牛吃草类型应用题解题方法完整版

合集下载

牛吃草问题解法公式

牛吃草问题解法公式

牛吃草问题解法公式牛吃草问题有这么几个公式哦。

一、基本公式(假设草匀速生长的情况)1. 草的生长速度 = (对应的牛头数×吃的较多天数 - 相应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)- 你可以这么想哈,比如说有一群牛,多吃几天的话,那吃到的草就多。

这里面多出来的草量呢,其实就是多吃的这几天里草长出来的量。

那用多吃的草量除以多吃的天数,不就得到草每天生长的速度了嘛。

就像你种树,过了几天发现树多了一些,那多出来的树的数量除以过的天数就是树每天长的数量呀。

2. 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数- 这个呢,就是说原来草地上有的草量。

你想啊,牛吃的草量是牛头数乘以吃的天数,但是这里面有一部分是草自己长出来的呀,把草长出来的那部分(草的生长速度乘以吃的天数)减掉,剩下的就是原来草地上就有的草量啦。

就好比你存钱,你存进去的钱(牛吃的草量)有一部分是利息(草生长的量),把利息减掉,就是你最开始存的本金(原有草量)。

3. 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)- 这个公式就是说,当我们知道原来有多少草,也知道牛的数量和草生长的速度的时候,就可以算出这些牛能吃多少天。

你可以想象成有一堆食物(原有草量),有一些人(牛)在吃,同时食物还在慢慢增加(草生长),那用食物总量除以每天实际减少的量(牛头数减去草生长速度,因为草在长就相当于吃的量减少了),就得到能吃的天数啦。

4. 牛头数 = 原有草量÷吃的天数+草的生长速度- 这个就好比你知道有一堆活(原有草量)要干多少天(吃的天数),而且这个活还在慢慢增加(草生长速度),那你就能算出需要多少人(牛头数)来干这个活啦。

如何解“牛吃草问题”

如何解“牛吃草问题”

娄斌(山东省枣庄市台儿庄区明远实验小学)如何解“牛吃草问题”一例题一块牧场上长满了草一块牧场上长满了草,,草每天都匀速生长草每天都匀速生长。

这片草可供13头牛(每头牛每天的吃草量相同每头牛每天的吃草量相同))吃10天,或可供21头牛吃5天。

(1)这片草可供25头牛吃几天头牛吃几天??(2)这片草可供几头牛吃20天?分析题目可知,牧场上原有的草量是固定的,每天新长出的草量也是固定的,新长出的总草量=每天新长出的草量×天数,若干天牧场可提供的总草量=原有的草量+新长出的总草量。

假设1头牛1天能吃1份的草,则13头牛10天吃草1×13×10=130(份),21头牛5天吃草1×21×5=105(份)。

为什么前一种吃法比后一种多了130-105=25(份)呢?这是因为前一种吃法比后一种多了10-5=5(天),多出的25份草是5天长出来的。

可以算出牧场上每天长出的草量是25÷5=5(份)。

小朋友,“牛吃草问题”是英国科学家牛顿在17世纪提出的,又称为“消长问题”或“牛顿问题”。

“牛吃草问题”中主要涉及三个量:草的数量(原有的草量、每天新生长或减少的草量)、牛的数量、时间。

如何解答这类问题呢,下面我们一起来看一下。

13头牛10天吃草130份,这10天牧场上新长出的草量是10×5=50(份),牧场上原有的草量是130-50=80(份)。

(1)计算这片草可供25头牛吃几天头牛吃几天,,可以这样思考可以这样思考::因为牧场上每天长出5份草,可以让其中的5头牛专门吃新长出的草,剩下的25-5=20(头)牛吃牧场上原有的80份草,这样问题就变成了牧场上原有的草可以供20头牛吃几天?因为20头牛1天要吃草1×20=20(份),所以原有的80份草可供20头牛吃80÷20=4(天),即这片草可供25头牛吃4天。

(2)计算这片草可供几头牛吃20天,可以这样思考可以这样思考::20天牧场上新长出的总草量是20×5=100(份),这20天牧场可提供的总草量是80+100=180(份),平均每天能提供的草量是180÷20=9(份)。

牛吃草问题的详细解法

牛吃草问题的详细解法

牛吃草问题的详细解法一、牛吃草问题基础概念。

1. 问题描述。

- 牛吃草问题又称为消长问题或牛顿问题。

典型的牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

2. 基本公式。

- 设每头牛每天的吃草量为1份。

- 草的生长速度=(对应的牛头数×吃的较多天数 - 对应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)- 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数。

- 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)- 牛头数 = 原有草量÷吃的天数+草的生长速度。

二、牛吃草问题示例及解析。

1. 题目1。

- 有一片牧场,草每天都在匀速生长。

如果放养24头牛,6天可以把草吃完;如果放养21头牛,8天可以把草吃完。

问:- 要使草永远吃不完,最多放养多少头牛?- 如果放养36头牛,多少天可以把草吃完?- 解析:- 设每头牛每天吃草量为1份。

- 首先求草的生长速度:(21×8 - 24×6)÷(8 - 6)=(168 - 144)÷2 = 12(份/天)。

要使草永远吃不完,那么牛每天的吃草量不能超过草的生长速度,所以最多放养12头牛。

- 由知草的生长速度为12份/天,先求原有草量:24×6 - 12×6 = 144 - 72 = 72(份)。

- 当放养36头牛时,设可以吃x天,根据原有草量 = 牛头数×吃的天数- 草的生长速度×吃的天数,可得72 = 36x-12x,24x = 72,解得x = 3天。

2. 题目2。

- 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周。

那么这片草地可供21头牛吃几周?- 解析:- 设每头牛每周吃草量为1份。

- 草的生长速度(23×9 - 27×6)÷(9 - 6)=(207 - 162)÷3 = 15(份/周)。

牛吃草及其变异问题汇总(附清晰的思路答案)

牛吃草及其变异问题汇总(附清晰的思路答案)

牛吃草及其变异问题汇总(附清晰的思路答案)1、有一片牧场,草每天都在匀速生长(草每天的增长量相等),如果放24头牛,则6天吃完牧草;如果放牧21头牛,则8天可以吃完牧草,设每头牛每天的吃草量相等,问:(1)如果放牧36头牛,几天可以吃完牧草?(2)要使牧草永远都吃不完,至多放牧多少头牛?解:假设1头牛1天吃1个单位的草,那么 24头牛6天所吃的牧草为:24×6=144 (这144包括牧场原有的草和6天新长的草。

)21头牛8天所吃的牧草为:21×8=168 (这168包括牧场原有的草和8天新长的草。

)1天新长的草为:(168-144)÷(8-6)=12牧场上原有的草为:24×6-12×6=72(1)方法一:36头牛减去12头,剩下24头吃原牧场的草:72÷(36-12)=72÷24=3(天)方法二、假设36头牛X天吃完草:36X=12X+7236X-12X=72X=72÷24X=3 ( 36头牛3天吃完草)(2)要是草永远吃不完,必须新长的草足够吃,每天新长的草是12,12÷1=12(头)所以要使这片草永吃不完,最多只能放12头牛吃这片草2、牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?解:假设1头牛1天吃1个单位的草,那么 10头牛20天所吃的牧草为:10×20=200 (这200包括牧场原有的草和20天新长的草。

)15头牛10天所吃的牧草为:15×10=150 (这150包括牧场原有的草和10天新长的草。

)1天新长的草为:(200-150)÷(20-10)=5牧场上原有的草为:10×20-20×5=1001天新长的草为5,只够5头牛吃, 25头牛减去5头,剩下20头吃原牧场的草: 100÷(25-5)=100÷20=5(天)答:供25头牛吃5天3、牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?解:假设1头牛1天吃1个单位的草,那么27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。

牛吃草问题例题详解(含练习和答案)

牛吃草问题例题详解(含练习和答案)

牛吃草问题“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,同学们一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是牛吃草问题。

例1牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。

总草量可以分为牧场上原有的草和新生长出来的草两部分。

牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。

下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。

设1头牛一天吃的草为1份。

那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。

前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草。

200-150=50(份),20—10=10(天),说明牧场10天长草50份,1天长草5份。

也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。

由此得出,牧场上原有草(l0—5)× 20=100(份)或(15—5)×10=100(份)。

现在已经知道原有草100份,每天新长出草5份。

当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。

所以,这片草地可供25头牛吃5天。

在例1的解法中要注意三点:(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。

(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。

牛吃草问题的解题口诀及详细解题思路

牛吃草问题的解题口诀及详细解题思路

牛吃草问题的解题口诀及详细解题思路【口诀】:每牛每天的吃草量假设是份数1,A头B天的吃草量算出是几?M头N天的吃草量又是几?大的减去小的,除以二者对应的天数的差值,结果就是草的生长速率。

原有的草量依此反推。

公式就是A头B天的吃草量减去B天乘以草的生长速率。

将未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;用一些草除以剩余的牛的数量,得出所需的天数。

牛吃草问题的例题解析整个牧场上的草长得又密又快。

27头牛6天可以吃草;23头牛可以在9天内吃掉这些草。

问21多少天才能把草吃完。

每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天)结果就是草的生长速率。

所以草的生长速率是45/3=15(牛/天);原有的草量依此反推。

公式就是A头B天的吃草量减去B天乘以草的生长速率。

所以原有的草量=27X6-6X15=72(牛/天)。

将未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;剩下的21-15=6去吃原有的草,所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)随着天气越来越冷,牧场上的草每天都在以固定的速度减少。

经过计算,牧场上的草可以喂20头牛5天,或者喂16头牛6天。

那么,11头牛能吃多少天呢?解答:设一头牛一天吃的草量为一份。

牧场每天减少的草量:(20×5-16×6)÷(6-5)=4份,原来的草量:(20+4)×5=120份,可供11头牛吃120÷(11+4)=8天。

总结:试着从变化中找出不变的量。

牧场上原来的草是不变的,新长出的草是变化的,但是因为它是匀速生长的,所以每天新长出的草量也是不变的。

正确计算草原上的原草和每天生长的新草,就能解决问题。

教你全面解决牛吃草问题

教你全面解决牛吃草问题

牛吃草问题集锦【含义】“牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。

这类问题的特点在于要考虑草边吃边长这个因素。

【数量关系】草总量=原有草量+草每天生长量×天数【解题思路和方法】解这类题的关键是求出草每天的生长量。

牛吃草问题又称为消长问题。

解决牛吃草问题常用到四个基本公式,分别是∶(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决消长问题的基础。

1.旅客在车站候车室等车,并且排队的乘客按一定速度增加,检查速度也一定,当车站放一个检票口,需用半小时把所有乘客解决完毕,当开放2个检票口时,只要10分钟就把所有乘客OK了求增加人数的速度还有原来的人数2.有三块草地,面积分别是5,15,24亩。

草地上的草一样厚,而且长得一样快。

第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3. 3.牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供25头牛吃几天?2、一个水池装一个进水管和三个同样的出水管。

先打开进水管,等水池存了一些水后,再打开出水管。

如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空。

那么出水管比进水管晚开多少分钟?3、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

照此计算,可供多少头牛吃10天?4、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。

已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上。

牛吃草问题解法与算法公式

牛吃草问题解法与算法公式

牛吃草问题解法与算法公式Jenny was compiled in January 2021牛吃草问题问题解法与算法公式解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。

解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量(牛吃的草量--生长的草量=消耗原有草量);4、最后求出可吃天数。

1、牧场上有一片青草,牛每天吃草,草每天以均匀的速度生长。

这片青草供给10头牛可以吃20天,供给15头牛吃,可以吃10天。

供给25头牛吃,可以吃多少天?分析:如果草的总量一定,那么,牛的头数与吃草的天数的积应该相等。

现在够10头牛吃20天,够15头牛吃10天,10×20和15×10两个积不相等,这是因为10头牛吃的时间长,长出的草多,所以,用这两个积的差,除以吃草的天数差,可求出每天的长草量。

①、求每天的长草量(10×20-15×10)÷(20-10)=5(单位量)说明牧场每天长出的草够5头牛吃一天的草量。

②、求牧场原有草量因为牧场每天长出的草量够5头牛吃一天,那么,10头牛去吃,每天只有10-5=5(头)牛吃原有草量,20天吃完,原有草量应是:(10-5)×20=100(单位量)或:10头牛吃20天,一共吃草量是10×20=200(单位量)一共吃的草量-20天共生长的草量=原有草量200-100=100(单位量)③、求25头牛吃每天实际消耗原有草量因为牧场每天长出的草量够5头牛吃一天,25头牛去吃,(吃的-长的=消耗原草量)即:25-5=20(单位量)④、25头牛去吃,可吃天数牧场原有草量÷25头牛每天实际消耗原有草量=可吃天数100÷20=5(天)解:(10×20-15×10)÷(20-10)=50÷10=5(单位量)-------每天长草量(10-5)×20=5×20=100(单位量)-------原有草量100÷(25-5)=100÷20=5(天)答:可供给25头牛吃5天。

牛吃草问题 常用到四个基本公式 解决消长问题的基础

牛吃草问题 常用到四个基本公式 解决消长问题的基础

牛吃草(消长问题)开放分类:数学、题型牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

解决牛吃草问题常用到四个基本公式解决消长问题的基础︰(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数(3)吃的天数=原有草量÷(牛头数-草的生长速度)(4)牛头数=原有草量÷吃的天数+草的生长速度(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数)核心公式:草场草量=(牛数-每天长草量)×天数由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。

牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。

正是由于这个不变量,才能够导出上面的四个基本公式。

解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

基本不变量:单位面积牧场上原有草量不变,一般用来列方程每头牛每天吃草量不变,一般设为“1”单位面积牧场上每天新增草量不变,一般设为“x”牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。

由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。

典型牛吃草问题的条件:假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求:若干头牛吃这片草地可以吃多少天。

“牛吃草”问题简析华图公务员考试研究中心数量关系资料分析教研室研究员姚璐【例1】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天?A.3B.4C.5D.6【答案】C【解析】设该牧场每天长草量恰可供x头牛吃一天,这片草场可供25头牛吃n天根据核心公式:()()()1020151025x x x n-⨯=-⨯=-⨯()()102015105x x x-⨯=-⨯⇒=,代入5n=【例2】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天?A.20B.25C.30D.35【答案】C【解析】设该牧场每天长草量恰可供x头牛吃一天,根据核心公式:()()()102015104x x n x-⨯=-⨯=-⨯()()102015105x x x-⨯=-⨯⇒=,代入30n=【例3】如果22头牛吃33公亩牧场的草,54天后可以吃尽,17头牛吃28公亩牧场的草,84天可以吃尽,那么要在24天内吃尽40公亩牧场的草,需要多少头牛?A.50B.46C.38D.35【答案】D【解析】 设每公亩牧场每天新长出来的草可供x 头牛吃1天,每公亩草场原有牧草量为y , 24天内吃尽40公亩牧场的草,需要n 头牛根据核心公式: ()()3322335423183654y x y x x=-⨯⇒=-⨯=- ()()28172884172835184y x y x x =-⨯⇒=-⨯=-136********y x x y x y ⎧=-=⎧⎪⇒⎨⎨=-⎩⎪=⎩,因此()409202435n n ⨯=-⨯⇒=,【注释】这里面牧场的面积发生变化,所以每天长出的草量不再是常量。

牛吃草问题例题详解(含练习和答案)

牛吃草问题例题详解(含练习和答案)

牛吃草问题“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天”这道题太简单了,同学们一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是牛吃草问题。

例1牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供25头牛吃几天分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量。

总草量可以分为牧场上原有的草和新生长出来的草两部分。

牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的。

下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量。

设1头牛一天吃的草为1份。

那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完。

前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草。

200-150=50(份),20—10=10(天),说明牧场10天长草50份,1天长草5份。

也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草。

由此得出,牧场上原有草(l0—5)× 20=100(份)或(15—5)×10=100(份)。

现在已经知道原有草100份,每天新长出草5份。

当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天)。

所以,这片草地可供25头牛吃5天。

在例1的解法中要注意三点:(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的。

(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量。

牛吃草问题(含例题、答案、讲解)

牛吃草问题(含例题、答案、讲解)

小学数学牛吃草问题知识点总结牛吃草问题:牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

小升初冲刺第2讲牛吃草问题基本公式:1)设定一头牛一天吃草量为“ 1”2)草的生长速度=(对应的牛头数X吃的较多天数一相应的牛头数X吃的较少天数)十(吃的较多天数一吃的较少天数);3)原有草量=牛头数X吃的天数一草的生长速度X吃的天数;'4)吃的天数=原有草量十(牛头数—草的生长速度);5)牛头数=原有草量十吃的天数+草的生长速度。

例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)-(20-10)=5 份10X 20=200份……原草量+20天的生长量原草量:200-20 X 5=100 或150-10 X 5=100份15X 10=150份……原草量+10天的生长量100 -(25-5 )=5天[自主训练]牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(180-150)-(20-10)=3 份9X 20=180份……原草量+20天的生长量原草量:180-20 X 3=120份或150-10 X 3=120 份15X 10=150份……原草量+10天的生长量120 -(18-3)=8天例2、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

牛吃草问题应用题及答案

牛吃草问题应用题及答案

牛吃草问题应用题及答案【口诀】:每牛每天的吃草量假设是份数1,A头B天的吃草量算出是几?M头N天的吃草量又是几?用小的减去大的,再除以相应天数的差。

结果就是草的生长速度。

原有的草量依此反推。

公式就是A头B天的吃草量减去B天乘以草的生长速率。

将未知吃草量的牛分为两个部分:一小部分先吃新草,数量是草的比例;用草的数量除以剩下的牛的数量,你将需要几天的时间来学习。

例:整个牧场的草长得又密又快。

7头牛6天就能把草吃完;23头牛也能吃9天的草。

完成草地需要多少天?每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天)结果就是草的生长速率。

所以草的生长速率是45/3=15(牛/天);原有的草量依此反推。

公式就是A头B天的吃草量减去B天乘以草的生长速率。

所以原有的草量=27X6-6X15=72(牛/天)。

将未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;剩下的21-15=6去吃原有的草,所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)例题1“牛吃草”问题,也叫“牛顿问题”,是人们对英国数学家牛顿在其所著《普通算式》一书中的一道同原理问题的总称。

“牛吃草”问题的难点在于草每天都在生长,草的数量在不断变化。

解决这类问题的关键是,抓住“一变”和“两不变”,即草的总量发生变化,草每天新增的和原有的不变。

解决“牛吃草”问题,通常假设“草每天匀速生长”,“1头牛每天吃1份草”,然后逐步弄清:(1)每个单位时间内,匀速“生产的草”是多少?(2)原有的草量是多少?(3)如果求时间,则把“牛”分成两份,一份“吃原来的草”,一份“吃每天匀速生长的草”;(4)问牛数,草够吃就长几天。

下面通过一些具体的例子给大家解释一下。

数量关系牛吃草问题解题技巧

数量关系牛吃草问题解题技巧

数量关系牛吃草问题解题技巧牛吃草,是一类趣味数学问题,也是公务员考试数量关系中的的常考题型。

今天,老周给大家分享牛吃草问题的三种解法。

及对牛吃草问题的本质进行剖析,帮助大家更彻底、更轻松地破解牛吃草问题。

牛吃草问题的三种解法:第一种,牛吃草问题周氏比例法-老周原创方法。

如果用第二三种方法计算量大,用此法很有效。

第二种,方程法。

第三种,公式法。

所谓的列表法,老周就不介绍了,实质是公式法或方程法的模式化。

基本牛吃草例1:有一块匀速生长的草场,27头牛6周可以吃完,或者23头牛9周可以吃完.若是21头牛,要几周才可以吃完?A.10B.11C.12D.15第一种方法、周氏比例法解牛吃草问题:步骤看起来很多,掌握了,实际上很容易:)第一步:把前二次的牛头数,时间的数字分两列写出来。

27 623 9第二步:每两列数字相减,把结果写出来。

4 与 3第三步:二个差相除。

4/3第四步:求X.三点一线,把三数联起来进行运算,图中红线。

按A-B*C=27-9*4/3=15 算出结果X。

第五步:求Y.根据基本公式(牛-X)天=Y,代入其中一排数据,比如第一排(27-15)*6=72 第六步:求结果。

把X,Y,代入提问中,求出答案。

(21-15)T=72 T=12老周心语:老周看到有些牛吃草题目,用列方程或公式,计算较繁,所以在今年6月份,为大家发明了这么一个解法,可避开一些计算,更快的算出答案。

实质是用比例法的思想解题,老周把这个牛吃草的解法,归在周氏比例法的系统中。

此解法,后来被人盗用,并说成是他原创。

老周表示,老周的原创解法欢迎大家转载,传播,但希望能尊重原创者,引用时注明出处。

老周精剖牛吃草问题:我们看此题,典型的牛吃草问题。

草,是在不断生长的,它有生长的效率;牛,在努力吃草,它有吃草的效率。

牛吃草问题可以理解成为工程问题。

牛有吃草的效率,草有生长的效率,而这个草场原有草量,就相当于工程总量。

每天的实际效率=牛吃草的效率-草生长的效率。

牛吃草问题的解题方法

牛吃草问题的解题方法

牛吃草问题的解题方法除了总结这两种类型问题相应的解法,在实践中还要有培养运用“牛吃草问题”的解题思想解决实际问题的能力。

①在求出“每天新生长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。

②未知天数谋只数时,同样须要先求出来“每天崭新生长的草量”和“旧有草量”。

③根据(“旧有草量”+若干天里新生草量)÷天数”,算出只数。

解决牛吃草问题常用到四个基本公式,分别是∶(1)草的生长速度=对应的牛头数×喝的较多天数-适当的牛头数×喝的较少天数÷(喝的较多天数-喝的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`(3)喝的天数=旧有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度第一种:通常数学分析“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。

如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。

”一般解法:把一头牛一天所吃的牧草看作1,那么就有:(1)27头牛6天所喝的牧草为:27×6=162(这162包含牧场旧有的草和6天新长的草。

)(2)23头牛9天所吃的牧草为:23×9=207(这207包括牧场原有的草和9天新长的草。

)(3)1天新长的草为:(207-162)÷(9-6)=15(4)牧场上原有的草为:27×6-15×6=72(5)每天新长的草足够多15头牛喝,21头牛乘以15头,剩6头喝原牧场的草:72÷(21-15)=72÷6=12(天)所以养21头牛,12天才能把牧场上的草吃尽。

第二种:公式数学分析有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛,则8天吃完牧草,假设每头牛吃草的量是相等的。

牛吃草问题经典例题及解题思路和方法

牛吃草问题经典例题及解题思路和方法

牛吃草问题经典例题及解题思路和方法牛吃草含义:“牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。

这类问题的特点在于要考虑草边吃边长这个因素。

数量关系:草总量=原有草量+草每天生长量×天数解题思路和方法:解决这类问题的关键是找出草的日常生长情况。

例1一块草,10头牛20天能把草吃完,15头牛10天能把草吃完。

有多少头牛能在五天内吃完草?解草是均匀生长的,所以,草总量=原有草量+草每天生长量×天数。

求“多少头牛5天可以把草吃完”,就是说5天内的草总量要5天吃完的话,得有多少头牛?设每头牛每天吃草量为1,按以下步骤解答:(1)求草每天的生长量因为,一方面20天内的草总量就是10头牛20天所吃的草,即(1×10×20);另一方面,20天内的草总量又等于原有草量加上20天内的生长量,所以1×10×20=原有草量+20天内生长量同理1×15×10=原有草量+10天内生长量由此可知(20——10)天内草的生长量为1×10×20——1×15×10=50因此,草每天的生长量为50÷(20——10)=5(2)求原有草量原有草量=10天内总草量——10内生长量=1×15×10——5×10=100(3)求5天内草总量5天内草总量=原有草量+5天内生长量=100+5×5=125(4)求多少头牛5天吃完草因为每头牛每天吃的草量是1,所以每头牛5天吃的草量是5。

因此5天吃完草需要牛的头数125÷5=25(头)五天内完成草地需要五头牛。

例2一艘船有漏洞,水匀速进入船内。

发现漏水的时候,已经有一部分水进了。

如果有12个人淘水,3个小时就能洗完;如果只有五个人在搜寻水,要10个小时才能洗出来。

要求17个人在几个小时内淘完。

解这是一道变相的“牛吃草”问题。

“牛吃草”问题的小学解法与初中解法

“牛吃草”问题的小学解法与初中解法

“牛吃草”问题的小学解法与初中解法在小学这类问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

例1一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。

如果有牛21头,几天能把草吃尽?摘录条件:27头6天原有草+6天生长草23头9天原有草+9天生长草21头?天原有草+?天生长草小学解答:解答这类问题关键是要抓住牧场青草总量的变化。

设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9-27×6=45。

为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15 现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。

由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(27-15)×6=72那么:第一次吃草量27×6=162第二次吃草量23×9=207每天生长草量45÷3=15原有草量(27-15)×6=72或162-15×6=7221头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)初中解答:假设原来有的草为x份,每天长出来的草为y份,每头牛每天吃草1份。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛吃草类型应用题解题方法集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]例1牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.问:可供25头牛吃几天?分析与解:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量.总草量可以分为牧场上原有的草和新生长出来的草两部分.牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的.下面,就要设法计算出原有的草量和每天新长出的草量这两个不变量.设1头牛一天吃的草为1份.那么,10头牛20天吃200份,草被吃完;15头牛10天吃150份,草也被吃完.前者的总草量是200份,后者的总草量是150份,前者是原有的草加20天新长出的草,后者是原有的草加10天新长出的草.200-150=50(份),20-10=10(天),说明牧场10天长草50份,1天长草5份.也就是说,5头牛专吃新长出来的草刚好吃完,5头牛以外的牛吃的草就是牧场上原有的草.由此得出,牧场上原有草(10-5)×20=100(份)或(15-5)×10=100(份).现在已经知道原有草100份,每天新长出草5份.当有25头牛时,其中的5头专吃新长出来的草,剩下的20头吃原有的草,吃完需100÷20=5(天).所以,这片草地可供25头牛吃5天.在例1的解法中要注意三点:(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的.(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量.(3)在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草,根据原有的草量可以计算出能吃几天.例2一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池存了一些水后,再打开出水管.如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空.那么出水管比进水管晚开多少分钟?分析:虽然表面上没有“牛吃草”,但因为总的水量在均匀变化,“水”相当于“草”,进水管进的水相当于新长出的草,出水管排的水相当于牛在吃草,所以也是牛吃草问题,解法自然也与例1相似.出水管所排出的水可以分为两部分:一部分是出水管打开之前原有的水量,另一部分是开始排水至排空这段时间内进水管放进的水.因为原有的水量是不变的,所以可以从比较两次排水所用的时间及排水量入手解决问题.设出水管每分钟排出水池的水为1份,则2个出水管8分钟所排的水是2×8=16(份),3个出水管5分钟所排的水是3×5=15(份),这两次排出的水量都包括原有水量和从开始排水至排空这段时间内的进水量.两者相减就是在8-5=3(分)内所放进的水量,所以每分钟的进水量是水管排原有的水,可以求出原有水的水量为解:设出水管每分钟排出的水为1份.每分钟进水量答:出水管比进水管晚开40分钟.例3由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天?分析与解:与例1不同的是,不仅没有新长出的草,而且原有的草还在减少.但是,我们同样可以利用例1的方法,求出每天减少的草量和原有的草量.设1头牛1天吃的草为1份.20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷使牧场1天减少青草10份,也就是说,寒冷相当于10头牛在吃草.由“草地上的草可供20头牛吃5天”,再加上“寒冷”代表的10头牛同时在吃草,所以牧场原有草(20+10)×5=150(份).由150÷10=15知,牧场原有草可供15头牛吃10天,寒冷占去10头牛,所以,可供5头牛吃10天..例4自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上.问:该扶梯共有多少级?分析:与例3比较,“总的草量”变成了“扶梯的梯级总数”,“草”变成了“梯级”,“牛”变成了“速度”,也可以看成牛吃草问题.上楼的速度可以分为两部分:一部分是男、女孩自己的速度,另一部分是自动扶梯的速度.男孩5分钟走了20×5=100(级),女孩6分钟走了15×6=90(级),女孩比男孩少走了100-90=10(级),多用了6-5=1(分),说明电梯1分钟走10级.由男孩5分钟到达楼上,他上楼的速度是自己的速度与扶梯的速度之和,所以扶梯共有(20+10)×5=150(级).解:自动扶梯每分钟走(20×5-15×6)÷(6-5)=10(级),自动扶梯共有(20+10)×5=150(级).答:扶梯共有150级.例5某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟.如果同时打开7个检票口,那么需多少分钟?分析与解:等候检票的旅客人数在变化,“旅客”相当于“草”,“检票口”相当于“牛”,可以用牛吃草问题的解法求解.旅客总数由两部分组成:一部分是开始检票前已经在排队的原有旅客,另一部分是开始检票后新来的旅客.设1个检票口1分钟检票的人数为1份.因为4个检票口30分钟通过(4×30)份,5个检票口20分钟通过(5×20)份,说明在(30-20)分钟内新来旅客(4×30-5×20)份,所以每分钟新来旅客(4×30-5×20)÷(30-20)=2(份).假设让2个检票口专门通过新来的旅客,两相抵消,其余的检票口通过原来的旅客,可以求出原有旅客为(4-2)×30=60(份)或(5-2)×20=60(份).同时打开7个检票口时,让2个检票口专门通过新来的旅客,其余的检票口通过原来的旅客,需要60÷(7-2)=12(分).例6有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天?分析与解:例1是在同一块草地上,现在是三块面积不同的草地.为了解决这个问题,只需将三块草地的面积统一起来.[5,6,8]=120.因为5公顷草地可供11头牛吃10天,120÷5=24,所以120公顷草地可供11×24=264(头)牛吃10天.因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草地可供12×20=240(头)牛吃14天.120÷8=15,问题变为:120公顷草地可供19×15=285(头)牛吃几天因为草地面积相同,可忽略具体公顷数,所以原题可变为:“一块匀速生长的草地,可供264头牛吃10天,或供240头牛吃14天,那么可供285头牛吃几天”这与例1完全一样.设1头牛1天吃的草为1份.每天新长出的草有(240×14-264×10)÷(14-10)=180(份).草地原有草(264-180)×10=840(份).可供285头牛吃840÷(285-180)=8(天).所以,第三块草地可供19头牛吃8天我将“牛吃草”归纳为两大类,用下面两个例题来说明例1.牧场上有一片均匀生长的牧草,可供27头牛吃6天,或供23头牛吃9天。

那么它可供21头牛吃几天例2.有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天分析与解:例1是在同一块草地上,例2是三块面积不同的草地.(这就两者本质的区别)第一章:核心思路[普通解法请参考上面三位前辈的帖子。

我没把链接做好,不好意思]现在来说我的核心思路:例1.牧场上有一片均匀生长的牧草,可供27头牛吃6天,或供23头牛吃9天。

那么它可供21头牛吃几天将它想象成一个非常理想化的数学模型:假设27头牛中有X头是“剪草工”,这X头牛只负责吃“每天新长出的草,并且把它们吃完”,这样以来草场相当于不长草,永远维持原来的草量,而剩下的(27-X)头牛是真正的“顾客”,它们负责把草场原来的草吃完。

(请慢慢理解,这是关键)例1:解:设每天新增加草量恰可供X头牛吃一天,21牛可吃Y天(后面所有X均为此意)可供27头牛吃6天,列式:(27-X)·6注:(27-X)头牛6天把草场吃完可供23头牛吃9天,列式:(23-X)·9注:(23-X)头牛9天把草场吃完可供21头牛吃几天列式:(21-X)·Y 注:(21-X)头牛Y天把草场吃完因为草场草量已被“清洁工”修理过,总草量相同,所以,联立上面1、2、3(27-X)·6=(23-X)·9=(21-X)·Y(27-X)·6=(23-X)·9【1】(23-X)·9=(21-X)·Y【2】解这个方程组,得X=15(头)Y=12(天)例2:有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天解析:现在是三块面积不同的草地.为了解决这个问题,需要将三块草地的面积统一起来.(这是面积不同时得解题关键)求【5,6,8】得最小公倍数为1201、因为5公顷草地可供11头牛吃10天,120/5=24,所以120公顷草地可供11*24=264(头)牛吃10天.2、因为6公顷草地可供12头牛吃14天,120/6=20,所以120公顷草地可供12*20=240(头)牛吃14天.3、1208=15,问题变为:120公顷草地可供19/15=285(头)牛吃几天?这样一来,例2就转化为例1,同理可得:(264-X)·10=(240-X)·14=(285-X)·Y(264-X)·10=(240-X)·14【1】(240-X)·14=(285-X)·Y【2】解方程组:X=180(头)Y=8(天)典型例题“牛吃草”已介绍完毕。

第二章:“牛吃草”变型.以下几道题目都是“牛吃草”的变型,解法和上面我讲的一摸一样,因为我在前边写的很详细了,所以下面的例题不再给出详解,略作说明即可。

相关文档
最新文档