解三角形全章教案(整理)

合集下载

高中数学新教材解三角形教案

高中数学新教材解三角形教案

高中数学新教材解三角形教案高中数学新教材解三角形教案1一、教学内容分析向量作为工具在数学、物理以及实际生活中都有着广泛的应用.本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用.二、教学目标设计1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路.2、了解构造法在解题中的运用.三、教学重点及难点重点:平面对量知识在各个领域中应用.难点:向量的构造.四、教学流程设计五、教学过程设计一、复习与回顾1、提问:下列哪些量是向量?(1)力(2)功(3)位移(4)力矩2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?[说明]复习数量积的有关知识.二、学习新课例1(书中例5)向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看例2(书中例3)证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立.证法(二)向量法[说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是)例3(书中例4)[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明.二、巩固练习1、如图,某人在静水中游泳,速度为km/h.(1)如果他径直游向河对岸,水的流速为4 km/h,他实际沿什么方向前进?速度大小为多少?答案:沿北偏东方向前进,实际速度大小是8 km/h.(2) 他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?答案:朝北偏西方向前进,实际速度大小为km/h.三、课堂小结1、向量在物理、数学中有着广泛的应用.2、要学会从不同的角度去看一个数学问题,是数学知识有机联系.四、作业布置1、书面作业:课本P73, 练习8.4 4高中数学新教材解三角形教案2教学目标:1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.2.会求一些简单函数的反函数.3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.4.进一步完善学生思维的深刻性,培育学生的逆向思维能力,用辩证的观点分析问题,培育抽象、概括的能力.教学重点:求反函数的方法.教学难点:反函数的概念.教学过程:教学活动设计意图一、创设情境,引入新课1.复习提问①函数的概念②y=f(x)中各变量的意义2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt 的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.3.板书课题由实际问题引入新课,激发了学生学习爱好,展示了教学目标.这样既可以拨去反函数这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.二、实例分析,组织探究1.问题组一:(用投影给出函数与;与()的图象)(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)(2)由,已知y能否求x?(3)是否是一个函数?它与有何关系?(4)与有何联系?2.问题组二:(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?(3)函数()的定义域与函数()的值域有什么关系?3.渗透反函数的概念.(老师点明这样的函数即互为反函数,然后师生共同探究其特点) 从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培育学生抽象、概括的能力.通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在最近进展区设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.三、师生互动,归纳定义1.(根据上述实例,老师与学生共同归纳出反函数的定义)函数y=f(x)(x∈A) 中,设它的值域为C.我们根据这个函数中x,y 的关系,用y 把x 表示出来,得到x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量y 的函数.这样的函数x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到用x表示自变量, y表示函数的习惯,将中的x与y对调写成.2.引导分析:1)反函数也是函数;2)对应法则为互逆运算;3)定义中的如果意味着对于一个任意的函数y=f(x)来说不一定有4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;5)函数y=f(x)与x=f(y)互为反函数;6)要理解好符号f;7)交换变量x、y的原因.3.两次转换x、y的对应关系(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的.)4.函数与其反函数的关系函数y=f(x)函数定义域AC值域CA四、应用解题,总结步骤1.(投影例题)【例1】求下列函数的反函数(1)y=3x-1 (2)y=x 1【例2】求函数的反函数.(老师板书例题过程后,由学生总结求反函数步骤.)2.总结求函数反函数的步骤:1° 由y=f(x)反解出x=f(y).2° 把x=f(y)中x与y互换得.3° 写出反函数的定义域.(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?(2)的反函数是________.(3)(x0)的反函数是__________.在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.通过动画演示,表格对比,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培育学生分析、思考的习惯,以及归纳总结的能力.题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.五、巩固强化,评价反馈1.已知函数y=f(x)存在反函数,求它的反函数y =f( x)(1)y=-2x 3(xR) (2)y=-(xR,且x)( 3 ) y=(xR,且x)2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.五、反思小结,再度设疑本节课主要讨论了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节讨论.(让学生谈一下本节课的学习体会,老师适时点拨)进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可实行同学板演、分组竞赛等多种形式调动学生的乐观性.问题是数学的心脏学生带着问题走进课堂又带着新的问题走出课堂.六、作业习题2.4第1题,第2题进一步巩固所学的知识.教学设计说明问题是数学的心脏.一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采纳了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,讨论性质,进而得出概念,这正是数学讨论的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对比、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培育学生的逆向思维.使学生自然成为学习的主人。

解直角三角形教案(完美版)

解直角三角形教案(完美版)

解直角三角形一、教育目标(一)知识与技能使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)过程与方法 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. (三)情感态度与价值观 渗透数形结合的数学思想,培养学生良好的学习习惯. 二、重、难点重点:直角三角形的解法. 难点:三角函数在解直角三角形中的灵活运用. 三、教学过程(一)明确目标1.在三角形中共有几个元素? 2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系 sin ;cos ;t an ;cot b a b a B B B B c c a b ====; sin ;cos ;tan ;cot a b a bA A A A c c b a====如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成.的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=cot tan cos sin(2)三边之间关系 a 2 +b 2 =c 2 (勾股定理) (3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二)整体感知教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习巩固.同时,本课又为以后的应用举例打下基础,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.(三)重点、难点的学习与目标完成过程1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形). 3.例题例1 在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且c=287.4,∠B=42°6′,解这个三角形.分析:解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.解:(1)∠A=90°-∠B =90°-42°6′=47°54′,(2)cos ,aB c=∴a=c . cosB=28.74×0.7420≈213.3.(3) sin bB c=,∴b=c·sinB=287.4×0.6704≈192.7.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例2 在Rt △ABC 中,a=104.0,b=20.49,解这个三角形. 在学生独立完成之后,选出最好方法,教师板书.(1)104.0tan 5.07620.49a b α=≈≈查表得A=78°51′;(2)∠B=90°-78°51′=11°9′(3)104.0sin ,.sin 0.9812106a a A c c A =∴==≈ .注意:例1中的b 和例2中的c 都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些.但先后要查两次表,并作一次加法(或减法).4.巩固练习解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.(四)总结与扩展1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.2.出示图表,请学生完成注:上表中“√”表示已知。

下学期高一数学第一章解三角形全章教案 必修5

下学期高一数学第一章解三角形全章教案 必修5

下学期高一数学第一章解三角形全章教案1.1第1课时 正弦定理(1)教学目标(1)要求学生掌握正弦定理及其证明;(2)会初步应用正弦定理解斜三角形,培养数学应用意识; (3)在问题解决中,培养学生的自主学习和自主探索能力. 教学重点,难点正弦定理的推导及其证明过程. 教学过程 一.问题情境在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角.那么斜三角形怎么办?我们能不能发现在三角形中还蕴涵着其他的边与角关系呢?探索1 我们前面学习过直角三角形中的边角关系,在Rt ABC ∆中,设90C =︒,则sin a A c =, sin b B c =, sin 1C =, 即:sin a c A =, sin b c B =, sin c c C =, sin sin sin a b cA B C==. 探索2 对于任意三角形,这个结论还成立吗? 二.学生活动学生通过画三角形、测量边长及角度,再进行计算,初步得出该结论对于锐角三角形和钝角三角形成立.教师再通过几何画板进行验证.引出课题——正弦定理. 三.建构数学探索3 这个结论对于任意三角形可以证明是成立的.不妨设C 为最大角,若C 为直角,我们已经证得结论成立,如何证明C 为锐角、钝角时结论也成立? 证法1 若C 为锐角(图(1)),过点A 作AD BC ⊥于D ,此时有sin AD B c =,sin ADC b=,所以sin sin c B b C =,即sin sin b c B C =.同理可得sin sin a cA C=, 所以sin sin sin a b cA B C ==. 若C 为钝角(图(2)),过点A 作AD BC ⊥,交BC 的延长线于D ,此时也有sin AD B c =,且sin sin(180)AD C C b =︒-=.同样可得sin sin sin a b cA B C==.综上可知,结论成立.证法 2 利用三角形的面积转换,先作出三边上的高AD 、BE 、CF ,则sin AD c B =,sin BE a C =,sin CF b A =.所以111sin sin sin 222ABC S ab C ac B bc A ∆===,每项同除以12abc 即得:sin sin sin a b cA B C==.探索4 充分挖掘三角形中的等量关系,可以探索出不同的证明方法.我们知道向量也是解决问题的重要工具,因此能否从向量的角度来证明这个结论呢?在ABC ∆中,有BC BA AC =+.设C 为最大角,过点A 作AD BC ⊥于D (图(3)),于是BC AD BA AD AC AD ⋅=⋅+⋅.设AC 与AD 的夹角为α,则0||||cos(90)||||cos BA AD B AC AD α=⋅⋅︒++⋅,其中 ,当C ∠为锐角或直角时,90C α=︒-; 当C ∠为钝角时,90C α=-︒. 故可得sin sin 0c B b C -=,即sin sin b cB C=. 同理可得sin sin a cA C =. 因此sin sin sin a b c A B C==. 四.数学运用 1.例题:例1.在ABC ∆中,30A =︒,105C =︒,10a =,求b ,c .解:因为30A =︒,105C =︒,所以45B =︒.因为sin sin sin a b cA B C==, 所以sin 10sin 45102sin sin 30a B b A ︒===︒,sin 10sin1055256sin sin 30a C c A ︒===+︒.因此, b ,c 的长分别为102和5256+.例2.根据下列条件解三角形: (1)3,60,1b B c ==︒=; (2)6,45,2c A a ==︒=.解:(1)sin sin b cB C =,∴sin 1sin 601sin 23c B C b ⨯︒===, ,60b c B >=,∴C B <,∴C 为锐角, ∴30,90C A ==,∴222a b c =+=.(2)sin sin a cA C=,∴sin 6sin 453sin 22c A C a ⨯===,∴60120C =或, ∴当sin 6sin 756075,31sin sin 60c B C B b C =====+时,; ∴当sin 6sin1512015,31sin sin 60c B C B b C =====-时,; 所以,31,75,60b B C =+==或31,15,120b B C =-==.说明:正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题. 练习:在ABC ∆中,30a =,26b =,30A =︒,求c 和,B C .说明:正弦定理可以用于解决已知两角和一边求另两边和一角的问题. 2.练习: (1)在ABC ∆中,已知8b c +=,30B ∠=︒,45C ∠=︒,则b = ,c = . (2)在ABC ∆中,如果30A ∠=︒,120B ∠=︒,12b =,那么a = ,ABC ∆的面积是 .(3)在ABC ∆中,30bc =,1532ABC S ∆=,则A ∠= . (4)课本第9页练习第1题. 五.回顾小结:1.用两种方法证明了正弦定理:(1)转化为直角三角形中的边角关系;(2)利用向量的数量积.2.初步应用正弦定理解斜三角形. 六.课外作业:课本第9页练习第2题;课本第11页习题1.1第1、6题§1.1.1第2课时 正弦定理(2)教学目标(1)掌握正弦定理和三角形面积公式,并能运用这两组公式求解斜三角形; (2)熟记正弦定理2sin sin sin a b cR A B C===(R 为ABC ∆的外接圆的半径)及其变形形式.教学重点,难点利用三角函数的定义和外接圆法证明正弦定理. 教学过程 一.问题情境上节课我们已经运用两种方法证明了正弦定理,还有没有其他方法可以证明正弦定理呢? 二.学生活动学生根据第5页的途径(2),(3)去思考. 三.建构数学证法1 建立如图(1)所示的平面直角坐标系,则有(cos ,sin )A c B c B ,(,0)C a ,所以ABC ∆的面积为1sin 2ABC S ac B ∆=.同理ABC ∆的面积还可以表示为1sin 2ABC S ab C ∆=及1sin 2ABC S bc A ∆=,所以111sin sin sin 222ab C ac B bc A ==. 所以sin sin sin a b c A B C==. 证法2 如下图,设O 是ABC ∆的外接圆,直径2BD R =.(1)如图(2),当A 为锐角时,连CD ,则90BCD ∠=︒,2sin a R D =.又D A ∠=∠,所以2sin a R A =.(2)如图(3),当A 为钝角时,连CD ,则90BCD ∠=︒,2sin a R D =.又180A D ∠+∠=︒,可得sin sin(180)sin D A A =︒-=,所以2sin a R A =.(3)当A 为直角时,2a R =,显然有2sin a R A =.所以不论A 是锐角、钝角、直角,总有2sin a R A =.同理可证2sin b R B =,2sin c R C =.所以2sin sin sin a b cR A B C===. 由此可知,三角形的各边与其所对角的正弦之比是一个定值,这个定值就是三角形外接圆的直径. 由此可得到正弦定理的变形形式:(1)2sin ,2sin ,2sin a R A b R B c R C ===; (2)sin ,sin ,sin 222a b cA B C R R R===;(3)sin sin sin ::::A B C a b c =. 四.数学运用1.例题:例1.根据下列条件,判断ABC ∆有没有解?若有解,判断解的个数. (1)5a =,4b =,120A =︒,求B ; (2)5a =,4b =,90A =︒,求B ;(3)106a =,203b =45A =︒,求B ; (4)202a =203b =45A =︒,求B ;(5)4a =,33b =,60A =︒,求B . 解:(1)∵120A =︒,∴B 只能是锐角,因此仅有一解. (2)∵90A =︒,∴B 只能是锐角,因此仅有一解.(3)由于A 为锐角,而210632=,即A b a sin =,因此仅有一解90B =︒.(4)由于A 为锐角,而22032022031062>>=,即sin b a b A >>,因此有两解,易解得60120B =︒︒或.(5)由于A 为锐角,又1034sin 605<︒=,即sin a b A <,∴B 无解. 例2.在ABC ∆中,已知,cos cos cos a b cA B C==判断ABC ∆的形状.解:令sin ak A=,由正弦定理,得sin a k A =,sin b k B =,sin c k C =.代入已知条件,得sin sin sin cos cos cos A B C A B C==,即tan tan tan A B C ==.又A ,B ,C (0,)π∈,所以A B C ==,从而ABC ∆为正三角形.说明:(1)判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?还要研究角与角的大小关系:是否两角相等?是否三角相等?有无直角?有无钝角? (2)此类问题常用正弦定理(或将学习的余弦定理)进行代换、转化、化简、运算,揭示出边与边,或角与角的关系,或求出角的大小,从而作出正确的判断.例3.某登山队在山脚A 处测得山顶B 的仰角为35︒,沿倾斜角为20︒的斜坡前进1000米后到达D 处,又测得山顶的仰角为65︒,求山的高度(精确到1米). 分析:要求BC ,只要求AB ,为此考虑解ABD ∆. 解:过点D 作//DE AC 交BC 于E ,因为20DAC ∠=︒, 所以160ADE ∠=︒,于是36016065135ADB ∠=︒-︒-︒=︒. 又352015BAD ∠=︒-︒=︒,所以30ABD ∠=︒. 在ABD ∆中,由正弦定理,得sin 1000sin13510002()sin sin 30AD ADB AB m ABD ∠︒===∠︒.在Rt ABC ∆中,sin 35235811()BC AB m =︒=︒≈. 答:山的高度约为811m .例4.如图所示,在等边三角形中,,AB a =O 为三角形的中心,过O 的直线交AB 于M ,交AC 于N ,求2211OM ON +的最大值和最小值. 解:由于O 为正三角形ABC 的中心,∴3AO =, 6MAO NAO π∠=∠=,设MOA α∠=,则233ππα≤≤,αβπβ-αACBD在AOM ∆中,由正弦定理得:sin sin[()]6OM OAMAO ππα=∠-+, ∴6sin()6OM πα=+,在AON ∆中,由正弦定理得:6sin()6ON πα=-,∴2211OM ON +22212[sin ()sin ()]66a ππαα=++-22121(sin )2a α=+, ∵233ππα≤≤,∴3sin 14α≤≤,故当2πα=时2211OM ON +取得最大值218a, 所以,当α=2,33or ππ时23sin 4α=,此时2211OM ON +取得最小值215a . 例5.在ABC ∆中,AD 是BAC ∠的平分线,用正弦定理证明:AB BDAC DC=. 证明:设BAD α∠=,BDA β∠=,则CAD α∠=,180CDA β∠=︒-.在ABD ∆和ACD ∆中分别运用正弦定理,得sin sin AB BD βα=,sin(180)sin AC DC βα︒-=, 又sin(180)sin ββ︒-=,所以AB AC BD DC =,即AB BDAC DC=. 2.练习:(1)在ABC ∆中,::4:1:1A B C =,则::a b c = ( D )A .4:1:1 B .2:1:1 CD(2)在ABC ∆中,若sin :sin :sin 4:5:6A B C =,且15a b c ++=,则a = , b = ,c = . 五.回顾小结:1.了解用三角函数的定义和外接圆证明正弦定理的方法; 2.理论上正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. 六.课外作业:课本第9页练习第3题;课本第11页习题1.1第2、8题.§1.1.2 第3课时 余弦定理(1)教学目标(1)掌握余弦定理及其证明;(2)使学生能初步运用余弦定理解斜三角形. 教学重点,难点(1)余弦定理的证明及其运用;(2)能灵活运用余弦定理解斜三角形. 教学过程 一.问题情境 1.情境:复习正弦定理及正弦定理能够解决的两类问题. 2.问题:在上节中,我们通过等式BC BA AC =+的两边与AD (AD 为ABC ∆中BC 边上的高)作数量积,将向量等式转化为数量关系,进而推出了正弦定理,还有其他途径将向量等式BC BA AC =+数量化吗?二.学生活动如图,在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b . ∵BC AB AC +=∴()()AC AC AB BC AB BC ⋅=+⋅+22cos 2a B ac c +-=, 即B ac a c b cos 2222-+=;同理可证:A bc c b a cos 2222-+=, C ab b a c cos 2222-+=. 三.建构数学 1. 余弦定理上述等式表明,三角形任何一边的平方等于其他两边平方的和,减去这两边与它们夹角的余弦的积的两倍.这样,我们得到余弦定理. 2.思考:回顾正弦定理的证明,尝试用其他方法证明余弦定理.方法1:如图1建立直角坐标系,则(0,0),(cos ,sin ),(,0)A B c A c A C b .所以2222222222(cos )(sin )cos sin 2cos 2cos a c A b c A c A c A bc A b b c bc A=-+=+-+=+-同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=注:此法的优点在于不必对A 是锐角、直角、钝角进行分类讨论.方法2:若A 是锐角,如图2,由B 作BD AC ⊥,垂足为D ,则cos AD c A =,所以即A bc c b a cos 2222-+=,类似地,可以证明当A 是钝角时,结论也成立,而当A 是直角时,结论显 然成立.同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=.图1 图2 3.余弦定理也可以写成如下形式:bc a c b A 2cos 222-+= , ac b c a B 2cos 222-+=, acc b a C 2cos 222-+=.4.余弦定理的应用范围:利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在ABC ∆中,(1) 已知3b =,1c =,060A =,求a ;A BCcab(2) 已知4a =,5b =,6=c ,求A (精确到00.1).解:(1)由余弦定理,得2222202cos 31231cos607a b c bc A =+-=+-⨯⨯⨯=,所以 a =(2)由余弦定理,得222222564cos 0.752256b c a A bc +-+-===⨯⨯, 所以,041.4A ≈.例2. ,A B 两地之间隔着一个水塘,现选择另一点C ,测得182,CA m =126,CB m =063ACB ∠=,求,A B 两地之间的距离(精确到1m ). 解:由余弦定理,得所以,168()AB m ≈答:,A B 两地之间的距离约为168m .例3.用余弦定理证明:在ABC ∆中,当C 为锐角时,222a b c +>;当C 为钝角时,222a b c +<.证:当C 为锐角时,cos 0C >,由余弦定理,得222222cos c a b ab C a b =+-<+,即 222a b c +>.同理可证,当C 为钝角时,222a b c +<.2.练习:书第15页 练习1,2,3,4 五.回顾小结:1.余弦定理及其应用2.正弦定理和余弦定理是解三角形的两个有力工具,要区别两个定理的不同作用,在解题时正确选用;六.课外作业:书第16页1,2,3,4,6,7题§1.1.2 第4课时 余弦定理(2)教学目标(1)能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦定理、余弦定理及相关的三角公式解决这些问题. 教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题,牢固掌握两个定理,应用自如. 教学过程 一.问题情境1.正弦定理及其解决的三角形问题(1)已知两角和任一边,求其它两边和一角;(2)已知两边和其中一边的对角,求另一边的对角,从而进一步其它的边和角. 2.余弦定理及其解决的三角形问题 (1)已知三边,求三个角;(2)已知两边和他们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在长江某渡口处,江水以5/km h 的速度向东流,一渡船在江南岸的A 码头出发,预定要在0.1h 后到达江北岸B 码头,设AN 为正北方向,已知B 码头在A 码头的北偏东015,并与A 码头相距1.2km .该渡船应按什么方向航行?速度是多少(角度精确到00.1,速度精确到0.1/km h )?解:如图,船按AD 方向开出,AC 方向为水流方向,以AC 为一边、AB 为对角线作平行四边形ABCD ,其中 1.2(),50.10.5()AB km AC km ==⨯=.在ABC ∆中,由余弦定理,得2221.20.52 1.20.5cos(9015) 1.38BC =+-⨯⨯-≈, 所以 1.17()AD BC km =≈. 因此,船的航行速度为1.170.111.7(/)km h ÷=.在ABC ∆中,由正弦定理,得 0sin 0.5sin 75sin 0.41281.17AC BAC ABC BC ∠∠==≈, 所以 024.4ABC ∠≈所以 00159.4DAN DAB NAB ABC ∠=∠-∠=∠-≈.答:渡船应按北偏西09.4的方向,并以11.7/km h 的速度航行.例2. 在ABC ∆中,已知sin 2sin cos A B C =,试判断该三角形的形状.解:由正弦定理及余弦定理,得222sin ,cos sin 2A a a b c C B b ab+-==, 所以 22222a a b c b ab+-=,整理得 22b c =因为0,0b c >>,所以b c =.因此,ABC ∆为等腰三角形.例3.如图,AM 是ABC ∆中BC 边上的中线,求证:22212()2AM AB AC BC =+-.证:设AMB α∠=,则0180AMC α∠=-.在ABM ∆中,由余弦定理,得2222cos AB AM BM AM BM α=+-.在ACM ∆中,由余弦定理,得22202cos(180)AC AM MC AM MC α=+--.因为01cos(180)cos ,2BM MC BC αα-=-==, 所以2222122AB AC AM BC +=+,因此, 22212()2AM AB AC BC =+-. 例4.在ABC ∆中,BC a =,AC b =,,a b 是方程02322=+-x x 的两个根,且2cos()1A B +=,求:①角C 的度数; ②AB 的长度; ③ABC S ∆.解:①1cos cos(())cos()2C A B A B π=-+=-+=- ∴120C =;②由题设:232a b ab ⎧+=⎪⎨=⎪⎩,∴2222cos AB AC BC AC BC C =+-⋅⋅120cos 222ab b a -+=ab b a ++=22102)32()(22=-=-+=ab b a , 即10AB =;③ABC S ∆11133sin sin120222222ab C ab ===⋅⋅=.2.练习:(1)书第16页 练习1,2,3,4DCBA(2)如图,在四边形ABCD 中,已知AD CD ⊥,10AD =,14AB =, 60BDA ∠=, 135BCD ∠=, 求BC 的长.(3)在ABC ∆中,已知()()()456::::b c c a a b +++=,求ABC ∆的最大内角;(4)已知ABC ∆的两边,b c 是方程2400x kx -+=的两个根,的面积是2cm ,周长是20cm ,试求A 及k 的值; 五.回顾小结:1.正弦、余弦定理是解三角形的有力工具,要区别两个定理的不同作用,在解题时正确选用;2.应用正弦、余弦定理可以实现将“边、角相混合”的等式转化为“边和角的单一”形式; 3.应用余弦定理不仅可以进行三角形中边、角间的计算,还可以判断三角形的形状. 六.课外作业:书第17页5,8,9,10,11题§1.3正弦定理、余弦定理的应用(1)教学目标(1)综合运用正弦定理、余弦定理等知识和方法解决与测量学、航海问题等有关的实际问题;(2)体会数学建摸的基本思想,掌握求解实际问题的一般步骤;(3)能够从阅读理解、信息迁移、数学化方法、创造性思维等方面,多角度培养学生分析问题和解决问题的能力. 教学重点,难点(1)综合运用正弦定理、余弦定理等知识和方法解决一些实际问题; (2)掌握求解实际问题的一般步骤. 教学过程 一.问题情境 1.复习引入复习:正弦定理、余弦定理及其变形形式, (1)正弦定理、三角形面积公式:R CcB b A a 2sin sin sin ===; B acC ab A bc S ABC sin 21sin 21sin 21===∆.(2)正弦定理的变形:①C R c B R b A R a sin 2,sin 2,sin 2===;②RcC R b B R a A 2sin ,2sin ,2sin ===; ③sin sin sin ::::A B C a b c =.(3)余弦定理:bca cb A A bc c b a 2cos ,cos 2222222-+=-+=.二.学生活动引导学生复习回顾上两节所学内容,然后思考生活中有那些问题会用到这两个定理,举例说明.三.建构数学正弦定理、余弦定理体现了三角形中边角之间的相互关系,在测量学、运动学、力学、电学等许多领域有着广泛的应用.1.下面给出测量问题中的一些术语的解释:(1)朝上看时,视线与水平面夹角为仰角;朝下看时,视线与水平面夹角为俯角. (2)从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角,叫方位角.(3)坡度是指路线纵断面上同一坡段两点间的高度差与其水平距离的比值的百分率.道路坡度100%所表示的可以这样理解:坡面与水平面的夹角为45度.45度几乎跟墙壁一样的感觉了. (4)科学家为了精确地表明各地在地球上的位置,给地球表面假设了一个坐标系,这就是经纬度线.2.应用解三角形知识解决实际问题的解题步骤:①根据题意作出示意图;②确定所涉及的三角形,搞清已知和未知;③选用合适的定理进行求解;④给出答案. 四.数学运用 1.例题:例1.如图1-3-1,为了测量河对岸两点,A B 之间的距离,在河岸这边取点,C D ,测得85ADC ∠=,60BDC ∠=,47ACD ∠=,72BCD ∠=,100CD m =.设,,,A B C D 在同一平面内,试求,A B 之间的距离(精确到1m ).解:在ADC ∆中,85ADC ∠=,47ACD ∠=,则48DAC ∠=.又100DC =,由正弦定理,得()sin 100sin 85134.05sin sin 48DC ADC AC m DAC ∠==≈∠.在BDC ∆中,60BDC ∠=,72BCD ∠=, 则48DBC ∠=.又100DC =, 由正弦定理,得()sin 100sin 60116.54sin sin 48DC BDC BC m DBC ∠==≈∠.在ABC ∆中, 由余弦定理,得3233.95≈, 所以 ()57AB m ≈答,A B 两点之间的距离约为57m .本例中AB 看成ABC ∆或ABD ∆的一边,为此需求出AC ,BC 或AD ,BD ,所以可考察ADC ∆和BDC ∆,根据已知条件和正弦定理来求AC ,BC ,再由余弦定理求AB .引申:如果A ,B 两点在河的两岸(不可到达),试设计一种测量A ,B 两点间距离的方法.可见习题1.3 探究拓展 第8题.例2.如图1-3-2,某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,测出该渔轮在方位角为45,距离为10n mile 的C 处,并测得渔轮正沿方位角为105的方向,以9/n mile h 的速度向小岛靠拢,我海军舰艇立即以21/n mile h 的速度前去营救.求舰艇的航向和靠近渔轮所需的时间(角度精确到0.1,时间精确到1min ). 解:设舰艇收到信号后x h 在B 处靠拢渔轮,则21AB x =,9BC x =,又10AC =,()45180105120ACB ∠=+-=.由余弦定理,得2222cos AB AC BC AC BC ACB =+-⋅∠,即()()222211092109cos 120x x x =+-⨯⨯∠.化简,得2369100x x --=,解得()()240min 3x h ==(负值舍去).由正弦定理,得图1-3-1图1-3-2sin 9sin12033sin 2114BC ACB x BAC AB x ∠∠===, 所以21.8BAC ∠≈,方位角为4521.866.8+=.答 舰艇应沿着方向角66.8的方向航行,经过40min 就可靠近渔轮.本例是正弦定理、余弦定理在航海问题中的综合应用.因为舰艇从A 到B 与渔轮从C 到B 的时间相同,所以根据余弦定理可求出该时间,从而求出AB 和BC ;再根据正弦定理求出BAC ∠. 例3.如图,某海岛上一观察哨A 在上午11时测得一轮船在海岛北偏东3π的C 处,12时20分测得轮船在海岛北偏西3π的B 处,12时40分轮船到达海岛正西方5km 的E 港口.如果轮船始终匀速前进,求船速. 解:设ABE θ∠=,船的速度为/km h υ,则43BC υ=,13BE υ=. 在ABE ∆中,153sin sin 30υθ=,15sin 2θυ∴=. 在ABC ∆中,()43sin120sin 180AC υθ=-, 4415sin 2033233322AC υθυυ⋅⋅∴===. 在ACE ∆中,22520202525cos150333υ⎛⎫⎛⎫⎛⎫=+-⨯⨯⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 22540077525100933υ=++=,293υ∴=, ∴船的速度93/km h υ=. 2.练习:书上P20 练习1,3,4题.五.回顾小结:1.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题.2.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言(符号语言、图形语言)表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决.六.课外作业: 书上P21页习题1.3 第2,3,4题.§1.3 正弦定理、余弦定理的应用(2)教学目标(1)能熟练应用正弦定理、余弦定理解决三角形等一些几何中的问题和物理问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦、余弦定理及相关的三角公式解决这些问题;(3)通过复习、小结,使学生牢固掌握两个定理,应用自如.教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题。

三角形全章教案

三角形全章教案

2.1三角形【教学目标】1、知识与技能、理解三角形的表示法,分类法以及三边存在的关系,发展空间观念。

2、过程与方法:⑴经历探索三角形中三边关系的过程,认识三角形这个最简单,最基本的几何图形,提高推理能力。

⑵培养学生数学分类讨论的思想。

3、情感态度与价值观:⑴培养学生的推理能力,运用几何语言有条理的表达能力,体会三角形知识的应用价值。

⑵通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识,在独立思考的同时能够认同他人。

【重点】掌握三角形三边关系【难点】三角形三边关系的应用【课型】新授课【学习方法】自学与小组合作学习相结合的方法【学习过程】一、目标导入课件展示图片,学生欣赏并从中抽象出三角形。

问题:你能举出日常生活中三角形的实际例子吗?二、自主学习(1):1.自学内容:教材第42页.2.自学要求:学生理解边、角、顶点的意义而不是背其定义;让学生感受数学语言的逻辑性,严密性。

三、交流展示(1):1:三角形定义:____________________________________________________ 2:怎样用几何符号表示你所画的三角形?什么是三角形的顶点、边、角?3、现实生活中,你看到一些形状不同的三角形,你能画出吗?四、自主学习(2):1.自学内容:课本43页2.自学要求:学生会对三角形分类;学生明白对于同一事物可采用几种不同的分类标准.五、交流展示(2)1. 三角形可采用几种不同的分类标准?如何分类?2.如何给你所画的这些形状各异的?六、自主学习(3):1.自学内容:课本43页动脑筋到例题1;2.自学要求:学生理解三角形三边之间的关系,能进行简单说理.七、交流展示(3)1、三角形三边之间的关系定理:_________________________________,理论依据是__________________________.2、记住:三角形三边之间的关系定理的推论:三角形的两边之差大于第三边;3、下列长度的三条线段能否围成三角形?为什么?⑴ 2,4,7 ⑵ 6,12,6 ⑶ 7,8,134、现有两根木棒,它们的长分别为40cm和50cm,若要钉成一个三角形木架(•不计接头),则在下列四根木棒中应选取()A.10cm长的木棒 B.40cm长的木棒 C.90cm长的木棒 D.100cm 长的木棒5.已知一个三角形的两边长分别是3cm和4cm,则第三边长x的取值范围是____.•若x是奇数,则x的值是______;这样的三角形有______个;•若x•是偶数,•则x•的值是______;这样的三角形又有________个.八、自主学习(4):1.自学内容:课本43页例题;2.自学要求:让学生体会数学的严密性。

九年级数学第一章解直角三角形全章教案

九年级数学第一章解直角三角形全章教案

九年级数学第一章解直角三角形全章教案课题:1.1锐角三角函数(1)教学目标:1.探索直角三角形中锐角三角函数值与三边之间的关系。

2.掌握三角函数定义式:sinA=斜边的对边A ∠, cosA=斜边的邻边A ∠,重点和难点重点:三角函数定义的理解。

难点:直角三角形中锐角三角函数值与三边之间的关系及求三角函数值。

【教学过程】一、情境导入如图是两个自动扶梯,甲、乙两人分别从1、2号自动扶梯上楼,谁先到达楼顶?如果AB 和A ′B ′相等而∠α和∠β大小不同,那么它们的高度AC 和A ′C ′相等吗?AB 、AC 、BC 与∠α,A ′B ′、A ′C ′、B ′C ′与∠β之间有什么关系呢? ------导出新课 二、新课教学 1、合作探究 (1)作2、三角函数的定义在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与斜边的比、邻边与斜边的比也随之确定.∠A 的对边与邻边的比叫做∠A 的正弦(sine),记作sinA ,即sinA =斜边的对边A ∠∠A 的邻边与斜边的比叫做∠A 的余弦(cosine),记作cosA ,即cosA=斜边的邻边A ∠∠A 的对边与∠A 的邻边的比叫做∠A 的正切(tangent),记作tanA ,即 锐角A 的正弦、余弦和正切统称∠A 的三角函数.注意:sinA ,cosA ,tanA 都是一个完整的符号,单独的 “sin ”没有意义,其中A 前面的“∠”一般省略不写。

师:根据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗? 师:(点拨)直角三角形中,斜边大于直角边.生:独立思考,尝试回答,交流结果. 明确:0<sina <1,0<cosa <1.巩固练习:课本第6页课内练习T1、作业题T1、23、例题教学:课本第5页中例1.例1 如图,在Rt △ABC 中,∠C=90°,AB=5,BC=3, 求∠A, ∠B 的正弦,余弦和正切. 分析:由勾股定理求出AC 的长度,再根据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。

《解三角形》教学设计-优秀教案

《解三角形》教学设计-优秀教案

45,C∠.求边长能够很好地激发学生的求知欲望。

在新的问题产生时这个时候也正是产生知识缺陷, 急需新知识的时候教师活动2探究一: 直角三角形边角关系如图:在中, 是最大的角, 所对的斜边是最大的边, 探究边角关系。

探究二: 斜三角形边角关系实验1: 如图, 在等边中, ,对应边的边长, 验证是否成立?实验2: 如图, 在等腰中, , , 对应边的边长, 验证是否成立?实验3:借助多媒体演示, 发现随着三角形的任意变换, 的值相等。

通过这样的一些实验, 我们可以猜想。

学生活动2探究一: 在中, 设, 根据正弦函数定义可得:cbBcaA==∴sin;sincBbAa==∴sinsin又1sin=CCcBbAasinsinsin==∴探究二: 学生通过计算验证结论是否正确探究二:学生通过计算验证结论是否正确活动意图说明从已有的知识结构出发, 不让学生在思维上出现跳跃, 逐层递进, 通过已经熟悉的直角三角形的边角关系的探究作为切入点, 再对特殊的斜三角形进行验证, 过渡到一般的斜三角形边角关系的探究。

让学亲自体验数学实验探究的过程, 逐层递进, 激发学生的求知欲和好奇心, 体会到数学实验的归纳和演绎推理两个侧面。

多媒体技术的引入演示, 让学生更加直观感受到变换, 加深理解。

环节三:教的活动3证明猜想, 得到定理学的活动3分组讨论证明方法并展示活动意图说明经历猜想到证明的过程, 让学生体会到数学新知识得获得仅仅靠猜想和演绎推理是不够的,必须经过严密的数学推导进行证明才可以。

在这个过程中, 也进一步促进学生数学思维思维品质的提升。

7.板书设计(板书完整呈现教与学活动的过程, 最好能呈现建构知识结构与思维发展的路径与关键点。

使用PPT应注意呈现学生学习过程的完整性)课题一、正弦定理定理: 例题练习。

第十一章三角形全章教案

第十一章三角形全章教案

与三角形有关的线段教学内容: 与三角形有关的线段教学目标:1、掌握三角形的角平分线、中线、高的概念;2、会画出任意三角形的角平分线、中线和高,特别注意钝角三角形高的画法,让学生从实践中得到三角形的三条中线,角平分线、高分别交于一点,钝角三角形有两条高位于三角形的外部。

教学重点、难点:重点:三角形角平分线、中线和高的概念及其画法;难点:钝角三角形高的画法教学准备:尺子、铅笔(学生情况分析:初二的学生是处于青春期,有厌学的情况,所有以活动的形式来吸引他们的注意力,让其从根本上理解定理、定义,搞清楚概念。

)教学过程:一、动脑筋(导入)在一个三角形中,任意两边之和与第三边的长度之间是怎么样的大小关系?为什么?(复习上一节课的内容,并且引导学生学会思考三角形中线段之间存在着怎样的关系)二、新授今天我们要学习三角形中的三种重要线段——中线、角平分线和高。

1, 三角形的高a 高的概念:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫作三角形的高线,简称三角形的高。

如图,AH⊥BC,垂足为点H,则线段AH是△ABC的BC边上的高。

(教师在黑板上演示,学生在下面自己学着画)B 做一做:如图试画出图中△ABC的BC边上的高。

(学生一般对锐角的高容易画出,让其做一做钝角三角形的高,小组讨论,,教师在旁边进行辅导)多训练几个特殊三角形的高,试问学生钝角三角形的高有几条在外面。

2、三角形的角平分线a 角平分线的概念:在三角形中,一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫作三角形的角平分线。

如图,∠BAD=∠CAD,则线段AD是△ABC的一条角平分线。

b 思考角平分线所带来的已知条件是什么,和高的区别是什么,(讨论),教师指导完成,学会画角平分线。

3、三角形的中线a 三角形中线的概念:在三角形中,连接一个顶点和它的对边中点的线段叫作三角形的中线。

如图,BE=EC,则线段AE是△ABC的BC边上的中线。

解三角形全章教案(整理)

解三角形全章教案(整理)

数学5 第一章 解三角形第1课时课题: §1.1.1正弦定理●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

●教学重点正弦定理的探索和证明及其基本应用。

●教学难点已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。

A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。

能否用一个等式把这种关系精确地表示出来? B C Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin aA c=,sin bB c=,又sin 1c C c==,A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

第一章三角形全章教案

第一章三角形全章教案

第一章三角形全章教案
第一章三角形全章教案
1.1、等腰三角形(一)
课型
新授课
教学目标
1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。

能够用综合法证明等腰三角形的.关性质定理和判定定理。

教学重点
了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。

教学难点
能够用综合法证明等腰三角形的关性质定理和判定定理。

教学方法
观察法
教学后记
教学内容及过程
学生活动
一、复习:
1、什么是等腰三角形?
2、你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。

3、试用折纸的办法回忆等腰三角形有哪些性质?
二、新课讲解:
在《证明(一)》一章中,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。

同学们和我一起来回忆上学期学过的公理。

第12章全等三角形全章教案

第12章全等三角形全章教案

第十二章全等三角形12.1 全等三角形教学内容本节课主要介绍全等三角形的概念和性质.教学目标1.知识与技能领会全等三角形对应边和对应角相等的有关概念.2.过程与方法经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.3.情感、态度与价值观培养观察、操作、分析能力,体会全等三角形的应用价值.重、难点与关键1.重点:会确定全等三角形的对应元素.2.难点:掌握找对应边、对应角的方法.3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,•两条对应边所夹的角是对应角.教具准备四张大小一样的纸片、直尺、剪刀.教学方法采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程一、动手操作,导入课题1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,•思考得到的图形有何特点?2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,•思考得到的图形有何特点?【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.概念:能够完全重合的两个三角形叫做全等三角形.【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?【学生活动】动手操作,实践感知,得出结论:两个三角形全等.【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?【交流讨论】通过同桌交流,实验得出下面结论:1.任意放置时,并不一定完全重合,•只有当把相同的角旋转到一起时才能完全重合.2.这时它们的三个顶点、三条边和三个内角分别重合了.3.完全重合说明三条边对应相等,三个内角对应相等,•对应顶点在相对应的位置.【教师活动】根据学生交流的情况,给予补充和语言上的规范.1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,•重合的边叫做对应边,重合的角叫做对应角.2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,•如果本图11.1─2△ABC和△DBC全等,点A和点D,点B和点B,点C和点C是对应顶点,•记作△ABC≌△DBC.【问题提出】课本图11.1─1中,△ABC≌△DEF,对应边有什么关系?对应角呢?【学生活动】经过观察得到下面性质:1.全等三角形对应边相等;2.全等三角形对应角相等.二、随堂练习,巩固深化课本P4练习.【探研时空】1.如图1所示,△ACF≌△DBE,∠E=∠F,若AD=20cm,BC=8cm,你能求出线段AB的长吗?与同伴交流.(AB=6)2.如图2所示,△ABC≌△AEC,∠B=30°,∠ACB=85°,求出△AEC各内角的度数.•(∠AEC=30°,∠EAC=65°,∠ECA=85°)三、课堂总结,发展潜能1.什么叫做全等三角形?2.全等三角形具有哪些性质?四、布置作业,专题突破1.课本P4习题11.1第1,2,3,4题.2.选用课时作业设计.板书设计把黑板分成左、中、右三部分,左边板书本节课概念,中间部分板书“思考”中的问题,右边部分板书学生的练习.疑难解析由于两个三角形的位置关系不同,在找对应边、对应角时,可以针对两个三角形不同的位置关系,寻找对应边、角的规律:(1)有公共边的,•公共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角一定是对应角;两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角).12.2.1三角形全等的判定(SSS)教学内容本节课主要内容是探索三角形全等的条件(SSS),•及利用全等三角形进行证明.教学目标1.知识与技能了解三角形的稳定性,会应用“边边边”判定两个三角形全等.2.过程与方法经历探索“边边边”判定全等三角形的过程,解决简单的问题.3.情感、态度与价值观培养有条理的思考和表达能力,形成良好的合作意识.重、难点与关键1.重点:掌握“边边边”判定两个三角形全等的方法.2.难点:理解证明的基本过程,学会综合分析法.3.关键:掌握图形特征,寻找适合条件的两个三角形.教具准备一块形状如图1所示的硬纸片,直尺,圆规.(1) (2)教学方法采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.教学过程一、设疑求解,操作感知【教师活动】(出示教具)问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,•你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1•的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,•剪下模板就可去割玻璃了.【理论认知】如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.•反之,•如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证△ABC≌△A′B′C′,从刚才的实践我们可以发现:•只要两个三角形三条对应边相等,就可以保证这两块三角形全等.信不信?【作图验证】(用直尺和圆规)先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的△A′B′C′剪下来,放在△ABC上,它们能完全重合吗?(即全等吗)【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)画一个△A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC:1.画线段取B′C′=BC;2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′;3.连接线段A′B′、A′C′.【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).(2)判断两个三角形全等的推理过程,叫做证明三角形全等.【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验.二、范例点击,应用所学【例1】如课本图11.2─3所示,△ABC是一个钢架,AB=AC,AD是连接点A与BC 中点D的支架,求证△ABD≌△ACD.(教师板书)【教师活动】分析例1,分析:要证明△ABD≌△ACD,可看这两个三角形的三条边是否对应相等.证明:∵D是BC的中点,∴BD=CD在△ABD和△ACD中,,.AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).【评析】符号“∵”表示“因为”,“∴”表示“所以”;从例1可以看出,•证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.三、实践应用,合作学习【问题思考】已知AC =FE ,BC =DE ,点A 、D 、B 、F 在直线上,AD =FB (如图所示),要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC =FE ,BC =DE 以外,还应该有什么条件?怎样才能得到这个条件?【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.【学生活动】先独立思考后,再发言:“还应该有AB =FD ,只要AD =FB 两边都加上DB 即可得到AB =FD .”【教学形式】先独立思考,再合作交流,师生互动.四、随堂练习,巩固深化课本P 8练习.【探研时空】如图所示,AB =DF ,AC =DE ,BE =CF ,BC 与EF 相等吗?•你能找到一对全等三角形吗?说明你的理由.(BC =EF ,△ABC ≌△DFE )五、课堂总结,发展潜能1.全等三角形性质是什么?2.正确地判断出全等三角形的对应边、对应角,•利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?3.“边边边”判定法告诉我们什么呢?•(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)六、布置作业,专题突破1.课本P15习题11.2第1,2题.2.选用课时作业设计.12.2.2 三角形全等判定(SAS)教学内容本节课主要内容是探索三角形全等的条件(SAS),及利用全等三角形证明.教学目标1.知识与技能领会“边角边”判定两个三角形的方法.2.过程与方法经历探究三角形全等的判定方法的过程,学会解决简单的推理问题.3.情感、态度与价值观培养合情推理能力,感悟三角形全等的应用价值.重、难点及关键1.重点:会用“边角边”证明两个三角形全等.2.难点:应用结合法的格式表达问题.3.关键:在实践、观察中正确选择判定三角形全等的方法.教具准备投影仪、直尺、圆规.教学方法采用“操作──实验”的教学方法,让学生有一个直观的感受.教学过程一、回顾交流,操作分析【动手画图】【投影】作一个角等于已知角.【学生活动】动手用直尺、圆规画图.已知:∠AOB.求作:∠A1O1B1,使∠A1O1B1=∠AOB.【作法】(1)作射线O1A1;(2)以点O为圆心,以适当长为半径画弧,交OA•于点C,•交OB于点D;(3)以点O1为圆心,以OC长为半径画弧,交O1A1于点C1;(4)以点C1为圆心,以CD •长为半径画弧,交前面的弧于点D 1;(5)过点D 1作射线O 1B 1,∠A 1O 1B 1就是所求的角.【导入课题】教师叙述:请同学们连接CD 、C 1D 1,回忆作图过程,分析△COD 和△C 1O 1D 1•中相等的条件.【学生活动】与同伴交流,发现下面的相等量:OD =O 1D 1,OC =O 1C 1,∠COD =∠C 1O 1D 1,△COD ≌△C 1O 1D 1.归纳出规律:两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS ”).【评析】通过让学生回忆基本作图,在作图过程中体会相等的条件,在直观的操作过程中发现问题,获得新知,使学生的知识承上启下,开拓思维,发展探究新知的能力.【媒体使用】投影显示作法.【教学形式】操作感知,互动交流,形成共识.二、范例点击,应用新知【例2】如课本图11.2-6所示有一池塘,要测池塘两侧A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点,连接AC 并延长到D ,使CD =CA ,连接BC 并延长到E ,•使CE =CB ,连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?【教师活动】操作投影仪,显示例2,分析:如果能够证明△ABC ≌△DEC ,就可以得出AB =DE .在△ABC 和△DEC 中,CA =CD ,CB =CE ,如果能得出∠1=∠2,△ABC 和△DEC •就全等了.证明:在△ABC 和△DEC 中12CA CD CB CE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEC (SAS )∴AB =DE想一想:∠1=∠2的依据是什么?(对顶角相等)AB =DE 的依据是什么?(全等三角形对应边相等)【学生活动】参与教师的讲例之中,领悟“边角边”证明三角形全等的方法,学会分析推理和规范书写.【媒体使用】投影显示例2.【教学形式】教师讲例,学生接受式学习但要积极参与.【评析】证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决.三、辨析理解,正确掌握【问题探究】(投影显示)我们知道,两边和它们的夹角对应相等的两个三角形全等,由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?【教师活动】拿出教具进行示范,让学生直观地感受到问题的本质.操作教具:把一长一短两根细木棍的一端用螺钉铰合在一起,•使长木棍的另一端与射线BC的端点B重合,适当调整好长木棍与射线BC所成的角后,固定住长木棍,把短木棍摆起来(课本图11.2-7),出现一个现象:△ABC与△ABD满足两边及其中一边对角相等的条件,但△ABC与△ABD不全等.这说明,•有两边和其中一边的对角对应相等的两个三角形不一定全等.【学生活动】观察教师操作教具、发现问题、辨析理解,动手用直尺和圆规实验一次,做法如下:(如图1所示)(1)画∠ABT;(2)以A为圆心,以适当长为半径,画弧,交BT于C、C′;(3)•连线AC,AC′,△ABC与△ABC′不全等.【形成共识】“边边角”不能作为判定两个三角形全等的条件.【教学形式】观察、操作、感知,互动交流.四、随堂练习,巩固深化课本P10练习第1、2题.五、课堂总结,发展潜能1.请你叙述“边角边”定理.2.证明两个三角形全等的思路是:首先分析条件,•观察已经具备了什么条件;然后以已具备的条件为基础根据全等三角形的判定方法,来确定还需要证明哪些边或角对应相等,再设法证明这些边和角相等.六、布置作业,专题突破1.课本P15习题11.2第3、4题.2.选用课时作业设计.板书设计把黑板分成左、中、右三部分,其中右边部分板书“边角边”判定法,中间部分板书例题,右边部分板书练习题.12.2.3 三角形全等判定(ASA)教学内容本节课主要内容是探索三角形全等的判定(ASA,AAS),•及利用全等三角形的证明.教学目标1.知识与技能理解“角边角”、“角角边”判定三角形全等的方法.2.过程与方法经历探索“角边角”、“角角边”判定三角形全等的过程,能运用已学三角形判定法解决实际问题.3.情感、态度与价值观培养良好的几何推理意识,发展思维,感悟全等三角形的应用价值.重、难点与关键1.重点:应用“角边角”、“角角边”判定三角形全等.2.难点:学会综合法解决几何推理问题.3.关键:把握综合分析法的思想,寻找问题的切入点.教具准备投影仪、幻灯片、直尺、圆规.教学方法采用“问题教学法”在情境问题中,激发学生的求知欲.教学过程一、回顾交流,巩固学习【知识回顾】(投影显示)情境思考:1.小菁做了一个如图1所示的风筝,其中∠EDH=∠FDH,ED=FD,•将上述条件注在图中,小明不用测量就能知道EH=FH吗?与同伴交流.(1) (2)[答案:能,因为根据“SAS”,可以得到△EDH≌△FDH,从而EH=FH]2.如图2,AB=AD,AC=AE,能添上一个条件证明出△ABC≌△ADE吗?[答案:BC=•DE (SSS)或∠BAC=∠DAE(SAS)].3.如果两边及其中一边的对角对应相等,两个三角形一定会全等吗?试举例说明.【教师活动】操作投影仪,提出问题,组织学生思考和提问.【学生活动】通过情境思考,复习前面学过的知识,学会正确选择三角形全等的判定方法,小组交流,踊跃发言.【教学形式】用问题牵引,辨析、巩固已学知识,在师生互动交流过程中,激发求知欲.二、实践操作,导入课题【动手动脑】(投影显示)问题探究:先任意画一个△ABC,再画出一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B (即使两角和它们的夹边对应相等),把画出的△A′B′C′剪下,•放到△ABC上,它们全等吗?【学生活动】动手操作,感知问题的规律,画图如下:画一个△A′B′C′,使A′B′=AB,DCBAE∠A ′=∠A ,∠B ′=∠B : 1. 画A ′B ′=AB ;2. 在A ′B ′的同旁画∠DA ′B ′=∠A , ∠EBA ′=∠B ,A ′D ,B ′E 交于点C ′。

解直角三角形教案精选5篇

解直角三角形教案精选5篇

解直角三角形教案精选5篇解直角三角形教案篇一一、教学目标〔一〕知识教学点使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.〔二〕能力训练点通过综合运用勾股定理,直角三角形的'两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.〔三〕德育渗透点渗透数形结合的数学思想,培养学生良好的学习习惯.二、教学重点、难点和疑点1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在的两个元素中,为什么至少有一个是边.三、教学过程〔一〕明确目标1.在三角形中共有几个元素?2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?〔1〕边角之间关系如果用表示直角三角形的一个锐角,那上述式子就可以写成。

〔2〕三边之间关系a2+b2=c2〔勾股定理〕〔3〕锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用.〔二〕整体感知教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习稳固.同时,本课又为以后的应用举例打下根底,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.〔三〕重点、难点的学习与目标完成过程1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素〔至少有一个是边〕后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个元素中至少有一条边?〞让全体学生的思维目标一致,在作出准确答复后,教师请学生概括什么是解直角三角形?〔由直角三角形中除直角外的两个元素,求出所有未知元素的过程,叫做解直角三角形〕.3.例题例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且c=287.4,∠B=42°6′,解这个三角形.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比拟各种方法中哪些较好完成之后引导学生小结“一边一角,如何解直角三角形?〞答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比拟可靠,防止第一步错导致一错到底.例2在Rt△ABC中,a=104.0,b=20.49,解这个三角形.在学生独立完成之后,选出最好方法,教师板书.4.稳固练习解直角三角形是解实际应用题的根底,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.说明:解直角三角形计算上比拟繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.〔四〕总结与扩展1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素〔至少有一个是边〕,就可以求出另三个元素.2.出示图表,请学生完成abcAB1√√2√√3√b=acotA√4√b=atanB√5√√6a=btanA√√7a=bcotB√√8a=csinAb=ccosA√√9a=ccosBb=csinB√√10不可求不可求不可求√√注:上表中“√〞表示。

解三角形教案

解三角形教案

解三角形教案教案解三角形教学目标:1.理解并掌握解三角形的基本概念和方法;2.能够运用正弦定理和余弦定理解三角形;3.能够解决实际问题中的三角形问题。

教学内容:1.解三角形的基本概念;2.正弦定理和余弦定理;3.解三角形的应用。

教学步骤:一、导入(5分钟)1.引导学生回顾初中阶段学习的三角形知识,如三角形的性质、分类等;2.提问:在解决三角形问题时,我们通常需要知道哪些元素?这些元素之间有什么关系?二、解三角形的基本概念(10分钟)1.介绍解三角形的定义:已知三角形的某些元素(如边长、角度等),求解其余元素的过程;2.强调解三角形的关键:找到合适的定理或方法;3.举例说明解三角形在实际中的应用。

三、正弦定理和余弦定理(15分钟)1.正弦定理:a.介绍正弦定理的公式:a/sinA=b/sinB=c/sinC;b.解释正弦定理的几何意义:任意三角形的任意两边与它们所对的角的正弦值的比相等;c.示例:已知三角形两边和其中一个角,求第三边或另一个角。

2.余弦定理:a.介绍余弦定理的公式:c^2=a^2+b^22abcosC;b.解释余弦定理的几何意义:任意三角形的任意一边的平方等于另外两边的平方和减去这两边与它们所夹角的余弦值的乘积的两倍;c.示例:已知三角形两边和它们所夹的角度,求第三边或另一个角。

四、解三角形的应用(10分钟)1.介绍解三角形在实际问题中的应用,如测量、导航等;2.分析实际问题中的三角形问题,引导学生运用正弦定理和余弦定理进行求解;3.示例:已知一个三角形的两边和一个角,求第三边或另一个角。

五、课堂练习(15分钟)1.设计练习题,让学生运用正弦定理和余弦定理解决三角形问题;2.引导学生分析解题思路,总结解题方法;3.解答学生在练习中遇到的问题。

六、总结与拓展(5分钟)1.回顾本节课所学内容,强调解三角形的基本概念和关键定理;2.提问:在实际问题中,如何判断应该使用正弦定理还是余弦定理?3.拓展:介绍解三角形的其他方法,如海伦公式、正切定理等。

高中数学解三角形教案

高中数学解三角形教案

高中数学解三角形教案
一、教学目标:
1. 了解三角形的定义和性质;
2. 掌握解三角形的方法;
3. 能够运用解三角形的知识解决实际问题。

二、教学重点:
1. 三角形的定义和性质;
2. 解三角形的方法。

三、教学内容:
1. 三角形的定义和性质
2. 解三角形的方法
3. 实例分析
四、教学步骤:
1. 师生互动导入:通过实际例子引入三角形的定义和性质,例如让学生观察周围的物体,
找到其中的三角形并进行分类,引导学生讨论三角形的定义和性质。

2. 教学讲解:讲解三角形的定义和性质,包括三角形的内角和为180度、三边之和大于第三边等性质,引导学生理解三角形的基本概念。

3. 解三角形的方法:介绍解三角形的方法,包括余角、角平分线、作图等方法,讲解每种
方法的应用场景和步骤。

4. 实例分析:通过实际例子进行分析和讨论,引导学生运用解三角形的方法解决实际问题,加深对知识的理解和应用能力。

五、教学评价:
教师可通过课堂练习、作业和小测验等方式进行教学评价,检验学生对三角形的理解和解
题能力。

六、拓展延伸:
师生可通过课外探究、实验等方式拓展三角形的相关知识,激发学生的学习兴趣,提高学
生的综合能力。

七、教学反思:
教师应及时总结本节课的教学效果,结合学生的表现和反馈,不断优化教学方法,提高教学质量。

新人教版第十二章.全等三角形全章教案

新人教版第十二章.全等三角形全章教案

C 11CABA 1第十二章 §12.1 全等三角形教学目标(一)知识技能: 1、了解全等形及全等三角形的概念。

2、理解掌握全等三角形的性质。

3、能够准确辩认全等三角形的对应元素。

(二)过程与方法 : 1、在图形变换以用操作的过程中发展空间观念,培养几何直觉。

2、在观察发现生活中的全等形和实际操作中获得全等 三角形的体验。

(三)情感态度与价值观: 在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。

教学重点: 全等三角形的性质.教学难点:找全等三角形的对应边、对应角.预习导航:什么是全等三角形?如何找全等三角形的对应边和对应角?全等三角形有哪些性质?教学过程(一)提出问题,创设情境 出示投影片 :1.问题:你能发现这两个图形有什么美妙 的关系吗?这两个图形是完全重合的.2.那同学们能举出现实生活中能够完全重合的图形的例子吗003F生:同一张底片洗出的同大小照片是能够完全重合的。

形状与大小都完全相同的两个图形就是全等形. 3.学生自己动手(同桌两名同学配合)取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样. 4.获取概念让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、 对应边,以及有关的数学符号.记作:△ABC ≌ △ A ’B ’C ’ 符号“ ≌ ”读作“全等于”甲DCABFE(注意强调书写时对应顶点字母写在对应的位置上)(二).新知探究利用投影片演示1.活动:将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180 得到△DBC ; 将△ABC 旋转180°得△AED .2. 议一议:各图中的两个三角形全等吗? 启示:一个图形经过平移、翻折、旋转后,位置变化了,•但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略. 3. 观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢? (引导学生从全等三角形可以完全重合出发找等量关系)得到全等三角形的性质:全等三角形的对应边相等. 全等三角形的对应角相等.(三)例题讲解[例1]如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,•说出这两个三角形中相等的边和角.1. 分析:△OCA ≌△OBD ,说明这两个三角形可以重合,•思考通过怎样变换可以使两三角形重合?将△OCA 翻折可以使△OCA 与△OBD 重合.因为C 和B 、A 和D 是对应顶点,•所以C 和B 重合,A 和D 重合.∠C=∠B ;∠A=∠D ;∠AOC=∠DOB .AC=DB ;OA=OD ;OC=OB .2. 总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.[例2]如图,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,•指出其他的对应边和对应角.1. 分析:对应边和对应角只能从两个三角形中找,所以需将△ABE 和△ACD 从复杂的图形中分离出来.2小结:找对应边和对应角的常用方法有:DCABODCABE 乙DCAB 丙DCABE(1)有公共边的,公共边是对应边.(2)有公共角的,公共角是对应角.(3)有对顶角的,对顶角是对应角一对最长的边是对应边,一对最短的边是对应边.(4)一对最大的角是对应角,一对最小的角是对应角(5)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.(6)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角(四)课堂练习1、填空点O是平行四边形ABCD的对角线的交点,△AOB绕O旋转180°,可以与△______重合,这说明△AOB≌△______.这两个三角形的对应边是AO与_____,OB与_____,BA与______;对应角是∠AOB与________,∠OBA与________,∠BAO与________.2、判断题1)全等三角形的对应边相等,对应角相等。

全等三角形全章复习(一)优秀教学设计

全等三角形全章复习(一)优秀教学设计

全章总复习课(一)【教课目的】:( 1)系统归纳整理三角形相关的知识、方法、数学思想,交流知识、方法间的联系,形成三角形知识板块的整体构造,提升学生剖析问题和解决问题的能力; ( 2)增强对三角形图形的辨别、分解训练;( 3)灵巧运用三角形内角和、外角性质解决三角形的相关计算问题,增强几何推理能力的培育;( 4)稳固对三角形的三边关系的掌握,增强对三角形分类的认识。

【教课要点】:三角形知识构造的成立及这些知识的灵巧运用。

【教课难点】:灵巧运用三角形内角和、外角性质进行几何推理和相关计算。

【教法、学法设计】 :指导归纳总结,综合练习,讲练联合 【教课过程设计】 :教课环节教课活动设计企图让学生合上课本,回想三角形部分学了哪些内容?(约 3 分钟),回首、梳理旧知 教师再进行发问与归纳(建议教师以图表形式体现知识构造):识,帮助学生形 1、 三角形的观点。

成知识构造,加 2、 三角形的分类方法。

强对三角形相关 3、 三角形的三边关系及三角形的稳固性。

知识的整体把 4、 三角形的内角和、外角和。

握,为提升学生5、 三角形外角的两个性质。

运用知识解决问题作准备。

一、复习 三角形知识构造锐角三角形梳 理 旧 直角三角形 知,指引 按角分类钝角三角形归纳归纳三角形按边分类不等边三角形 三角形的三边关系等腰三角形三角形的内角和三角形的稳固性三角形的外角性质三角形的外角和二、限时【限时训练】(五分钟,独立达成,再小组对答案,教师简评):(1)判断题:①三条高交于它的一个极点的三角形是直角三角形()②三角形的外角大于内角()③三角形有一个内角等于 80°,则这个三角形是锐角三角形((2)若三角形的三个内角的比为1∶3∶ 5 ,则这个三角形是(A. 锐角三角形B. 直角三角形C.钝角三角形D. 等边三角形(3)已知等腰三角形两边长为7 和 3,则它的周长为.经过限时训练,帮助学生赶快进入学习状态,同时以较低的“门)槛”使学生感觉到成功的快乐,).提升学习的信心和学习的踊跃性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学5 第一章 解三角形第1课时课题: §1.1.1正弦定理●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

●教学重点正弦定理的探索和证明及其基本应用。

●教学难点已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。

A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。

能否用一个等式把这种关系精确地表示出来? B C Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。

如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin aA c=,sin bB c=,又sin 1c C c==,A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

(证法二):过点A 作j AC ⊥, C由向量的加法可得 AB AC CB =+则 ()j AB j AC CB ⋅=⋅+ B∴j AB j AC j CB ⋅=⋅+⋅ j()()00cos 900cos 90-=+-j AB A j CB C∴sin sin =c A a C ,即sin sin =a c A C同理,过点C 作⊥j BC ,可得 sin sin =b c B C从而sin sin abA B =sin cC=类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立。

(由学生课后自己推导)从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC=[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)sin sin abA B =sin cC=等价于sin sin abAB=,sin sin cbCB=,sin aA=sin cC从而知正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。

一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。

[例题分析]例1.在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形。

解:根据三角形内角和定理,0180()=-+C A B000180(32.081.8)=-+066.2=; 根据正弦定理,00sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ;根据正弦定理,00sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 评述:对于解三角形中的复杂运算可使用计算器。

例2.在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。

解:根据正弦定理,sin 28sin40sin 0.8999.20==≈b A B a因为00<B <0180,所以064≈B ,或0116.≈B ⑴ 当064≈B 时,00000180()180(4064)76=-+≈-+=C A B ,00sin 20sin7630().sin sin40==≈a C c cm A⑵ 当0116≈B 时,00000180()180(40116)24=-+≈-+=C A B ,00sin 20sin2413().sin sin40==≈a C c cm A评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。

[补充练习]已知∆ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c (答案:1:2:3)Ⅳ.课时小结(由学生归纳总结) (1)定理的表示形式:sin sin abA B =sin cC==()0sin sin sin a b ck k A B C++=>++;或sin a k A =,sin b k B =,sin c k C =(0)k > (2)正弦定理的应用范围:①已知两角和任一边,求其它两边及一角; ②已知两边和其中一边对角,求另一边的对角。

第2课时课题: §1.1.2余弦定理●教学目标知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。

●教学重点余弦定理的发现和证明过程及其基本应用; ●教学难点勾股定理在余弦定理的发现和证明过程中的作用。

●教学过程Ⅰ.课题导入 C如图1.1-4,在∆ABC 中,设BC=a,AC=b,AB=c,已知a,b 和∠C ,求边c b ac B(图1.1-4)Ⅱ.讲授新课 [探索研究]用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。

由于涉及边长问题,从而可以考虑用向量来研究这个问题。

A如图1.1-5,设CB a =,CA b =,AB c =,那么c a b =-,则 b c()()2222 2c c c a b a ba ab b a ba b a b=⋅=--=⋅+⋅-⋅=+-⋅ C a B从而 2222cos c a b ab C =+- (图1.1-5)同理可证 2222cos a b c bc A =+-2222cos b a c ac B =+-于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。

即 2222cos a b c bc A =+-2222cos b a c ac B =+-2222cos c a b ab C =+-思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?(由学生推出)从余弦定理,又可得到以下推论:222cos 2+-=b c a A bc222cos 2+-=a cb B ac 222cos 2+-=b ac C ba[理解定理]从而知余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角。

思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?(由学生总结)若∆ABC 中,C=090,则cos 0=C ,这时222=+c a b 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。

[例题分析]例1.在∆ABC 中,已知=a c 060=B ,求b 及A ⑴解:∵2222cos =+-b a c ac B=222+-⋅cos 045=2121)+- =8∴=b求A 可以利用余弦定理,也可以利用正弦定理:⑵解法一:∵cos 2221,22+-==b c a A bc∴060.=A解法二:∵sin 0sin sin45,=a A B b2.4 1.43.8,+=21.8 3.6,⨯=∴a <c ,即00<A <090,∴060.=A评述:解法二应注意确定A 的取值范围。

例2.在∆ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 解:由余弦定理的推论得:cos 2222+-=b c a A bc22287.8161.7134.6287.8161.7+-=⨯⨯0.5543,≈ 05620'≈A ;cos 2222+-=c a b B ca222134.6161.787.82134.6161.7+-=⨯⨯0.8398,≈ 03253'≈B ;0000180()180(56203253)''=-+≈-+C A B [补充练习]在∆ABC 中,若222a b c bc =++,求角A (答案:A=1200)Ⅳ.课时小结(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;(2)余弦定理的应用范围:①.已知三边求三角;②.已知两边及它们的夹角,求第三边。

第3课时课题: §1.1.3解三角形的进一步讨论●教学目标知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。

●教学重点在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形; 三角形各种类型的判定方法;三角形面积定理的应用。

●教学难点正、余弦定理与三角形的有关性质的综合运用。

●教学过程 Ⅰ.课题导入思考:在∆ABC 中,已知22a cm =,25b cm =,0133A =,解三角形。

Ⅱ.讲授新课 [探索研究]例1.在∆ABC 中,已知,,a b A ,讨论三角形解的情况分析:先由sin sin b AB a=可进一步求出B ; 则0180()C A B =-+ 从而sin a Cc A=1.当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解。

2.当A 为锐角时,如果a ≥b ,那么只有一解;如果a b <,那么可以分下面三种情况来讨论: (1)若sin a b A >,则有两解; (2)若sin a b A =,则只有一解; (3)若sin a b A <,则无解。

相关文档
最新文档