郑君里信号与系统讲义

合集下载

《郑君里信号与系统》课件

《郑君里信号与系统》课件

离散时间信号的表示与性质
要点一
离散时间信号的表示
要点二
离散时间信号的性质
离散时间信号可以由离散的数值序列表示,这些数值在时 间上离散分布。常见的离散时间信号有单位阶跃信号、单 位冲激信号、正弦信号等。
离散时间信号具有周期性、稳定性、可重复性等性质。这 些性质对于信号处理和系统分析具有重要的意义。
离散时间系统的表示与性质
离散时间信号通过系统的响应表 示
当一个离散时间信号通过一个离散时间系统时,系统的 输出可以通过将输入信号与系统冲激响应相卷积得到。
离散时间信号通过系统的响应性 质
系统的输出响应具有与输入信号相同的周期性和稳定性 ,但可能发生幅度和相位的变化。此外,系统的输出响 应还受到系统稳定性和因果性的影响。
பைடு நூலகம்
PART 05
信号的变换域表示法
傅立叶变换的定义与性质
傅立叶变换的定义
将时间域信号转换为频率域信号的数学工具,通过将 信号分解为不同频率的正弦波和余弦波来描述信号的 频率特性。
傅立叶变换的性质
线性性、时移性、频移性、对称性、周期性和收敛性等 ,这些性质在信号处理中具有重要应用。
拉普拉斯变换的定义与性质
拉普拉斯变换的定义
极点影响系统的稳定性,决定了系统是否稳定以及系统的响应速度。
通过零极点分析系统稳定性
判断系统是否稳定
如果所有极点都位于复平面的左半部分,则系统是稳 定的。
计算系统的传递函数
通过求解系统函数的零极点,可以得到系统的传递函 数。
分析系统的动态特性
通过分析零极点的分布和位置,可以进一步分析系统 的动态特性和稳定性。
详细描述
信号可以根据其连续性与离散性分为连续时间信号和离散时间信号;根据确定 性可以分为确定信号和随机信号;根据周期性可以分为周期信号和非周期信号 ;根据能量与功率可以分为能量信号和功率信号。

郑君里信号与系统课件总复习

郑君里信号与系统课件总复习

第四章 拉普拉斯变换、 连续时间系统的s域分析
收敛域:实际上就是拉氏变换存在的条件;
lim f (t)eσt 0
t
σ σ0
三.一些常用函数的拉氏变换
1.阶跃函数
Lu( t )
2.指数函数
0 1
estd
t
1 est 1 s 0 s
L eα t eα testd t
eα st
奈奎斯特抽样间隔
16
重点: 1、傅里叶变换定义和存在条件 2、典型信号的傅里叶变换 3、傅里叶变换的性质 4、抽样定理
1、已知f ( t )的傅里叶变换为F( j ),求信号 f ( 2t 5 )的傅里叶变换

2、已知信号f ( t ) sin(1000 t ) 。 当对该信号取样时,试求能恢复原信号的最大抽样周期
t
f ( t ) ( t )dt f ( 0)u(t )
第一章
2、系统框图列微分方程
第二章 连续时间系统的时域分析
➢ 微分方程式的建立与求解
➢ 零输入响应与零状态响应 ➢ 冲激响应与阶跃响应
关系!
➢ 卷积及其性质(方便求零状态响应)
系统分析过程
列写方程: 根据元件约束,网络拓扑约束
整个 s 平面
0
0
0
0
第五章 掌握基本概念 ❖ 滤波器的类型
第七章 离散时间系统的时域分析
❖ 序列的概念、离散时间信号的运算
相加、相乘、序列移位、反褶、尺度倍乘、差分、累加
❖ 常系数线性差分方程的求解
迭代法 时域经典法:齐次解+特解 零输入响应+零状态响应
❖ 离散时间系统的冲激响应与阶跃响应
第四章
❖ 因果系统的s域判决条件:

信号与系统(郑君里第二版)讲义第三章 傅里叶变换

信号与系统(郑君里第二版)讲义第三章 傅里叶变换

t0
⎧0 ⎪T cos(mω1t )cos(nω1t )dt = ⎨ 1 ⎪2 ⎩T1
m≠n m=n≠0 m=n=0


t0 +T1
t0
0 ⎧ ⎪T sin (mω1t )sin (nω1t )dt = ⎨ 1 ⎪ ⎩2
m≠n m=n≠0
t0 +T1
t0
sin (mω1t )cos(nω1t )dt = 0 ,对于所有的 m 和 n
n =1
⎧ ⎪d 0 = a 0 ⎪ 2 2 ⎨d n = a n + bn ⎪ an ⎪θ n = arctan bn ⎩
n = 1,2,3,L n = 1,2,3,L
三、虚指数形式的傅里叶级数 任何周期信号 f (t ) 可以分解为
f (t ) =
n =−∞
∑ Fe
n

jnω1t
傅里叶系数:
Fn = 1 t0 +T1 f ( t ) e − jnω1t dt ∫ t 0 T1
f (t )
E 2

T1 2
0
T1 2
t
奇函数的傅里叶级数展开式的系数为: a0 = an = 0
4 bn = T1
Fn = −
∫ f (t )sin (nω t )dt
1
T1 2 0
1 π jbn , ϕ n = − 2 2
6
奇函数的 Fn 为虚数。在奇函数的傅里叶级数中不会含有余弦项,只可能含 有正弦项。 3、奇谐函数(半波对称函数) 若波形沿时间轴平移半个周期并相对于该轴上下反转, 此时波形并不发生变 化,即满足 ⎛ T ⎞ f (t ) = − f ⎜ t ± 1 ⎟ 2⎠ ⎝ 这样的函数称为半波对称函数或称为奇谐函数。 奇谐函数的傅里叶级数展开式的系数为: a0 = 0 an = bn = 0 ( n 为偶数) ( n 为奇数)

信号与系统(郑君里)第二版讲义第二章

信号与系统(郑君里)第二版讲义第二章

信号与系统(郑君⾥)第⼆版讲义第⼆章第⼆章连续时间系统的时域分析第⼀讲微分⽅程的建⽴与求解⼀、微分⽅程的建⽴与求解对电路系统建⽴微分⽅程,其各⽀路的电流、电压将为两种约束所⽀配: 1.来⾃连接⽅式的约束:KVL 和KIL ,与元件的性质⽆关。

2.来⾃元件伏安关系的约束:与元件的连接⽅式⽆关。

例2-1 如图2-1所⽰电路,激励信号为,求输出信号。

电路起始电压为零。

图2-1解以输出电压为响应变量,列回路电压⽅程:所以齐次解为:。

因激励信号为,若,则,将其代⼊微分⽅程:所以,从⽽求得完全解:由于电路起始电压为零并且输⼊不是冲激信号,所以电容两端电压不会发⽣跳变,,从⽽若,则特解为,将其代⼊微分⽅程,并利⽤起始条件求出系数,从⽽得到:⼆、起始条件的跳变——从到1.系统的状态(起始与初始状态)(1)系统的状态:系统在某⼀时刻的状态是⼀组必须知道的最少量的数据,利⽤这组数据和系统的模型以及该时刻接⼊的激励信号,就能够完全确定系统任何时刻的响应。

由于激励信号的接⼊,系统响应及其各阶导数可能在t=0时刻发⽣跳变,所以以表⽰激励接⼊之前的瞬时,⽽以表⽰激励接⼊以后的瞬时。

(2)起始状态:,它决定了零输⼊响应,在激励接⼊之前的瞬时t=系统的状态,它总结了计算未来响应所需要的过去的全部信息。

(3)初始状态:跳变量,它决定了零状态响应,在激励接⼊之后的瞬时系统的状态。

(4)初始条件:它决定了完全响应。

这三个量的关系是:。

2.初始条件的确定(换路定律)电容电压和电感电流在换路(电路接通、断开、接线突变、电路参数突变、电源突变)瞬间前后不能发⽣突变,即是连续的。

时不变:时变:例电路如图2-2所⽰,t=0以前开关位于"1"已进⼊稳态,t=0时刻,开关⾃"1"转⾄"2"。

(1)试从物理概念判断、和、。

(2)写出t>0时间内描述系统的微分⽅程式,求的完全响应。

图2-2解(1)换路前电路处于稳态电感相当于短路,电感电流,电容相当于开路= 0,= = 0。

(完整word版)信号与系统(郑君里)复习要点(良心出品必属精品)

(完整word版)信号与系统(郑君里)复习要点(良心出品必属精品)

信号与系统复习书中最重要的三大变换几乎都有。

第一章信号与系统1、信号的分类①连续信号和离散信号②周期信号和非周期信号连续周期信号f(t)满足f(t) = f(t + mT),离散周期信号f(k)满足f(k) = f(k + mN),m = 0,±1,±2,…两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。

③能量信号和功率信号④因果信号和反因果信号2、信号的基本运算(+ - ×÷)2.1信号的(+ - ×÷)2.2信号的时间变换运算(反转、平移和尺度变换)3、奇异信号3.1 单位冲激函数的性质f(t) δ(t) = f(0) δ(t) , f(t) δ(t –a) = f(a) δ(t –a)例:3.2序列δ(k)和ε(k)f(k)δ(k) = f(0)δ(k) f(k)δ(k –k0) = f(k0)δ(k –k0) 4、系统的分类与性质4.1连续系统和离散系统4.2 动态系统与即时系统 4.3 线性系统与非线性系统 ①线性性质T [af (·)] = a T [ f (·)](齐次性)T [ f 1(·)+ f 2(·)] = T[ f 1(·)]+T[ f 2(·)] (可加性) ②当动态系统满足下列三个条件时该系统为线性系统:y (·) = y f (·) + y x (·) = T[{ f (·) }, {0}]+ T[ {0},{x(0)}] (可分解性) T[{a f (·) }, {0}] = a T[{ f (·) }, {0}]T[{f 1(t) + f 2(t) }, {0}] = T[{ f 1 (·) }, {0}] + T[{ f 2 (·) }, {0}](零状态线性))0(d )()(f t t t f =⎰∞∞-δ)(d )()(a f t a t t f =-⎰∞∞-δ?d )()4sin(91=-⎰-t t t δπ)0('d )()('f t t f t -=⎰∞∞-δ)0()1(d )()()()(n n n ft t f t -=⎰∞∞-δ4)2(2])2[(d dd )(')2(0022=--=--=-==∞∞-⎰t t t t tt t t δ)(1||1)()()(t aa at n n n δδ⋅=)(||1)(t a at δδ=)(||1)(00at t a t at -=-δδ)0()()(f k k f k =∑∞-∞=δT[{0},{ax 1(0) +bx 2(0)} ]= aT[{0},{x 1(0)}] +bT[{0},{x 2(0)}](零输入线性) 4.4时不变系统与时变系统T[{0},f(t - t d )] = y f (t - t d )(时不变性质) 直观判断方法:若f (·)前出现变系数,或有反转、展缩变换,则系统为时变系统。

信号与系统(郑君里第二版)讲义第三章 傅里叶变换

信号与系统(郑君里第二版)讲义第三章 傅里叶变换
f (t )
E 2

T1 2
0
T1 2
t
奇函数的傅里叶级数展开式的系数为: a0 = an = 0
4 bn = T1
Fn = −
∫ f (t )sin (nω t )dt
1
T1 2 0
1 π jbn , ϕ n = − 2 2
6
奇函数的 Fn 为虚数。在奇函数的傅里叶级数中不会含有余弦项,只可能含 有正弦项。 3、奇谐函数(半波对称函数) 若波形沿时间轴平移半个周期并相对于该轴上下反转, 此时波形并不发生变 化,即满足 ⎛ T ⎞ f (t ) = − f ⎜ t ± 1 ⎟ 2⎠ ⎝ 这样的函数称为半波对称函数或称为奇谐函数。 奇谐函数的傅里叶级数展开式的系数为: a0 = 0 an = bn = 0 ( n 为偶数) ( n 为奇数)
0
T1 2
L
t
偶函数的傅里叶级数展开式的系数为:
4 an = T1
bn = 0
∫ f (t )cos(nω t )dt
1
T1 2 0
Fn =
an ,ϕn = 0 2
偶函数的 Fn 为实数。在偶函数的傅里叶级数中不会含有正弦项,只可能含 有直流项和余弦项。 2、奇函数 若信号波形相对于纵坐标是反对称的,即满足 f (t ) = − f (− t ) ,此时 f (t ) 是奇 函数。
f (t ) = a0 + ∑ ⎡ ⎣ an cos ( nω1t ) + bn sin ( nω1t ) ⎤ ⎦
n =1 ∞

t0 +T1
t0
⎧0 ∗ e jmω1t e jnω1t dt = ⎨ ⎩T1
(
)
m≠n m=n

信号与系统(郑君里版河北工程大学)第一章 绪论

信号与系统(郑君里版河北工程大学)第一章  绪论
1 2
反褶
f(2t)
0
1
t
1.2 信号的运算
1 t 代替f(2t)中的t,所得的f(t)波形将是f(2t)波 (3)比例:以 2 形在时间轴上扩展两倍。
4 (t 1)
f (t )
比例 由f(2t)
-1 0 1 2
f(t)
t 两边积分,得

证明: ( at )

1 (t ) |a|
f (t ) f e (t ) f o (t ) f e t f e t e : even f e (t ): 偶分量 f o (t ): 奇分量 f o t f o t
o : odd
1 f e (t ) f (t ) f (t ) 2
一、定义:
系统:是一个有若干互有关联的单元组成的 并具有 某种功能用来达到某些特定目的的有机整体。 系统(电):指的是各种不同复杂程度用作信号传输 和处理的元件或部件的组合体。
1.5 系统的描述与分类
四、系统分类
1、按特性分: 1)线性系统:同时满足齐次性和叠加性的系统。 线性系统和非线性系统 a、齐次性 若 e(t)→r(t) 则 ke(t)→kr(t) b、叠加性 若 e1(t)→r1(t), e2(t)→r2(t) 则 e1(t)+e2(t)→ r1(t)+r2(t) c、齐次性和叠加性 若 e1(t)→r1(t), e2(t)→r2(t) 则 k 1e1(t)+k 2e2(t)→ k1 r1(t)+k2 r2(t)
1.2 信号的运算
例1-1:已知f(t)波形,求 f (t t0 ), f (t t0 )
解:方法一、先反转后平移
f (t )

郑君里《信号与系统》(第3版)【教材精讲+考研真题解析】讲义 第6章 信号的矢量空间分析【圣才出品

郑君里《信号与系统》(第3版)【教材精讲+考研真题解析】讲义  第6章 信号的矢量空间分析【圣才出品

(1)定义
假设有 n 个函数 g1(t), g2 (t)...gn (t) 构成的一个函数集,这些函数在区间 (t1,t2 ) 内满
足正交特性
t2 t1 t2 t1
gi (t)g j (t)dt 0,i
g
2 i
(t
)dt
Ki ,i
j
j
则称此函数集为正交函数集。
(2)特性
任意信号 f(t)可表示为 n 维正交函数之和,即
十万种考研考证电子书、题库视频学习平台
直角坐标平面内两矢量相对位置关系为
cos(f1 -f2 ) =
x1 y1 + x2 y2
1
1
(x12 + x22 )2 ( y12 + y22 )2
利用范数符号,将矢量长度分别写作
1
x 2 = (x12 + x22 ) 2
1
y 2 = ( y12 + y22 ) 2
必属
称为完备正交
9 / 21
圣才电子书 十万种考研考证电子书、题库视频学习平台

式中
为信号的能量,
为基底信号的能量,
为各信号分量的能量。
(2)物理意义 一个信号所含有的能量(功率)恒等于此信号在完备正交函数集中各分量能量(功率) 之和。 (3)数学本质 矢量空间信号正交变换的范数不变性。
圣才电子书 十万种考研考证电子书、题库视频学习平台

一、信号矢量空间的基本概念 1.线性空间 线性空间是指这样一种集合,其中任意两元素相加可构成此集合内的另一元素,任一元 素与任一数相乘后得到此集合内的另一元素。常见的线性空间有 N 维实数空间 与复数
空间 、连续时间信号空间 L、离散时间信号空间 l 等。

信号与系统(郑君里第二版)讲义第十二章 系统的状态变量分析

信号与系统(郑君里第二版)讲义第十二章 系统的状态变量分析

求下图所示信号流图的增益
R 。 E
1 2
2
1
2
3
1
2
3
解:
3
2 1
2
3
1
4
7
2
6
2
所以 例 12.0.2
R 2 E R 。 E
化简下列信号流图,求增益
4
3
1
5
4
6
2
2
6
5
解: (1)消除自环
3 1 1 4
1
5
4
2
2 2 1 6 5
6 3 1 5 2
(2)消除上面混合结点
用梅森公式化简下面信号流图,求增益 H
3
E
x1
L1
4
5
4
6
L2
x2
1
x4
2
2
R
6
x3
L3
5
解:此信号流图共有三个环路,三条前向通路。
x1 处的环路: L1 4 x 2 处的环路: L2 6
x3 处的环路: L3 5
有三对两两互不接触的环路:
L1 L2 24
L1 L3 20 L2 L3 30
1 1

H
g 1 12 gk k 1 1 2 k 6
7
例 12.0.5
用梅森公式化简下面信号流图,求总传输值 H
Y 。 X
1
2
L1
1
1
2
1
L3
1
2
L2
4 L 5
L4
1
2
解:此信号流图共有五个环路,三条前向通路。 各环路的增益为:

《信号与系统》郑君里教学课件讲义

《信号与系统》郑君里教学课件讲义

(4)19世纪末,人们研究用电磁波传送无线电信号。 赫兹(H.Hertz)波波夫、马可尼等作出贡献。1901年 马可尼成功地实现了横渡大西洋的无线电通信。
(5)光纤通信 从此,传输电信号的通信方式得到广泛应用和迅速发展。 如今:(1)卫星通信技术为基础“全球定位系统(Global Positioning System, 缩写为GPS)用无线电信号的传输, 测定地球表面和周围空间任意目标的位置,其精度可达 数十米之内。 (2)个人通信技术:无论任何人在任何时候和任何地方 都能够和世界上其他人进行通信。 (3)“全球通信网”是信息网络技术的发展必然趋势。 目前的综合业务数字网(Integrated Services Digital Network,缩写为ISDN),Internet或称因特网,以及其他各 种信息网络技术为全球通信网奠定了基础。
信号与系统
郑君里
教学课件
1、教材:信号与系统 郑君里 杨为理 应启珩编 2、信号与系统 Signals & Systems ALAN V.OPPENHEIM ALANS. WILLSKY 清华大学出版社(英文影印版) (中译本)刘树棠 西安交通大学出版社 3、信号与系统例题分析及习题 乐正友 杨为理 应启珩编 4、信号与系统习题集 西北工业大学
5. 系统的分类
系统可分为物理系统与非物理系统,人工系统以及自 然系统。 物理系统:包括通信系统、电力系统、机械系统等; 非物理系统:政治结构、经济组织、生产管理等; 人工系统:计算机网、交通运输网、水利灌溉网以及 交响乐队等; 自然系统:小至原子核,大如太阳系,可以是无生命 的,也可是有生命的(如动物的神经网络)。
4.信号、电路(网络)与系统的关系
离开了信号,电路与系统将失去意义。

信号与系统(郑君里)第二版 讲义 第二章

信号与系统(郑君里)第二版 讲义 第二章

第二章 连续时间系统的时域分析第一讲 微分方程的建立与求解一、微分方程的建立与求解对电路系统建立微分方程,其各支路的电流、电压将为两种约束所支配: 1.来自连接方式的约束:KVL 和KIL ,与元件的性质无关。

2.来自元件伏安关系的约束:与元件的连接方式无关。

例2-1 如图2-1所示电路,激励信号为,求输出信号。

电路起始电压为零。

图2-1解以输出电压为响应变量,列回路电压方程:所以齐次解为:。

因激励信号为,若,则,将其代入微分方程:所以,从而求得完全解:由于电路起始电压为零并且输入不是冲激信号,所以电容两端电压不会发生跳变,,从而若,则特解为,将其代入微分方程,并利用起始条件求出系数,从而得到:二、起始条件的跳变——从到1.系统的状态(起始与初始状态)(1)系统的状态:系统在某一时刻的状态是一组必须知道的最少量的数据,利用这组数据和系统的模型以及该时刻接入的激励信号,就能够完全确定系统任何时刻的响应。

由于激励信号的接入,系统响应及其各阶导数可能在t=0时刻发生跳变,所以以表示激励接入之前的瞬时,而以表示激励接入以后的瞬时。

(2)起始状态:,它决定了零输入响应,在激励接入之前的瞬时t=系统的状态,它总结了计算未来响应所需要的过去的全部信息。

(3)初始状态:跳变量,它决定了零状态响应,在激励接入之后的瞬时系统的状态。

(4)初始条件:它决定了完全响应。

这三个量的关系是:。

2.初始条件的确定(换路定律)电容电压和电感电流在换路(电路接通、断开、接线突变、电路参数突变、电源突变)瞬间前后不能发生突变,即是连续的。

时不变:时变:例电路如图2-2所示,t=0以前开关位于"1"已进入稳态,t=0时刻,开关自"1"转至"2"。

(1)试从物理概念判断、和、。

(2)写出t>0时间内描述系统的微分方程式,求的完全响应。

图2-2解(1)换路前电路处于稳态电感相当于短路,电感电流,电容相当于开路= 0,= = 0。

信号与系统(郑君里)ppt

信号与系统(郑君里)ppt

f(t)
O
t
f(n)
O 12
n
4.模拟信号,抽样信号,数字信号
•模拟信号:时间和幅值均为连续
f t
的信号。


t
•抽样信号:时间离散的,幅值
O

连续的信号。
f n

•数字信号:时间和幅值均为离散 O
n
的信号。
f n
主要讨论确定性信号。 n
先连续,后离散;先周期,后非周期。O
时间轴 幅度轴
连续
连续 模拟信号
t
f(t)
t/2
f(t/2)
0
1
0
1
T
2
T
2
时间尺度压缩:t ห้องสมุดไป่ตู้ 2 ,波形扩展
求新坐标
t
f(t/2)
0
1
2T
2
f(t)f(2t)
f t
2 1
O
Tt
宗量相同,函数值相同
t
f(t)
2t
f(2t)
0
1
0
1
T
2
T
2
求新坐标
t
f(2t)
0
1
T/2
2
t2t,时间尺度增加,波形压缩。
比较
f t
2 1
O
Tt
O
t
二.单位阶跃信号
1. 定义
u(t )
0
u(t )
1
t 0 0点无定义或1
t 0
2
2. 有延迟的单位阶跃信号
1
O
t
u(t t0 )
0 u(t t0 ) 1
0 u(t t0 ) 1

信号与系统_郑君里_第三版_课件

信号与系统_郑君里_第三版_课件

例3:利用阶跃信号来表示“符号函数”(signum)
sgn(t) 1 0 -1
2016/5/9
t
1 t 0 sgn(t ) ቤተ መጻሕፍቲ ባይዱ 1 t 0
2u (t ) 1
1 或: u (t ) [sgn( t ) 1] 2
19
三、单位冲激信号 (t ) 我们先从物理概念上理解如何产生冲激函数 (t )


2016/5/9
28
' tu (t ) 、u(t ) 、 (t ) 和 (t ) 之间的关系:
(t )
(1) 0 积分 求导 t
积分 求导 1 0 积分
u(t )
t 求导
tu (t )
'(t )
t
0
0
t
2016/5/9
29
1.3 信号的运算
1.3.1 信号的相加运算 两个信号的和(或差)仍然是一个信号,它在任意 时刻的值等于两信号在该时刻的值之和(或差),即
R(t-t0)
1 0 t0 t
2016/5/9
t0+1
14
二、单位阶跃信号
u(t )
u(t)
1, (t 0)
0, (t 0)
1 0 t
2016/5/9
15
工程实例
S E=1V
+ -
+ C
例:图中假设S、E、C 都是理想元件(内阻为0), 当 t = 0 时S闭合,求电容C上的电压。
2016/5/9 4
1.1 引论
信号:一种物理量(电、光、声)的变化。
消息:待传送的一种以收发双方事先约定的方式组成的符号,
如语言、文字、图像、数据等。

信号与系统考研电子讲义郑君里

信号与系统考研电子讲义郑君里

12§1.2信号的描述,分类和典型示例(续)•指数信号和正弦信号•奇异信号–斜变信号–单位阶跃信号和符号函数–单位冲激和冲激偶信号正交信号•11(k 实指数信号1—(k 和s 都是实数)•若中的为0 , k 为实数βαj k +=β同时•0 , s ωσs +=ω若中的为,为实数j k则为实指数函数stke t x =)(正弦信号1—取周期复指数的实部•欧拉公式sin(cos()(0ωωφω+++=+t t et j •取实部则为正弦信号)()(00φφj =)cos()(0φω+t A t x 81.3§信号的运算(参考网站绪论的内容)Ee whu edu cn用Flash演示的动态过程§1.4阶跃信号与冲激信号一.奇异信号即本身、其导数或其积分有不连续点的函数。

1.斜变信号2.单位阶跃信号3.符号函数4.单位冲激5.冲激偶信号13信号加窗或取单边t t u t u e t t−−=−)]()([)(0f f(t)f()t(1)突然接入的直流电压()2)突然接通又马上断开电源K负载r(t)r(t 3)r(t 1)r(t 2)r(t-3)-r(t-1)-r(t-2)f(t)1)]2()2()[1()(.101.38−−+−=−t u t u tt f a p 题2....)2()1()()(.+−+−+=t u t u t u t f b )]()([(sin )(.T t u t u t E t f c −−=πT二.单位冲激函数)(t dr )(t du δ=)(t u dt =)(t dt 1.定义:(p17—21))]()([1)(.lim ττδ−−+=t u t u t a 220ττ→)()(t t =δ1=∞dt t limfnn ∞→)(∫∞−fn0=t )(lim ∞→fnn 0≠t 用规则函数脉冲序列的极限来定义)(t Rt ut )(t)(tδtb.Dirac 定义:=)(t δ∫∞=1)(dt t δ00≠t 0=∞t c.利用冲激函数的抽样性∞)()()(00t f dt t t t f =−∫∞δ∞−∫∞−=)0()()(f dt t t f δ∞−)()()(.00t f dt t t t f a =−∫∞−δ1∞)()]([.00t t t t b −=−−δδ)()(.t aat c δδ=)()()()(.000t t t f t t t f d −=−δδt)()(.t dtt u e δ=)()(t u d =∫∞−ττδ+−)(t i c 由于冲激电流的出现,电容两端的电压可以突变;电感电流也可以突变。

郑君里《信号与系统》(第3版)【教材精讲+考研真题解析】讲义(1-6章)【圣才出品】

郑君里《信号与系统》(第3版)【教材精讲+考研真题解析】讲义(1-6章)【圣才出品】
3 / 136
圣才电子书 十万种考研考证电子书、题库视频学习平台

f t f (t nT ) n 0 , 1, 2 ,
b.非周期信号:在时间上不具有周而复始的特性。 ③连续信号与离散信号 a.连续信号:时间轴为连续时间变量; b.离散信号:时间轴为离散时间变量。 ④模拟信号、抽样信号、数字信号 a.模拟信号:时间幅度均连续的信号; b.抽样信号:时间离散,幅度连续的信号; c.数字信号:时间幅度均离散的信号。 3.信号的几种典型示例 (1)指数信号: f (t) Keat , a R ; (2)正弦信号: f (t) K sin(t ) ; (3)复指数信号: f (t) Kest Ke( j)t ; (4)抽样信号: Sa(t) sin t ;

(2)积分
十万种考研考证电子书、题库视频学习平台
òt f t( )dt -¥
3.两信号相加或相乘
信号的相加、相乘与代数运算无异。
四、阶跃信号和冲激信号 奇异信号是指函数本身有不连续点(跳变点)或其导数与积分有不连续点的信号,包括 斜变、阶跃、冲激和冲激偶四种信号。 1.单位斜变信号
(2)反褶
f (t) f (t) ,把 f (t) 的波形以 t 0 为轴反褶过来。
(3)尺度变换
f (t) f (at) ( a 为正实系数),若 a 1 ,则 f (t) 的波形沿时间轴被压缩;反之,则
被扩展。
2.微分和积分
(1)微分
f ¢(t) = d f (t) dt
5 / 136
圣才电子书
t (5)钟形信号(高斯函数): f (t) Ee(t/ )2 。
4 / 136
圣才电子书 十万种考研考证电子书、题库视频学习平台

信号与系统(郑君里)ppt

信号与系统(郑君里)ppt

3 页
X
§ 1.1 信号与系统
•信号(signal) •系统(system) •信号理论与系统理论
青岛大学信息工程学院
信号(Signal)
第 5 页
•消息(Message):在通信系统中,一般将语言、文字、 图像或数据统称为消息。 •信息(Information):一般指消息中赋予人们的新知 识、新概念,定义方法复杂,将在后续课程中研究。 •信号(Signal):指消息的表现形式与传送载体。 •信号是消息的表现形式与传送载体,消息是信号的传 送内容。例如电信号传送声音、图像、文字等。 •电信号是应用最广泛的物理量,如电压、电流、电荷、 磁通等。

11 页
脚压力
汽车
汽车制动
光信号
照相机
像片
X
信号理论与系统理论
信号分析:研究信号的基本性能,如信号 的描述、性质等。 信号理论 信号传输(包含信号交换) 信号处理
系统分析:给定系统,研究系统对于输入 激励所产生的输出响应。 系统理论 系统综合:按照给定的需求设计(综合) 系统。
本课程重点讨论信号的分析、系统的分析,分析是综合的基础。
15 页
X

1.确定性信号和随机信号
根据信号随时间的变化规律分为:
•确定性信号
表示为一确定的时间函数,对于指定的某一时刻t,可确定一相 应的函数值f(t)。若干不连续点除外。 •随机信号 无法用明确的数学关系式表达的信号,具有未知预测的不确定 性,只能用概率统计方法由过去估计未来或找出某些统计特征 量。
t
单边衰减指数信号 t0 0 f t t e t0
1
O
f t 1
O
t
通常把 称为指数信号的时间常数,记作,代表信号增长或 衰减速度,越大,指数信号增长或衰减的速度越慢 。

信号与系统课件 郑君里版

信号与系统课件 郑君里版

0
t t0
t
理 想 低 通 滤 波 器 的 冲 激 响 应 波 形
三、 理想低通的阶跃响应
u1(t)
E
低通滤波器
u 2 (t)
E
0
t
输 入 信 号 波 形
0
t
输 出 信 号 的 失 真 波 形
如果具有跃变不连续点的信号通过低通滤波器传输, 则不连续点在输出将被圆滑,产生渐变. 因为信号随时间信号的急剧改变,意味着包含许多高频分量, 而较平坦的信号则主要包含低频分量, 低通滤波器滤除了一些高频分量.
第五章 傅里叶变换应用于通信系统
◆ 无失真传输 ◆ 理想低通滤波器 ◆ 调制与解调 ◆ 综合业务数字网(ISDN)
5.1 无失真传输 一、傅里叶变换形式的系统函数
1、定义: H(s)sjwH(j)
F d e f
系 统 函 数 H (j): H (j) h (t)
1)系 统 零 状 态 响 应 r(t):
M ( )
- 2 B
O 2 B (a )
D SB( )
- c
O
(b )
SSB( )
c
- c
O
c
(c )
VSB( )
- c
O
c
(d )
DSB、 SSB和VSB 信号的频谱
(5)包络检波 由非线性器件和低通滤波器两部分组成。
(6)同步检波: 接收端与发射端具有相同频率的本地载波。
1t
1(t )
E1eR Cu(t)E1eR C u(t)
u 2(t)
E
u1(t)
E
0
t
输 出 信 号 的 失 真 波 形
0
t
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1, t > 0 u (t ) = 0, t < 0

(1-11)
1, = u ( t ) 0, 1 2,
t >0 t<0 t =0
(1-12)
图 1-5 斜升函数 ☻ 符号函数:
图 1-6 单位阶跃函数
4
《信号与系统》讲义
第一章:绪论
1, t > 0 sgn ( t ) = −1, t < 0 或 1, t > 0 sgn ( t ) = −1, t < 0 0, t = 0 ☻ 门函数: G ( t ) = u ( t ) − u ( t − t0 ) , t0 > 0
☻ 采样函数:
= f ( t ) Sa = (t ) sin t t
(1-5)
注意与抽样信号 定义上的差别!
- 0.2122
图 1-3 采样信号 采样函数的性质(三点、三式) : ♦ 采样函数 Sa ( t ) 为偶函数,在 t 的正、负两方向振幅都逐渐衰减,当
±π , ±2π , , ± nπ 时,信号值为零。 t=
φ ( x)
《信号与系统》讲义
第一章:绪论
=
δ ( x − x0 ) /, f ′ ( x0 )
f ′ ( t0 ) δ ( t − t0 )
−1
φ ( x)
#证毕
即: = δ ( f (t ))
复合冲激函数的直观理解: ① δ ( f ( t ) ) = ∞ 的冲激位置在 f ( t ) =0,即在t 0 点;其余点为 0。 ② δ ( f ( t ) ) 的冲激强度不是 1,而是与 f ( t ) 的陡峭程度成反比。 上述第②条可以通过广义极限逼近的冲激函数来理解:若 f ( t ) 在 t 0 邻域内缓变 (斜率小) ,则 f ( t ) 的取值靠近 0,δ ( f ( t ) ) 的值就大;若 f ( t ) 在t 0 邻域内快变(斜率 大) ,则 f ( t ) 的取值就远离 0, δ ( f ( t ) ) 的值就小;是反比关系。 ☻ 若光滑函数 f ( t ) 满足: f ( t ) |t =t1 , t2 , = 0 ,且 f ′ ( ti ) ≠ 0,∀i = 1, 2,... ,则:
(t < 0) 0, f ( t ) = −α t Ke sin (ωt ), ( t ≥ 0 )
(1-3)
其中,α >0。 ☻ 复指数信号: f (t ) = Ke st (1-4)
= σ + jω , t ∈ ( −∞, +∞ ) 其中: s
st = Keσ t cos (ωt ) + jKeσ t sin (ωt ) 可见: f = ( t ) Ke
(1-13)
(1-14)
(1-15)
图 1-7 符号函数
图 1-8 门函数
§1.3 冲激函数与广义函数( 《信号与系统》第二版(郑君里)1.4,2.9) 冲激函数的三种常规定义: 1)冲激函数的直观定义,狄拉克(Dirac)定义: +∞ δ ( t ) dt = 1 ∫−∞ ( t ) 0, t ≠ 0 δ= (1-16)
图 1-9 冲激函数 这不是高等数学所讲的常规意义下的积分,不是黎曼(Riemann)积分,也不是 勒贝格(Lebesgue)积分。而是一种自洽定义的特殊积分。 2)冲激函数的广义极限定义:冲激函数是面积(强度)为 1,等效宽度趋 于 0 的函数的极限。这样的函数可以有多种,以下列出八种: a) 矩形函数逼近 1 τ τ δ ( t ) lim u t + − u t − τ →0 τ 2 2 (1-17)

t
−∞

(1-31)
1 u (t ) = δ (t ) p ☻ 阶跃微分性质:
(1-32)
δ (t ) =
定义(微分算子) :
p
du ( t ) dt
d dt
(1-33)
(1-34)
为微分算子,则有:
δ (t ) = p u (t )
☻ 筛性性质(原点) :
(1-35)
δ ( t ) ,φ ( t ) =
(1-23)
δ ( t ) lim
n n →∞ π 1 + n 2 t 2 ( )
(1-24)
3)冲激函数的检验函数(test function)定义: ♦ ♦ 检验函数的描述性定义:区间 Ω(a, b)上的光滑函数 φ ( t ) 称为检验函 数, −∞ < a < b < ∞ 。检验函数的全体记为 D ( Ω ) 。 用检验函数定义冲激函数:对于 ∀φ ( t ) ∈ D ( Ω ) ,若有

−1
(1-38)
证明: ∀φ ( t ) ∈ D ( Ω ) ,考虑 δ ( f ( x ) ),φ ( x ) = ∫ δ ( f ( x ) ) φ ( x ) dx 令: = y f ( x ),则 = y , f= dy f ′ ( x ) dx ( x0 ) 0= 令: Ω取包含,的区间 x0 ∈ ( a b ) 则:原式= ∫
(1-20)
图 1-13 采样函数逼近
6
《信号与系统》讲义
第一章:绪论
e) 复指数函数积分逼近(与采样函数逼近相同)
δ ( t ) lim
= lim f)
1 k →∞ 2π

k
−k
e jξ t dξ
1 = 2π


−∞
e jξ t dξ
1 1 jkt − jkt sin kt e ) lim ,即采样逼近 ( e −= k →∞ 2π jt k →∞ π t
n
个高阶无穷小量,当 t → ∞。 定义:比任何多项式的倒数衰减都快的函数称为速降函数。 高斯函数是速降函数,是正实函数。 高斯函数的傅里叶变换仍为高斯的。
奇异函数: ☻ 光滑函数:定义域 Ω 上任意阶导数都存在的函数的集合,记为 C ∞ ( Ω ) 。 ☻ 奇异函数:非光滑函数统称为奇异函数。 ☻ 单位斜变函数: t, t ≥ 0 R (t ) = 0, t < 0 ☻ 单位阶跃函数: (1-10)
图 1-2 抽样信号举例 典型确定性信号: ☻ 指数信号: f (t= ) K ⋅ eα t 其中,K、α为实数。 ☻ 正弦信号: (1-1)
= f ( t ) A sin (ωt + θ )
2
(1-2)
《信号与系统》讲义
第一章:绪论
其中,A 为幅度,ω 为角频率,θ 为初相位。 ☻ 单边衰减正弦信号:
5
《信号与系统》讲义
第一章:绪论
图 1-10 矩形逼近 b) 金字塔函数逼近
δ ( t ) lim (1 − | t | τ ) u ( t + τ ) − u ( t − τ ) τ →0 τ
1

(1-18)
−τ
o
τ
t
图 1-11 金字塔逼近 c) 负指数函数逼近
☻ 尺度变换性质:
(1-27)
δ (α t ) =
☻ 偶函数性质:
1
α
δ (t )
(1-28)
δ ( −t ) = δ (t )
☻ 积分阶跃性质:
(1-29)
u ( t ) = ∫ δ ( t ) dt
−∞
t
(1-30)
定义(积分算子) :
7
《信号与系统》讲义
第一章:绪论
1 p 为积分算子,则有




0
Sa ( t ) dt =
π
2
(1-6)



−∞
Sa ( t ) dt = π Sa ( t ) dt = ∞
(1-7)

☻ 高斯函数:

−∞
(1-8)
f (t ) = E ⋅e
3
t − τ
2
(1-9)
《信号与系统》讲义
第一章:绪论
图 1-4 高斯函数 高斯函数的性质: ♦ ♦ ♦ ♦ 高斯函数比任何一个多项式的倒数衰减都快,即 f ( t ) ∑ i =0 α i t i 是一
1 − |τt| δ ( t ) lim e , τ > 0 τ →0 2τ
(1-19)
图 1-12 负指数逼近 d) 采样函数逼近
δ ( t ) lim Sa ( kt ) = lim k →∞ π k →∞ π
k

k sin ( kt ) kt

f (a) f (b)
δ ( y )φ ( x )
1 dy f ′( x) 1
φ ( x) ∫ ( ) δ ( y ) Ψ ( y )dy , 其中:Ψ ( y ) = f ′( x)
f b
f (a)
φ ( x0 ) = Ψ ( 0) = = f ′ ( x0 )
8
δ ( x − x0 ),
f ′ ( x0 )
δ ( t ) φ ( t ) dt φ ( 0 ) ∫=

(1-36)
其中 φ ( t ) 有界,且在 t = 0 处连续。 ☻ 筛选性质(任意点) :
δ ( t − t 0 ) ,φ ( t ) = φ ( t0 ) ∫ δ ( t − t0 ) φ ( t ) dt =

(1-37)
☻ 复合冲激函数: , 若 f ( t ) 是t的单调函数(在t 0 的邻域内单调) = f ( t0 ) 0,f ′ ( t0 ) ≠ 0 ,则 = δ ( f (t )) f ′ ( t0 ) δ ( t − t0 )
相关文档
最新文档