得圆心角为120度或240度.根据弧长公式进行计算即可;②当四边形AOBP为正方形时,则有PA=OA,再结合切割线定理可求得PD,可得出答案.【解答】解:(1)如图1,连接AO,∵PA是⊙O的切线,∴∠PAO=90°,∵∠APO=30°,∴∠AOP=60°,∵OA=OC,∴∠C=∠CAO=30°,∴∠C=∠APO,∴△ACP是等腰三角形;(2)如图2,①∵四边形AOBD是菱形,∴AO=AD,∵AO=OD,∴△AOD是等边三角形,∴∠AOD=60°,则∠AOB=120°,∴的长为:=或=故答案是:或;②当四边形AOBP为正方形时,则有PA=AO=1cm,∵PA为⊙O的切线,∴PA2=PD•PC,且CD=2cm,∴1=PD(PD+2),整理可得PD2+2PD﹣1=0,解得PD=﹣1或PD=﹣﹣1(舍去),∴PD=﹣1(cm),∴当PD=(﹣1)cm时,四边形AOBP为正方形;故答案为:(﹣1).【点评】本题考查了切线的性质,菱形的性质,含30°角的直角三角形的性质,正方形的性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.19.【分析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在 Rt△ADH中求出AH即可解决问题;【解答】解:(1)延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH===20,∴AB=AH﹣BH=20﹣8.65≈11.4(米).【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.20.【分析】(1)可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:①2件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比2件乙种商品的销售收入多1500元,列出方程组求解即可;(2)可设销售甲种商品m万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.【解答】解:(1)设甲种商品的销售单价是x元,乙种商品的单价为y元根据题意,得解得.答:甲种商品的销售单价是900元,乙种商品的单价为600元(2)设销售甲种商品m万件,则销售甲种商品(8﹣m)万件根据题意,得900m+600(8﹣m)≥5400解得m≥2答:至少销售甲种商品2万件.【点评】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.21.【分析】(1)把A(﹣1,n)代入y=﹣2x,可得A(﹣1,2),把A(﹣1,2)代入y=,可得反比例函数的表达式为y=﹣,再根据点B与点A关于原点对称,即可得到B的坐标;(2)观察函数图象即可求解;(3)设P(m,﹣),根据S梯形MBPN=S△POB=1,可得方程(2+)(m﹣1)=1或(2+)(1﹣m)=1,求得m的值,即可得到点P的横坐标.【解答】解:(1)把A(﹣1,n)代入y=﹣2x,可得n=2,∴A(﹣1,2),把A(﹣1,2)代入y=,可得k=﹣2,∴反比例函数的表达式为y=﹣,∵点B与点A关于原点对称,∴B(1,﹣2).(2)∵A(﹣1,2),∴y≤2的取值范围是x<﹣1或x>0;(3)作BM⊥x轴于M,PN⊥x轴于N,∵S梯形MBPN=S△POB=1,设P(m,﹣),则(2+)(m﹣1)=1或(2+)(1﹣m)=1整理得,m2﹣m﹣1=0或m2+m+1=0,解得m=或m=,∴P点的横坐标为.【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.22.【分析】(1)由等边三角形知AB=AC,∠BAC=60°,结合∠BDC=120°知∠ABD+∠ACD=180°,由∠ACE+∠ACD=180°知∠ABD=∠ACE,证△ABD≌△ACE得AD=AE,∠BAD=∠CAE,再证△ADE 是等边三角形得DA=DE=DC+CE=DC+DB.(2)延长DC到点E,使CE=BD,连接AE,先证△ABD≌△ACE得AD=AE,∠BAD=∠CAE,据此可得∠DAE=∠BAC=90°,由勾股定理知DA2+AE2=DE2,继而可得2DA2=(DB+DC)2;(3)由直角三角形的性质知QN=MN=7,MQ==7,利用(2)中的结论知PQ=QN+QM=7+7,据此可得答案.【解答】解:(1)如图1,延长DC到点E,使CE=BD,连接AE,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BDC=120°,∴∠ABD+∠ACD=180°,又∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∵∠ABC=60°,即∠BAD+∠DAC=60°,∴∠DAC+∠CAE═60°,即∠DAE=60°,∴△ADE是等边三角形,∴DA=DE=DC+CE=DC+DB,即DA=DC+DB,故答案为:DA=DC+DB;(2)DA=DB+DC,如图2,延长DC到点E,使CE=BD,连接AE,∵∠BAC=90°,∠BDC=90°,∴∠ABD+∠ACD=180°,∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∵AB=AC,CE=BD,∴△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∴∠DAE=∠BAC=90°,∴DA2+AE2=DE2,∴2DA2=(DB+DC)2,∴DA=DB+DC;(3)如图3,连接PQ,∵MN=14,∠QMN=30°,∴QN=MN=7,∴MQ===7,由(2)知PQ=QN+QM=7+7,∴PQ==,故答案为:.【点评】此题是三角形的综合题,主要考查了考查的是全等三角形的判定和性质、直角三角形的性质、等边三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.23.【分析】(1)由直线表达式求出点A、B的坐标,把A、B点坐标代入二次函数表达式,即可求解;(2)OA=OB=4,则OB为AC的垂直平分线,则点C坐标为(0,﹣4),求出直线BC的表达式,即可求解;(3)存在;分OB是平行四边形的一条边或一条对角线两种情况,分别求解即可.【解答】解:(1)y=﹣x+4,令x=0,则y=4,令y=0,则x=4,故:点A、B的坐标分别为(0,4)、(4,0),把A、B点坐标代入二次函数表达式得:,解得:,则:求抛物线的解析式为:y=﹣x2+x+4…①;(2)∵OA=OB=4,∴∠ABO=45°,∠ABP=90°,则OB为线段AC的垂直平分线,则点C坐标为(0,﹣4),则:直线BC的表达式为:y=kx﹣4,把点B点坐标代入上式,解得:k=1,故:直线BC的表达式为:y=x﹣4…②,将①②联立解得:x=±4(舍去正值),故点P的坐标为(﹣4,﹣8);(3)存在;①当OB是平行四边形的一条边时,以E,F,B,O为顶点的四边形是平行四边形时,有如下图所示的两种情况:先求解左侧图中F点的坐标,此时EF=OB=4,则:点F的横坐标为5,把点F(或F″)的横坐标代入二次函数表达式,解得:y=﹣,即点F坐标为(5,﹣),同理:点F的坐标为(﹣3,﹣);②当OB是平行四边形的对角线时,以E,F,B,O为顶点的四边形是平行四边形时,有如下图所示的一种情况:∵OE′BF′为平行四边形,∴OE′=BF′,∠BOE′=∠F′BO,过点E′、F′分别作x轴的平行线,分别交y轴和y轴的平行线与点M、N,∠MOE′=90°﹣∠BOE′,∠NBF′=90°﹣∠F′BO,∴∠MOE′=∠NBF′,又OE′=BF′,∠OME′=∠BNF′=90°,∴△OME′≌△BNF′(AAS),∴OM=BN=1,ME′=F′N,设:BN=m,则:点F′坐标为:(3,m),把点F′坐标代入二次函数表达式,解得:m=,故:点F′坐标为(3,),综上所述:点F的坐标为(5,﹣)或(﹣3,﹣)或(3,).【点评】本题考查的是二次函数知识的综合运用,涉及到一次函数基本知识、平行四边形、全等三角形等相关知识,难点在于(3)中分情况确定平行四边形所处的位置.。

河南省开封市2019-2020学年中考第二次大联考数学试卷含解析

河南省开封市2019-2020学年中考第二次大联考数学试卷含解析

河南省开封市2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D等于()A.2 B.3 C.23D.322.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是()用水量x(吨) 3 4 5 6 7频数 1 2 5 4﹣x xA.平均数、中位数B.众数、中位数C.平均数、方差D.众数、方差3.某校九年级(1)班全体学生实验考试的成绩统计如下表:成绩(分)24 25 26 27 28 29 30人数(人)2 5 6 6 8 7 6根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班考试成绩的众数是28分C.该班考试成绩的中位数是28分D.该班考试成绩的平均数是28分4.对于下列调查:①对从某国进口的香蕉进行检验检疫;②审查某教科书稿;③中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )A.①②B.①③C.②③D.①②③A .﹣12B .12C .﹣2D .26.如图,△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于( )A .30°B .40°C .50°D .60°7.如图,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有( )A .2个B .3个C .4个D .5个8.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x 元,则有( )A .(x ﹣20)(50﹣18010x -)=10890 B .x (50﹣18010x -)﹣50×20=10890 C .(180+x ﹣20)(50﹣10x)=10890D .(x+180)(50﹣10x)﹣50×20=10890 9.计算12-+的值( ) A .1B .1-C .3D .3-10.下列四个函数图象中,当x<0时,函数值y 随自变量x 的增大而减小的是( )A .B .C .D .11.下列方程有实数根的是( ) A .420x += B 221x -=- C .x+2x−1=0D .1x =③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为_____.14.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次的运算结果是____________(用含字母x和n的代数式表示).15.如图,点A在反比例函数y=kx(x>0)的图像上,过点A作AD⊥y轴于点D,延长AD至点C,使CD=2AD,过点A作AB⊥x轴于点B,连结BC交y轴于点E,若△ABC的面积为6,则k的值为________.16.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为______dm.17.若代数式33x有意义,则x的取值范围是__.18.如图,在△ABC中,AD、BE分别是BC、AC两边中线,则EDCABCSSVV=_____.19.(6分)在Rt ABC ∆中,8, 6,90AC BC C ==∠=︒ , AD 是CAB ∠的角平分线,交BC 于点D . (1)求AB 的长; (2)求CD 的长.20.(6分)中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表: 成绩x/分 频数 频率 50≤x <60 10 0.05 60≤x <70 30 0.15 70≤x <80 40 n 80≤x <90 m 0.35 90≤x≤100500.25请根据所给信息,解答下列问题:m = ,n = ;请补全频数分布直方图;若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?21.(6分)如图,已知一次函数y=kx+b 的图象与x 轴交于点A ,与反比例函数my x=(x <0)的图象交于点B (﹣2,n ),过点B 作BC ⊥x 轴于点C ,点D (3﹣3n ,1)是该反比例函数图象上一点.求m 的值;若∠DBC=∠ABC ,求一次函数y=kx+b 的表达式.22.(8分)如图,在平面直角坐标系中,一次函数y=﹣13x+2的图象交x轴于点P,二次函数y=﹣1 2x2+32x+m的图象与x轴的交点为(x1,0)、(x2,0),且21x+22x=17(1)求二次函数的解析式和该二次函数图象的顶点的坐标.(2)若二次函数y=﹣12x2+32x+m的图象与一次函数y=﹣13x+2的图象交于A、B两点(点A在点B的左侧),在x轴上是否存在点M,使得△MAB是以∠ABM为直角的直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.23.(8分)如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PA⊥y轴于点A,点P绕点A顺时针旋转60°得到点P',我们称点P'是点P的“旋转对应点”.(1)若点P(﹣4,2),则点P的“旋转对应点”P'的坐标为;若点P的“旋转对应点”P'的坐标为(﹣5,16)则点P的坐标为;若点P(a,b),则点P的“旋转对应点”P'的坐标为;(2)如图2,点Q是线段AP'上的一点(不与A、P'重合),点Q的“旋转对应点”是点Q',连接PP'、QQ',求证:PP'∥QQ';(3)点P与它的“旋转对应点”P'的连线所在的直线经过点(3,6),求直线PP'与x轴的交点坐标.24.(10分)(1)(问题发现)小明遇到这样一个问题:如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线到解决,请直接写出AD与DE的数量关系:;(2)(类比探究)如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件不变),试猜想AD与DE之间的数量关系,并证明你的结论.(3)(拓展应用)当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,请直接写出△ABC与△ADE的面积之比.25.(10分)自学下面材料后,解答问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年河南省开封市金明区水稻中学中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.下列各数中,最小的数是()A.﹣2019 B.2019 C.D.2.2018年我市粮食总产量为69520000000斤,69520000000科学记数法表示为()A.6.952×106B.6.952×109C.6.952×1010D.695.2×1083.下列不是正三棱柱的表面展开图的是()A.B.C.D.4.下列计算正确的是()A.2﹣2=﹣4 B.=2C.2a3+3a2=5a5D.(a5)2=a75.已知关于x的不等式组只有5个整数解,则实数a的取值范围是()A.﹣3≤x≤﹣2 B.﹣3<x≤﹣2 C.﹣4<x≤﹣3 D.﹣4≤x<﹣36.已知在△ABC中,点D、E、F分别在边AB、AC和BC上,且DE∥BC,DF∥AC,那么下列比例式中,正确的是()A.=B.=C.=D.=7.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图.在这20位同学中,本学期购买课外书的花费的众数和中位数分别是()A.50,50 B.50,30 C.80,50 D.30,508.关于x的一元二次方程4x2﹣4kx+k2=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根9.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是()A.﹣1<x<1 B.﹣3<x<﹣1 C.x<1 D.﹣3<x<110.如图,把半径为2的⊙O沿弦AB,AC折叠,使和都经过圆心O,则阴影部分的面积为()A.B.C.2D.4二.填空题(共5小题,满分15分,每小题3分)11.﹣12018+(﹣1)0=.12.如图,▱ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M.如果△CDM的周长为8,那么▱ABCD的周长是.13.已知一组数据10,15,10,x,18,20的平均数为15,则这组数据的方差为.14.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为.15.如图,在等边三角形ABC中,AB=2cm,点M为边BC的中点,点N为边AB上的任意一点(不与点A,B重合),若点B关于直线MN的对称点B'恰好落在等边三角形ABC的边上,则BN的长为cm.三.解答题(共8小题,满分75分)16.(8分)先化简,再求值:( +)÷﹣,其中a=,b=.17.(9分)在甲、乙两个不透明的布袋中,甲袋装有3个完全相同的小球,分别标有数字0,1,2;乙袋装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,小球上的数字记为x,再从乙袋中随机抽取一个小球,小球上的数字记为y,设点M的坐标为(x,y).(1)用树形图或列表法求出点M的所有等可能个数;(2)分别求点M在函数y=﹣x+1图象上的概率和点M在第四象限的概率.18.(9分)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA、PB,切点分别为A、B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当的长为cm时,四边形AOBD是菱形;②当DP=cm时,四边形AOBP是正方形.19.(9分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)20.(9分)2018年4月8日﹣11日,博鳌亚洲论坛2018年年会在海南省博鳌镇召开.本届博鳌亚洲论坛的主题为“开放创新的亚洲,繁荣发展的世界”.围绕这一主题,年会设置了“全球化与一带一路”“开放的亚洲”“创新”“改革再出发”四大板块,展开60多场正式讨论.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?21.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y1=﹣2x的图象与反比例函数y2=的图象交于A(﹣1,n),B两点.(1)求出反比例函数的解析式及点B的坐标;(2)观察图象,请直接写出满足y≤2的取值范围;(3)点P是第四象限内反比例函数的图象上一点,若△POB的面积为1,请直接写出点P的横坐标.22.(10分)【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,连接AE,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE 易证得△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.根据上述解题思路,请直接写出DA、DB、DC之间的数量关系是;【拓展延伸】(2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC.若点D是边BC下方一点,∠BDC=90°,探索线段DA、DB、DC之间的数量关系,并说明理由;【知识应用】(3)如图3,两块斜边长都为14cm的三角板,把斜边重叠摆放在一起,则两块三角板的直角顶点之间的距离PQ的长分别为cm.23.(11分)如图,直线y=﹣x+4与抛物线y=﹣x2+bx+c交于A,B两点,点A在y轴上,点B 在x轴上.(1)求抛物线的解析式;(2)在x轴下方的抛物线上存在一点P,使得∠ABP=90°,求出点P坐标;(3)点E是抛物线对称轴上一点,点F是抛物线上一点,是否存在点E和点F使得以点E,F,B,O为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,请说明理由.2019年河南省开封市金明区水稻中学中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】先在数轴上表示出各数,根据数轴的特点即可得出结论.【解答】解:如图所示,,故最小的是:﹣2019.故选:A.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.2.【分析】根据科学记数法的方法可以将题目中的数据用科学记数法表示出来.【解答】解:69520000000=6.952×1010,故选:C.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确题意,利用科学记数法的方法解答.3.【分析】利用棱柱及其表面展开图的特点解题.【解答】解:A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.故选:D.【点评】本题考查几何体的展开图,记住棱柱表面展开图中,上、下两底面应在侧面展开图长方形的两侧.4.【分析】根据负整数指数幂、算术平方根定义、合并同类项法则、幂的乘方的运算法则逐一判断即可得.【解答】解:A、2﹣2=,此选项错误;B、=2,此选项正确;C、2a3与3a2不是同类项,不能合并,此选项错误;D、(a5)2=a10,此选项错误;故选:B.【点评】本题主要考查整式的运算,解题的关键是掌握负整数指数幂、算术平方根定义、合并同类项法则、幂的乘方的运算法则.5.【分析】先解每一个不等式,再根据不等式组有5个整数解,确定含a的式子的取值范围.【解答】解:解不等式x﹣a≥0,得:x≥a,解不等式5﹣2x>1,得:x<2,则不等式组的解集为a≤x<2,∵不等式组的整数解只有5个,∴不等式组的整数解为﹣3、﹣2、﹣1、0、1,则﹣4<a≤﹣3,故选:C.【点评】本题考查了一元一次不等式组的整数解.关键是先解每一个不等式,再根据整数解的个数,确定含a的代数式的取值范围.6.【分析】根据平行线分线段成比例定理,可得A正确.【解答】解:∵DE∥BC,DF∥AC,∴=,=,∴=.故选:A.【点评】此题考查了平行线分线段成比例定理.解题的关键是注意根据题意作图,利用数形结合思想求解.7.【分析】根据扇形统计图分别求出购买课外书花费分别为100、80、50、30、20元的同学人数,再根据众数、中位数的定义即可求解.【解答】解:由扇形统计图可知,购买课外书花费为100元的同学有:20×10%=2(人),购买课外书花费为80元的同学有:20×25%=5(人),购买课外书花费为50元的同学有:20×40%=8(人),购买课外书花费为30元的同学有:20×20%=4(人),购买课外书花费为20元的同学有:20×5%=1(人),20个数据为100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在这20位同学中,本学期计划购买课外书的花费的众数为50元,中位数为(50+50)÷2=50(元);故选:A.【点评】本题考查了扇形统计图,中位数与众数,注意掌握通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.8.【分析】根据方程的系数结合根的判别式,找出△=(﹣4k)2﹣4×4×k2=16k2﹣16k2=0,由此即可得出方程有两个相等的实数根.【解答】解:在方程4x2﹣4kx+k2=0中,△=(﹣4k)2﹣4×4×k2=16k2﹣16k2=0,∴有两个相等的实数根,故选:A.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.9.【分析】根据抛物线的对称性得到抛物线与x轴的另一交点坐标,然后结合函数图象可以直接得到答案.【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,∴抛物线与x轴的另一交点坐标是(﹣3,0),∴当y>0时,x的取值范围是﹣3<x<1.故选:D.【点评】本题考查了抛物线的对称性,抛物线与x轴的交点,二次函数图象上点的坐标特征.解题时,利用了“数形结合”的数学思想.10.【分析】作OD⊥AC于点D,连接AO,BO,CO,求出∠OAD=30°,得到∠AOB=2∠AOD=120°,进而求得∠AOC=120°,再利用阴影部分的面积=2S△AOC求出即可.【解答】解:作OD⊥AC于D,连接AO、BO、CO,∵OD=AO==1,AD=AC=,∴∠OAD=30°,∴∠AOC=2∠AOD=120°,同理∠AOB=120°,∴∠BOC=120°,∴阴影部分的面积=2S△AOC=2××2×1=2,故选:C.【点评】本题主要考查了翻折变换的性质、扇形面积以及圆的面积公式等知识,解题的关键是确定∠AOC=120°.二.填空题(共5小题,满分15分,每小题3分)11.【分析】直接利用幂的性质以及零指数幂的性质分别化简得出答案.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.【分析】根据题意,OM垂直平分AC,所以MC=MA,因此△CDM的周长=AD+CD,可得平行四边形ABCD的周长.【解答】解:∵ABCD是平行四边形,∴OA=OC,∵OM⊥AC,∴AM=MC.∴△CDM的周长=AD+CD=8,∴平行四边形ABCD的周长是2×8=16.故答案为16.【点评】此题考查了平行四边形的性质及周长的计算,根据线段垂直平分线的性质,证得AM=MC 是解题的关键.13.【分析】先根据平均数为15列出关于x的方程,解之求得x即可知完整的数据,再根据方差公式计算可得.【解答】解:∵数据10,15,10,x,18,20的平均数为15,∴=15,解得:x=17,则这组数据为10,15,10,17,18,20,∴这组数据的方差是: [2×(10﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(20﹣15)2]=,故答案为:.【点评】本题主要考查算术平均数、方差,解题的关键是熟练掌握算术平均数的定义与方差的计算公式.14.【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB 的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【解答】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案是:12.【点评】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.15.【分析】如图1,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边AB上时,于是得到MN⊥AB,BN=BN′,根据等边三角形的性质得到=AC=BC,∠ABC=60°,根据线段中点的定义得到BN=BM=,如图2,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边A,C上时,则MN⊥BB′,四边形BMB′N是菱形,根据线段中点的定义即可得到结论.【解答】解:如图1,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边AB上时,则MN⊥AB,BN=BN′,∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=60°,∵点M为边BC的中点,∴BM=BC=AB=,∴BN=BM=,如图2,当点B关于直线MN的对称点B'恰好落在等边三角形ABC的边A,C上时,则MN⊥BB′,四边形BMB′N是菱形,∵∠ABC=60°,点M为边BC的中点,∴BN=BM=BC=AB=,故答案为:或.【点评】本题考查了轴对称的性质,等边三角形的性质,菱形的判定和性质,分类讨论是解题的关键.三.解答题(共8小题,满分75分)16.【分析】根据分式混合运算顺序和运算法则化简原式,再将a、b的值代入计算可得.【解答】解:原式=(+)•﹣=(a﹣b+a+b)﹣b=a﹣b,当a=,b=﹣时,原式=﹣+=2.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.17.【分析】(1)通过列表展示所有9种等可能的结果数;(2)找出满足点(x,y)落在函数y=﹣x+1的图象上及点M在第四象限的结果数,然后根据概率公式求解【解答】解:(1)列表如下:0 1 2﹣1 (0,﹣1)(1,﹣1)(2,﹣1)﹣2 (0,﹣2)(1,﹣2)(2,﹣2)0 (0,0)(1,0)(2,0)所以点M的所有等可能的个数是9;(2)满足点(x,y)落在函数y=﹣x+1图象上的结果有2个,即(2,﹣1),(1,0),所以点M(x,y)在函数y=﹣x+1图象上的概率是,因为点(1,﹣1),(2,﹣1),(1,﹣2)和(2,﹣2)落在第四象限,所以点M在第四象限的概率是.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.18.【分析】(1)如图1,连接AO,根据切线的性质得到∠PAO=90°,根据三角形内角和得到∠AOP=60°,根据等腰三角形的性质得到∠C=∠CAO=30°,即可得到结论;(2)①由四边形AOBD是菱形,得到AO=AD,由于AO=OD,推出△AOD是等边三角形,根据等边三角形的性质得到∠AOD=60°,易得圆心角为120度或240度.根据弧长公式进行计算即可;②当四边形AOBP为正方形时,则有PA=OA,再结合切割线定理可求得PD,可得出答案.【解答】解:(1)如图1,连接AO,∵PA是⊙O的切线,∴∠PAO=90°,∵∠APO=30°,∴∠AOP=60°,∵OA=OC,∴∠C=∠CAO=30°,∴∠C=∠APO,∴△ACP是等腰三角形;(2)如图2,①∵四边形AOBD是菱形,∴AO=AD,∵AO=OD,∴△AOD是等边三角形,∴∠AOD=60°,则∠AOB=120°,∴的长为:=或=故答案是:或;②当四边形AOBP为正方形时,则有PA=AO=1cm,∵PA为⊙O的切线,∴PA2=PD•PC,且CD=2cm,∴1=PD(PD+2),整理可得PD2+2PD﹣1=0,解得PD=﹣1或PD=﹣﹣1(舍去),∴PD=﹣1(cm),∴当PD=(﹣1)cm时,四边形AOBP为正方形;故答案为:(﹣1).【点评】本题考查了切线的性质,菱形的性质,含30°角的直角三角形的性质,正方形的性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.19.【分析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在 Rt△ADH中求出AH即可解决问题;【解答】解:(1)延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH===20,∴AB=AH﹣BH=20﹣8.65≈11.4(米).【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.20.【分析】(1)可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:①2件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比2件乙种商品的销售收入多1500元,列出方程组求解即可;(2)可设销售甲种商品m万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.【解答】解:(1)设甲种商品的销售单价是x元,乙种商品的单价为y元根据题意,得解得.答:甲种商品的销售单价是900元,乙种商品的单价为600元(2)设销售甲种商品m万件,则销售甲种商品(8﹣m)万件根据题意,得900m+600(8﹣m)≥5400解得m≥2答:至少销售甲种商品2万件.【点评】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.21.【分析】(1)把A(﹣1,n)代入y=﹣2x,可得A(﹣1,2),把A(﹣1,2)代入y=,可得反比例函数的表达式为y=﹣,再根据点B与点A关于原点对称,即可得到B的坐标;(2)观察函数图象即可求解;(3)设P(m,﹣),根据S梯形MBPN=S△POB=1,可得方程(2+)(m﹣1)=1或(2+)(1﹣m)=1,求得m的值,即可得到点P的横坐标.【解答】解:(1)把A(﹣1,n)代入y=﹣2x,可得n=2,∴A(﹣1,2),把A(﹣1,2)代入y=,可得k=﹣2,∴反比例函数的表达式为y=﹣,∵点B与点A关于原点对称,∴B(1,﹣2).(2)∵A(﹣1,2),∴y≤2的取值范围是x<﹣1或x>0;(3)作BM⊥x轴于M,PN⊥x轴于N,∵S梯形MBPN=S△POB=1,设P(m,﹣),则(2+)(m﹣1)=1或(2+)(1﹣m)=1整理得,m2﹣m﹣1=0或m2+m+1=0,解得m=或m=,∴P点的横坐标为.【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.22.【分析】(1)由等边三角形知AB=AC,∠BAC=60°,结合∠BDC=120°知∠ABD+∠ACD=180°,由∠ACE+∠ACD=180°知∠ABD=∠ACE,证△ABD≌△ACE得AD=AE,∠BAD=∠CAE,再证△ADE 是等边三角形得DA=DE=DC+CE=DC+DB.(2)延长DC到点E,使CE=BD,连接AE,先证△ABD≌△ACE得AD=AE,∠BAD=∠CAE,据此可得∠DAE=∠BAC=90°,由勾股定理知DA2+AE2=DE2,继而可得2DA2=(DB+DC)2;(3)由直角三角形的性质知QN=MN=7,MQ==7,利用(2)中的结论知PQ =QN+QM=7+7,据此可得答案.【解答】解:(1)如图1,延长DC到点E,使CE=BD,连接AE,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BDC=120°,∴∠ABD+∠ACD=180°,又∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∵∠ABC=60°,即∠BAD+∠DAC=60°,∴∠DAC+∠CAE═60°,即∠DAE=60°,∴△ADE是等边三角形,∴DA=DE=DC+CE=DC+DB,即DA=DC+DB,故答案为:DA=DC+DB;(2)DA=DB+DC,如图2,延长DC到点E,使CE=BD,连接AE,∵∠BAC=90°,∠BDC=90°,∴∠ABD+∠ACD=180°,∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∵AB=AC,CE=BD,∴△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∴∠DAE=∠BAC=90°,∴DA2+AE2=DE2,∴2DA2=(DB+DC)2,∴DA=DB+DC;(3)如图3,连接PQ,∵MN=14,∠QMN=30°,∴QN=MN=7,∴MQ===7,由(2)知PQ=QN+QM=7+7,∴PQ==,故答案为:.【点评】此题是三角形的综合题,主要考查了考查的是全等三角形的判定和性质、直角三角形的性质、等边三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.23.【分析】(1)由直线表达式求出点A、B的坐标,把A、B点坐标代入二次函数表达式,即可求解;(2)OA=OB=4,则OB为AC的垂直平分线,则点C坐标为(0,﹣4),求出直线BC的表达式,即可求解;(3)存在;分OB是平行四边形的一条边或一条对角线两种情况,分别求解即可.【解答】解:(1)y=﹣x+4,令x=0,则y=4,令y=0,则x=4,故:点A、B的坐标分别为(0,4)、(4,0),把A、B点坐标代入二次函数表达式得:,解得:,则:求抛物线的解析式为:y=﹣x2+x+4…①;(2)∵OA=OB=4,∴∠ABO=45°,∠ABP=90°,则OB为线段AC的垂直平分线,则点C坐标为(0,﹣4),则:直线BC的表达式为:y=kx﹣4,把点B点坐标代入上式,解得:k=1,故:直线BC的表达式为:y=x﹣4…②,将①②联立解得:x=±4(舍去正值),故点P的坐标为(﹣4,﹣8);(3)存在;①当OB是平行四边形的一条边时,以E,F,B,O为顶点的四边形是平行四边形时,有如下图所示的两种情况:先求解左侧图中F点的坐标,此时EF=OB=4,则:点F的横坐标为5,把点F(或F″)的横坐标代入二次函数表达式,解得:y=﹣,即点F坐标为(5,﹣),同理:点F的坐标为(﹣3,﹣);②当OB是平行四边形的对角线时,以E,F,B,O为顶点的四边形是平行四边形时,有如下图所示的一种情况:∵OE′BF′为平行四边形,∴OE′=BF′,∠BOE′=∠F′BO,过点E′、F′分别作x轴的平行线,分别交y轴和y轴的平行线与点M、N,∠MOE′=90°﹣∠BOE′,∠NBF′=90°﹣∠F′BO,∴∠MOE′=∠NBF′,又OE′=BF′,∠OME′=∠BNF′=90°,∴△OME′≌△BNF′(AAS),∴OM=BN=1,ME′=F′N,设:BN=m,则:点F′坐标为:(3,m),把点F′坐标代入二次函数表达式,解得:m=,故:点F′坐标为(3,),综上所述:点F的坐标为(5,﹣)或(﹣3,﹣)或(3,).【点评】本题考查的是二次函数知识的综合运用,涉及到一次函数基本知识、平行四边形、全等三角形等相关知识,难点在于(3)中分情况确定平行四边形所处的位置.。

相关文档
最新文档