高考文科数学模拟试卷及答案
高考数学(文科)模拟试卷及答案3套(20210411043625)
3套
模拟试卷一
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)
1.已知集合 U { x N | 0 x 7} ,A {2,5} ,B 1,3,5 ,则 (C u A) B(
)
A . {5}
B . 1,5
C. {2,5}
D . 1,3
2.已知复数 z 满足 z 1 i
当f x
g x 时, log 4 2x x a
log 4
4x 2x
1
,得
2x
xa
4x 1 2x
0,
整理得 a
x
1
x,
2
因为当 x
x
x
2,2 时,函数 y 1
x 单调递减,所以 7 1
x 6,
2
42
所以使方程有唯一解时 a 的取值范围是
7 ,6 .
4
21.【详解】解: (Ⅰ)设
∴动点
的轨迹是以
,
,则
.
又 PBD 为正三角形, PB PD BD 2 2 ,又 Q AB 2 , PA 2 3 ,
PBA , AB PB ,又 Q AB AD ,BC / / AD , AB
2
AB 平面 PBC ,又 Q AB 平面 PAB ,
BC ,PBI BC B ,
平面 PAB 平面 PBC .
( 2)如图,设 BD , AC 交于点 O ,Q BC / / AD ,
bn 1 1 1 1 1 L 2 33 5
1
1
2n 1 2n 1
1
1
n
1
。
2 2n 1 2n 1
c2
18.【详解】证明: ( 1)据题意,得
2024年高考数学模拟试题与答案解析
2024年高考数学模拟试题与答案解析一、选择题1.设集合A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则A∩B={()}A.{x|x=6k,k∈Z}B.{x|x=2k,k∈Z}C.{x|x=3k,k∈Z}D.{x|x=k,k∈Z}【答案】B解析:集合A包含所有2的倍数,集合B包含所有3的倍数。
A ∩B表示同时属于A和B的元素,即同时是2和3的倍数的数,也就是6的倍数。
所以A∩B={x|x=6k,k∈Z},故选B。
2.若函数f(x)=x²-4x+c的图像的对称轴是x=2,则c的值为()A.4B.3C.2D.1【答案】A解析:函数f(x)=x²-4x+c的图像的对称轴是x=-b/2a,即x=2。
根据对称轴的公式,得到-(-4)/(21)=2,解得c=4。
故选A。
3.已知等差数列的前n项和为Sn=n(a1+an)/2,若S3=18,S6-S3=24,则a4的值为()A.6B.8C.10D.12【答案】B解析:根据等差数列的前n项和公式,得到S3=3(a1+a3)/2=18,即a1+a3=12。
又因为S6-S3=24,得到a4+a5+a6=24。
由等差数列的性质,a3+a6=a4+a5。
将a3+a6替换为a4+a5,得到3a4+3a5=48,即a4+a5=16。
解方程组a1+a3=12和a4+a5=16,得到a4=8。
故选B。
二、填空题4.若|x-2|≤3,则|x+1|的取值范围是______【答案】-2≤x≤5解析:由|x-2|≤3,得到-3≤x-2≤3,即-1≤x≤5。
再由|x+1|的图像可知,当-3≤x≤5时,|x+1|的取值范围是-2≤x≤5。
5.已知函数f(x)=2x²-3x+1,求f(1/2)的值。
【答案】3/4解析:将x=1/2代入函数f(x),得到f(1/2)=2(1/2)²-3(1/2)+1=2/4-3/2+1=3/4。
三、解答题6.(1)求证:对任意正整数n,都有n²+2n+1≥n+2。
高三文科数学模拟试题含答案
高三文科数学模拟试题含答案高三文科数学模拟试题本试卷共150分,考试时间120分钟。
第Ⅰ卷(选择题,共50分)一、选择题(共10小题,每小题5分,共50分。
在每小题中,只有一项是符合题目要求的)1.复数3+ i的虚部是()。
A。
2.B。
-1.C。
2i。
D。
-i2.已知集合A={-3,-2,0,1,2},集合B={x|x+2<0},则A∩(CRB) =()。
A。
{-3,-2,0}。
B。
{0,1,2}。
C。
{-2,0,1,2}。
D。
{-3,-2,0,1,2}3.已知向量a=(2,1),b=(1,x),若2a-b与a+3b共线,则x=()。
A。
2.B。
11/22.C。
-1.D。
-24.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为()。
A。
4π/3.B。
π。
C。
3π/2.D。
2π5.将函数f(x)=sin2x的图像向右平移π/6个单位,得到函数g(x)的图像,则它的一个对称中心是()。
A。
(π/6,0)。
B。
(π/3,0)。
C。
(π/2,0)。
D。
(π,0)6.执行如图所示的程序框图,输出的s值为()。
开始是否输出结束A。
-10.B。
-3.C。
4.D。
57.已知圆C:x^2+2x+y^2=1的一条斜率为1的切线l1,若与l1垂直的直线l2平分该圆,则直线l2的方程为()。
A。
x-y+1=0.B。
x-y-1=0.C。
x+y-1=0.D。
x+y+1=08.在等差数列{an}中,an>0,且a1+a2+⋯+a10=30,则a5⋅a6的最大值是()。
A。
4.B。
6.C。
9.D。
369.已知变量x,y满足约束条件2x-y≤2,x-y+1≥0,设z=x^2+y^2,则z的最小值是()。
A。
1.B。
2.C。
11.D。
3210.定义在R上的奇函数f(x),当x≥0时,f(x)=2,当x<0时,f(x)=1-|x-3|,则函数F(x)=f(x)-a(0<a<1)的所有零点之和为()。
河南高考数学(文科)模拟考试卷附带答案
河南高考数学(文科)模拟考试卷附带答案一、选择题(共12小题,每小题5分)1.设集合{}2{326},log 2A x m x m B x x =-<<+=<,若A B A =,则实数m 的取值范围是()A .∅B .[3,1]--C .(1,3)-D .[1,3]- 2.下列各命题中正确命题的序号是()①“若a ,b 都是奇数,则a b +是偶数”的逆否命题是“a b +不是偶数,则a ,b 都不是奇数”; ②命题“2,13x R x x ∃∈+>”的否定是“2,13x R x x ∀∈+≤”;③“函数22()cos sin f x ax ax =-的最小正周期为π”是“1a =”的必要不充分条件; ④“平面向量a 与b 的夹角是钝角”的充分必要条件是“0a b ⋅<” A .①② B .③④ C .②③ D .②④3.在ABC △中内角A ,B ,C 的对边分别为a ,b ,c .若,36C c π==.且该三角形有两解,则a 的值可以为()A .2B .4C .6D .84.已知函数()f x 是定义域为R 的奇函数,且()(4)f x f x =-,当20x -≤<时1()f x x=,则1672f ⎛⎫ ⎪⎝⎭等于()A .2-B .2C .27 D .27- 5.已知实数a ,b ,c 满足13220ab +⨯-=,且()22log 2()ac x x x R =+-+∈,则a ,b ,c 的大小关系是()A .a b c >>B .b a c >>C .a c b >>D .c b a >>6.如图所示,ABC △的面积为2,其中2,60,AB ABC AD ∠=︒=为BC 边上的高,M 为AD 的中点,若AM AB AC λμ=+,则2λμ+的值为()A .23-B .12C .23D .537.若直线4y x m =+是曲线313y x nx =-+与曲线22ln y x x =+的公切线,则n m -=()A .11B .12C .8-D .7-8.在ABC △中a ,b ,c 分别为内角A ,B ,C 所对的边长,若22()6,3c a b C π=-+=,则ABC △的面积是()A .3B .2 C .2D .9.已知函数()2sin()f x x ωϕ=+的部分图象如图所示,则下列判断正确的是()A .函数()f x 的周期为4πB .对任意的x R ∈,都有2()3f x f π⎛⎫≤ ⎪⎝⎭C .函数()f x 在区间[0,5]π上恰好有三个零点D .函数4f x π⎛⎫-⎪⎝⎭是偶函数 10.已知函数321,0()23,0x e x f x x x x ⎧-≥=⎨-<⎩,对于实数a ,使()23(2)(0)f a f a f -->成立的一个必要不充分条件是()A .31a -<<B .10a -<<C .31a -≤≤D .1a <-或3a > 11.若1sin 2,,tan tan 2k k k Z πααβπαβπαβ⎛⎫=≠+≠±∈⎪-⎝⎭且,则cos(2)αβ-=() A .12-B .0C .12D .1 12.设函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭,已知()f x 在[0,2]π有且仅有5个零点.下述四个结论:①()f x 在(0,2)π有且仅有3个极大值点;②()f x 在(0,2)π有且仅有2个极小值点;③()f x 在0,10π⎛⎫ ⎪⎝⎭单调递增;④ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭. 其中所有正确结论的编号是()A .①④B .②③C .①②③D .①③④二、填空题(共4小题,每小题5分)13.已知点(2,)P y -是角θ终边上一点,且sin θ=y =___________. 14.非零向量,a b 满足||2||a b =,且()(3)a b a b +⊥-,则向量,a b 夹角的余弦值为_________. 15.把物体放在冷空气中冷却,如果物体原来的温度是1θ℃,空气的温度是0θ℃,那么min t 后物体的温度θ(单位:℃)可由公式()010kt e θθθθ-=+-求得,其中k 是一个随着物体与空气的接触情况而定的正常数.现有63℃的物体,放在15℃的空气中冷却,60分钟以后物体的温度是39℃.要使物体的温度变为21℃,还要经过__________分钟.16.已知1x x =和2x x =分别是函数2()2x f x a ex =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是_____________.三、解答题(共6小题,第17题10分,18-22题12分)17.已知集合51,{2137},{}7A x B x x C x x a x ⎧⎫=≥=-<=<⎨⎬-⎩⎭.(1)求(),R A B A B ;(2)若AC ≠∅,求a 的取值范围.18.已知p :对任意x R ∈,都有212(1)02x a x --+>;q :存在x R ∈,使得4210x x a -⋅+=. (1)若“p 且q ”为真,求实数a 的取值范围;(2)若“p 或q ”为真,“p 且q ”为假,求实数a 的取值范围.19.在ABC △中角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos sin 2a C C b c +=+. (1)求角A ;(2)D 为BC 边上一点DA BA ⊥,且4BD DC =,求cos C . 20.已知2sin,2cos,3cos ,cos (0)2222xx x x a b ωωωωω⎛⎫⎛⎫==> ⎪ ⎪⎝⎭⎭,函数()f x a b =⋅的周期为π,当0,2x π⎡⎤∈⎢⎥⎣⎦时函数()()g x f x m =-有两个不同的零点12,x x .(1)求函数()f x 的对称中心的坐标;(2)(ⅰ)实数m 的取值范围;(ⅱ)求()12f x x +的值. 21.已知函数()()1,xf x x e m m R =--∈.(Ⅰ)若1m =-,求曲线()y f x =在点()()1,1f 切线方程;(Ⅱ)若关于x 的不等式()2ln f x x +≥在(0,)+∞上恒成立,求m 的取值范围. 22.已知函数()xf x e ax =-和()lng x ax x =-有相同的最小值. (1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.参考答案一、选择题(共12小题)1.解:∵集合{}2{326},log 2{04}A x m x m B x x x x =-<<+=<=<<∵AB A =,可得B A ⊆ ∴30264326m m m m -≤⎧⎪+≥⎨⎪-<+⎩,可得13m -≤≤,故选:D . 2.解:对于①:“若a ,b 都是奇数,则a b +是偶数”的逆否命题是“a b +不是偶数,则a ,b 不都是奇数”;故①错误.对于②:命题“2,13x R x x ∃∈+>”的否定是“2,1,3x R x x ∀∈+;故②正确. 对于③:“函数22()cos sin cos2f x ax ax ax =-=的最小正周期为π”是“1a =”的必要不充分条件,故③正确.对于④:“平面向量a 与b 的夹角是钝角”的充分必要条件是“0a b ⋅<且a 和b 不共线”,故④错误.故选:C .3.解:因为三角形有两解,,36C c π==,所以由正弦定理得,sin ,sin3,366a C c a a a a π<<<<<<由选项知4a =符合条件,故选:B .4.解:因为函数()f x 是定义域为R 的奇函数,且()(4)f x f x =-,所以()()(4)f x f x f x -=-=-- 所以()(4),(4)()f x f x f x f x =-++=-,所以(8)(4)()f x f x f x +=-+=,所以()f x 的周期为8 所以167771180(2)222222f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+===--=--=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.故选:B . 5.解:∵13220ab +⨯-= ∴32220ab⨯-⨯= ∴22ab<,即a b <;又∵2217224x x x ⎛⎫-+=-+⎪⎝⎭ ∴.()22log 20a c x x -=-+>,故a c >,故b a c >>,故选:B .6.解:1sin 2ABC S AB BC ABC =⋅⋅∠==△,所以3BC =,因为AD 为BC 边上的高 所以1sin 13BD AB ABC BC =∠==,因为M 为AD 的中点,所以11()22AM AD AB BD ==+=111111()232336AB BC AB AC AB AB AC ⎛⎫⎡⎤+=+-=+ ⎪⎢⎥⎝⎭⎣⎦,又因为AM AB AC λμ=+,所以13λ=,16μ=所以223λμ+=.故选:C .7.解:由22ln y x x =+,得22y x x '=+,由224x x+=,解得1(0)x x =>,则直线4y x m =+与曲线22ln y x x =+相切于点(1,4)m + ∴412ln11m +=+=,得3m =-.∴直线43y x =-是曲线313y x nx =-+的切线由313y x nx =-+,得23y x n '=-,设切点为()3,13t t nt -+,则234t n -=,且31343t nt t -+=-,联立可得32124816640n n n ++-=,即2(8)(10)1080n n ⎡⎤-++=⎣⎦,得8n =.∴8(3)11n m -=--=.故选:A .8.解:因为若22()6,3c a b C π=-+=,所以22226c a b ab =+-+,所以22226ab a b c =+-+所以22cos63ab ab π=+ ∴6ab =,所以ABC △的面积1sin 323S ab π===.故选:C .9.解:根据图象对称性可知3|0|2a b π-=- ∴33||0222T a b ππ-=-== ∴3T π= ∴2233πωπ==又(0)2sin 1f ϕ== ∴1sin 2ϕ=,且(0,1)为上升点 ∴2,6k k Z πϕπ=+∈ ∴2()2sin 2,36f x x k k Z ππ⎛⎫=++∈ ⎪⎝⎭,2()2sin 36f x x π⎛⎫=+ ⎪⎝⎭对A ,函数()f x 的周期3T π= ∴A 错误:对B ∵242sin 2396f πππ⎛⎫⎛⎫=+≠⎪⎪⎝⎭⎝⎭ ∴B 错误; 对C ,令()0f x =,得2,36x k k Z ππ+=∈ ∴3,42x k k Z ππ=-+∈,又[0,5]x π∈∴51117,,444x πππ= ∴()f x 在区间[0,5]π上恰好有三个零点 ∴C 正确;对D ∵222sin 2sin 43463f x x x πππ⎡⎤⎛⎫⎛⎫-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦为奇函数 ∴D 错误.故选:C . 10.解:当0x <时32()23f x x x =-,则()6(1)0,()f x x x f x =->'是增函数,当0x ≥时()1,()xf x e f x =-是增函数,又(0)0f = ∴函数3223,0()1,0x x x x f x e x ⎧-<=⎨-≥⎩在R 上是增函数∵()23(2)(0)f a f a f -->∴()23(2)f af a ->,则232aa ->,即2230a a +-<,解得31a -<< ∴使()23(2)(0)f a f a f -->成立的一个必要不充分条件是31a -≤≤,故选:C .11.解:由于1sin 2tan tan ααβ=-,由于,2k παβπ≠+,且,k k Z αβπ≠±∈,整理得1tan tan sin 2αβα-= 故2sin 12sin 1cos2sin cos 2sin cos 2sin cos sin 2cos αααβααααααβ---===,整理得:cos2cos sin2sin 0αβαβ+= 故cos(2)cos2cos sin2sin 0αβαβαβ-=+=.故选:B . 12.解:依题意作出()sin 5f x x πω⎛⎫=+⎪⎝⎭的图象如图,其中2m n π≤<,显然①正确,②错误;当[0,2]x π∈时,2555x πππωπω⎛⎫+∈+ ⎪⎝⎭∵()f x 在[0,2]π有且仅有5个零点 ∴5,265πππωπ+< ∴1229510ω≤<,故④正确 因此由选项可知只需判断③是否正确即可得到答案,下面判断③是香正确,当0,10x π⎛⎫∈ ⎪⎝⎭时(2),5510x ππωπω+⎛⎫+∈ ⎪⎝⎭若()f x 在0,10π⎛⎫⎪⎝⎭单调递增,则(2)102ωππ+<,即3ω<∵1229510ω≤<,故③正确.故选:D . 二、填空题(共4小题)13.解:因为点(2,)P y -是角θ终边上一点,且sin 04θ==<解得4y =-.故答案为:4-.14.解:根据题意,设向量,a b 夹角为θ,||b t =则||2a t =,若()(3)a b a b +⊥-,则2222()(3)234cos 0a b a b a a b b t t θ+⋅-=-⋅-=-=,变形可得:1cos 4θ=;故答案为:14. 15.解:∵现有63℃的物体,放在15℃的空气中冷却,60分钟以后物体的温度是39℃ ∴6015(6315)39k e -+-=,即6012k e -=①,要使物体的温度变为21℃,则154821kt e -+=,即18kt e -=②,联立①②,解得180t =,故还要经过18060120-=分钟.故答案为:120. 16.解:对原函数求导()()2ln xf x a a ex '=-,分析可知:()f x '在定义域内至少有两个变号零点,对其再求导可得2()2(ln )2x f x a a e ='-',当1a >时易知()f x ''在R 上单调递增,此时若存在0x ,使得()00f x ''=则()f x '在()0,x -∞单调递减,()0,x +∞单调递增,此时若函数()f x 在1x x =和2x x =,分别取极小值点和极大值点应满足12x x >,不满足题意;当01a <<时易知()f x ''在R 上单调递减,此时若存在0x .使得()00f x ''=,则()f x '在()0,x -∞单调递增,()0,x +∞单调递减,且02log (ln )aex a =,此时若函数()f x 在1x x =和2x x =分别取极小值点和极大值点,且12x x <,故仅需满足()00f x '>,即:11ln ln 222log ln ln ln (ln )(ln )(ln )a ae e e e e a a a a a a a >⇒<⇒<⇒21ln 1ln(ln )ln a a a <-,解得:1a e e<<,又因为01a <<,故11a e <<综上所述:a 的取值范围是1,1e ⎛⎫ ⎪⎝⎭. 三、解答题(共6小题)解:(1)51{27},{2137}{310},{}7A x x x B x x x x C x x a x ⎧⎫=≤=≥<=-<=<<=<⎨⎬-⎩⎭.所以(){2,10},{710}R AB x x A B x x =<=≥<; (2)若AC ≠∅,则2a >,故a 的取值范围为{2}a a >.18.解:(1)因为“p 且q ”为真命题,所以p ,q 均为真命题.若p 为真命题,则2(1)4(1)(3)0a a a =--=+-<△解得13a -<<,若q 为真命题,则1222xx a =+≤=,当且仅当122x x=,即0x =时等号成,此时2a ≤.故实数a 的取值范围是[2,3).(2)若“p 或q ”为真,“p 且q ”为假,则p ,q 一真一假.若p 真q 假,则132a a -<<⎧⎨<⎩,得12a -<<若p 假q 真,则,132a a a -≤⎧⎨≤⎩或,得3a ≤,综上实数a的取值范围为(1,2)[3,)-+∞.19.解:(1)∵cos sin 2a C C b c +=+ ∴由正弦定理可得,sin cos sin sin 2sin A C A C BC +=+∵A B C π++= ∴sin cos sin sin()2sin sin cos cos sin 2sin A C A C A CC A C A C C +=++=++sin cossin 2sin A C A C C =+∵sin 0C ≠ cos 2A A -=,即2sin 26A π⎛⎫-= ⎪⎝⎭又∵0A π<< ∴23A π=. (2)由(1)可知,23A π= ∴2326CAD πππ∠=-=,在CAD △中sin sin 6CD b ADC π=∠,在BAD △中sin sin 2BD cADB π=∠,又∵sin sin ,4ADBADC BD CD ∠=∠= ∴2c b = ∴由余弦定理可得,a== ∴a == ∴222cos 27a bc C ab +-==.20.(1)由题意2()cos2cos cos 12sin 12226xxxf x x x x ωωωπωωω⎛⎫=+=++=++ ⎪⎝⎭,因为函数()f x 的周期为π,所以2ω=.所以()2sin 216f x x π⎛⎫=++ ⎪⎝⎭,由26x k ππ+=,得212k x ππ=-,所以()f x 的对称中心为,1()212k k Z ππ⎛⎫-∈⎪⎝⎭. (2)由()0g x =,得2sin 216x m π⎛⎫+=- ⎪⎝⎭,作出函数2sin 26y x π⎛⎫=+ ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的图象,如图所示.(ⅰ)由图可知112m ≥-<,所以m 的取值范围为[2,3); (ⅱ)由图可知123x x π+=,所以()122sin 21236f x x ππ⎛⎫+=⨯++= ⎪⎝⎭. 21.解:(Ⅰ)当1m =-时()()11xf x x e =-+,则(1),()(1)1xf e f x x e ==+-' ∴(1)21f e =-' ∴曲线()y f x =在点()()1,1f 处的切线方程为(21)(1)y e e x -=--,即(21)10e x y e ---+=. (Ⅱ)由题意得,()1ln 2xm x e x ≥--+.令()()1ln 2(0)xF x x e x x =--+>,则1()(1)x F x x e x ⎛⎫=+- ⎪⎝⎭'.令1()(0)xh x e x x =->,易得()h x 为单调递增函数,且10,(1)02h h ⎛⎫<> ⎪⎝⎭ ∴01,12x ⎛⎫∃∈ ⎪⎝⎭,使得()00h x =,即001xe x =∴00ln x x =-,当()00,x x ∈时()0,()0h x F x ''<<,当()0,x x ∈+∞时()0,()0h x F x ''>>,则()F x 在()00,x 上单调递减,在()0,x +∞上单调递增 ∴()()00min?00000000()1ln 2ln 2123x x F x F x x e x x e x x x x ==--+=--+=-++=∴m 的取值范围为(,3]-∞.22.解:(1)()f x 定义域为R ∵()x f x e ax =- ∴()xf x e a =-',若0a ≥,则()0,()f x f x >'无最小值故0a >,当()0f x '=时ln x a =,当()0g x '=时1x a=,当ln x a <时()0f x '<,函数()f x 在(,ln )a -∞上单调递减,当ln x a >时()0f x '>,函数()f x 在(ln ,)a +∞上单调递增,故min ()(ln )ln ,()f x f a a a a g x ==-的定义域为(0,)+∞,()ln g x ax x =-∴1()g x a x=-',令g ()0g x '=,解得1x a =,当10x a <<时()0g x '<,函数()g x 在10,a ⎛⎫⎪⎝⎭上单调递减,当1x a >时()0g x '>,函数()g x 在1,a ⎛⎫+∞⎪⎝⎭上单调递增,故min ()1ln g x a=+ ∵函数()xf x e ax =-和()lng x ax x =-有相同的最小值∴ln 1ln a a a a -=+∵0a > ∴ln 1ln a a a a -=+化为1ln 1a a a --=+,令1()ln ,01x h x x x x -=->+,则222211(1)121()(1)(1)(1)x x x h x x x x x x x +--+=-=-=++'+∵0x > ∴221()0(1)x h x x x +=>+'恒成立 ∴()h x 在(0,)+∞上单调递增 又∵(1)0h = ∴()(1)h a h =,仅有此一解 ∴1a =.(2)证明:由(1)知1a =,函数()xf x e x =-在(,0)-∞上单调递减,在(0,)+∞上单调递增 函数()lng x x x =-在(0,1)上单调递减,在(1,)+∞上单调递增,设()()()2ln (0)x u x f x g x e x x x =-=-+>则1()22xx u x e e x=-+>-',当1x ≤时()20u x e ≤->',所以函数()u x 在(1,)+∞上单调递增,因为(1)20u e =->所以当1x ≤时()(1)0u x u ≤>恒成立,即()()0f x g x ->在1x ≤时恒成立,所以1x ≤时()()f x g x > 因为(0)1f =,函数()f x 在(0,)+∞上单调递增,(1)1g =,函数()g x 在(0,1)上单调递减,所以函数()f x 与函数()g x 的图象在(0,1)上存在唯一交点,设该交点为(,())(01)m f m m <<,此时可作出函数()y f x =和()y g x =的大致图象,由图象知当直线y b =与两条曲线()y f x =和()y g x =共有三个不同的交点时直线y b =必经过点(,())M m f m ,即()b f m =因为()()f m g m =,所以ln me m m m -=-,即2ln 0me m m -+=令()()f x b f m ==得ln xme x e m m m -=-=-,解得x m =或ln x m =,由01m <<,得ln 0m m << 令()()g x bf m ==得ln ln mx x e m m m -=-=-,解得x m =或mx e =,由01m <<,得1mm e << 所以当直线y b =与两条曲线()y f x =和()y g x =共有三个不同的交点时从左到右的三个交点的横坐标依次为,ln ,,m m m e 因为2ln 0me m m -+=,所以ln 2me m m += 所以ln ,,m m m e 成等差数列.∴存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.。
广西高考数学(文科)模拟考试卷附带答案解析
广西高考数学(文科)模拟考试卷附带答案解析班级:___________姓名:___________考号:___________一、单选题1.已知集合{|M x x A =∈且}x B ∈,{}3,4,5,6,7A =与{}2,4,6,8B =,则M 等于( ) A .{}4,5,6 B .{}4,6 C .{}2,8D .{}3,5,72.复数z2,则复数z 2的对应点位于复平面内( ) A .第四象限B .第三象限C .第二象限D .第二或三象限3.函数2cos 6y x π⎛⎫=+ ⎪⎝⎭的单调增区间为( )A .()2ππ,2π,Z k k k -∈B .()2π,2ππ,Z k k k +∈C .7ππ(2π,2π),Z 66k k k --∈ D .π5π(2π,2π),Z 66k k k -+∈4.以下四个选项中的函数,其函数图象最适合如图的是( )A .2exy x=B .()22e x xy x+=C .e 2xy x=D .2e xy x=5.经过原点且倾斜角为60︒的直线被圆C:220x y a +-+=截得的弦长是C 在x 轴下方部分与x 轴围成的图形的面积等于( )A .83π-B .163π-C .83π-D .163π-6.有一组样本数据由这组数据得到新的样本数据其中i iy cx =(1i =,2,…,n ),且0c ≠,则下列说法中错误的是( )A .新样本数据的平均数是原样本数据平均数的c 倍B .新样本数据的上四分位数是原样本数据上四分位数的c 倍C .新样本数据的方差是原样本数据方差的c 倍D .新样本数据的极差是原样本数据极差的c 倍7.一个正三棱台的上、下底面边长分别为3和6,侧棱长为2,则其高为( )A .12B .1CD 8.设P 是△ABC 所在平面内的一点,且1122BC BA BP +=,则A .0PA PB += B .0PA PC += C .0PC PB +=D .0++=PA PB PC9.已知椭圆22:1126x y C +=的两焦点分别为1F ,2F 且P 为椭圆上一点,且1260F PF ∠=︒,则12F PF △的面积等于( ).A .6B .C .D .10.如图,在梯形ABCD 中,AB//CD ,AD=DC=BC=2,60ABC ∠=︒将ACD 沿边AC 翻折,使点D 翻折到P 点,且PB =-P ABC 外接球的表面积是( )A .15πB .25πC .D .20π11.已知椭圆C 的焦点为()12,0F -,()22,0F 过2F 的直线与C 交于A ,B 两点,若222AF F B =,1AB BF =则C 的方程为( )A .221124x y += B .2211612x y += C .221128x y += D .2212016x y += 12.若存在实数x ,y 满足ln 3y y x x e e --+≥+,则x y +=( ) A .1- B .0 C .1 D .e二、填空题13.已知向量(1,3)a =,(3,)b m =且b 在a 上的投影为3,则a 与b 夹角为__________.14.已知圆锥的表面积为,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为________.15.函数()21f x x x=-+的图象在点()()1,1f 处的切线的斜率为______. 16.已知11223x x -+=,则22x x --=___________. 三、解答题17.某健康社团为调查居民的运动情况,统计了某小区100名居民平均每天的运动时长(单位:小时),并根据统计数据分为六个小组(所调查的居民平均每天运动时长均在[]1,4内),得到频率分布直方图如图所示.(1)求出图中m 的值,并估计这100名居民平均每天运动时长的平均值及中位数(同一组中的每个数据可用该组区间的中点值代替);(2)为了分析该小区居民平均每天的运动量与职业、年龄等的关系,该社团按小组用分层抽样的方法抽出20名居民进一步调查,试问在[)1.5,2时间段内应抽出多少人?18.在公比大于0的等比数列{}n a 中,已知354a a a =,且2a ,43a 与3a 成等差数列. (1)求{}n a 的通项公式; (2)已知12n n S a a a =,试问当n 为何值时n S 取得最大值,并求n S 的最大值.19.如图,四棱锥P ABCD -的底面ABCD 为矩形,PA ⊥底面ABCD ,PA AB =点E 是棱PB 的中点.(1)求证:CB AE ⊥;(2)若2AB =,BC =求三棱锥P ACE -的体积. 20.已知函数()32123f x x x =-+.(1)讨论函数()f x 的单调性;(2)求函数()f x 在区间[](),10a a a +>的最大值. 21.已知抛物线22x py =上一点()2,1P -,焦点为F . (1)求PF 的值;(2)已知A ,B 为抛物线上异于P 点的不同两个动点,且PA PB ⊥,过点P 作直线AB 的垂线,垂足为C ,求C 点的轨迹方程.22.在直角坐标系xOy 中,曲线1C 的参数方程为1x y t ⎧=⎪⎨=-⎪⎩(t 为参数),曲线2C 的参数方程为42cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线2C 的极坐标方程与1C 的普通方程; (2)若直线π6θ=与曲线1C 交于A 点、与曲线2C 交于B 点,求||AB 的值. 23.已知()112f x x x =-++的最小值为n . (1)求n 的值;(2)若正实数,,a b c 满足a b c n ++=,求222a b c ++的最小值.参考答案与解析1.B【分析】利用交集的定义直接求解.【详解】因为 {}3,4,5,6,7A =,{}2,4,6,8B =与{|M x x A =∈且}x B ∈ 所以{}4,6M =. 故选:B 2.D【分析】结合复数的概念及模长求出复数z ,然后根据复数的乘方运算,即可判断所处象限.【详解】设z a bi =+,因为2b z =,所以1a =±,所以1z =或1z =-若1z =+,则()2212z =+=-+,复数z 2的对应点位于复平面内第二象限;若1z =-,则()2212z =-=--,复数z 2的对应点位于复平面内第三象限;故选:D. 3.C【分析】根据给定函数,利用余弦函数的单调性直接列式,求解作答. 【详解】由2ππ2π,Z 6k x k k π-≤+≤∈,解得2π2π,Z 66k x k k 7ππ-≤≤-∈ 所以所求函数的增区间为7ππ(2π,2π),Z 66k k k --∈. 故选:C 4.C【分析】结合图象,根据函数值的特点排除A 、B ,根据单调性排除D 即可得正确选项. 【详解】对于A :当0x <时2e0xy x=<,且2exy x=为奇函数图象关于原点对称,不符合题意,故选项A 不正确;对于B :当0x <时()22e 0x xy x+=<,不符合题意,故选项B 不正确;对于D :当0x >时由 2e x y x =可得()243e 2e 2e xx x x x x y x x -⋅-'== 当02x <<时0'<y ;当2x >时0'>y ,所以2e xy x=在()0,2单调递减,在()2,∞+单调递增,不符合图象特点,故选项D 不正确; 故选:C. 5.A【分析】由已知利用垂径定理求得a ,得到圆的半径,画出图形,由扇形面积减去三角形面积求解.【详解】解:直线方程为y =,圆22:0C x y a +-+=的圆心坐标为(圆心(0y -=的距离d = 则4a =-.∴圆C 的圆心坐标为(,半径为4.如图sin OBC ∠60OBC ∠=︒ 60ACB ∠=︒∴.218463CAB S ππ=⨯⨯=扇形 144602ABC S sin =⨯⨯⨯︒=三角形∴圆C 在x 轴下方部分与x 轴围成的图形的面积等于83π-. 故选:A .【点睛】本题考查直线与圆位置关系的应用,考查扇形面积的求法,考查计算能力,属于中档题. 6.C【分析】根据平均数,百分位数,极差以及方差的定义以及计算即可根据选项逐一求解.【详解】对于A ,根据平均数的定义知,新样本数据的平均数是原样本数据平均数的c 倍,选项A 正确; 对于B ,根据百分位数的定义知,新样本数据的上四分位数是原样本数据上四分位数的c 倍,选项B 正确; 对于C ,根据方差的计算公式知,新样本数据的方差是原样本数据方差的2c 倍,所以选项C 错误; 对于D ,根据极差的定义知,新样本数据的极差是原样本数据极差的c 倍,选项D 正确. 故选:C 7.B【分析】将正三棱台补全为正三棱锥再做高,结合勾股定理求解即可【详解】如图,延长正三棱台的三条棱,,AA BB CC ''',交于点P ,因为6AB BC AC ===,3A B B C A C ''''''===,则24PA PB PC AA '====,作PO ⊥底面ABC 于O ,连接BO ,则BO ==故2PO =,故正三棱台ABC A B C '''-的高为12PO= 故选:B 8.B【分析】由向量的加减法运算化简即可得解.【详解】2BC BA BP +=,移项得20,0BC BA BP BC BP BA BP PC PA +-=-+-=+=. 【点睛】本题主要考查了向量的加减法运算,属于基础题. 9.B故选:B 10.D【分析】在梯形ABCD 中,利用已知条件求出三角形ADC 和三角形ABC 的边长,分别取,AB AC 的中点,O F ',连接,,O F PF BF ',可证出PF ⊥面ABC ,由O P O A ''<知,三棱锥-P ABC 外接球的球心O 在平面ABC 的下方,设三棱锥-P ABC 外接球的球心为O ,连接OO ',作OH PF ⊥,垂足为H ,由()22222R O A O O OH PF O O '''=+=++,解出外接球半径,进而得出表面积.设三棱锥-P ABC 外接球的球心为O ,连接OO ',作OH PF ⊥,垂足为H 由题中数据可得1PF = 1OH O F '== 2O A '= HF OO '=设三棱锥-P ABC 外接球的半径为R ,则()22222R O A O O OH PF O O '''=+=++ 即()222141R O O O O ''=+=++,解得1'=O O 25R = 故三棱锥-P ABC 外接球的表面积是24π20πR =. 故选:D11.C【解析】根据椭圆的定义以及余弦定理,结合221cos cos 0AF O BF F ∠+∠=列方程可解得a ,b ,即可得到椭圆的方程.【详解】22||2||AF BF = 2||3||AB BF ∴= 又1||||AB BF = 12||3||BF BF ∴= 又12||||2BF BF a += 2||2aBF ∴=2||AF a ∴= 13||2BF a =12||||2AF AF a += 1||AF a ∴= 12||||AF AF ∴= A ∴在y 轴上.在Rt2AF O 中22cos AF O a∠=在12BF F △中,由余弦定理可得22221316()()822cos 2242a a a BF F a a +--∠==⨯⨯. 221cos cos 0AF O BF F ∠+∠=,可得22802a a a -+=,解得212a =.2221248b a c =-=-=.椭圆C 的方程为221128x y +=.故选:C .【点睛】方法点睛:用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程()222210x ya b a b +=>>或22221x y b a+=()0a b >>;③找关系:根据已知条件,建立关于a 、b 、c 的方程组;④得方程:解方程组,将解代入所设方程,即为所求. 12.C【分析】令()ln 3f x x x =-+,利用导数求得函数的单调性与最大值,再令()y y g y e e -=+,结合基本不等式,求得()2g y ≥,进而得到ln 32x x -+=,求得,x y 的值,即可求解. 【详解】令函数()ln 3f x x x =-+,可得11()1xf x x x-='-= 当(0,1)x ∈时0fx,()f x 单调递增;当(1,)x ∈+∞时()0f x '<,()f x 单调递减 所以当1x =,可得max ()(1)ln1132f x f ==-+=令函数()y y g y e e -=+,则2y y e e -+≥,当且仅当0y =时取等号 又由ln 3y y x x e e --+≥+,所以ln 32y y x x e e --+=+= 所以1,0x y ==,所以1x y +=. 故选:C.【点睛】对于利用导数研究不等式的恒成立与有解问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成求解参数的取值时一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,通常要设出导数的零点,难度较大. 13.6π 【分析】根据投影公式,求得m (3,3)b =,再由夹角公式得解. 【详解】解:因为(1,3)a = (3,)b m =33a b m ∴=+ (212a =+=由公式b 在a 上的投影为||a ba 得,3332||a b a +==m所以(3,3)b =,即(23b =+由向量夹角公式33cos ,||||43a b a b a b +<>==因为[],0,a b π<>∈ 则a 与b 夹角6π. 故答案为6π. 【点睛】本题考查平面向量的数量积及投影公式的运用,考查向量夹角的求法,考查逻辑推理能力及运算求解能力,属于基础题.14【详解】设圆锥的底面半径为r ,母线长为l ,由其侧面展开图为一个半圆可得r l 2π=π,所以2l r =,所以圆锥的表面积为223a r rl r r πππ=+=∴=15.3-【分析】求出函数的导函数,代入计算()1f '即可;【详解】解:因为()21f x x x=-+,所以()212f x x x '=--,即()2112131f '=-⨯-=-,故函数在点()()1,1f 处的切线的斜率为3-; 故答案为:-316.±【分析】利用分数指数幂的运算,根据平方关系即可求得结果.【详解】由11223x x-+=可得21112229x x x x --⎛⎫+=++= ⎪⎝⎭ 即17x x -+= 又因为()()22114x x x x --+=-+ 即()22174x x -=-+,可得()2145x x -=-即1x x --=±所以()()(22117x x x x x x ----=+-=⨯±=±.故答案为±17.(1)0.5m =,平均数为2.4小时中位数为2.4小时(2)4人【分析】(1)根据频率分布直方图的性质可得m ,再利用平均数与中位数的计算公式直接计算;(2)根据分层抽样等比例的性质直接计算.【详解】(1)由频率分布直方图可知()0.20.420.30.10.51m ++++⨯=,解得:0.5m =平均数:()1.250.2 1.750.4 2.250.5 2.750.5 3.250.3 3.750.10.5 2.4⨯+⨯+⨯+⨯+⨯+⨯⨯=小时;中位数:由0.20.40.50.30.5,0.20.40.50.50.550.5得中位数在[)2,2.5内 设中位数为a ,则()()0.20.40.520.50.5a +⨯+-⨯=,解得 2.4a =,即中位数为2.4小时(2)由已知可得在[)1.5,2时间段内的频率为0.40.50.2⨯=所以在[)1.5,2时间段内应抽出200.24⨯=人.18.(1)42n n a -=;(2)当3n =或4时n S 取得最大值,()max 64n S =.【分析】(1)设{}n a 的公比为q ,由354a a a =,得41a =,再根据2a ,43a 与3a 成等差数列,求得公比即可.(2)根据(1)得到(7)321(4)21222n nn n n S a a a -++++-===,再利用二次函数的性质求解.【详解】(1)设{}n a 的公比为q由354a a a =,即244a a =得41a =或40a =(舍).因为2a ,43a 和3a 成等差数列所以2346a a a +=,即231116a q a q a q +=则2610q q --= 解得12q =或13q =-(舍) 又3411a a q ==故18a =. 所以141822n n n a --⎛⎫=⨯= ⎪⎝⎭. (2)(7)321(4)21222n n n n n S a a a -++++-=== 又()2717222n n y n n -==-+,该二次函数对称轴为72又n N +∈,故当3n =或4时二次函数取得最大值6故当3n =或4时n S 取得最大值6264=,即()max 64n S =.【点睛】本题考查等差数列与等比数列的运算以及数列最值问题,还考查运算求解的能力,属于基础题.19.(1)证明见解析【分析】(1)由线面垂直性质可得CB PA ⊥,结合CB AB ⊥,由线面垂直的判定可得CB ⊥平面PAB ,由线面垂直的性质可证得结论;(2)根据体积桥P ACE C PAE V V --=,结合棱锥体积公式可求得结果.【详解】(1)PA ⊥平面ABCD ,CB ⊂平面ABCD CB PA ∴⊥;四边形ABCD 为矩形CB AB ∴⊥,又AB PA A =,,AB PA ⊂平面PAB CB ∴⊥平面PAB ,又AE ⊂平面PAB ,CB AE ∴⊥.(2)PA ⊥平面ABCD ,AB ⊂平面ABCD ,PA AB ∴⊥又E 为PB 中点 11124PAE PAB SS PA AB ∴==⋅=由(1)知:CB ⊥平面PAB ,11133P ACE C PAE PAE V V S BC --∴==⋅=⨯20.(1)函数()f x 在()(),0,2,-∞+∞单调递增,在()0,2单调递减(2)答案不唯一,具体见解析【分析】(1)求导()()222f x x x x x '=-=-,由0f x ,()0f x '<求解;(2)根据(1)的结论,分01a <≤,12a <≤与2a >,讨论求解.(1)解:()()222f x x x x x '=-=-当0x <或2x >时0f x ;当02x <<时()0f x '<;∴函数()f x 在()(),0,2,-∞+∞单调递增,在()0,2单调递减;(2)由(1)知当01a <≤,函数()f x 在区间[],1a a +单调递减∴()()32max 123f x f a a a ==-+ 当12a <≤,函数()f x 在区间[],2a 单调递减,在[]2,1a +单调递增()()()3231141112333f a a a a a +=+-++=-+ ()()2213+-=--f a f a a a①当1a <≤()()1f a f a ≥+,∴()()32max 123f x f a a a ==-+2a <≤时()()1f a f a <+,∴()()3max 14133f x f a a a =+=-+ 当2a >时函数()f x 在区间[],1a a +单调递增∴()()3max 14133f x f a a a =+=-+综上所述,当0a <≤时()32max 123f x a a =-+当>a ()3max 1433f x a a =-+ 21.(1)2(2)()2238x y +-=【分析】(1)将点()2,1P -代入抛物线方程,求得抛物线方程,再根据抛物线的定义即可得出答案;(2)设直线AB 的方程为y kx t =+,()()1122,,,A x y x y 联立直线与抛物线方程,利用韦达定理求得12x x +,12x x 再根据PA PB ⊥,求得,k t 的关系,从而可得直线AB 过定点H ,再根据PC HC ⊥,可得C 点的轨迹为PH 为直径的圆,即可得出答案.【详解】(1)解:∵42p =,∴2p =∴抛物线方程为24x y =,准线方程为1y =- 122p PF =+=; (2)解:由已知直线AB 存在斜率,设直线AB 的方程为:y kx t =+由24x y y kx t⎧=⎨=+⎩,有2440x kx t --=,记()()1122,,,A x y x y 则124x x k += 124x x t =- ∵22121212121211112244222244PA PBy y y y x x k k x x x x ------⋅=⋅=⋅=⋅++++ ()121224116x x x x -++==- ∴52t k =-则直线AB 的方程为:()25y k x =-+,过定点()2,5H∵PC HC ⊥,则C 点的轨迹为PH 为直径的圆,其方程为()2238x y +-=则轨迹方程为()2238x y +-=.22.(1)21:1(0)C x y x =+≥ 22:8cos 120C ρρθ-+=【分析】(1)消去参数t ,结合取值范围得1C 的方程,根据2C 为圆的标准参数方程可得普通方程,再根据极坐标与普通方程的关系式可得极坐标方程;(2)根据极坐标中极径的几何意义求解即可.【详解】(1)在1C 的参数方程中,消去参数t 得21(0)x y x =+≥;所以1C 的普通方程为21(0)x y x =+≥.又2C 是以()4,0为圆心,2为半径的圆,故其普通方程为22(4)4x y -+=,把cos sin x y ρθρθ=⎧⎨=⎩代入上式得2C 的极坐标方程为28cos 120ρρθ-+=.(2)将π6θ=代入28cos 120ρρθ-+=可得2120ρ-+=,即(20ρ-=,解得ρ=||OB =.又1C 的极坐标方程为22cos sin 1ρθρθ=+ 把π6θ=代入1C 的极坐标方程得:23240ρρ--=解得ρ=ρ=故有||||||AB OB OA =-=23.(1)32 (2)34【分析】(1)先在数轴上标根,把数轴分成三区,再打开绝对值,写出分段函数()f x ,求其最小值.(2)先把a b c n ++=两边平方,再利用重要不等式进行放缩求出结果.【详解】(1)由已知121231()12211222x x f x x x x ⎧--≤-⎪⎪⎪=-<<⎨⎪⎪+≥⎪⎩,,, 当1x ≤-时3()2f x ≥;当11x -<<时3()2f x =;当1x ≥时3()2f x ≥. 所以3()2f x ≥,即min 3()2f x =,即32n =. (2)由(1)知:32a b c ++= 所以2222239()22224a b c a b c ab ac bc ⎛⎫++=+++++== ⎪⎝⎭因为222a b ab +≥,当a b =时取等号;同理222b c bc +≥,当b c =时取等号;222a c ac +≥当a c =时取等号. 所以222222222ab bc ac a b c ++++则()2222()3a b c a b c ++++ 所以22234a b c ++,当且仅当12a b c ===时取等号 所以222a b c ++的最小值为34.。
高三文科数学模拟卷(含答案)
高三文科数学模拟卷本试卷共4页,23小题,满分150分,考试用时120分钟。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.以下四个命题:①“若x y =,则22x y =”的逆否命题为真命题②“2a =”是“函数()log a f x x =在区间()0,∞+上为增函数”的充分不必要条件 ③若p q ∧为假命题,则p ,q 均为假命题④对于命题p :0x R ∃∈,20010x x ++<,则p ⌝为:x R ∀∈,210x x ++≥其中真命题的个数是( ) A .1个B .2个C .3个D .4个2.已知x 0是函数f (x )=ln x -1x(x >0)的一个零点,若x 1∈(0,x 0),x 2∈(x 0,+∞)则( ) A .()10f x <,()20f x > B .()10f x >,()20f x < C .()10f x <,()20f x <D .()10f x >,()20f x >3.已知0.50.60.910.80.60.5a og b c ===,,,那么a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .a c b >>4.已知f (x )是定义域为[-3,3]的奇函数,且在[-3,0]上是减函数,那么不等式f (x +1)>f (3-2x )的解集是( ) A .2,3⎛⎫-∞ ⎪⎝⎭B .[]0,2C .20,3⎡⎫⎪⎢⎣⎭D .2,3⎛⎫+∞⎪⎝⎭5.函数f (x )=x 2ln|x |的图象大致是( ).A .B .C .D .6.在ABC △中,角A 、B 、C 的对边分别为a 、b 、c .若22()6c a b =-+,且,,A C B 成等差数列,则ABC △的面积是( ) A .332B .32C .3D .337.数列{}n a 中,115a =-,且12n n a a +=+,则当前n 项和n S 最小时,n 的值为( ) A .6B .7C .8D .98.若对任意的[1,3]x ∈,不等式230x x m --<都成立,则实数m 的取值范围为( ). A .(2,)-+∞B .9(,)4-+∞C .9(,0)4-D .(0,)+∞9.设1x >,则函数2()231f x x x =++-的最小值为( ) A .9B .8C .6D .510.关于直线m 、n 及平面α、β,下列命题中正确的是( ) A .若m α⊥,//m β,则αβ⊥ B .若//m α,//n α,则//m n C .若//m α,m n ⊥,则n α⊥D .若//m α,n αβ=,则//m n11.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =( )A .6B .52C .3D .2二、填空题:本题共4小题,每小题5分,共20分。
高考数学(文科)模拟试卷及答案3套
高考数学(文科)模拟试卷及答案3套(一)第Ⅰ卷 选择题(60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合,,}02{B }3,2,1,0,1{A ≤-=-=x x |x 2则A B =I A .}2,1{ B.}2,0,1{- C .}2,1,0{ D.}3,2,1,0{3.已知πlog ,c 9.0,b π9.0π1.0===a ,则c b a ,,的大小关系是A.c a b >>B.b c a >>C.a c b >>D.c b a >>4.为考察A ,B 两种药物预防某疾病的效果,进行动物实验,分别得到如下等高条形图:药物A 实验结果患病未患病服用药没服用药0.10.20.30.40.50.60.70.80.91药物B 实验结果患病未患病服用药没服用药0.10.20.30.40.50.60.70.80.91根据图中信息,在下列各项中,说法最佳的一项是 A .药物A 的预防效果优于药物B 的预防效果 B .药物B 的预防效果优于药物A 的预防效果 C .药物A 、B 对该疾病均有显著的预防效果 D .药物A 、B 对该疾病均没有预防效果5.定义在R 上的奇函数)(x f 满足)3()(x f x f +=-,2)2020(=f ,则)1(f 的值是 A .-1 B .-2 C .1 D . 26.设n m ,是两条不同的直线,βα,是两个不同的平面,,平面直线平面且直线βn αm ⊂⊂,下列命题为真命题的是A.“n m ⊥”是“αn ⊥”的充分条件B.“n m //”是“βm //”的既不充分又不必要条件C.“βα//”是“n m //”的充要条件D.“n m ⊥”是“βα⊥”的必要条件7.已知等差数列}{n a 的前n 项和为n S ,11=a ,若151m m 1m =++-+a a a ,且27S =m ,则m 的值是A .7B .8C . 9D . 10 8.函数)0(3cos y <-=b x b a 的最大值为23,最小值为21-,则]π)4[(sin x b a y -=的周期是A.31 B.32 C.3π D.3π2 9.在ABC ∆中,已知向量AB 与AC 满足AB AC()BC |AB||AC|+⊥u u u r u u u ru u u r u u ur u u u r 且21=•|AC ||AB |,则是ABC ΔA.三边均不相同的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形10.在△ABC 中,若115031tan ===︒BC C A ,,,则△ABC 的面积S 是A.833- B.433- C.833+ D.433+ 11. 正方体1111D C B A ABCD -中,11Q D C 点是线段的中点,点P 满足1113A P A A =u u u r u u u r ,则异面直线PQ AB 与所成角的余弦值为A.210 B.210 C.210- D.3712.众所周知的“太极图”,其形状如对称的阴阳两鱼互抱在一起,因而也被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”,整个图形是一个圆形,其中黑色阴影区域在y 轴右侧部分的边界为一个半圆.给出以下命题: ①在太极图中随机取一点,此点取自黑色阴影部分的概率是12; ②当43a =-时,直线(2)y a x =-与黑色阴影部分有公共点; ③黑色阴影部分中一点()y x ,,则y x +的最大值为2.其中所有正确结论的序号是( ) A .① B .② C .①③ D .①②第Ⅱ卷 非选择题(90分)二、填空题:本大题共4小题,每小题5分,共20分.13. 若向量a ,b 满足:(a -b )⋅(2a +b )=-4,且|a |=2,|b |=4,则a 与b 的夹角是__________.14.按照程序框图(如图所示)执行,第4个输出的数是__________.15.已知双曲线1222=-y ax (a >0)的左、右焦点分别为F 1,F 2,离心率为2,开始输出A结束是否1A =1S =5?S ≤2A A =+1S S =+第12题图P 为双曲线右支上一点,且满足4||||2221=-PF PF ,则△PF 1F 2的周长为 .16.已知直线l 与曲线x x f sin )(=切于点)sin (A α α,,且直线l 与曲线x x f sin )(=交于点)sin (B β β,,若π=β-α,则的值为α tan ________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)为庆祝新中国成立70周年,某市工会组织部分事业单位职工举行“迎国庆,广播操比赛”活动.现有200名职工参与了此项活动,将这200人按照年龄(单位:岁)分组:第一组[15,25),第二组[25,35),第三组[35,45),第四组[45,55),第五组[55,65],得到的频率分布直方图如图所示.记事件A 为“从这200人中随机抽取一人,其年龄不低于35岁”,已知P (A )=0.75. (1)求b a,的值;(2)在第二组、第四组中用分层抽样的方法抽取6人,再从这6人中随机抽取2人作为活动的负责人,求这2人恰好都在第四组中的概率.18.(本小题满分12分)已知等差数列}{n a 的首项为6,公差为d ,且4312,2,a a a +成等比数列.(1)求}{n a 的通项公式;(2)若0<d ,求||a ...||a ||a ||a n ++++321的值.19.(本小题满分12分)如图,多面体ABCDEF 中,12===AD DE AB ,,平面CDE ⊥平面ABCD ,四边形ABCD 为矩形,BC ∥EF ,点G 在线段CE 上,且AB GC EG 3222==. (1) 求证:DE ⊥平面ABCD ;(2) 若BC EF 2=,求多面体ABCDEF 被平面BDG 分成的大、小两部分的体积比.20.(本小题满分12分)已知函数()()()()21112ln 02f x ax a x a x a =+-+->. (1)若2x =是函数的极值点,求a 的值及函数()f x 的极值; (2)讨论函数的单调性.21.(本小题满分12分)已知抛物线C 的顶点为坐标原点O ,焦点F 在y 轴的正半轴上,过点F 的直线l 与抛物线相交于A ,B 两点,且满足.43-=⋅OB OA (Ⅰ)求抛物线C 的方程;(Ⅱ)若P 是抛物线C 上的动点,点N M ,在x 轴上,圆1122=-+)(y x 内切于PMN ∆,求PMN ∆面积的最小值.选考题:共10分.请考生在第22、23题中任选一题作答. 22.[选修4-4:坐标系与参数方程](10分).在平面直角坐标系xoy 中,曲线C 的参数方程为为参数),,(θθθ⎩⎨⎧+=+=sin 24y cos 23x 以原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)在平面直角坐标系xOy 中,A (﹣2,0),B (0,﹣2),M 是曲线C 上任意一点,求△ABM 面积的最小值.23.[选修4-5:不等式选讲](10分).设函数.|2|||5)(+---=x a x x f (1)当1=a 时,求不等式0)(≥x f 的解集; (2)若1)(≤x f ,求a 的取值范围.答案一、选择题: CBDAB BCBDA DD 二、填空题:13.120° 14.7 15. 3310 16.2π三、解答题:17.解:(1)由题意知P(A)=10×(a +0.030+0.010)=0.75,解得a =0.035,又10×(b +0.010)=0.25,所以b =0.015. ……4分(2)在第二组、第四组中用分层抽样的方法抽取6人,则第二组中应抽取2人,分别记为21a a ,,第四组中应抽取4人,分别记为4321b b b b ,,,. ……5分从这6人中抽取2人的所有可能情况有)(11b ,a , )(21b ,a ,)(31b ,a ,)(41b ,a ,)(12b ,a ,)(22b ,a ,)(32b ,a ,)(42b ,a ,)(21a ,a ,)(21b ,b ,)(31b ,b ,)(41b ,b ,)(32b ,b ,)(42b ,b ,)(43b ,b ,共15种. ……8分其中从这6人中抽取的2个人恰好都在第四组中的情况有)(21b ,b ,)(31b ,b ,)(41b ,b ,)(32b ,b ,)(42b ,b ,)(43b ,b ,共6种. ……9分所以所求概率为52156=. ……10分18. 解:(1) d.a d a d a 36266431+=+=∴=,,,公差为Θ Θ又43122a a a ,,+成等差数列,.21)2(22341=-=+=⋅∴d d a a a 或,解得 .42271n n +==-==n a d n a -d 时,;当时,当故.427}{+==n a n -a a n n n 或的通项公式为·······5分 (2)∵d <0,∴d =-1,此时.n 7n -=a.2132.......07n n -a a a |a ||a ||a |a n 2n 21n 21n +=+++=+++≥≤,时,当·······7分 )....(.......07n 98721n 21n a a a a a a |a ||a ||a |a n +++-+++=+++<>,时,当 .422n 132n 2)n 71)(7n (26072+-=-+---+=)(·······11分 故⎪⎩⎪⎨⎧>+-≤+=+++.422137213 (7)n n 2n n n 2n -|a ||a ||a |22n 21,, ·······12分 19. 解:(1)因为四边形ABCD 为矩形,所以CD=AB.因为AB=DE=2,所以CD=DE=2.因为点G 在线段CE 上,且EG=2GC=322AB ,所以EC=2AB=2CD=22所以.CD DE ,EC CD DE 222⊥=+即又平面CDE ⊥平面ABCD ,平面CDE ⋂平面ABCD=CD,DE ⊂平面CDE , 所以DE ⊥平面ABCD.·······5分(2)方法1:由(1)知,//,,BC AD DC DA DE DC AD ABCD DE 两两垂直,又,所以,且平面⊥⊥ 所以易知.CDE BC 平面⊥设,,222,1=====BC EF DE AB BC,,34323231====∆∆∆∆CDE EDG CDE CDG S S S S .9431,9231=⨯==⨯=∆-∆-BC S V BE BC S V EDG GDE B CDG CDE B ,则连接所以因为,平面所以易知所以ADEF AB EF AD AD BC EF BC ⊥,//,//,// 2313)(2=⨯==+⋅=∆-∆AB S V EF AD DE S ADEF ADEF B ADEF ,所以922=+--ADEF B DEG B V V 所以 故多面体ABCDEF 被平面BDG 分成的大、小两部分的体积比为11:1 方法2:设三棱锥G-BCD 的体积为1,连接EB,AE. 因为EG=2GC,所以CG=31EC,所以3V 3V BCD G BCD E ==--.易知.3V V ABD E BCD E ==--又EF=2BC,BC ∥EF ,所以.V V 2S S 2AEF B ABD B EFA ABD --∆∆==,故 又6,3===---AEF B ABD E ABE B V V V 所以, 故.111336=-++=++---BDG E ABD E AFE B V V V故多面体ABCDEF 被平面BDG 分成的大、小两部分的体积比为11:1.·······12分20.解:(1∴()()()10f x ax a x=++'->,···········1分14a =,···········2分当01x <<和2x >时,()0f x '>,()f x 是增函数, 当12x <<时,()0f x '<,()f x 是减函数,···········4分 所以函数()f x 在1x =和2x =处分别取得极大值和极小值.故函数()f x 的极大值为()1351848f =-=-, 极小值为()13112ln2ln212222f =-+=-.···········6分(2)由题意得()()121a f x ax a x-=+-+'()()2112ax a x a x +-+-=()()1210a a x x a x x-⎛⎫-- ⎪⎝⎭=>,···········7分01x <<时,()0f x '<,()f x 单调递减; 当1x >时,()0f x '>,()f x 单调递增.···········8分②当1201a a -<<,即1132a <<时, 则当120ax a-<<和1x >时,()0f x '>,()f x 单调递增;当121a x a -<<时,()0f x '<,()f x 单调递减.···········9分 ③当121a a ->,即103a <<时,则当01x <<和12ax a->时,()0f x '>,()f x 单调递增;当121ax a -<<时,()0f x '<,()f x 单调递减.···········10分④当121a a -=,即13a =时,()0f x '≥,所以()f x 在定义域()0,+∞上单调递增.···········11分 综上:①当103a <<时,()f x 在区间121,a a -⎛⎫⎪⎝⎭上单调递减,在区间()0,1和12,a a -⎛⎫+∞ ⎪⎝⎭上单调递增; ②当13a =时,()f x 在定义域()0,+∞上单调递增; ③当1132a <<时,()f x 在区间12,1a a -⎛⎫ ⎪⎝⎭上单调递减,在区间120,a a -⎛⎫⎪⎝⎭和()1,+∞上单调递增;()f x 在区间()0,1上单调递减,在区间()1,+∞上单调递增.······12分21.解:(1)由题意,设抛物线C 的方程为)0(22>=p py x ,则焦点F 的坐标为),(20p . 设直线l 的方程为,,,,,)()(22211y x B y x A pkx y +=·······1分 联立方程得,得消去044,0222222222>+=∆=--⎪⎩⎪⎨⎧+==p k p p pkx x y p kx y py x 所以.4222122121p y y p x x pk x x =-==+,,·······3分因为.1432121=-=+=⋅p y y x x OB OA ,所以故抛物线的方程为y x 22=.·······5分(2)设)0()0()0)((0000,,,,,n N m M y x y x P ≠易知点M ,N 的横坐标与P 的横坐标均不相同.不妨设m>n.易得直线PM 的方程为)(00m x mx y y --=化简得0)(000=---my y m x x y ,又圆心(0,1)到直线PM 的距离为1,所以,1)(||202000=-++-m x y my m x 所以2020*******)(2)()(y m m x my m x y m x +-+-=+-不难发现,,故上式可化为02)2(200200=-+->y m x m y y 同理可得,02)2(0020=-+-y n x n y所以m ,n 可以看作是02)2(0020=-+-y t x t y 的两个实数根,则,,2220000--=--=+y y mn y x n m 所以.)2(8444)()(200202022--+=-+=-y y y x mn n m n m 因为)(00y x P ,是抛物线C 上的点,所以0202y x =则,2022)2(4)(-=-y y n m 又20>y ,所以,2200-=y y n m -从而 84)24)(2(2424222)(2100000200000=+--≥+-+-=-=⋅-=-=∆y y y y y y y y y y n m S PMN当且仅当4)2(20=-y 时取得等号,此时22,400±==x y故△PMN 面积的最小值为8.·······12分 22.解:(1)∵曲线C 的参数方程为,(θ为参数),∴曲线C 的直角坐标方程为(x ﹣3)2+(y ﹣4)2=4, 将,代入得曲线C 的极坐标方程为:ρ2﹣6ρcos θ﹣8ρsin θ+21=0.(2)设点M (3+2cos θ,4+2sin θ)到直线AB :x +y +2=0的距离为d ,2|9)4sin(2|2|9cos 2sin 2|+π+θ=+θ+θ=d 则,当sin ()=﹣1时,d 有最小值, 所以△ABM 面积的最小值S ==9﹣2.23解:(1)当1=a 时,⎪⎩⎪⎨⎧>+-≤≤--<+=142122262)x x x x x f(x ,,,可得0)(≥x f 的解集为}23-{≤≤a |x .(2)1)(≤x f 等价于.4|2||≥++-x |a x而|a |x |a x 2|2||+≥++-,当且仅当0)2)((≤+-x a x 时等号成立.故1)(≤x f 等价于42≥+|a |.由42≥+|a |可得26≥-≤a a 或.所以a 的取值范围是(-∞,-6]∪[2,+∞)文科数学模拟试卷二一、选择题:本题共12小题,每小题5分,共60分。
高三下学期数学(文科)模拟考试卷(带参考答案与解析)
高三下学期数学(文科)模拟考试卷(带参考答案与解析)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.答选择题时,则选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,则将答案写在答题卡上。
写在本试卷上无效。
3.本试卷共22题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中只有一项是符合题目要求的。
1.已知向量(2,1)a =和(3,2)b =,则()a a b ⋅-=( ) A .-5 B .-3C .3D .52.不等式312x >+的解集为( ) A .{1,2}x x x <≠- B .{1}x x >C .{21}x x -<<D .{21}x x x <->或3.直线x +ay -3=0与直线(a +1)x +2y -6=0平行,则a =( )A .-2B .1C .-2或1D .-1或24.古希腊科学家阿基米德发明了享誉世界的汲水器,称为阿基米德螺旋泵,两千多年后的今天,左图所示的螺旋泵,仍在现代工农业生产中使用,其依据是“阿基米德螺线”.在右图所示的平面直角坐标系xOy 中点A 匀速离开坐标系原点O ,同时又以固定的角速度绕坐标系原点O 逆时针转动,产生的轨迹就是“阿基米德螺线”,该阿基米德螺线与坐标轴交点依次为A 1(-1,0),A 2(0,-2),A 3(3,0),A 4(0,4),A 5(-5,0),…按此规律继续,若四边形123n n n n A A A A +++的面积为220,则n =( )A .7B .8C .9D .105.△ABC 中AC =,BC =和60A =︒,则cos B =( )A .2±B .12±C .12D .26.设函数()f x 满足(1)()0f x f x ++=,当0≤x <1时,则1()2xf x -=,则()0.5log 8f =( ) A .-2B .12-C .12D .27.若cos 0,2(sin 2)1cos2αααα≠+=+,则tan2α=( ) A .43-B .34-C .34D .438.设函数()y f x =由关系式||||1x x y y +=确定,函数(),0,()(),0.f x xg x f x x -≥⎧=⎨-<⎩,则( )A .g (x )为增函数B .g (x )为奇函数C .g (x )值域为[1,)-+∞D .函数()()y f x g x =--没有正零点二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分。
高三数学模拟试卷文科答案
一、选择题(本大题共10小题,每小题5分,共50分)1. 若函数f(x) = ax^2 + bx + c在x=1时取得极值,则a、b、c之间的关系为()A. a+b+c=0B. a+b+c=1C. 2a+b=0D. 2a+b=1答案:C解析:因为函数f(x) = ax^2 + bx + c在x=1时取得极值,所以f'(1)=0,即2a+b=0。
2. 已知等差数列{an}的公差为d,首项为a1,第n项为an,则an = ()A. a1 + (n-1)dB. a1 - (n-1)dC. a1 + ndD. a1 - nd答案:A解析:等差数列的通项公式为an = a1 + (n-1)d。
3. 下列各式中,等式成立的是()A. sin(α+β) = sinαcosβ + cosαsinβB. cos(α+β) = cosαcosβ - sinαsinβC. tan(α+β) = tanαtanβD. cot(α+β) = cotαcotβ答案:B解析:根据三角函数的和角公式,cos(α+β) = cosαcosβ - sinαsinβ。
4. 已知复数z = a + bi(a,b∈R),若|z| = 1,则复数z的实部a和虚部b之间的关系为()A. a^2 + b^2 = 1B. a^2 - b^2 = 1C. a^2 + b^2 = 0D. a^2 - b^2 = 0答案:A解析:复数z的模|z| = √(a^2 + b^2),由|z| = 1,得a^2 + b^2 = 1。
5. 已知函数f(x) = x^3 - 3x,则f(x)的图像关于点()A. (0,0)B. (1,0)C. (-1,0)D. (0,1)答案:B解析:由f(1) = 1^3 - 31 = -2,f(0) = 0^3 - 30 = 0,得f(x)的图像关于点(1,0)。
6. 下列各式中,正确的是()A. loga(b^2) = 2logabB. loga(b^3) = 3logabC. loga(ab) = 1D. loga(a^2) = 2答案:B解析:根据对数的运算法则,loga(b^3) = 3logab。
高三数学文科模拟试卷答案
一、选择题(每小题5分,共50分)1. 下列函数中,定义域为实数集R的是()A. y = √(x+1)B. y = 1/xC. y = |x|D. y = x^2 - 4x + 4答案:C解析:选项A的定义域为x≥-1,选项B的定义域为x≠0,选项D的定义域为R。
只有选项C的定义域为实数集R。
2. 已知等差数列{an}的首项a1=3,公差d=2,则第10项an=()A. 19B. 20C. 21D. 22答案:C解析:根据等差数列的通项公式an = a1 + (n-1)d,代入a1=3,d=2,n=10,得an = 3 + (10-1)×2 = 3 + 18 = 21。
3. 下列命题中,正确的是()A. 函数y = x^2在定义域内单调递增B. 等差数列的任意三项成等比数列C. 函数y = log2x在定义域内单调递减D. 平面向量a与b垂直,则a·b=0答案:D解析:选项A错误,函数y = x^2在x<0时单调递减;选项B错误,等差数列的任意三项不一定成等比数列;选项C错误,函数y = log2x在定义域内单调递增;选项D正确,根据向量点积的性质,a·b=|a||b|cosθ,当a与b垂直时,cosθ=0,故a·b=0。
4. 若复数z满足|z-1|=|z+1|,则z的实部为()A. 0B. 1C. -1D. 不存在答案:A解析:设复数z=a+bi,则|z-1|=|a-1+bi|,|z+1|=|a+1+bi|。
根据复数的模的定义,有(a-1)^2+b^2=(a+1)^2+b^2,化简得a=0,即z的实部为0。
5. 已知函数f(x) = x^3 - 3x,则f(x)的图像在x轴上交点的个数是()A. 1B. 2C. 3D. 4答案:B解析:令f(x) = 0,得x^3 - 3x = 0,因式分解得x(x^2 - 3) = 0,解得x=0或x=±√3。
高三数学文科模拟考试 (含答案)
高三数学文科模拟考试 (含答案)高三模拟考试数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共4页,满分150分,考试时间120分钟。
考生作答时,请将答案涂在答题卡上,不要在试题卷和草稿纸上作答。
考试结束后,请将答题卡交回。
第Ⅰ卷(选择题,共60分)注意事项:请使用2B铅笔在答题卡上涂黑所选答案对应的标号。
第Ⅰ卷共12小题。
1.设集合A={x∈Z|x+1<4},集合B={2,3,4},则A∩B的值为A.{2,4}。
B.{2,3}。
C.{3}。
D.空集2.已知x>y,且x+y=2,则下列不等式成立的是A.x1.D.y<-113.已知向量a=(x-1,2),b=(x,1),且a∥b,则x的值为A.-1.B.0.C.1.D.24.若___(π/2-θ)=2,则tan2θ的值为A.-3.B.3.C.-3/3.D.3/35.某单位规定,每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费。
某职工某月缴水费55元,则该职工这个月实际用水为()立方米。
A.13.B.14.C.15.D.166.已知命题p:“存在实数x使得e^x=1”,命题q:“对于任意实数a和b,如果a-1=b-2,则a-b=-1”,下列命题为真的是A.p。
B.非q。
C.p或q。
D.p且q7.函数f(x)满足f(x+2)=f(x),且当-1≤x≤1时,f(x)=|x|。
若函数y=f(x)的图象与函数y=log_a(x)(a>0且a≠1)的图象有且仅有4个交点,则a的取值集合为A.(4,5)。
B.(4,6)。
C.{5}。
D.{6}8.已知函数f(x)=sin(θx)+3cos(θx)(θ>0),函数y=f(x)的最高点与相邻最低点的距离是17.若将y=f(x)的图象向右平移1个单位得到y=g(x)的图象,则函数y=g(x)图象的一条对称轴方程是A.x=1.B.x=2.C.x=5.D.x=6删除了格式错误的部分,对每段话进行了简单的改写,使其更流畅易懂。
高三数学模考文科试卷答案
一、选择题(每题5分,共50分)1. 【答案】C解析:根据函数的定义,当x=0时,f(x)=0,因此C选项正确。
2. 【答案】A解析:由等差数列的性质可知,第n项an=a1+(n-1)d,其中d为公差。
代入题目中的数据,得a5=a1+4d=10,a10=a1+9d=30,解得a1=2,d=4,因此a1+a5=2+10=12,A选项正确。
3. 【答案】D解析:根据复数的性质,实部相同,虚部相反的两个复数互为共轭复数。
因此,-1-2i的共轭复数为-1+2i,D选项正确。
4. 【答案】B解析:由三角函数的性质可知,sin(π/2-x)=cosx,因此B选项正确。
5. 【答案】C解析:根据向量的数量积公式,a·b=|a||b|cosθ,其中θ为a和b的夹角。
由题意可知,|a|=|b|=2,且a和b的夹角θ=π/3,代入公式得a·b=2×2×cos(π/3)=2,C选项正确。
二、填空题(每题5分,共25分)6. 【答案】x=1解析:由一元二次方程的定义可知,x=1是方程x^2-3x+2=0的解。
7. 【答案】a=-2,b=1解析:根据韦达定理,一元二次方程ax^2+bx+c=0的根满足x1+x2=-b/a,x1x2=c/a。
代入题目中的数据,得x1+x2=-b/a=-1/2,x1x2=c/a=-1/2,解得a=-2,b=1。
8. 【答案】π解析:由三角函数的性质可知,sin(π/2)=1,因此π/2的对应角是π。
9. 【答案】3解析:由等比数列的性质可知,an=a1q^(n-1),其中q为公比。
代入题目中的数据,得a5=a1q^4=80,a1q^2=20,解得q=√(80/20)=2,因此a1=20/q=10,所以a1+a5=10+80=90。
10. 【答案】1/2解析:由复数的性质可知,|z|=√(a^2+b^2),其中z=a+bi。
代入题目中的数据,得|z|=√(1^2+1^2)=√2,因此z的模为√2。
高考数学模拟试卷(文科)【附答案】
高考数学模拟试卷(文科)【附答案】本试卷分第Ⅰ卷和第Ⅱ卷两部分.考试时间120分钟.试卷总分为150分.请考生将所有试题的答案涂、写在答题卷上.第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.复数1ii -的共轭复数为 A .1122i -+ B .1122i + C .1122i - D .1122i --2.已知全集U R =,集合{}31<<=x x A ,{}2>=x x B ,则U A C B = A. {}21≤<x x B. {}32<<x x C. {}21<<x x D. {}2≤x x 3.设R y x ∈,,那么“0>>y x ”是“1>yx”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.已知实数列2,,,,1--z y x 成等比数列,则xyz =A .4-B .4±C .22-D .22±5.已知不重合的直线m 、和平面βα、,且βα⊂⊥l m ,,给出下列命题:①若α∥β,则l m ⊥;②若α⊥β,则l m //;③若l m ⊥,则α∥β;④若l m //,则βα⊥.其中正确命题的个数是A .B .2C .3D .46.对任意的实数k ,直线1-=kx y 与圆02222=--+x y x 的位置关系是A .相离B .相切C .相交D .以上三个选项均有可能7. 已知双曲线22221(0,0)x y a b a b -=>>与椭圆15922=+y x 有公共焦点,右焦点为F ,且两支曲线在第一象限的交点为P ,若2=PF ,则双曲线的离心率为 A .5 B .3 C .21D .2 8. 函数)sin()(ϕω+=x A x f (0,0>>ωA )的图象如右图所示,为了得到x A x g ωsin )(=的图象,可以将)(x f 的图象A .向右平移6π个单位长度 B .向左平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移3π个单位长度9.在ABC ∆中,M 是BC 的中点,1=AM ,点P 在AM 上且满足2=,则()+⋅的值是A .21 B .94 C .21- D .94-10.设()x f 是定义在R 上的奇函数,且当0≥x 时,()2x x f =.若对任意的[]2,+∈a a x , 不等式()()x fa x f 2≥+恒成立,则实数a 的取值范围是A .0≤aB .2≥aC .2≤aD .0≥a第Ⅱ卷二、填空题:本大题有7小题,每小题4分,共28分.把答案填在答题卷的相应位置.11. 某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取____名学生. 12.若某程序框图如图所示,则该程序运行后输出的值是13. 一空间几何体三视图为如图所示的直角三角形与直角梯形,则该几何体的体积为14. 设y x Z +=2,其中实数y x ,满足50100,0x y x y x y +-≤⎧⎪--≤⎨⎪≥≥⎩,则Z 的最大值是15. 记一个两位数的个位数字与十位数字的和为ξ.若ξ是不超过5的奇数,从这些两位数中任取一个,其个位数为0的概率为16.对任意的实数R x ∈,不等式012≥++x a x 恒成立,则实数a 的取值范围为 17.已知0,0>>b a ,()()111=--b a ,则)1)(1(22--b a 的最小值为三.解答题:本大题共5小题,满分72分.解答应写出文字说明,证明过程或演算步骤. 18.(本题满分14分) 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,3C π=,5b =,ABC∆的面积为. (Ⅰ)求,a c 的值; (Ⅱ)求sin 6A π⎛⎫+⎪⎝⎭的值. 19.(本题满分14分)已知等差数列{}n a 满足62,10253=-=a a a .(Ⅰ)求n a ;(Ⅱ)数列{}n b 满足()()11212n n n n b a n --⎧⎪=⎨⎪⎩为奇数为偶数 , n T 为数列{}n b 的前n 项和,求2n T .20.(本小题满分14分)如图在梯形ABCD 中,DC AB //,E 、F 是线段AB 上的两点,且AB DE ⊥,AB CF ⊥,2,3===FB EF CF ,G 为FB 的中点,设t AE =,现将BCF ADE ∆∆,分别沿CF DE ,折起,使A 、B 两点重合于点P ,得到多面体PEFCD . (Ⅰ)求证://PD 平面EGC ;(Ⅱ)当⊥EG 面PFC 时,求DG 与平面PED 所成角的正切值.21.(本题满分15分)已知函数()2ln 2-+=x a xx f .若曲线()y f x =在点(1,(1))P f 处的切线与直线2y x =+垂直. (Ⅰ)求实数a 的值;(Ⅱ)记()()()g x f x x b b R =+-∈,函数()g x 在区间1[,]e e -上有两个不同的零点(e 为自然对数的底数),求实数b 的取值范围.22. (本题满分15分)已知抛物线px y M 2:2=()0>p 上一个横坐标为3的点到其焦点的距离为4.过点)0,2(P 且与x 轴垂直的直线1l 与抛物线M 相交于B A ,两点,过点P 且与x 轴不垂直的直线2l 与抛物线C 相交与D C ,两点,直线BC 与DA 相交于点E .(Ⅰ) 求抛物线M 的方程;(Ⅱ)请判断点E 的横坐标是否为定值?若是,求出此定值,若不是,请说明理由.数学试卷(文科)参考答案二、填空题(4×7=28分)11.15 12.30 13.2 14.8 15.3116.2-≥a 17. 9三、解答题(共72分)18.1sin 2ABC S ab C ∆I == 解:()5sin83a a π∴⨯⨯==得 ————————3分2222cos ,c a b ab C c =+-=7== ————————6分 sin ,sin sin sin a c a C A A C c II =∴=== ()————9分 2222225781cos 22577b c a A bc +-+-===⨯⨯ ————————11分1113sin()sin cos cos sin 6667214A A A πππ+=+=+⨯=————14分19.111210,42()6a da d a d I +=+-+=解:()112,4,(1)42n a d a a n d n ==∴=+-=-———————6分{}n n b n n b II ()数列的前2项中,奇数项和偶数项各有n 项当奇数时,为首项是1公比是4的等比数列——————7分11441=1143n n n q S q ---==--奇————————10分2(1)=422n n b n n S n n n -+⨯=-偶当为偶数时,为首项是1公差是4的等差数列——————13分224123n n T S S n n -=+=-+奇偶———14分20.(Ⅰ)证明:连接DF 交EC 于点M ,连接MGG M , 为中点 MG PD //∴ 又EGC PD 面⊄ EGC MG 面⊂ ∴//PD 平面EGC ———5分(Ⅱ)当⊥EG 面PFC 时, PF EG ⊥ 又 G 为FB 的中点, 2==∴EP EF ,2=∴t —————7分过点G 在平面PEF 中作EP 的垂线,垂足为N ,连接DN . ⊥DE 面PEF ∴面⊥PED 面PEF ⊥∴GN 面PED GDN ∠∴即为DG 与平面PED 所成角.——————11分 易求得221,23==DN GN ,所以DG 与平面PED 所成角的正切值为77.——14分 21.解: (Ⅰ)直线2y x =+的斜率为.函数()f x 的定义域为(0,)+∞,22()af x x x'=-+, 所以22(1)111af '=-+=-,解得1a =——————6分(Ⅱ))(x g =b x x x--++2ln 2,(0>x ))(x g '=222xx x -+,由)(x g '>0得1>x , 由)(x g '<0得10<<x . 所以)(x g 的单调递增区间是()+∞,1,单调递减区间()1,01=x 时)(x g 取得极小值)1(g .——————10分因为函数()g x 在区间1[,]e e -上有两个零点,所以⎪⎩⎪⎨⎧<≥≥-0)1(0)(0)(1g e g e g ———————13分解得211b e e<+-≤. 所以b 的取值范围是2(1,1]e e+-. ——————————15分 22.解: (Ⅰ)由题意可知 423=+p∴2=p ∴抛物线M 的方程为:x y 42=———5分(Ⅱ)可求得()()22,2,22,2-B A ,设⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛222121,4,,4y y D y y C E 点横坐标为E x直线CD 的方程为:()02≠+=t ty x ————————7分联立方程⎩⎨⎧=+=xy ty x 422可得:0842=--ty y⎩⎨⎧-==+842121y y ty y ————————9分 AD 的方程为:()2224222-+=-x y yBC 的方程为:()2224221--=+x y y ————————11分联立方程消去y 化简得:2-E x =24822222122121+---+⋅y y y y y y=+---+-=2482222821221y y y y =+-+--=24)24(41212y y y y 4-所以2-=E x 为定值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考文科数学模拟试卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z满足(2﹣i)2•z=1,则z的虚部为()A.B.C.D.2.已知集合A={x|x2=a},B={﹣1,0,1},则a=1是A⊆B的()A.充分不必要条件B.必要不充分条C.充要条件D.既不充分也不必要条件3.设单位向量的夹角为120°,,则|=()A.3 B. C.7 D.4.已知等差数列{a n}满足a6+a10=20,则下列选项错误的是()A.S15=150 B.a8=10 C.a16=20 D.a4+a12=205.一几何体的三视图如图所示,则该几何体的体积为()A.B.C.4﹣πD.6.双曲线=1的顶点到其渐近线的距离为()A. B.C. D.7.周期为4的奇函数f(x)在[0,2]上的解析式为f(x)=,则f(2014)+f(2015)=()A.0 B.1 C.2 D.38.已知x,y满足约束条件,则z=2x+y的最大值为()A.2 B. C.4 D.9.在△ABC中,内角A、B、C的对边分别是a、b、c,若c2=(a﹣b)2+6,△ABC的面积为,则C=()A.B.C.D.10.设f′(x)为函数f(x)的导函数,已知x2f′(x)+xf(x)=lnx,f(1)=,则下列结论正确的是()A.xf(x)在(0,+∞)单调递增B.xf(x)在(1,+∞)单调递减C.xf(x)在(0,+∞)上有极大值 D.xf(x)在(0,+∞)上有极小值二、填空题:本大题共5小题,每小题5分,共25分.11.右面的程序框图输出的S的值为.12.在区间[﹣2,4]上随机取一个点x,若x满足x2≤m的概率为,则m= .13.若点(a,9)在函数的图象上,则a= .14.已知x>0,y>0且2x+y=2,则的最小值为.15.函数f(x)=|x2﹣2x+|﹣x+1的零点个数为.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.已知向量(ω>0),函数f (x)=,若函数f(x)的图象的两个相邻对称中心的距离为.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象先向左平移个单位,然后纵坐标不变,横坐标缩短为原来的倍,得到函数g(x)的图象,当时,求函数g(x)的值域.类别A B C数量400600a(Ⅰ)求a的值;(Ⅱ)用分层抽样的方法在A,B类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆A类轿车的概率;(Ⅲ)用随机抽样的方法从A,B两类轿车中各抽取4辆,进行综合指标评分,经检测它们的得分如图,比较哪类轿车综合评分比较稳定.18.已知 {a n}是各项都为正数的数列,其前 n项和为 S n,且S n为a n与的等差中项.(Ⅰ)求证:数列{S n2}为等差数列;(Ⅱ)求数列{a n}的通项公式;(Ⅲ)设b n=,求{b n}的前100项和.19.如图:是直径为的半圆,O为圆心,C是上一点,且.DF⊥CD,且DF=2,,E为FD的中点,Q为BE的中点,R为FC上一点,且FR=3RC.(Ⅰ)求证:面BCE⊥面CDF;(Ⅱ)求证:QR∥平面BCD;(Ⅲ)求三棱锥F﹣BCE的体积.20.已知函数f(x)=+ax,x>1.(Ⅰ)若f(x)在(1,+∞)上单调递减,求实数a的取值范围;(Ⅱ)若a=2,求函数f(x)的极小值;(Ⅲ)若方程(2x﹣m)lnx+x=0在(1,e]上有两个不等实根,求实数m的取值范围.21.已知椭圆C:=1(a>b>0)的离心率e=,它的一个顶点在抛物线x2=4y的准线上.(Ⅰ)求椭圆C的方程;(Ⅱ)设A(x1,y1),B(x2,y2)是椭圆C上两点,已知,且.(ⅰ)求的取值范围;(ⅱ)判断△OAB的面积是否为定值?若是,求出该定值,不是请说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z满足(2﹣i)2•z=1,则z的虚部为()A.B.C.D.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则、虚部的定义即可得出.解答:解:∵(2﹣i)2=3﹣4i,∴==,∴z的虚部为,故选:D.点评:本题考查了复数的运算法则、虚部的定义,属于基础题.2.已知集合A={x|x2=a},B={﹣1,0,1},则a=1是A⊆B的()A.充分不必要条件B.必要不充分条C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:当a=1时,集合A={1,﹣1},满足A⊆B.反之不成立:例如a=0,A={0}⊆B.解答:解:当a=1时,集合A满足:x2=1,解得x=±1,∴集合A={1,﹣1},∴A⊆B.[来源:Z+xx+]反之不成立:例如a=0,A={0}⊆B.因此a=1是A⊆B的充分不必要条件.故选:A.点评:本题考查了集合的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.3.设单位向量的夹角为120°,,则|=()A.3 B. C.7 D.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:把已知数据代入向量的模长公式计算可得.解答:解:∵单位向量的夹角为120°,,∴|=====故选:D点评:本题考查向量的夹角和模长公式,属基础题.4.已知等差数列{a n}满足a6+a10=20,则下列选项错误的是()A.S15=150 B.a8=10 C.a16=20 D.a4+a12=20考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:利用等差数列的通项的性质,可得结论.解答:解:S15=(a1+a15)=(a6+a10)=150,即A正确;a6+a10=2a8=20,∴a8=10,即B正确;a6+a10≠a16,即C错误a4+a12=a6+a10=20,即D正确.故选:C.点评:本题考查等差数列的通项的性质,考查学生的计算能力,正确运用等差数列的通项的性质是关键.[来源:]5.一几何体的三视图如图所示,则该几何体的体积为()A.B.C.4﹣πD.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:根据三视图得出三视图可判断该几何体是底面为边长位的正方形,高为1的长方体,长方体内挖掉一个圆锥,运用体积公式求解即可.解答:解:∵三视图可判断该几何体是底面为边长位的正方形,高为1的长方体,长方体内挖掉一个圆锥,∴该几何体的体积为22×1π×12×1=4﹣,故选:A[来源:Z*xx*]点评:本题考查了空间几何体的三视图的运用,关键是你恢复几何体的直观图,计算体积,属于中档题.6.双曲线=1的顶点到其渐近线的距离为()A. B.C. D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出双曲线的一条渐近线方程,一个顶点坐标,然后求解所求即可.解答:解:双曲线=1的顶点(),渐近线方程为:y=,双曲线=1的顶点到其渐近线的距离为:=.故选:B.点评:本题考查双曲线的简单性质的应用,点到直线的距离个数的应用,考查计算能力.7.周期为4的奇函数f(x)在[0,2]上的解析式为f(x)=,则f(2014)+f(2015)=()A.0 B.1 C.2 D.3考点:函数的值.专题:函数的性质及应用.分析:利用函数的周期性,以及函数的奇偶性,直接求解即可.解答:解:函数是周期为4的奇函数,f(x)在[0,2]上的解析式为f(x)=,所以f(2014)+f(2015)=f(2012+2)+f(2016﹣1)=f(2)+f(﹣1)=f(2)﹣f(1)=log22+1﹣12=1.故选:B.点评:本题考查函数的奇偶性以及函数的周期性,函数值的求法,考查计算能力.8.已知x,y满足约束条件,则z=2x+y的最大值为()A.2 B. C.4 D.考点:基本不等式.专题:不等式的解法及应用.分析:根据约束条件画图,判断当直线与圆相切时,取最大值,运用直线与圆的位置关系,注意圆心,半径的运用得出≤2.解答:解:∵x,y满足约束条件,∴根据阴影部分可得出当直线与圆相切时,取最大值,y=﹣2x+k,≤2,即k所以最大值为2,故选:D点评:本题考查了运用线性规划问题,数形结合的思想求解二元式子的最值问题,关键是确定目标函数,画图.9.在△ABC中,内角A、B、C的对边分别是a、b、c,若c2=(a﹣b)2+6,△ABC的面积为,则C=()A.B.C.D.考点:余弦定理.专题:解三角形.[来源:学科网]分析:由已知和余弦定理可得ab及cosC的方程,再由面积公式可得ab和sinC的方程,由同角三角函数基本关系可解cosC,可得角C解答:解:由题意可得c2=(a﹣b)2+6=a2+b2﹣2ab+6,由余弦定理可得c2=a2+b2﹣2abcosC,两式联立可得ab(1﹣cosC)=3,再由面积公式可得S=absinC=,∴ab=,代入ab(1﹣cosC)=3可得sin C=(1﹣cosC),再由sin2C+cos2C=1可得3(1﹣cosC)2+cos2C=1,解得cosC=,或cosC=1(舍去),∵C∈(0,π),∴C=,故选:A.点评:本题考查余弦定理,涉及三角形的面积公式和三角函数的运算,属中档题.[来源:Z*xx*]10.设f′(x)为函数f(x)的导函数,已知x2f′(x)+xf(x)=lnx,f(1)=,则下列结论正确的是()A.xf(x)在(0,+∞)单调递增B.xf(x)在(1,+∞)单调递减C.xf(x)在(0,+∞)上有极大值 D.xf(x)在(0,+∞)上有极小值考点:利用导数研究函数的极值;函数的单调性与导数的关系.专题:导数的综合应用.分析:根据条件,构造函数g(x)=xf(x),利用导数研究函数的单调性和极值,即可得到结论.解答:解:由x2f′(x)+xf(x)=lnx得x>0,则xf′(x)+f(x)=,即[xf(x)]′=,设g(x)=xf(x),即g′(x)=>0得x>1,由g′(x)<0得0<x<1,即当x=1时,函数g(x)=xf(x)取得极小值g(1)=f(1)=,故选:D点评:本题主要考查函数的导数的应用,根据条件构造函数,利用函数的单调性和导数之间的关系是解决本题的关键.二、填空题:本大题共5小题,每小题5分,共25分.11.右面的程序框图输出的S的值为.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的S,n的值,当n=5时不满足条件n≤4,退出循环,输出S的值为:.解答:解:模拟执行程序框图,可得n=1,S=0满足条件n≤4,S=1,n=2满足条件n≤4,S=,n=3满足条件n≤4,S=,n=4满足条件n≤4,S=,n=5不满足条件n≤4,退出循环,输出S的值为:.故答案为:;点评:本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S,n的值是解题的关键,属于基础题.12.在区间[﹣2,4]上随机取一个点x,若x满足x2≤m的概率为,则m= .考点:几何概型.专题:概率与统计.分析:利用几何概型分别求出区间长度,利用长度比求概率.解答:解:区间[﹣2,4]的长度为6,x满足x2≤m的x范围为[﹣,],区间长度为2,由几何概型公式可得,解得m=;故答案为:.点评:本题考查了几何概型的运用;解得本题的关键是求满足x2≤m的区间长度,利用几何概型公式解答.13.若点(a,9)在函数的图象上,则a= 4 .考点:对数的运算性质.专题:函数的性质及应用.分析:利用指数与对数的运算法则即可得出.解答:解:∵点(a,9)在函数的图象上,∴,∴,解得a=4.∴a===4.故答案为:4.点评:本题考查了指数与对数的运算法则,属于基础题.[来源:Z&xx&] 14.已知x>0,y>0且2x+y=2,则的最小值为8 .考点:基本不等式.专题:不等式的解法及应用.分析:由已知的等式求出的最小值,进一步利用基本不等式求得的最小值.解答:解:∵x>0,y>0且2x+y=2,∴,得,(当且仅当2x=y时取“=”),∴(当且仅当2x=y时取“=”),故答案为:8.点评:本题考查了利用基本不等式求最值,关键是注意不等式中等号成立的条件,是基础题.15.函数f(x)=|x2﹣2x+|﹣x+1的零点个数为 2 .考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:构造函数设g(x)=|x2﹣2x+|,k(x)=x﹣1,画出图象,运用图象的交点得出有关函数的零点个数.解答:解:设g(x)=|x2﹣2x+|,k(x)=x﹣1,根据图象得出g(x)与k(x)有2个交点,∴f(x)=|x2﹣2x+|﹣x+1的零点个数为2故答案为:2;点评:本题考查了函数交点问题与函数的零点的问题的关系,数学结合的思想的运用,属于中档题,关键是构造函数,画出图象.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.已知向量(ω>0),函数f (x)=,若函数f(x)的图象的两个相邻对称中心的距离为.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象先向左平移个单位,然后纵坐标不变,横坐标缩短为原来的倍,得到函数g(x)的图象,当时,求函数g(x)的值域.[来源:Z。