(完整版)整式的乘法运算300题专项训练

合集下载

整式乘法练习题及答案

整式乘法练习题及答案

整式乘法练习题及答案在代数学中,整式乘法是一项重要的基础技能。

通过掌握整式乘法,我们可以解决多种数学问题,包括方程组的解法、因式分解以及多项式的展开等。

本文将提供一些整式乘法的练习题,以及它们的详细解答。

1. 练习题1:计算下列整式的积:(2x + 3)(x^2 - 4x + 5)解答:我们可以使用分配律逐项相乘的方法来计算整式的乘积:(2x + 3)(x^2 - 4x + 5) = 2x * (x^2 - 4x + 5) + 3 * (x^2 - 4x + 5)首先计算第一项:2x * (x^2 - 4x + 5)= 2x * x^2 - 8x^2 + 10x= 2x^3 - 8x^2 + 10x然后计算第二项:3 * (x^2 - 4x + 5)= 3 * x^2 - 12x + 15= 3x^2 - 12x + 15将两项相加得到最终结果:(2x + 3)(x^2 - 4x + 5) = 2x^3 - 8x^2 + 10x + 3x^2 - 12x + 15= 2x^3 - 5x^2 - 2x + 15因此,(2x + 3)(x^2 - 4x + 5)的乘积为2x^3 - 5x^2 - 2x + 15。

2. 练习题2:计算下列整式的积:(3x - 2y)(2x + 5y)解答:同样地,我们可以使用分配律逐项相乘的方法来计算整式的乘积:(3x - 2y)(2x + 5y) = 3x * (2x + 5y) - 2y * (2x + 5y)首先计算第一项:3x * (2x + 5y)= 6x^2 + 15xy然后计算第二项:-2y * (2x + 5y)= -4xy - 10y^2将两项相加得到最终结果:(3x - 2y)(2x + 5y) = 6x^2 + 15xy - 4xy - 10y^2= 6x^2 + 11xy - 10y^2因此,(3x - 2y)(2x + 5y)的乘积为6x^2 + 11xy - 10y^2。

整式乘法练习题及答案

整式乘法练习题及答案

整式乘法练习题及答案整式乘法是数学中的一项基础技能,它在代数运算中起着重要的作用。

通过练习整式乘法题目,我们可以加深对整式乘法的理解,并提高解题的能力。

下面,我将为大家提供一些整式乘法的练习题及答案,希望能对大家的学习有所帮助。

1. 计算下列整式的乘积:(2x + 3)(x - 4)解答:(2x + 3)(x - 4) = 2x * x + 2x * (-4) + 3 * x + 3 * (-4) = 2x^2 - 8x + 3x - 12 =2x^2 - 5x - 122. 计算下列整式的乘积:(3a - 2b)(4a + 5b)解答:(3a - 2b)(4a + 5b) = 3a * 4a + 3a * 5b - 2b * 4a - 2b * 5b = 12a^2 + 15ab - 8ab - 10b^2 = 12a^2 + 7ab - 10b^23. 计算下列整式的乘积:(5x^2 + 2xy)(3x - y)解答:(5x^2 + 2xy)(3x - y) = 5x^2 * 3x + 5x^2 * (-y) + 2xy * 3x + 2xy * (-y) = 15x^3 -5x^2y + 6x^2y - 2xy^2 = 15x^3 + x^2y - 2xy^24. 计算下列整式的乘积:(2x^2 - 3xy + 4y^2)(x - 2y)解答:(2x^2 - 3xy + 4y^2)(x - 2y) = 2x^2 * x - 2x^2 * 2y - 3xy * x + 3xy * 2y + 4y^2 *x - 4y^2 * 2y = 2x^3 - 4x^2y - 3x^2y + 6xy^2 + 4xy - 8y^3 = 2x^3 - 7x^2y +6xy^2 + 4xy - 8y^3通过以上的练习题,我们可以看到整式乘法的计算过程。

在计算时,我们需要将每一项都与另一个整式的每一项进行相乘,并根据指数和系数的规则进行合并和整理。

(完整版)整式乘法计算专题训练(含答案)

(完整版)整式乘法计算专题训练(含答案)

整式乘法计算专题训练1、(2a+3b)(3a﹣2b)2、3、(x+2y﹣3)(x+2y+3)4、5x(2x2﹣3x+4)5、6、计算: a3·a5+(-a2)4-3a87、﹣5a2(3ab2﹣6a3)8、计算:(x+1)(x+2)9、(x﹣2)(x2+4)10、2x11、计算:(x﹣1)(x+3)﹣x(x﹣2)12、﹣(﹣a)2•(﹣a)5•(﹣a)313、(﹣)×(﹣)2×(﹣)3;14、(x﹣y)(x2+xy+y2).15、(﹣2xy2)2•(xy)3;16、17、计算:(x+3)(x+4)﹣x(x﹣1)18、(a+2b)(3a﹣b)﹣(2a﹣b)(a+6b)19、3x(x﹣y)﹣(2x﹣y)(x+y)20、(﹣a2)3﹣6a2•a421、(y﹣2)(y+2)﹣(y+3)(y﹣1)22、23、(2x﹣y+1)(2x+y+1)24、25、4(a+2)(a+1)-7(a+3)(a-3)参考答案一、计算题1、(2a+3b)(3a﹣2b)=6a2﹣4ab+9ab﹣6b2=6a2+5ab﹣6b2【点评】此题考查多项式的乘法,关键是根据三角函数、零指数幂和负整数指数幂计算.2、3、(x+2y﹣3)(x+2y+3)=(x+2y)2﹣9=x2+4xy+4y2﹣9;4、【考点】单项式乘多项式.【分析】原式利用单项式乘多项式法则计算即可得到结果.【解答】解:原式=10x3﹣15x2+20x.5、6、——————————6分7、原式=﹣15a3b2+30a5;8、原式=x2+2x+x+2=x2+3x+2;9、(x﹣2)(x2+4)=x3﹣2x2+4x﹣8;10、原式=x2﹣2x+x2+2x=2x2;11、(x﹣1)(x+3)﹣x(x﹣2)=x2+2x﹣3﹣x2+2x=4x﹣3;12、原式=﹣a2•a5•a3=﹣a10;13、原式=(﹣)1+2+3=(﹣)6=;14、(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.【点评】此题主要考查了整式的混合运算,正确掌握运算法则是解题关键.15、(﹣2xy2)2•(xy)3=4x2y4•x3y3=4x5y7;16、17、【考点】整式的混合运算.【分析】直接利用多项式乘以多项式以及单项式乘以多项式运算法则化简求出即可.【解答】解:(x+3)(x+4)﹣x(x﹣1)=x2+7x+12﹣x2+x=8x+12.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键. 18、(a+2b)(3a﹣b)﹣(2a﹣b)(a+6b)=3a2﹣ab+6ab﹣2b2﹣2a2﹣12ab+ab+6b2=a2﹣6ab+4b219、原式=3x2﹣3xy﹣2x2﹣xy+y2=x2﹣4xy+y2;20、(﹣a2)3﹣6a2•a4=﹣a6﹣6a6=﹣7a6;21、(y﹣2)(y+2)﹣(y+3)(y﹣1)=y2﹣4﹣y2﹣2y+3=﹣2y﹣1;22、==2a6b5c5;23、(2x﹣y+1)(2x+y+1)=[(2x+1)﹣y][(2x+1)+y]=(2x+1)2﹣y2=4x2+4x+1﹣y2;24、6a3-35a2+13a (25、。

整式的乘法综合练习题

整式的乘法综合练习题

整式的乘法综合练习题1. 已知 a = 2x + 3 和 b = 4x - 5,求 a × b 的结果。

2. 计算 (3x + 7)(2x - 4) 的乘积。

3. 简化表达式 (4x + 2)(2x - 3) - (3x - 1)(2x + 5)。

4. 计算 (5 - x)(3x + 2) - (4x + 1)(2 - 3x) 的结果。

5. 求 (2x + 3)(2x - 5) + (3x - 2)(4 - 2x) 的乘积。

6. 简化 (x + 4)(x + 2) - (x - 2)(x + 3) 的表达式。

7. 计算 (3x - 1)(2x + 4) + (x + 5)(4 - 2x) 的结果。

8. 求 (2x - 1)(x + 3) - (x - 4)(x + 2) 的乘积。

9. 简化 (2x + 3)(x - 2) - (3x - 4)(2 - x) 的表达式。

10. 计算 (3x + 2)(4x - 1) + (2x - 3)(x + 5) 的结果。

11. 求 (5 - 2x)(x + 3) - (2 - 3x)(4x - 1) 的乘积。

12. 简化 (x + 4)(x - 2) - (x - 3)(x + 5) 的表达式。

13. 计算 (3x + 1)(2x - 4) + (x - 2)(5 - x) 的结果。

14. 求 (2x - 3)(3x + 2) - (4 - x)(2x + 5) 的乘积。

15. 简化 (3x + 2)(x - 4) - (4x - 1)(2 - x) 的表达式。

通过以上习题的练习,我们可以熟悉整式的乘法运算并掌握简化表达式的方法。

整式的乘法是代数中一个重要的概念,我们需要灵活运用它来解决实际问题。

不断练习和巩固乘法运算规则能够提高我们的数学解题能力,为以后的学习打下坚实的基础。

(文章结束)。

完整版)整式的乘法练习题

完整版)整式的乘法练习题

完整版)整式的乘法练习题1.a8 = (-a)82.a15 = (a5)33.3m2·2m3 = 6m54.(x+a)(x+a) = x2 + 2ax + a25.a3·(-a)5·(-3a)2·(-7ab3) = 21a8b36.(-a2b)3·(-ab2) = a4b57.(2x)2·x4 = 4x68.24a2b3 = 6a2·4b39.[(am)n]p = amnp10.(-mn)2(-m2n)3 = m10n711.多项式的积(3x4-2x3+x2-8x+7)(2x3+5x2+6x-3)中x3项的系数是 -412.m是x的六次多项式,n是x的四次多项式,则2m-n 是x的十次多项式14.(3x2)3-7x3[x3-x(4x2+1)] = -28x915.{[(-1)4]m}n = 116.-{-[-(-a2)3]4}2 = -a9617.一长方体的高是(a+2)厘米,底面积是(a2+a-6)厘米2,则它的体积是 (a+2)(a-2)(a+3)厘米318.若10m=a,10n=b,那么10m+n=ab19.3(a-b)2[9(a-b)n+2](b-a)5 = -3(a-b)n+1120.已知3x·(xn+5)=3xn+1-8,那么x=-321.若a2n-1·a2n+1=a12,则n=222.(8a3)m÷[(4a2)n·2a]=2ma3-2n23.若a<1,n为奇数,则(an)5<a524.(x-x2-1)(x2-x+1)n(x-x2-1)2n = (x-x2-1)2n+1(x2-x+1)n25.(4+2x-3y2)·(5x+y2-4xy)·(xy-3x2+2y4)的最高次项是 -15x3y626.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为自然数)等于 127.选项C28.选项B9a3·2a2可以化简为18a5,2x5·3x4可以化简为5x9,3x3·4x3可以化简为12x3,3y3·5y3可以化简为15y9.ym)3·yn可以化简为y3m+n。

整式的乘除法专题训练(含答案)

整式的乘除法专题训练(含答案)

整式的乘除法专题训练类型一:幂的运算性质幂的运算性质共有六个:1 同底数幂的乘法;2. 幂的乘方;3. 积的乘方;4. 同底数幂的除法;5. 负整数指数幂;6. 零次幂运算需要注意的问题:1. 看清楚运算符号加、减、乘、除、乘方;2. 计算时注意“—”号;3. 3.认清楚指数和底数;4. 正确联系运算性质和法则一、计算3?x5 x ?x3?x41.x2342.2x 1 2? 2x 1 32x 1 4? 1 2 x3. x 5 ?x 3n 1 x 3n x 44. a b 2 ? b a 3 a b 4 ? b a2 33 2 2 2 27. 2x 2 3x 3 x 2 ? x 25. 2x 4 42x 10 2x 2344 2x 4 ?5 x 4 6. 2 3 3 x ? x 3 ? 2y23 2xy ? x ? y63 9. - x - x32 211. x 3x 23 xx22 -x ?-x1312. 2x-y 13322x - y23 y- 2x类型二:幂的运算性质的灵活运用13.已知2a 4,2b 7, 求2a b的值。

14.已知3x a10. 2x3x 2 3x6a,用含 a 的代数式表示3x.15.已知3m6,3n13.5,求m+n 的值m n m n 2a m3,a n2, 求a m n 2的值16.已知17.已知10a5,10b6, 求102a 3b的值。

18.若3x 5y 3 0, 求8x?32y的值。

19.已知32x 232x 1486,求x 的值20.已知a5? a m 3a11,求m的值21.已知3m 2,3n 4,求9m 1-2n的值1212222.若 10m 20,10n 1,求9m 32n 的值。

5 23.已知 25a ?52b 56,4b 4c 4,则代数式 a+2b-c 的值类型三:运用幂的运算性质进行有理数的混合运算24. 48 0.2582019 201825. 5 2019 0.220182118 211726. 8 0.125 2019 27. -1 1 0.2520209 2019 2019-4 202110121222 2018 28.3 1.52018 - 1 30 29.-23 π-3.14 0 -1-20191 -1-330.-22π-3 0-1-2类型四:科学记数法31. 用小数表示下列各数(1) 3 106(2)8.7 10-3(3) 6.12 10-332. 滴水穿石的故事大家都听说过吧,现在测量出:水珠不断地滴在一块石头上,经过40 年,石头上形成一个深为 4 10-2m的小洞,问每年小洞的深度增加多少米?(用科学记数法表示)33. _________________________ 成人每天维生素 D 的摄入量约为0.000 004 6克。

(完整版)整式的乘法习题(含详细解析答案)

(完整版)整式的乘法习题(含详细解析答案)

整式的乘法测试1.列各式中计算结果是x2-6x+5的是( )A.(x-2)(x-3)B.(x-6)(x+1)C.(x-1)(x-5)D.(x+6)(x-1)2.下列各式计算正确的是( )A.2x+3x=5B.2x•3x=6C.(2x)3=8D.5x6÷x3=5x23.下列各式计算正确的是( )A.2x(3x-2)=5x2-4xB.(2y+3x)(3x-2y)=9x2-4y2C.(x+2)2=x2+2x+4D.(x+2)(2x-1)=2x2+5x-24.要使多项式(x2+px+2)(x-q)展开后不含x的一次项,则p与q的关系是( )A.p=qB.p+q=0C.pq=1D.pq=25.若(y+3)(y-2)=y2+my+n,则m、n的值分别为( )A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-66.计算:(x-3)(x+4)=_____.7.若x2+px+6=(x+q)(x-3),则pq=_____.8.先观察下列各式,再解答后面问题:(x+5)(x+6)=x2+11x+30;(x-5)(x-6)=x2-11x+30;(x-5)(x+6)=x2+x-30;(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系?(2)根据以上各式呈现的规律,用公式表示出来;(3)试用你写的公式,直接写出下列两式的结果;①(a+99)(a-100)=_____;②(y-500)(y-81)=_____.9.(x-y)(x2+xy+y2)=_____;(x-y)(x3+x2y+xy2+y3)=_____根据以上等式进行猜想,当n是偶数时,可得:(x-y)(x n+x n-1y+y n-2y2+…+x2y n-2+xy n-1+y n)=_____.10.三角形一边长2a+2b,这条边上的高为2b-3a,则这个三角形的面积是_____.11.若(x+4)(x-3)=x2+mx-n,则m=_____,n=_____.12.整式的乘法运算(x+4)(x+m),m为何值时,乘积中不含x项?m为何值时,乘积中x项的系数为6?你能提出哪些问题?并求出你提出问题的结论.13.如图,正方形卡片A类,B类和长方形卡片C类若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片()张.14.计算:(1)(5mn2-4m2n)(-2mn)(2)(x+7)(x-6)-(x-2)(x+1)15.试说明代数式(2x+1)(1-2x+4x2)-x(3x-1)(3x+1)+(x2+x+1)(x-1)-(x-3)的值与x无关.参考答案1.答案:C解析:【解答】A、(x-2)(x-3)=x2-6x+6,故本选项错误;B、(x-6)(x+1)=x2-5x-6,故本选项错误;C、(x-1)(x-5)=x2-6x+5,故本选项正确;D、(x+6)(x-1)=x2+5x-6,故本选项错误;故选C.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,进行计算即可得出正确答案.2.答案:A解析:【解答】A、2x+3x=5x,故A选项正确;B、2x•3x=6x2,故B选项错误;C、(2x)3=8x3,故C选项错误;D、5x6÷x3=5x3,故D选项错误;故选A.【分析】根据整式乘法和幂的运算法则.3.答案:B解析:【解答】A、2x(3x-2)=6x2-4x,故本选项错误;B、(2y+3x)(3x-2y)=9x2-4y2,故本选项正确;C、(x+2)2=x2+4x+4,故本选项错误;D、(x+2)(2x-1)=2x2+3x-2,故本选项错误.故选B.【分析】根据整式乘法的运算法则、平方差公式、完全平方公式的知识求解,即可求得答案.注意排除法在解选择题中的应用.4.答案:D解析:【解答】(x2+px+2)(x-q)=x3-qx2+px2-pqx+2x-2q=x3+(p-q)x2+(2-pq)x-2q,∵多项式不含一次项,∴pq-2=0,即pq=2.故选D【分析】利用多项式乘以多项式法则计算,合并同类项得到最简结果,由结果中不含x的一次项,令一次项系数为0即可列出p与q的关系.5.答案:B解析:【解答】∵(y+3)(y-2)=y2-2y+3y-6=y2+y-6,∵(y+3)(y-2)=y2+my+n,∴y2+my+n=y2+y-6,∴m=1,n=-6.故选B.【分析】先根据多项式乘以多项式的法则计算(y+3)(y-2),再根据多项式相等的条件即可求出m、n的值.6.答案:x2+x-12解析:【解答】(x-3)(x+4)=x2+4x-3x-12=x2+x-12【分析】根据(a+b)(m+n)=am+an+bm+bn展开,再合并同类项即可.7.答案:10解析:【解答】∵(x+q)(x-3)=x2+(-3+q)x-3q,∴x2+px+6=x2+(-3+q)x-3q,∴p=-3+q,6=-3q,∴p=-5,q=-2,∴pq=10.故答案是10.【分析】等式的右边根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn 进行计算,再根据等式的性质可得关于p、q的方程组,求解即可.8.答案:①a2-a-9900;②y2-581y+40500.解析:【解答】(1)两因式中常数项的和等于乘积中的一次项系数,常数项的积等于乘积中的常数项;(2)(x+a)(x+b)=x2+(a+b)x+ab.(3)①(a+99)(a-100)=a2-a-9900;②(y-500)(y-81)=y2-581y+40500.【分析】(1)根据乘积式中的一次项系数、常数项与两因式中的常数项之间的规律作答;(2)根据(1)中呈现的规律,列出公式;(3)根据(2)中的公式代入计算.9.答案:x3-y3;x4-y4;x n+1-y n+1.解析:【解答】原式=x3+x2y+xy2-x2y-xy2-y3=x3-y3;原式=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4=x4-y4;原式=x n+1+x n y+xy n-2+x2y n-1+xy n-x n y-x n-1y2-y n-1y2-…-x2y n-1-xy n-y n+1=x n+1-y n+1,【分析】根据多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.10.答案:-3a2+2b2-ab.解析:【解答】∵三角形一边长2a+2b,这条边上的高为2b-3a,∴这个三角形的面积为:(2a+2b)(2b-3a)÷2=(a+b)(2b-3a)=-3a2+2b2-ab.【分析】根据三角形的面积=底×高÷2列出表示面积是式子,再根据多项式乘以多项式的法则计算即可.11.答案:1,12.解析:【解答】∵(x+4)(x-3)=x2-3x+4x-12=x2+x-12=x2+mx-n,∴m=1,-n=-12,即m=1,n=12.【分析】将已知等式左边利用多项式乘以多项式法则计算,根据多项式相等的条件得出m 与n的值,代入所求式子中计算,即可求出值.12.答案:-4,2解析:【解答】∵(x+4)(x+m)=x2+mx+4x+4m若要使乘积中不含x项,则∴4+m=0∴m=-4若要使乘积中x项的系数为6,则∴4+m=6∴m=2提出问题为:m为何值时,乘积中不含常数项?若要使乘积中不含常数项,则∴4m=0∴m=0【分析】把式子展开,若要使乘积中不含x项,则令含x项的系数为零;若要使乘积中x项的系数为6,则令含x项的系数为6;根据展开的式子可以提出多个问题.13.答案:3张.解析:【解答】(a+2b)(a+b)=a2+3ab+2b2.则需要C类卡片3张.【分析】拼成的大长方形的面积是(a+2b)(a+b)=a2+3ab+2b2,即需要一个边长为a的正方形,2个边长为b的正方形和3个C类卡片的面积是3ab.14.答案:(1)10m2n3+8m3n2;(2)2x-40.解析:【解答】(1)原式=-10m2n3+8m3n2;(2)原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【分析】(1)原式利用单项式乘以多项式法则计算,合并即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果.15.答案:代数式的值与x无关解析:【解答】原式=2x-4x2+8x3+1-2x+4x2-9x3-x+x3-1+x-3=-3,则代数式的值与x无关.【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,即可做出判断.。

整式乘法相关练习题

整式乘法相关练习题

整式乘法相关练习题一、单项式乘单项式1. 计算:(3x)(4x)2. 计算:(2a)(5b)3. 计算:(m^2)(n^3)4. 计算:(4xy^2)(3x^2y)5. 计算:(a^3b^2)(2a^2b)二、单项式乘多项式1. 计算:(3x)(x + 2y 3)2. 计算:(4a)(a^2 3a + 2)3. 计算:(5m^2n)(2mn^2 3m^2n + 4)4. 计算:(2xy)(x^2y xy^2 + 3x^2)5. 计算:(3a^2b)(a^3b 2a^2b^2 + 4ab)三、多项式乘多项式1. 计算:(x + 2)(x 3)2. 计算:(a 4)(a + 5)3. 计算:(2m + 3n)(3m 2n)4. 计算:(x^2 + 3x 2)(x 4)5. 计算:(a^2 2ab + b^2)(a + b)四、平方差公式1. 计算:(x + 3)(x 3)2. 计算:(2a + 5)(2a 5)3. 计算:(m 4n)(m + 4n)4. 计算:(x^2 + 6)(x^2 6)5. 计算:(a^3 + b^3)(a^3 b^3)五、完全平方公式1. 计算:(x + 4)^22. 计算:(2a 3)^23. 计算:(m + 2n)^24. 计算:(x^2 5x + 6)^25. 计算:(a^3 + 2a^2b 3ab^2)^2六、整式乘法在实际问题中的应用1. 一个长方形的长是x米,宽是y米,求这个长方形的面积。

2. 一个正方形的边长是a米,求这个正方形的面积。

3. 一个长方体的长是x米,宽是y米,高是z米,求这个长方体的体积。

4. 一辆汽车以v千米/小时的速度行驶了t小时,求汽车行驶的路程。

5. 一个等腰三角形的底边长是b米,高是h米,求这个等腰三角形的面积。

七、多项式乘单项式的扩展1. 计算:(x^3 2x^2 + 4x)(3x^2)2. 计算:(2a^4 5a^3 + 3a^2)(a)3. 计算:(m^2n 3mn^2 + 2n^3)(4mn)4. 计算:(4x^3y^2 3x^2y^3 + 2xy^4)(2xy)5. 计算:(a^2b^3 2ab^4 + 3b^5)(5a^2b^2)八、多项式乘多项式的扩展1. 计算:(x^2 + 3x 2)(x^2 3x + 2)2. 计算:(a^3 2a^2 + a)(a^2 + 2a 1)3. 计算:(2m^2 5mn + 3n^2)(4m^2 + 7mn 2n^2)4. 计算:(x^4 3x^3 + 2x^2)(x^3 + 2x^2 x)5. 计算:(a^4 b^4)(a^2 + b^2)九、混合运算1. 计算:(2x 3)(x + 4) + (x 2)^22. 计算:(3a + 4)(2a 5) (a^2 6)3. 计算:(m n)(m + n) + (2m^2 3mn)4. 计算:(4x^2 5x + 1)(3x 2) (x^3 2x^2)5. 计算:(a^2 + 2ab b^2)(a b) + (a^3 b^3)十、特殊乘法1. 计算:(x + 1)(x + 2)(x + 3)2. 计算:(a 1)(a + 1)(a^2 + 1)3. 计算:(2m n)(m + n)(m n)4. 计算:(x^2 1)(x^2 + 1)(x^4 + 1)5. 计算:(a^3 + b^3)(a^3 b^3)(a + b)答案一、单项式乘单项式1. 12x^22. 10ab3. m^5n^34. 12x^3y^35. 2a^5b^3二、单项式乘多项式1. 3x^2 + 6xy 9x2. 4a^3 + 12a^2 8a3. 10m^3n^3 15m^4n^2 + 20m^2n^34. 2x^3y^2 2x^2y^3 + 6x^3y5. 3a^5b + 6a^4b^2 12a^3b^2三、多项式乘多项式1. x^2 3x + 62. a^2 + a 203. 6m^2 + mn 6n^24. x^3 11x^2 + 28x 245. a^4 3a^3b + 3a^2b^2 a^2b^3四、平方差公式1. x^2 92. 4a^2 253. m^2 16n^24. x^4 365. a^6 b^6五、完全平方公式1. x^2 + 8x + 162. 4a^2 12a + 93. m^2 + 4mn + 4n^24. x^4 10x^3 + 19x^2 12x + 365. a^6 + 4a^5b 12a^4b^2 + 12a^3b^3 9a^2b^4六、整式乘法在实际问题中的应用1. xy2. a^23. xyz4. vt5. (1/2)bh七、多项式乘单项式的扩展1. 3x^5 6x^4 + 12x^32. 2a^5 + 5a^4 3a^33. 4m^3n^2 12m^2n^3 + 8mn^44. 8x^4y^3 + 6x^3y^4 4x^2y^55. 5a^4b^5 10a^3b^6 + 15a^2b^7八、多项式乘多项式的扩展1. x^4 6x^3 + 9x^2 + 6x 42. a^5 4a^4 + a^3 + 2a^2 a3. 8m^4 31m^3n + 41m^2n^2 15mn^3 + 6n^44. x^7 5x^6 + 8x^5 2x^45. a^5 a^4b^4 a^3b^4 + a^2b^8九、混合运算1. 2x^2 + 5x 142. 6a^2 7a 223. m^2 n^2 + 2m^2 3mn4. 12x^3 23x^2 + 9x 25. a^4 2a^3b a^2b^2 + a^3b a^2b^3十、特殊乘法1. x^3 + 6x^2 + 11x + 62. a^4 13. m^3 2m^2n mn^2 + 2n^34. x^8 x^4 15. a^6 b^6a + a^6b b^6。

整式的乘法专题训练

整式的乘法专题训练

整式的乘法专题训练题目一:(2x)(3x)解析:根据单项式乘以单项式法则,系数相乘,字母部分按同底数幂相乘,结果为6x²。

题目二:(-3a²b)(4ab²)解析:系数相乘为-12,同底数幂相乘,a 的次数为2+1 = 3,b 的次数为1+2 = 3,结果是-12a³b³。

题目三:(2x²y)(-3xy³)解析:系数相乘为-6,x 的次数为2+1 = 3,y 的次数为1+3 = 4,答案是-6x³y⁴。

题目四:(5m²n)(-2m³n²)解析:系数相乘为-10,m 的次数为2+3 = 5,n 的次数为1+2 = 3,结果是-10m⁴n³。

题目五:(3x)(x² - 2x + 1)解析:用3x 分别乘以括号里的每一项,3x·x² = 3x³,3x·(-2x) = -6x²,3x·1 = 3x,结果为3x³ - 6x² + 3x。

题目六:(2x - 1)(x + 3)解析:用2x 乘以(x + 3)得2x² + 6x,再用-1 乘以(x + 3)得-x - 3,最后相加,2x² + 6x - x - 3 = 2x² + 5x - 3。

题目七:(x - 2)(x² + 3x - 1)解析:x 乘以(x² + 3x - 1)得x³ + 3x² - x,-2 乘以(x² + 3x - 1)得-2x² - 6x + 2,相加得x³ + 3x² - x - 2x² - 6x + 2 = x³ + x² - 7x + 2。

题目八:(3x + 2)(2x² - 5x + 1)解析:3x 乘以(2x² - 5x + 1)得6x³ - 15x² + 3x,2 乘以(2x² - 5x + 1)得4x² -10x + 2,相加得6x³ - 15x² + 3x + 4x² - 10x + 2 = 6x³ - 11x² - 7x + 2。

整式的乘法公式练习题

整式的乘法公式练习题

整式的乘法公式练习题在代数学中,整式的乘法是一项基本的运算,它在解决各种代数问题中起着重要的作用。

本文将为大家提供一些整式的乘法公式练习题,通过练习巩固并加深对整式乘法的理解。

练习题一:将下列整式相乘,并将结果化简。

1. (2x + 3)(x + 4)解析:首先使用分配律,将前一项的每个项与后一项的每个项相乘:= 2x * (x + 4) + 3 * (x + 4)接下来使用分配律将每个相乘得到的结果进行合并并化简:= 2x^2 + 8x + 3x + 12最终结果为:2x^2 + 11x + 122. (3x - 5)(2x + 7)解析:同样地,使用分配律将每个项相乘:= 3x * (2x + 7) - 5 * (2x + 7)然后合并并化简结果:= 6x^2 + 21x - 10x - 35最终结果为:6x^2 + 11x - 35练习题二:将下列整式相乘,并将结果化简。

1. (a + 5)(a - 2)解析:使用分配律将每一项相乘:= a * (a - 2) + 5 * (a - 2)合并并化简结果:= a^2 - 2a + 5a - 10最终结果为:a^2 + 3a - 102. (2x + 3)(2x - 3)解析:应用分配律进行乘法运算:= 2x * (2x - 3) + 3 * (2x - 3)合并并化简结果:= 4x^2 - 6x + 6x - 9最终结果为:4x^2 - 9练习题三:将下列整式相乘,并将结果化简。

1. (3a - 2b)(4a + 5b)解析:通过使用分配律进行乘法运算:= 3a * (4a + 5b) - 2b * (4a + 5b)合并并化简结果:= 12a^2 + 15ab - 8ab - 10b^2最终结果为:12a^2 + 7ab - 10b^2 2. (2x - 3y)(x + 4y)解析:使用分配律将每一项相乘:= 2x * (x + 4y) - 3y * (x + 4y)合并并化简结果:= 2x^2 + 8xy - 3xy - 12y^2最终结果为:2x^2 + 5xy - 12y^2通过以上的练习题,我们可以对整式乘法公式进行更好的掌握。

整式的乘法练习题

整式的乘法练习题

整式的乘法练习题1. 问题描述本文档将提供一系列整式的乘法练习题,以帮助读者加深对整式乘法的理解和应用。

在每个习题中,读者将需要计算给定整式的乘积,并简化结果。

每个习题的答案将在习题后面提供,以方便读者对照和核对自己的答案。

2. 习题列表2.1 习题一计算以下整式的乘积,并简化结果:(2x+3)(3x+5)习题一答案:首先,我们可以使用分配律将乘法展开:$$ (2x + 3)(3x + 5) = 2x \\cdot 3x + 2x \\cdot 5 + 3 \\cdot 3x + 3 \\cdot 5 $$ 化简后得到:(2x+3)(3x+5)=6x2+10x+9x+15合并同类项后得到最简结果:(2x+3)(3x+5)=6x2+19x+152.2 习题二计算以下整式的乘积,并简化结果:(4y+1)(2y−3)习题二答案:使用分配律将乘法展开:$$ (4y + 1)(2y - 3) = 4y \\cdot 2y + 4y \\cdot -3 + 1 \\cdot 2y + 1 \\cdot -3 $$ 化简后得到:(4y+1)(2y−3)=8y2−12y+2y−3合并同类项后得到最简结果:(4y+1)(2y−3)=8y2−10y−32.3 习题三计算以下整式的乘积,并简化结果:(5a−2)(4a+7)习题三答案:使用分配律将乘法展开:$$ (5a - 2)(4a + 7) = 5a \\cdot 4a + 5a \\cdot 7 - 2 \\cdot 4a - 2 \\cdot 7 $$化简后得到:(5a−2)(4a+7)=20a2+35a−8a−14合并同类项后得到最简结果:(5a−2)(4a+7)=20a2+27a−143. 结语通过以上习题的练习,我们可以更好地理解和掌握整式的乘法运算。

整式的乘法是代数学中的基本运算,我们在解决各种数学问题时都会经常用到。

希望本文档提供的习题能帮助读者加深对整式乘法的理解,并提高在实际问题中运用整式乘法的能力。

整式乘法计算专题训练含答案.pdf

整式乘法计算专题训练含答案.pdf

整式乘法计算专题训练1、(2a+3b)(3a﹣2b)2、3、(x+2y﹣3)(x+2y+3)4、5x(2x2﹣3x+4)5、6、计算: a3·a5+(-a2)4-3a8 7、﹣5a2(3ab2﹣6a3)8、计算:(x+1)(x+2)9、(x﹣2)(x2+4)10、2x11、计算:(x﹣1)(x+3)﹣x(x﹣2)12、﹣(﹣a)2?(﹣a)5?(﹣a)313、(﹣)×(﹣)2×(﹣)3;14、(x﹣y)(x2+xy+y2).15、(﹣2xy2)2?(xy)3;16、17、计算:(x+3)(x+4)﹣x(x﹣1)18、(a+2b)(3a﹣b)﹣(2a﹣b)(a+6b)19、3x(x﹣y)﹣(2x﹣y)(x+y)20、(﹣a2)3﹣6a2?a421、(y﹣2)(y+2)﹣(y+3)(y﹣1)22、23、(2x﹣y+1)(2x+y+1)24、25、4(a+2)(a+1)-7(a+3)(a-3)参考答案一、计算题1、(2a+3b)(3a﹣2b)=6a2﹣4ab+9ab﹣6b2=6a2+5ab﹣6b2【点评】此题考查多项式的乘法,关键是根据三角函数、零指数幂和负整数指数幂计算.2、3、(x+2y﹣3)(x+2y+3)=(x+2y)2﹣9=x2+4xy+4y2﹣9;4、【考点】单项式乘多项式.【分析】原式利用单项式乘多项式法则计算即可得到结果.【解答】解:原式=10x3﹣15x2+20x.5、6、——————————6分7、原式=﹣15a3b2+30a5;8、原式=x2+2x+x+2=x2+3x+2;9、(x﹣2)(x2+4)=x3﹣2x2+4x﹣8;10、原式=x2﹣2x+x2+2x=2x2;11、(x﹣1)(x+3)﹣x(x﹣2)=x2+2x﹣3﹣x2+2x=4x﹣3;12、原式=﹣a2?a5?a3=﹣a10;13、原式=(﹣)1+2+3=(﹣)6=;14、(x﹣y)(x2+xy+y2)=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.【点评】此题主要考查了整式的混合运算,正确掌握运算法则是解题关键.15、(﹣2xy2)2?(xy)3=4x2y4?x3y3=4x5y7;16、17、【考点】整式的混合运算.【分析】直接利用多项式乘以多项式以及单项式乘以多项式运算法则化简求出即可.【解答】解:(x+3)(x+4)﹣x(x﹣1)=x2+7x+12﹣x2+x=8x+12.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.18、(a+2b)(3a﹣b)﹣(2a﹣b)(a+6b)=3a2﹣ab+6ab﹣2b2﹣2a2﹣12ab+ab+6b2=a2﹣6ab+4b219、原式=3x2﹣3xy﹣2x2﹣xy+y2=x2﹣4xy+y2;20、(﹣a2)3﹣6a2?a4=﹣a6﹣6a6=﹣7a6;21、(y﹣2)(y+2)﹣(y+3)(y﹣1)=y2﹣4﹣y2﹣2y+3=﹣2y﹣1;22、==2a6b5c5;23、(2x﹣y+1)(2x+y+1)=[(2x+1)﹣y][(2x+1)+y]=(2x+1)2﹣y2=4x2+4x+1﹣y2;24、6a3-35a2+13a (25、。

整式乘法练习题

整式乘法练习题

整式乘法练习题整式乘法练习题数学是一门需要不断练习的学科,而整式乘法是其中一个基础的概念。

通过练习整式乘法题目,我们可以巩固对整式的理解,并提高解题的能力。

本文将为大家提供一些整式乘法的练习题,希望能够帮助大家更好地掌握这一概念。

1. 计算下列整式的乘积:(a) $(2x + 3)(x - 4)$(b) $(3a - 5)(a + 2)$(c) $(4x^2 - 2x + 1)(x + 3)$(d) $(2y^2 + 5y - 3)(3y - 1)$2. 将下列整式相乘并化简:(a) $(2x + 3)^2$(b) $(3a - 5)^2$(c) $(4x^2 - 2x + 1)^2$(d) $(2y^2 + 5y - 3)^2$3. 将下列整式相乘并化简:(a) $(x + 2)(x - 2)$(b) $(2a + 3)(2a - 3)$(c) $(3x - 4)(3x + 4)$(d) $(4y + 5)(4y - 5)$4. 将下列整式相乘并化简:(a) $(x + 2)(x^2 - 2x + 4)$(b) $(2a - 3)(a^2 + 3a - 5)$(c) $(3x - 4)(x^2 + 4x + 9)$(d) $(4y + 5)(y^2 - 5y + 25)$5. 将下列整式相乘并化简:(a) $(x - 1)(x^2 + x + 1)$(b) $(2a + 3)(a^2 - a + 1)$(c) $(3x - 4)(x^2 - x + 1)$(d) $(4y + 5)(y^2 + y + 1)$通过以上的练习题,我们可以发现整式乘法的规律和技巧。

在解题时,我们可以利用分配律、结合律和交换律等基本运算规则,将整式相乘并化简。

同时,我们也需要注意合并同类项,以得到最简形式的结果。

在解答整式乘法练习题时,我们可以采用不同的方法。

有些题目可以直接使用分配律进行展开和化简,有些题目则需要先将整式乘积中的括号展开,再进行合并同类项。

整式的乘法经典题型专练

整式的乘法经典题型专练

整式的乘法经典题型专练一、选择题(本大题共12小题,共36分)1. 下列各式中,可以用平方差公式进行计算的是()A. B. C. D.2. 下列多项式中是完全平方式的是( )A.2x2+4x-4B.16x2-8y2+1C.9a2-12a+4D.x2y2+2xy+y23. 计算的结果是().A. B. C. D.4. 5、.若))(-的乘积中不含x的一次项,则bax+(bxa,的关系是( )a,都为0A.互为倒数B.相等C.互为相反数D.b5. 的计算结果是()A. B. C. D.6. 无论x为何值,代数式x2+ 8x+17的值是()A. 负数B. 正数C. 零D. 符号不能确定7. 从边长为a的大正方形纸板中挖去一个边长为b的小正方形后,将其裁成四个相同的等腰梯形(如图(1)),然后拼成一个平行四边形(如图(2)),那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.B.C. D.8. 小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把中间一项的系数染黑了,得到正确的结果为4a 2■ab+9b 2,则中间一项的系数是()A. +12B. ﹣12C. +12或﹣12D. +36A. -1B. 1C. 2D. -210. 已知,则的值是()A. 9B. 49C. 47D. 111. 有3张边长为a的正方形纸片,4张边长分别为a、b(b>a)的矩形纸片,5张边长为b的正方形纸片,从其中取出若干张纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形(按原纸张进行无空隙、无重叠拼接),则拼成的正方形的边长最长可以为()A. a+bB. 2a+bC. 3a+bD. a+2b12. 若二项式加上一个单项式后构成的三项式是一个完全平方式,则这样的单项式的个数有(). A. 1个 B. 2个 C. 3个 D. 4个二、填空题(本大题共16小题,共48分)13. 若,,则的值为.14. 若,则.15. 计算:=__________16. 若是一个完全平方式,则__________.17. 已知.若则.18. 计算:2015 2﹣2016×2014= .19. 已知,则=__________.20. 若,,则.21. 如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值为____________.22. 已知, 那么a = 。

(完整版)整式乘法练习题(共14页)

(完整版)整式乘法练习题(共14页)

32 .33 . 下列计算中错误的是 [(a+b)2]3=(a+b)6; B .(-2x 3y 4)3 的值是[] -6x 6y 7; B . -8x 27y 64;[] [(x+y) 2n ]5=(x+y) 2n+5 ; C . [(x+y)m ]n =(x+y)mn ; D . [(x+y) m+1]n =(x+y) mn+nC . -8x 9y 12;D . -6xy 10 .41. F 列计算中,[] (1)b(x-y)=bx-by , (2)b(xy)=bxby , (3)b x-y =b x -b y , (4)2164=(64)3, (5)x 2n-1y 2n-1=xy 2n-242 . 只有⑴与⑵正确;B .只有(1)与⑶正确;C .只有(1)与⑷正确;D .只有⑵与⑶正确.(-6x n y )2 • 3x n-1y 的计算结果是[]18x 3n-1y 2; B . -36x 2n-1y 3; C . -108x 3n-1y ; D . 108x 3n-1y 3 .44 .下列计算正确的是[] 2 2 2 2 (6xy 2-4x 2y) • 3xy=18xy 2-12x 2y ;(-x)(2x+x 2-1)=-x 3-2x 2+1 ;(-3x 2y)(-2xy+3yz-1)=6x 3y 2-9x 2y 2z 2-3x 2y ;討需J* 2ab = — - ab*.整式的乘法练习题(一)填空1. a 8=(-a 5) _______ .2. a 15=( )5.3. 3m 2 • 2m 3= _________ .4. (x+a)(x+a)= ______ .5. a 3 • (-a)5 • (-3a)2 ____________ • (-7ab 3)=. 6. _________ (-a 2b)3 • (-ab 2)= . 7 . (2x)2 • x 4=( )2 .8 . 24a 2b 3=6a 2 • ______ . 9 . [(a m )n ]p = _______ . 10 . (-mn)2(-m 2n)3= ________ .I 「I 1 j ' - 14 . (3X 2)3-7X 3[X 3-X (4X 2+1)]= _______ . 17 . 一长方体的高是(a+2)厘米,底面积是(a 2+a-6)厘米2,则它的体积是 _____________ .19 . 3(a-b)2[9(a-b)3](b-a) 5= _____ .21.若 a 2n-1 • a 2n+1=a 12,则 n= __________ .(二)选择28 .下列计算正确的是[]A . 9a 3 • 2a 2=18a 5;B . 2x 5 • 3x 4=5x 9;C . 3x 3 • 4x 3=12x 3;D . 3y 3 • 5y 3=15y 9 .29 . (y m )3 • y n 的运算结果是[]B y 3m+n ;C . y 3(m+n) ;D . y 3mn下列计算错误的是[](x+1)(x+4)=x 2+5x+4 ; B . (m-2)(m+3)=m 2+m-6 ; C . (y+4)(y-5)=y 2+9y-20 ; D . (x-3)(x-6)=x 2-9x+18 .计算-a 2b 2 • (-ab 3)2所得的结果是[]a 4b 8; B . -a 4b 8; C . a 4b 7; D . -a 3b 8 .30 . 31 .45.下列计算正确的是[]A . (a+b)2=a 2+b 2;B . a m • a n =a mn ;C . (-a 2)3=(-a 3)2;D . (a-b)3(b-a)2=(a-b)5. 47.把下列各题的计算结果写成 10的幕的形式,正确的是[] A . 100X 103=106;B . 1000 X 1O 1°°=io 3°°°; C. 1002n X 1000=104n +3; D . 1005X 10=10005=1015.48. t 2-(t+1)(t-5)的计算结果正确的是 []A . -4t-5 ;B . 4t+5 ;C . t 2-4t+5 ;D . t 2+4t-5 .(三)计算(6 X 108)(7 X 109)(4 X104). (-5x n+1y) • (-2x).(-3ab) • (-a 2c) • 6ab 2 .(-4a) • (2a 2+3a-1).52. 53. 54. 55. 56. (-3xy) * 5x 2y + fix 3 • 57. 2 r 4 —ab 2 -2ab + — bF7 、-xy -2y• iab..2 58. (3m-n)(m-2n).59. 60. 61. 62. 63. (x+2y)(5a+3b).(-ab)3 • (-a 2b) • (-a 2b 4c)2 . [(-a)2m ]3 •a 3m +[(-a)5m ]2 . x n+1(x n -x n-1+x).2 2(x+y)(x -xy+y ).3sy 6xy^Jxy-\3yjj. 65. : tn 2T-ij2) 3 \ L 4 J 67 . (2X -3)(X +4).C3.(宀疔)护〜]的.-2a a *-5ab • (a 2-1) 70 . (-2a m b n )(-a 2b n )(-3ab 2).25X (X 2+2X +1)-(2X +3)(X -5).-a a (4ab a i-Sa^b-a 1) * C-5a a b*J. (m_n)(m 5+m 4n+m 3n 2+m 2n 3+mn 4+n 5). (2a 2-1)(a-4)(a 2+3)(2a-5). 2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3) (0.3a 3b 4)2 • (-0.2a 4b 3)3. (-4xy 3) • (-xy)+(-3xy 2)2.6X100-01 -6.(5a 3+2a-a 2-3)(2-a+4a 2).(3x 4-2x 2+x-3)(4x 3-x 2+5).1 , 工 _ —ab + b A + 5ab * 12 」(3a m+2b n+2)(2a m +2a m -2b n-2+3b n ).j ' 2ir?r?・ J (泅卄罷一(一隔十9怡. [(-a 2b)3]3 • (-ab 2). (-2ab 2)3 • (3a 2b-2ab-4b 2). 「护y +树训一制.2(x + y)3 • 5(n+y)t+3 • 4(x+j)n .iab a c(-0.5ab)a • ^-lbc 2j . (_2x m y n )3 • (-x 2y n ) • (-3xy 2)2. (0.2a-1.5b+1)(0.4a-4b-0.5). -8(a-b)3 • 3(b-a).(x+3y+4)(2x-y).I / 3 \ i -ab TQa 儿 -b -1-3.5a) * -b\ M 丿 x 5 J y[y-3(x-z)]+y[3z-(y-3x)]. 计算[(-a)2m ]3 • a 3m +[(-a) 3m ]3(m 为自然数).7L72.73.74.75.76.77. 78.79.80.81. 82.83.34.35. 86.87.S3.89. get91 .92.93.94. 95.96.97.(-2a 3(四)化简99.--少】b叫時*(-2 25严01尹1).L 3 丿I a :2100.\胡・(一站刖.■■10L •[(m-n)Cm-n)p]<1Q2.* 2ab -* 3abU 2 J 乜 6 J103. m-丄(m +1) + 丄(ni-l)+丄2 3 6(五)求值104.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3, n=2 .31 •105.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x 2-7x+13),再求其值,其中x=-106.光的速度每秒约3X 105千米,太阳光射到地球上需要的时间约是5X 102秒. 约是多少千米?(用科学记数法写出来)107.已知ab2=-6,求-ab(a2b5-ab3-b)的值.108.已知a+b=1 , a(a2+2b)+b(-3a+b 2)=0.5,求ab 的值.109.己知签=5 y = *求藍—0•(严夕的值(n为自然数).110.已知(x-1)(x+1)(x-2)(x-4)三(x2-3x)2+a(x2-3x)+b,求a, b 的值.111.多项式x4+mx2+3x+4中含有一个因式x2-x+4,试求m的值,并求另一个因式.112.若x3-6x2+11x-6 = (x-1)(x 2+mx+ n),求m, n 的值.113.已知一个两位数的十位数字比个位数字小原数的乘积比原数的平方多405,求原数. 1,若把十位数字与个位数字互换,所得的新两位数与9& 2xy(0 75x nH-1问地球与太阳的距离114.试求(2-1)(2+1)(2 2+1)(24+1)…(232+1)+1 的个位数字.115.比较2100与375的大小.116 .解方程3x(x+2)+(x+1)(x-1)=4(x 2+8).】5组伫■驚舄•118.求不等式(3x+4)(3x-4) > 9(x-2)(x+3)的正整数解.119.已知2a=3b=6c(a, b, c 均为自然数),求证:ab-cb=ac.120.求证:对于任意自然数n, n(n+5)-(n-3) x (n+2)的值都能被6整除. 121.已知有理数x, y, z 满足|x-z-2|+(3x-6y-7) 2+|3y+3z-4|=0,求证:x3n y3n-1z3n+1-x=0 .122.已知x=b+c , y=c+a, z=a+b,求证: (x-y)(y-z)(z-x)+(a-b)(b-c)(c-a)=0123.证明(a-1)(a1 2-3)+a2(a+1)-2(a3 4-2a-4)-a 的值与 a 无关.124.试证代数式(2x+3)(3x+2)-6x(x+3)+5x+16 的值与x 的值无关.125.求证:(m+1)(m-1)(m-2)(m-4)=(m 2-3m)2-2(m2-3m)-8 .12若2x + 5y— 3 = 0 贝咛"=3已知 a = 355,b = 444,c = 533则有( )A . a < b < cB. c < b < aC. a < c < bD. c < a < b4已知2小+戶+严=4鳴,则x = 5、21990 X31991的个位数字是多少6、计算下列各题⑴⑵7、计算(—2x —5)(2x—5)8、 计算"■ -■1)仏 +2比-2)以-+2x4) 69、 计算 '人八 儿 丿,当a 6 = 64时,该式的值。

整式的乘除练习题

整式的乘除练习题

整式的乘除练习题整式的乘除练习题整式是数学中的一个重要概念,它由数字和字母的乘积或除法组成。

掌握整式的乘除运算是数学学习的基础,也是解决实际问题的关键。

本文将通过一些练习题来帮助读者巩固整式的乘除运算。

1. 乘法练习题1)计算:(2x + 3)(4x - 5)解析:使用分配律,将每个项分别与另一个整式的每个项相乘,然后将结果相加。

(2x + 3)(4x - 5) = 2x * 4x + 2x * (-5) + 3 * 4x + 3 * (-5)= 8x^2 - 10x + 12x - 15= 8x^2 + 2x - 152)计算:(3a - 2b)(5a + 4b)解析:同样使用分配律,将每个项分别与另一个整式的每个项相乘,然后将结果相加。

(3a - 2b)(5a + 4b) = 3a * 5a + 3a * 4b + (-2b) * 5a + (-2b) * 4b= 15a^2 + 12ab - 10ab - 8b^2= 15a^2 + 2ab - 8b^22. 除法练习题1)计算:(6x^2 - 9x) ÷ 3x解析:使用除法的原则,将被除数的每一项除以除数。

(6x^2 - 9x) ÷ 3x = 6x^2 ÷ 3x - 9x ÷ 3x= 2x - 32)计算:(10a^2 - 15a) ÷ 5a解析:同样使用除法的原则,将被除数的每一项除以除数。

(10a^2 - 15a) ÷ 5a = 10a^2 ÷ 5a - 15a ÷ 5a= 2a - 33. 综合练习题1)计算:(2x + 3)(4x - 5) ÷ (2x + 3)解析:先将乘法计算出结果,再进行除法运算。

(2x + 3)(4x - 5) ÷ (2x + 3) = (8x^2 + 2x - 15) ÷ (2x + 3)使用长除法进行计算,首先将 8x^2 除以 2x,得到 4x。

整式的乘法专项练习

整式的乘法专项练习

整式的乘法单元复习一、幂的运算 1.计算(1)3m 2·2m 3 (2)(2x)2·x 4 (3)(-mn)2(-m 2n)3(5)a 3·(-a)5·(-3a)2·(-7ab 3) (6)3(a-b)2[9(a-b)n+2](b-a)5(7)4774()()a a -+- (8)[(-a)2m ]3·a 3m +[(-a)5m ]2(9)(-ab)3·(-a 2b)·(-a 2b 4c)2 (10) ()[]⋅+323-y x ()[]432-y x +2.整体思想(1)已知:693273=⋅m m ,求m .(2)满足3x+1·2x -3x 2x+1=66,则x = (3)若10m =a ,10n =b ,那么10m+n =______. (4) 已知:a m =2,b n =32,则n m 1032+=________ (5)已知:,52a n =b n =4,则=n 610_______(6)若2x + 5y -3 = 0 则=(7)已知ab 2=-6,求-ab(a 2b 5-ab 3-b)的值3.比较大小(1)比较250与375的大小(2)1405=a ,2103=b ,2802=c ,比较a 、b 、c 的大小关系4.简便运算(1)()200320025.1-32⨯⎪⎭⎫ ⎝⎛ (2)201320142015)1()5.1()32(-⋅-⋅二、整式的乘法1.计算(1)()322635-a ab a - (2)()()x y y x 2332--- (3)(-3x 2y)(-2xy+3yz-1)(4) (-2ab 2)3·(3a 2b-2ab-4b 2) (5)5x(x 2+2x+1)-(2x+3)(x-5)(6) 2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3)2.化简求值 (1)(x-2)(x-3)+2(x+6)(x-5)-3(x 2-7x+13),其中x=(2)(32)(23)(2)(2)a b a b a b a b +----,其中11.5,4a b =-=(3)使(x 2+px+8)(x 2-3x+q)的积中不含x 2和x 3,求p ,q 的值(4)若x 3-6x 2+11x-6=(x-1)(x 2+mx+n),求m ,n 的值3.解方程(1)3x(x+2)+(x+1)(x-1)=4(x 2+8) (2))1)(1(13)12()31(22+-=-+-x x x x4.整体思想(1)已知;,012=-+a a 求2014223++a a 的值(2)已知099052=-+x x ,求1019985623+-+x x x 的值.5.应用已知一个长方形的长增加3cm,宽减少1cm,面积保持不变,若长减少2cm,宽增加4cm,面积也保持不变,求原长方形的面积。

(完整版)整式的乘除计算题汇总

(完整版)整式的乘除计算题汇总

《整式的乘除》测试题(B 卷)、填空题(每题2分,共20 分)D 、( -2x 2)(1-3x 3)= - 2x 2+6x 55、 若(a m+1b n+1)(a 2n b 2m )=a 5b 3,贝S m+n 的值为( )A 、1B 、2C 、3D 、-36、 下列各式中正确的是( )A 、(a + 4) (a -4)= a 2— 4B 、(5x - 1) (1 -5x )= 25x 2— 1C 、(-3x + 2) 2 = 4- 12x + 9x 2D 、(x -3) (x -9)= x 2-277、 如果 x 2- kx - ab =(x -a ) (x + b ),贝S k 应为( )A 、a + bB 、a — bC 、b — aD 、一 a — b&若多项式4x 2 4nx m 等于2x J ,则m 、n 满足( )A. m n 2 0B. m n 2 0C. m 2 n 0D. n m 2 09、因式分解x 2+2xy+y 2-4的结果是()班级 姓名 成绩1、 F 列运算中正确的是(. 3 4 f 3 A.x x x B. x x / 2 \3 C. (x ) x 5 D. 2、 计算 3a 2b 3 4的结果是( A 、 81a 8b 12 B 、12a 6b 7 C 、 12a 6b 7 81a 8b 12 3、 4、 若 3x 5 , 3y 4,则 32xy 等于( A 25 ; 4 ;下列计算正确的是 A 、a 2 • a 3=a 6 B.6 ; C.21;D.20.(B 、x ( x 2+x 2)=2x 4 + x 3C 、( -2x)4=-16x 4A . (x+y+2) (x+y-2)B . (x+y+4) (x+y-1 )C . (x+y-4) (x+y+1)D .不能分解10、计算x(1+x)-x(1-x)的结果是()二、填空题(每题3分,共30 分)2、 ____________________________________________ 分解因式: 5X82 — 20xb 2= __________________________________3、 _________________________________ — x 2 • ( — x ) 3 •( — x ) 2= .4、 _________________________________ 若 x 3m =2,则 x 2m (x m +x 4m -x 7m ) = .5、 如果代数式(ax-y)(x+y)的乘积中不含“ xy ”型的项,那么a 的值求 3(- ab) 2+(-2 a) 3bc-5 a 2•(- b) 2+3a 3bc 的值 3、已知:(a + b ) 2=7 , (a -b ) 2=9,求 a 2+ b 2 及 ab 的值2 a 2(x-y ) +b 2(y-x ).A 、2xB 、2x 2C 、0D 、 2x 2x 21、已知a 3 2b 6 2 b 3 3,那么 a 8 9 10b 4= ________4、下列各式进行因式分解.( 1)4x2 3(4xy 3y2 )5、某学校欲建如图所示的草坪(阴影部分),请你计算一下,一共需要铺是设草坪多少平方米?如果每平方米草坪需100元,则学校为是设草坪一共需投资多少元?(单位:米)6、( x4)3 ( x2)3?( x)3 ( x)2 = __________________7、____________________________________ 若a+b=3, ab=2,则护+b2二8、已知m2 n2 6m 10n 34 0,贝S m n= _________________________ .9、19922—1991X 1993= _________ .10、_______________________________________________________ 若2x2+3x+7的值是8,则代数式9-4x2-6x的值是____________________ 三、解答题(每题10分,共50分)1、已知32m 5,3n 10,求(1)9mn; (2)92mn2、已知(a+1)2=0, I b-4 I + I c-(-2) 3I =0,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘法300题专项训练同底数幂的乘法:底数不变,指(次)数相加。

公式:a m·a n=a m+n1、填空:(1)=⋅53x x ; =⋅⋅32a a a ; =⋅2x x n ;(2)=-⋅-32)()(a a ;=⋅⋅b b b 32 ⋅2x =6x ;(3)=⋅-32)(x x ;=⋅10104 ;=⨯⨯32333 ;(4)34a a a ⋅⋅ = ; ()()()53222--- = ;(5)()()()352a a a -⋅-⋅-- = ;(1)32a a ⋅=___________;(7)=-⋅-43)()(a b a b ;=⋅2x x n ;(8)=⎪⎭⎫ ⎝⎛-⨯-6231)31( ;=⨯4610102、简单计算:(1)=⋅64a a (2)=⋅5b b (3)=⋅⋅32m m m (4)=⋅⋅⋅953c c c c 3.计算:(1)=-⋅23b b (2)=-⋅3)(a a (3)=--⋅32)()(y y (4)=--⋅43)()(a a (5)=-⋅2433 (6)=--⋅67)5()5( (7)=--⋅32)()(q q n (8)=--⋅24)()(m m (9)=-32 (10)=--⋅54)2()2( 4.下面的计算对不对?如果不对,应怎样改正?(1)523632=⨯; (2)633a a a =+; (3)n n n y y y 22=⨯; (4)22m m m =⋅; (5)422)()(a a a =-⋅-; (6)1243a a a =⋅;二、幂的乘方:幂的乘方,底数不变,指数相乘.即:(a m )n =a mn 1、填空:(1) )2(24-=___________ (2) )3(32-=___________(3))2(22-=___________ (4))2(22-=___________(5))(77m = ___________ (6))(335mm = ___________2、计算 : (1)(22)2;(2)(y 2)5 (3)(x 4)3 (4))(3bm -(4)(y 3)2 • (y 2)3(5))()(45a a a --•• (6)xx x 72)(23-•三、积的乘方:等于把积的每一个因式分别乘方,再把所得的幂相乘.(ab)n =a n b n1、填空:(1)(2x )2=___________(ab )3 =_________(ac)4. =__________ (2)(-2x )3=___________)2(22a-=_________)(42a =_________ (3))2(23b a - =_______)2(422ba -=_________(5)(103)3(6)(a 3)7 (7)(x 2)4; (8)(a 2)• 3 • a 53、选择题:(1)下列计算中,错误的是( )A b a b a 642)(32= B y x y x 4429)3(22=Cyxy x 33)(--= Dnm n m 462)(23=-(2)下面的计算正确的是( ) A m m m532=• B m m m 532=+C nm n m 2523)(= D222mnn m=•四、整式的乘法1、单项式乘单项式1、2(3)x -·32x 2、33a ·44a 3、54m ·23m 4、23(5)a b 2(3)a -5、2x ·x ·5x6、(3)x -·2xy7、24a ·23a 8、2(5)a b -·(3)a -9、3x ·53x 10、34b c ·12abc 11、32x ·2(3)x - 12、4y ·2(2)xy -13、2(3)x y -·21()3xy 14、4(210)⨯·5(410)-⨯ 15、47x ·32x16、433a b ·232(4)a b c - 17、19、2x ·232()y xy -18、23(5)a b ·23()ab c - 19、3(2)a -·2(3)a - 20、5m -·42(10)m - 21、3m nx +-·4m nx- 22、23(3)x y ·(4)x - 23、24ab ·21()8a c -24、(5)ax -·22(3)x y 25、242()m a b -·2()mab - 26、54x y ·232()x y z -27、33(3)a bc -·22(2)ab - 28、4()3ab -·2(3)ab - 29、3(2)x ·2(5)xy -30、34322(2)()x y x yc -- 31、24xy ·233()8x yz - 32、32(2)ab c -·2(2)x33、232(3)a b -·33(2)ab c - 34、323331()(2)73a b a b c - 35、2(4)x y -·22()x y -·31()2y36、24xy ·32(5)x y -·2(2)x y - 37、22(2)x y -·1()2xyz -·3335x z38、1()2xyz -·2223x y ·33()5yz - 39、26m n -·3()x y -·2()y x -40、221()2ab c ·231()3abc -·31()2a 41、、2xy ·221()2x y z -·33(3)x y - 42、331()2ab -·1()4ab -·222(8)a b - 43、26a b ·3()x y -·213ab ·2()y x -44、2(4)x y -·22()x y -·312y二、单项式乘多项式:(利用乘法分配率,转变为单项式乘单项式,然后把结果相加减) 1、2(34)m x y + 2、11()22ab ab + 3、2(1)x x x -- 4、22(321)a a b +-5、23(21)x x x -- 6、4(3)x x y - 7、()ab a b + 8、6(21)x x +9、(1)x x + 10、3(52)a a b - 11、3(25)x x -- 12、212()2x x -13、2323(2)a a b a - 14、(3)(6)x y x -- 15、22()x x y xy - 16、2(4)(2)a b b --17、2(31)(2)x x -+- 18、(2)a -·31(1)4a - 19、2323()(21)2x x x -+-20、22(2)3ab ab -·12ab 21、224(35)m m n mn -+ 22、2(3)(22)ab a b ab --+23、5ab ·(20.2)a b -+ 24、224(2)39a a --·(9)a - 25、23(251)x x x ---26、22(1)x x x --+ 27、2x ·21(1)2x - 28、2123()33x x +29、24(231)a a a -+- 30、22(3)(21)x x x --+- 31、25(1)xy x y +-32、212(3)2x y xy y -+ 33、2223(34)xy x y xy -- 34、223()ab a b ab ab -+35、22(232)ab a ab a -+ 36、213a b -·22(639)a ab b -+ 37、321(248)()2x x x ----38、322(356)x x x --- 39、3223(36)4a b c ac -+·13ab40、(1)2(1)3(25)x x x x x x +++--41、()()()a b c b c a c a b ---+- 42、223121(3)()232x y y xy +--43、221(2)2x y xy y -+·(4)xy - 43、2325101(1)()335a b a b ab -+-44、、221(2)(4)2x y xy y xy -+-三、多项式乘多项式:(转化为单项式乘多项式,然后在转化为单项式乘单项式) 1、(31)(2)x x ++ 2、(8)()x y x y -- 3、(1)(5)x x ++ 4、(21)(3)x x ++5、(2)(3)m n m n +-6、(3)(3)a b a b +-7、2(21)(4)x x -- 8、2(3)(25)x x +-9、(2)(3)x x ++ 10、(4)(1)x x -+ 11、(4)(2)y y +- 12、(5)(3)y y --13、()()x p x q ++ 14、(6)(3)x x -- 15、11()()23x x +- 16、(32)(2)x x ++17、(41)(5)y y -- 18、2(2)(4)x x -+ 19、(4)(8)x x -- 20、(4)(9)x x ++21、(2)(18)x x -- 22、(3)()x x p ++ 23、(6)()x x p -- 24、(7)(5)x x ++25、(1)(5)x x ++ 26、11()()32y y +- 27、(2)(3)a b a b -+ 28、(3)(23)t t +-29、2(45)(2)x xy x y +- 30、(3)(34)y y -+ 31、(3)(2)x x +- 32、(2)(2)a b a b +-33、(23)(3)x x +- 34、(3)()x x a ++ 35、(1)(3)x x -+ 36、(2)(2)a b --37、(32)(23)x y x y ++ 38、(6)(1)x x +- 39、(3)(34)x y x y -+ 40、(2)(1)x x -+-41、(23)(32)x y x y +- 42、2(1)(1)x x x -++ 43、22()()a b a ab b +-+44、22(321)(231)x x x x +++- 45、22()()a b a ab b -++46、22()()x xy y x y ++-47、22()()x a x ax a -++ 48、22()()x y x xy y -++ 49、4242(331)(2)x x x x -++-50、22()()x y x xy y +-+四、平方差公式和完全平方公式1、(1)(1)x x +-2、(21)(21)x x +-3、(5)(5)x y x y +-4、(32)(32)x x +-5、(2)(2)b a a b +-6、(2)(2)x y x y -+--7、()()a b b a +-+8、()()a b a b ---9、(32)(32)a b a b +- 10、5252()()a b a b -+ 11、(25)(25)a a +-12、(1)(1)m m ---13、11()()22a b a b --- 14、(2)(2)ab ab --- 15、10298⨯ 16、97103⨯17、4753⨯ 18、22()()()a b a b a b +-+ 19、(32)(32)a b a b +-20、(711)(117)m n n m --- 21、(2)(2)y x x y --- 22、(4)(4)a a +-+23、(25)(25)a a -+ 24、(3)(3)a b a b +- 25、(2)(2)x y x y +-完全平方:1、2(1)p + 2、2(1)p - 3、2()a b - 4、2()a b + 5、2(2)m +6、2(2)m -7、2(4)m n + 8、21()2y - 9、2(3)x y - 10、2(2)a b --11、21()a a+ 12、2(52)x y -- 13、2(2)a b - 14、21()2x y - 15、2(23)a b +16、2(32)x y - 17、2(2)m n -- 18、2(22)a c + 19、2(23)a -+ 20、21(3)3x y +21、2(32)a b + 22、222()a b -+ 23、22(23)x y -- 24、2(1)xy - 25、222(1)x y -五、同底数幂的除法:底数不变,指数相减。

相关文档
最新文档