经典功率谱估计方法实现问题的研究
功率谱估计

功率谱估计引言:对信号和系统进行的分析研究、处理有两类方法:一类是在时域内进行,维纳滤波、卡尔曼滤波以及自适应滤波等都属于时域处理方法;另一类方法是频域研究方法。
对于确定性信号,傅里叶变换是在频率分析研究的理论基础,但是在实际生活中大多数信号是随机信号,而随机信号的傅里叶变换是不存在的,在实际应用中,通常通过采集和观测平稳随机过程的一个抽样序列的一段(有限个)数据,根据这有限个已知的数据来估计随机过程的功率谱问题来对随机信号进行分析,这即是频率谱估计。
功率谱估计是数字信号处理的主要内容之一,主要研究信号在频域中的各种特征,目的是根据有限数据在频域内通过用某种有效的方法来估计出其功率谱密度,从而得出信号、噪声及干扰的一些性质来,提取被淹没在噪声中的有用信号。
功率谱估计就是通过信号的相关性估计出接受到信号的功率随频率的变化关系,实际用途有滤波,信号识别(分析出信号的频率),信号分离,系统辨识等。
谱估计技术是现代信号处理的一个重要部分,还包括空间谱估计,高阶谱估计等。
按照Weiner —Khintchine 定理,随机信号的功率谱和其自相关函数服从傅里叶变换关系,可以得出功率谱的一个定义,如公式(1)所示:()jwm m xx jw xx e m re P -∞-∞=∑=)( 公式(1)对于平稳随机信号,服从各态历经性,集合平均可以用时间平均来代替,可以推出功率谱的另一定义。
如公式(2)所示:()])(121[2lim ∑-=-∞→+=N N n jwn N jw xx e n x N E e P 公式(2)频率谱估计主要分为经典谱估计和现代谱估计,经典谱估计是将数据工作区外的未知数据假设为零,相当于数据加窗,主要方法有相关法和周期图法;现代谱估计是通过观测数据估计参数模型再按照求参数模型输出功率的方法估计信号功率谱,主要是针对经典谱估计的分辨率低和方差性能不好等问题提出的,应用最广的是AR 参数模型。
现代信号处理经典的功率谱估计

现代信号处理经典的功率谱估计《现代信号处理》姓名:李建强学号:201512172087专业:电子科学与技术作业内容:在MATLAB平台上对一个特定的平稳随机信号进行经典功率谱估计和现代功率谱估计的比较一、前言功率谱估计是信息学科中的研究热点,在过去的30多年里取得了飞速的发展。
在许多工程应用中,它能给出被分析对象的能量随频率的分布情况。
平滑周期图是一种计算简单的经典方法,它的主要特点是与任何模型参数无关,但估计出来的功率谱很难与信号的真是功率谱相匹配。
与周期图方法不同,现代谱估计主要是针对经典谱估计(周期图和自相关法)的分辨率低和方差性能不好的问题而提出的。
其使用参数化的模型,能够给出比周期图方法高得多的频率分辨率。
其内容极其丰富,涉及的学科和领域也相当广泛,按是否有参数大致可分为参数模型估计和非参数模型估计,前者有AR模型、MA模型、ARMA模型、PRONY指数模型等;后者有最小方差方法、多分量的MUSIC方法等。
二、总体概述本次实验分别使用经典的功率谱估计(如周期图法)与AR模型法对某一特定的平稳随机信号进行其功率谱估计,由图像得到信号的频率。
利用MATLAB平台,直观形象地观察并比较二者估计效果的区别,以便于加深对功率谱估计的理解和掌握。
三、具体的实现步骤1、经典法功率谱估计周期图法又称直接法,它是从随机信号x(n)中截取N长的一段,把它视为能量有限的真实功率谱的估计的一个抽样。
1.1、实现步骤(1)、模拟系统输出参数x(n)=A*sin(2πf1*n)+B*sin(2πf2*n),包括序列长度N(128或512或1024,加性高斯白噪声(AGWN)功率一定,设置A,B,f1,f2,n的值。
(2)、应用周期图法(不加窗)对信号的功率谱密度进行估计,使用直接法在MATLAB平台上进行编程实现。
(3)、输出相应波形图,进行观察,记录。
1.2 MATLAB源代码实现clear all; %清除工作空间所有之前的变量close all; %关闭之前的所有的figureclc; %清除命令行之前所有的文字n=1:1:128; %设定采样点n=1-128f1=0.2; %设定f1频率的值0.2f2=0.213; %设定f2频率的值0.213A=1; %取定第一个正弦函数的振幅B=1; %取定第一个正弦函数的振幅a=0; %设定相位为0x1=A*sin(2*pi*f1*n+a)+B*sin(2*pi*f2*n+a ); %定义x1函数,不添加高斯白噪声x2=awgn(x1,3); %在x1基础上添加加性高斯白噪声,信噪比为3,定义x2函数temp=0; %定义临时值,并规定初始值为0temp=fft(x2,128); %对x2做快速傅里叶变换pw1=abs(temp).^2/128; %对temp做经典功率估计k=0:length(temp)-1;w=2*pi*k/128;figure(1); %输出x1函数图像plot(w/pi/2,pw1) %输出功率谱函数pw1图像xlabel('信号频率/Hz');ylabel('PSD/傅立叶功率谱估计');title('正弦信号x(n)添加高斯白噪声后的,周期图法功率频谱分析');grid;%------------------------------------------------------------------------- pw2=temp.*conj(temp)/128; %对temp做向量的共轭乘积k=0:length(temp)-1;w=2*pi*k/128;figure(2);plot(w/pi/2,pw2); %输出功率谱函数pw2图像xlabel('信号频率/Hz');ylabel('PSD/傅立叶功率谱估计');title('正弦信号x(n)自相关法功率谱估计');grid;1.3 matlab仿真图形(1)、用直接法,功率谱图像,采样点N=128。
经典功率谱估计

雷达和声呐系统
目标检测
在雷达和声呐系统中,经典功率谱估计常被用于目标检测。通过对接收到的信号进行功率 谱分析,可以判断是否存在目标以及目标的位置和速度等信息。
距离和速度测量
在雷达和声呐系统中,经典功率谱估计还可以用于距离和速度测量。通过对接收到的信号 进行功率谱分析,可以估计出目标与系统之间的距离和相对速度。
信号分类
在雷达和声呐系统中,经典功率谱估计还可以用于信号分类。通过对接收到的信号进行功 率谱分析,可以判断目标的类型,例如区分飞机、船舶或车辆等不同类型目标。
05 经典功率谱估计的改进方 法
基于小波变换的功率谱估计
1
小波变换能够将信号分解成不同频率和时间尺度 的分量,从而更好地揭示信号的内在结构和特征。
然而,这些方法通常需要较长 的数据长度和较为复杂的计算 过程,对于短数据和实时处理 的应用场景具有一定的局限性 。
研究展望
01
随着信号处理技术的发展,经典功率谱估计方法仍有进一步优化的空 间。
02
针对短数据和实时处理的应用场景,研究更为快速、准确的功率谱估 计方法具有重要的实际意义。
03
结合机器学习和人工智能技术,探索基于数据驱动的功率谱估计方法 是一个值得关注的方向。
优点
能够提供较高的频率分辨率和较低的估计误差。
原理
格莱姆-梅尔谱估计利用了信号的模型参数,通过 构造一个模型函数来描述信号的频率响应特性, 并求解该函数的极值问题得到信号的功率谱。
缺点
需要预先设定模型函数的形式和参数,且计算复 杂度较高。
03 经典功率谱估计的优缺点
优点
01
02
03
算法成熟
经典功率谱估计方法经过 多年的研究和发展,已经 相当成熟,具有较高的稳 定性和可靠性。
数字信号处理中的功率谱估计原理探讨

数字信号处理中的功率谱估计原理探讨功率谱估计是数字信号处理中的一项重要任务,它用于分析信号的频率成分和功率分布特性。
在许多应用领域,如通信系统、语音处理、雷达信号处理等,功率谱估计被广泛应用。
本文将探讨功率谱估计的基本原理,介绍几种常用的功率谱估计方法,并讨论其优缺点。
一、功率谱估计的基本原理在数字信号处理中,功率谱估计是通过对信号进行频谱分析来获取信号的功率分布信息。
功率谱表示信号在不同频率下的功率强度,它可以反映信号的频域特性。
常用的功率谱估计方法有周期图法、非周期图法和模型法等。
周期图法基于周期自相关函数的峰值来估计信号的功率谱,适用于周期信号和稳态信号;非周期图法通过对信号进行傅里叶变换来估计功率谱,适用于非周期信号和非稳态信号;模型法则是基于信号模型假设,将信号拟合为数学模型,从而得到功率谱估计结果。
二、常用的功率谱估计方法1. 周期图法周期图法是一种基于周期性信号特点的功率谱估计方法。
它通过计算信号的周期自相关函数来实现功率谱估计。
常用的周期图法有自相关法和互相关法。
自相关法是基于信号与其自身的相关性来估计功率谱的,它通过计算信号的自相关函数来得到功率谱。
自相关法对于周期信号和稳态信号有较好的性能,但对于非周期信号和非稳态信号的估计结果则较差。
互相关法是通过计算信号与加性白噪声之间的互相关函数来估计功率谱的。
互相关法在估计非周期信号和非稳态信号的功率谱时表现较好,但对于周期信号的估计结果则较差。
2. 非周期图法非周期图法是一种基于信号的频谱特性的功率谱估计方法。
它通过信号的傅里叶变换来获得信号的频谱信息,并进一步得到功率谱的估计结果。
常用的非周期图法有快速傅里叶变换法和滤波器法。
快速傅里叶变换法是一种高效计算信号频谱的方法。
它通过对信号进行快速傅里叶变换,将信号从时域转换到频域,并得到信号的频谱信息。
通过对频谱进行平方运算可以得到信号的功率谱估计结果。
滤波器法是一种基于滤波器的功率谱估计方法。
(完整版)功率谱估计性能分析及Matlab仿真

功率谱估计性能分析及Matlab 仿真1 引言随机信号在时域上是无限长的,在测量样本上也是无穷多的,因此随机信号的能量是无限的,应该用功率信号来描述。
然而,功率信号不满足傅里叶变换的狄里克雷绝对可积的条件,因此严格意义上随机信号的傅里叶变换是不存在的。
因此,要实现随机信号的频域分析,不能简单从频谱的概念出发进行研究,而是功率谱[1]。
信号的功率谱密度描述随机信号的功率在频域随频率的分布。
利用给定的N 个样本数据估计一个平稳随机信号的功率谱密度叫做谱估计。
谱估计方法分为两大类:经典谱估计和现代谱估计。
经典功率谱估计如周期图法、自相关法等,其主要缺陷是描述功率谱波动的数字特征方差性能较差,频率分辨率低。
方差性能差的原因是无法获得按功率谱密度定义中求均值和求极限的运算[2]。
分辨率低的原因是在周期图法中,假定延迟窗以外的自相关函数全为0。
这是不符合实际情况的,因而产生了较差的频率分辨率。
而现代谱估计的目标都是旨在改善谱估计的分辨率,如自相关法和Burg 法等。
2 经典功率谱估计经典功率谱估计是截取较长的数据链中的一段作为工作区,而工作区之外的数据假设为0,这样就相当将数据加一窗函数,根据截取的N 个样本数据估计出其功率谱[1]。
2.1 周期图法( Periodogram )Schuster 首先提出周期图法。
周期图法是根据各态历经的随机过程功率谱的定义进行的谱估计。
取平稳随机信号()x n 的有限个观察值(0),(1),...,(1)x x x n -,求出其傅里叶变换10()()N j j n N n X e x n e ωω---==∑然后进行谱估计21()()j N S X e Nωω-= 周期图法应用比较广泛,主要是由于它与序列的频谱有直接的对应关系,并且可以采用FFT 快速算法来计算。
但是,这种方法需要对无限长的平稳随机序列进行截断,相当于对其加矩形窗,使之成为有限长数据。
同时,这也意味着对自相关函数加三角窗,使功率谱与窗函数卷积,从而产生频谱泄露,容易使弱信号的主瓣被强信号的旁瓣所淹没,造成频谱的模糊和失真,使得谱分辨率较低[1]。
功率谱和经典谱估计的应用:

1、功率谱的应用: 功率谱反映了随机信号各频率成分功率能量的分布情况,
可以揭示信号中隐含的周期性及靠得很近的谱峰等有用的信息, 应用及其广泛。例如,在语音信号识别、雷达杂波分析、地震 勘测信号处理、水声信号处理、系统辨识中非线性系统识别、 物理光学中透镜干涉、流体力学的内波分析、太阳黑子活动周 期研究等许多领域,发挥了重要作用。
涡街流量计的信号频率与流体速度成线性比例关系,工 程应用中一般测量该信号的频率,然后根据仪表系数转换算成 实际的流量。因为噪声的原因,数字信号处理必须实现准确的 功率—频率计算。对涡街信号处理的第一步就是直接做功率谱 估计,计算功率谱能量最大的谱线对应的信号频率就是涡街信 号的频率。用这个频率来确定涡街信号的区间范围方便后续进 一步处理。
2、经典谱估计的应用:
经典谱估计法由于假定信号的自相关函数在数据观测区以外等于 零,因此估计出来的功率谱很难与信号的真实功率谱相匹配,是一种低 分辨率的谱估计方法,而现在已有很多质量更好的谱估计方法,所以经 典谱现在主要用于一些要求不高的场合,做一些基础的工作。
(1)涡街流量计
在基于经典谱估计改进方法的涡街流量计中通过经典谱估计的FFT 算法来计算信号频率的区间范围,以待后续进一步的处理。
(2)汽轮机振动信号 当汽轮机产生故障时,其振动信号的频谱能量分布情况会有 所改变,因此对振动信号进行频谱分析是当前常用的汽轮机故障 特征提取方法。周期图法
功率谱估计报告范文

功率谱估计报告范文
一、功率谱估计的原理
功率谱估计是用来估计信号的功率谱密度(PSD)。
功率谱密度是描述信号在不同频率上的功率分布情况,是信号频谱特征的重要指标之一、功率谱估计的目标是通过有限长的信号序列来估计信号的功率谱密度,从而得到信号的频谱特征。
二、功率谱估计的常用方法
1.周期图法
周期图法是通过信号的周期性来估计功率谱密度。
该方法将有限长的信号序列进行周期延拓,然后通过傅里叶变换或卷积运算得到功率谱密度估计。
2.自相关法
自相关法是通过信号的自相关函数来估计功率谱密度。
该方法先计算信号序列的自相关函数,然后通过傅里叶变换得到功率谱密度估计。
3.平均功率谱法
平均功率谱法是通过将信号序列分段并求取每段的功率谱密度,然后对各段的功率谱密度进行均值运算来估计信号的功率谱密度。
常用的平均功率谱法有Welch法和Bartlett法。
三、功率谱估计的实际应用案例
1.语音信号处理
2.无线通信
3.振动信号分析
总之,功率谱估计是分析信号频谱特征的常用方法,通过对有限长的信号序列进行处理,估计信号的功率谱密度。
功率谱估计可以应用于语音信号处理、无线通信以及振动信号分析等多个领域。
在实际应用中,根据信号特点和需求选择合适的功率谱估计方法,并结合其他信号处理技术进行综合分析。
对功率谱估计常用方法的探讨及应用

DSP课程的设计对功率谱估计常用方法的探讨及应用分析进行傅里叶变换在频域中研究信号,是研究确定性信号最简单且有效的手段,但在现代信号分析中,对于常见的随机信号,不可能用清楚的数学关系式来描述,其傅里叶变换更不存在,转而可以利用给定的N个样本数据估计一个平稳随机信号的功率谱密度。
功率谱估计是数字信号处理的重要研究内容之一。
功率谱估计可以分为经典功率谱估计和现代功率谱估计。
本文介绍了各种经典功率谱估计方法,不仅从理论上对各种方法的谱估计质量进行了分析比较,而且通过Matlab进行了仿真。
在对经典谱估计进行讨论之后,还分析了现代谱估计即参数谱估计方法,通过观测数据估计参数模型再按照求参数模型输出功率的方法估计信号功率谱。
现代谱估计的内容极其丰富,设计的学科及应用的领域都相当广泛,至今每年都有大量的科研成果出来。
在本文的最后利用现代谱估计的方法讨论了功率谱方法在噪声源信号识别中的应用。
文章还给出了常见谱估计方法的比较,便于深刻理解各种方法的特点,从而在实际工作中做出合理的选择。
1.功率谱方法的发展功率谱估计是随机信号处理的重要内容,其技术渊源很长,而且在过去的40余年中获得了飞速的发展。
涉及到信号与系统、随机信号分析、概率统计、矩阵代数等一系列的基础学科,广泛应用于人民的日常生活及军事、工业、农业活动中,是一个具有强大生命力的研究领域。
本文将简要回顾一下功率谱估计的发展历程,对常用的一些方法进行总结。
功率谱的估计方法有很多,主要有经典谱估计和现代谱估计。
经典谱估计又可以分成两种:一种是BT法,也叫间接法;另一种是直接法又称周期图法。
现代谱估计的方法又大致可分为参数模型谱估计和非参数模型谱估计,前者有AR模型、MA模型、ARMA模型、PRONY模型等,后者有最小方差方法、多分量的MUSIC方法等。
1.1功率谱研究的发展过程功率谱估计是数字信号处理的主要内容之一,主要研究信号在频域中的各种特征,目的是根据有限数据在频域内提取被淹没在噪声中的有用信号。
功率谱估计方法的比较与评价

功率谱估计方法的比较与评价功率谱估计是信号处理领域的重要工具,用于分析信号的频率内容和能量分布。
随着科技的进步,出现了多种功率谱估计方法,例如经典的周期图法、快速傅里叶变换法以及最小二乘法等。
本文将对这些方法进行比较与评价,旨在找出最适合于不同应用场景的功率谱估计方法。
一、周期图法周期图法是一种常用的功率谱估计方法,它利用信号的自相关函数来计算功率谱。
该方法适用于稳态信号,并能够较好地估计信号的频谱特征。
但周期图法在非稳态信号的估计上存在一定的局限性,并且计算复杂度较高,需要较长的计算时间。
二、快速傅里叶变换法快速傅里叶变换(FFT)法是一种高效的功率谱估计方法,通过将信号从时域转换为频域,可以快速计算出信号的功率谱。
FFT法的优点是计算速度快,适用于大数据量的处理。
然而,由于FFT法是基于信号的离散采样点进行计算的,对于非周期信号的估计效果可能不够准确。
三、最小二乘法最小二乘法是一种经典的信号处理方法,可以用于估计信号的功率谱密度函数。
该方法利用样本点间的相关性来估计信号的频谱分布,并通过最小化误差的平方和来求解最优的谱估计。
最小二乘法的优点是估计结果较为准确,对于非稳态信号的估计效果也较好。
然而,最小二乘法在计算复杂度上稍高,并且对于信噪比较低的信号,估计结果可能受到较大影响。
四、窗函数法窗函数法是一种常见的功率谱估计方法,它通过在时域上对信号进行窗函数加权来减小频谱泄露的影响。
窗函数法对于非周期性和非稳态信号的功率谱估计具有一定的优势,可以提供更准确的估计结果。
然而,在窗函数选择上需要权衡分辨率和频谱失真的平衡,不同的窗函数选择会对结果产生一定的影响。
综上所述,不同的功率谱估计方法适用于不同的应用场景。
周期图法适用于稳态信号的估计;快速傅里叶变换法适用于大数据量的处理;最小二乘法适用于需要较高估计准确度的场景;窗函数法适用于非周期性和非稳态信号的估计。
在具体应用中,需要根据信号特性和实际需求选择合适的功率谱估计方法,以获得准确可靠的结果。
功率谱估计浅谈讲解

功率谱估计浅谈摘要:介绍了几种常用的经典功率谱估计与现代功率谱估计的方法原理,并利用Matlab对随机信号进行功率谱估计,对两种方法做出比较,分别给出其优缺点。
关键词:功率谱;功率谱估计;经典功率谱估计;现代功率谱估计前言功率谱估计是从频率分析随机信号的一种方法,一般分成两大类:一类是经典谱估计;另一类是现代谱估计。
由于经典谱估计中将数据工作区以外的未知数据假设为零,这相当于数据加窗,导致分辨率降低和谱估计不稳定。
现代谱估计则不再简单地将观察区外的未知数据假设为零,而是先将信号的观测数据估计模型参数,按照求模型输出功率的方法估计信号功率谱,回避了数据观测区以外的数据假设问题。
周期图、自相关法及其改进方法(Welch)为经典(非参数)谱估计方法, 其以相关和傅里叶变换为基础,对于长数据记录较适用,但无法根本解决频率分辨率低和谱估计稳定性的问题,特别是在数据记录很短的情况下,这一问题尤其突出。
以随机过程的参数模型为基础的现代参数法功率谱估计具有更高的频率分辨率和更好的适应性,可实现信号检测或信噪分离,对语音、声纳雷达、电磁波及地震波等信号处理具有重要意义,并广泛应用于通信、自动控制、地球物理等领域。
在现代参数法功率谱估计方法中,比较有效且实用的是AR模型法,Burg谱估计法,现代谱估计避免了计算相关,对短数据具有更强的适应性,从而弥补了经典谱估计法的不足,但其也有一些自身的缺陷。
下面就给出这两类谱估计的简单原理介绍与方法实现。
经典谱估计法经典法是基于传统的傅里叶变换。
本文主要介绍一种方法:周期图法。
周期图法由于对信号做功率谱估计,需要用计算机实现,如果是连续信号,则需要变换为离散信号。
下面讨论离散随机信号序列的功率谱问题。
连续时间随机信号的功率谱密度与自相关函数是一对傅里叶变换对,即:()()j x x S R e d +∞-Ω-∞Ω=⎰τττ若()x R m 是()x R Ω的抽样序列,由序列的傅里叶变化的关系,可得()()j j n x x m S e R m e ωω∞-=-∞=∑即()j x S e ω与()x R m 也是一对傅里叶变换对。
利用经典谱估计法估计信号的功率谱(随机信号)

随机信号利用经典谱估计法估计信号的功率谱作业综述:给出一段信号“asd.wav”,利用经典谱估计法的原理,通过不同的谱估计方法,求出信号的功率谱密度函数。
采用MATLAB语言,利用MATLAB语言强大的数据处理和数据可视化能力,通过GUI的对话框模板,使操作更为简便!在一个GUI界面中,同时呈现出不同方法产生出的功率谱。
这里给出了几种不同的方法:BT法,周期图法,平均法以及Welch法。
把几种不同方法所得到的功率谱都呈现在一个界面中,便于对几种不同方法得到的功率谱作对比。
一.题目要求给出一段信号及采样率,利用经典谱估计法估计出信号的功率谱。
二.基本原理及方法经典谱估计的方法,实质上依赖于传统的傅里叶变换法。
它是将数据工作区外的未知数据假设为零,相当于数据加窗,主要方法有BT法,周期图法,平均法以及Welch法。
1. BT法(Blackman-Tukey)●理论基础:(1)随机序列的维纳-辛钦定理由于随机序列{X(n)}的自相关函数Rx(m)=E[X(n)X(n+m)]定义在离散点m上,设取样间隔为,则可将随机序列的自相关函数用连续时间函数表示为等式两边取傅里叶变换,则随机序列的功率谱密度(2)谱估计BT法是先估计自相关函数Rx(m)(|m|=0,1,2…,N-1),然后再经过离散傅里叶变换求的功率谱密度的估值。
即其中可有式得到。
2. 周期图法●理论基础:周期图法是根据各态历经随机过程功率谱的定义来进行谱估计的。
在前面我们已知,各态历经的连续随机过程的功率谱密度满足式中 是连续随机过程第i 个样本的截取函数 的频谱。
对应在随机序列中则有由于随机序列中观测数据 仅在 的点上存在,则 的N 点离散傅里叶变换为:因此有随机信号的观测数据 的功率谱估计值(称“周期图”)如下:由于上式中的离散傅里叶变换可以用快速傅里叶变换计算,因此就可以估计出功率谱。
3.平均法:理论基础:平均法可视为周期图法的改进。
周期图经过平均后会使它的方差减少,达到一致估计的目的,有一个定理:如果 , , , 是不相关的随机变量,且都有个均值 及其方差 ,则可以证明它们的算术平均的均值为 ,方差为。
对功率谱估计常用方法的探讨及应用分析

对功率谱估计常用方法的探讨及应用分析功率谱估计是信号处理中常用的一种方法,它可以将信号的频率特性展示出来,对于信号的分析和处理具有重要意义。
常用的功率谱估计方法包括周期图法、解析法、Welch方法、Bartlett方法和Burg方法等。
本文将对这些方法进行探讨并分析其应用。
周期图法是一种基本的功率谱估计方法,它基于傅里叶变换的思想,通过将信号分解为不同频率的正弦波分量,然后计算每个分量的功率,从而得到信号的频谱特性。
该方法的优点是计算简单,但对于非平稳信号或信号中存在窗函数时会引入谱漏,导致估计结果不准确。
解析法是一种使用解析信号估计功率谱的方法。
解析信号是通过原始信号与希尔伯特变换得到的,它具有正频谱和负频谱的特点。
该方法的优点是可以避免频谱漏失的问题,但计算量较大。
应用方面,解析法常用于振动信号的分析和故障诊断中。
Welch方法是一种常用的频谱估计方法,它通过对信号进行分段处理,然后对每个片段进行傅里叶变换,最后将各个片段的功率谱进行平均得到最终的估计结果。
这样做的好处是可以减小谱漏的影响,并且可以根据需要进行频谱分辨率和频率平滑的调整。
Welch方法在信号处理中应用广泛,如语音和音频处理、通信系统等。
Bartlett方法是Welch方法的特例,它将信号分成互不重叠的窗函数片段,然后进行傅里叶变换并对功率谱进行平均。
这种方法的优点是计算简单,但对于非平稳信号可能会引入谱漏现象,导致估计结果不准确。
Bartlett方法在多传感器信号处理和谱估计的实时应用中常用。
Burg方法是一种利用自回归(AR)模型估计功率谱的方法。
AR模型假设信号的当前值与过去若干个值相关,通过建立AR模型并对其参数进行估计,可以得到信号的频谱特性。
该方法的优点是可以很好地处理非平稳信号,并且对信号中的噪声具有较好的抑制效果。
Burg方法在信号处理中广泛应用于信号的谱分析和预测等领域。
综上所述,功率谱估计方法在信号处理中具有重要的应用价值。
功率谱估计的经典方法

∞
=
Ryy (m) =
p =−∞
∑R
k = −∞ ∞
∑ h( k ) R
xx
∞
xx
( m − k ) = Rxx (m) ∗ h( m)
(m − p) Rhh ( p) = Rxx (m) ∗ Rhh (m)
或
= Rxx (m) ∗ h(m) ∗ h(−m) = Rxy (m) ∗ h(−m)
S yy (e jω ) = S xy (e jω ) H (e− jω )
jω
jω
jω
2
离散随机信号通过线性非移变系统
(4)输入随机过程与输出随机过程的互相关序列Rxy(m)
∞ Rxy ( m) = E [x ( n) y ( n + m) ] = E x ( n) ∑ h( k ) x ( n + m − k ) k = −∞
=
k = −∞
∑ h(k ) E[x(n) x(n + m − k )]
ˆ B =α − E [ α ]
无偏估计, 无偏估计 有偏估计,当观测数据为无穷时B = 0,则称其为渐 渐 B = 0时无偏估计 B ≠ 0 有偏估计 进无偏估计。无偏估计和渐进无偏估计又称为是好估计 进无偏估计 好估计。 好估计
均值 均方值
E[xn ] = mxn = ∫ xpxn ( x, n)dx
∞ −∞
E x = ∫ x 2 pxn ( x, n)dx
2 n −∞
[ ]
2
∞
方差
E xn − mxn
[(
) ]= σ
2 xn
=∫
∞ −∞
(x − m )
xn
经典功率谱估计方法研究

中文摘要介绍了各种经典功率谱估计方法,不仅从理论上对各种方法的谱估计质量进行了分析比较,而且通过Matlab 实验仿真验证了理论分析的正确性。
着重对使用比较广泛的Welch 法进行了深入的研究,给出了窗函数选择的一般要求,通过仿真分析了不同的窗函数对Welch 法谱估计质量的影响,比较了他们的优缺点。
最后分析了采样点数较少即短数据对Welch 法谱估计质量的影响。
关键词:经典谱估计;估计质量;Welch 法;窗函数;短数据AbstractVarious classical Power Spect rum Density ( PSD) estimation methods are int roduced ,estimation quality of eachmethod is analyzed and compared in both theory and simulation using the sof tware Matlab. Then further study is made inWelch method which is used most widely. General selecting criterion of window function is presented and estimation quality ofWelch method using different window function is compared. Finally ,the impact of fewer data on estimation quality of Welchmethod is analyzed.Keywords:classical PSD estimation ;estimation quality ;Welch method ;window function ;fewer data第1章绪论 (4)1.1 引言 (4)1.2 选择背景与意义 (4)1.3 经典谱估计发展和应用 (4)第2章经典功率谱估计 (5)2.1 引言 (5)2.2 自相关函数法的估计 (10)2.3 周期图作为功率谱的估计 (13)2.4 经典功率谱估计方法的改进 (19)2.4.1 巴特利特(Bartlett)平均周期图的方法 (19)2.4.2 Welch法 (23)第3章 MATLAB仿真 (24)3.1 仿真结果 (24)3.2 仿真结果分析 (24)3.3 不同窗函数的Welch 谱估计 (25)3.4 短数据的Welch 谱估计 (25)3.5 结论 (26)第4章周期图法和Welch法的比较 (27)4.1 周期图法和Welch法 (27)4.1.1周期图法 (27)4.1.2 Welch法 (27)4.2算法流程图、MATLAB程序及谱估计的分析 (27)4.2.1 算法流程 (28)4.2.2 程序 (28)第5章总结 (30)第1章绪论1.1 引言信号的频谱分析是研究信号特性的重要手段之一,对于确定性信号,可以Fourier 变换来考察其频谱性质,而对于广义平稳随机信号,由于它一般既不是周期的,又不满足平方可积,严格来说不能进行Fourier 变换,通常是求其功率谱来进行频谱分析。
功率谱估计的经典方法

功率谱估计的经典方法周期图法是最早被提出的功率谱估计方法之一、它基于信号的周期性,将信号分解成一系列频率分量,然后计算每个频率分量的功率谱密度。
周期图法主要分为周期自相关法和周期平均法两种。
周期自相关法通过计算信号的自相关函数,然后进行傅里叶变换得到功率谱估计结果。
周期平均法则是通过对多个信号周期进行平均得到功率谱估计结果。
平均法是功率谱估计的另一种常用方法。
它通过对信号进行多次采样,然后计算采样信号的傅里叶变换得到频谱,再对多个频谱进行平均得到功率谱估计结果。
平均法的优点是抗噪声能力强,可以提高功率谱估计的准确性。
自相关法是一种基于信号自身特性的功率谱估计方法。
它通过计算信号的自相关函数,然后进行傅里叶变换得到功率谱估计结果。
自相关法的优点是计算简单,但是对信号的平稳性要求较高。
递归方法是一种实时性较好的功率谱估计方法。
它通过对信号进行递推计算,每次计算结果作为下一次计算的输入,以此来估计信号的功率谱。
递归方法通常会使用窗函数来平滑信号,减小频谱分辨率。
递归方法的优点是计算效率高,可以用于实时信号处理。
除了这些经典方法,还有一些其他的功率谱估计方法,如Yule-Walker方法、Burg方法、最大熵方法等。
每种方法都有其适用的场景和特点,选择合适的方法需要根据具体需求和信号特性进行判断。
在实际应用中,功率谱估计可以用于信号处理、通信系统设计、频谱分析等领域。
它可以帮助我们了解信号的频谱分布特性,对信号进行分析和处理,从而实现更好的信号传输和处理效果。
无论是音频信号、图像信号还是通信信号,功率谱估计都具有重要的意义。
因此,掌握功率谱估计的经典方法是进行信号处理和频谱分析的基础。
经典功率谱估计与现代功率谱估计的对比

结论
经典功率谱估计方法在信号处理领域具有广泛的应用价值。本次演示详细介 绍了经典功率谱估计的基本原理、误差分析和仿真实现方法。通过仿真实验,我 们验证了这些方法的性能表现,并得出了在不同条件下的优劣比较。尽管经典功 率谱估计方法存在一定的局限性,但它们在很多情况下仍具有很好的适用性。
未来研究方向可以包括研究更为精确和高效的功率谱估计方法,以适应不断 变化的应用需求和提高信号处理的精度。加强经典功率谱估计在实际问题中的应 用研究,将有助于推动其在各领域的广泛应用和发展。
现代功率谱估计方法则更加注重信号的特性和模型化,能够更好地处理非平 稳信号和复杂场景。其中,基于信号模型的功率谱估计方法可以针对特定场景选 择合适的模型,提高估计精度;而基于深度学习的功率谱估计方法则可以通过训 练神经网络自动提取和学习信号特征,具有很强的适应性。
然而,现代功率谱估计方法也存在着实现难度较大、需要大量数据来训练模 型等问题。同时,这些方法的效果还受到模型复杂度、网络参数等因素的影响。
感谢观看
总之,通过本次演示的讨论和实验,我们深入理解了经典功率谱估计的基本 原理和实现方法,并成功地使用MATLAB实现了功率谱估计。尽管存在一些不足之 处,但经典功率谱估计在许多场景下仍然是一种简单有效的工具。在未来的研究 中,我们可以考虑探索更高级的算法和优化实现细节,以提高功率谱估计的性能 和准确性。
仿真实现
为了验证经典功率谱估计方法的有效性和精度,我们可以利用仿真工具进行 实验。具体步骤包括:
1、生成信号:根据实际需求,我们可以生成不同类型的信号,如周期信号、 随机信号和实际应用中的信号等。
2、加入噪声:在实际应用中,信号往往会受到噪声的干扰,因此,我们需 要在仿真实验中加入噪声,以模拟真实情况。
功率谱估计方法与实现的研究_崔桂华(1)

该算法的主要思路是为了摆脱因采用递推运算对确定预测系数的约束, 一旦 求出 ρp,则 ap(p)= ρp,而其余的预测系数就由低一阶模型的系数 ap-1(k)来确定, 不能灵活地选取),让每一预测系数(模型参数)的确定直接与前、后向预测的总的 平方误差最小(最小二乘法)联系起来。即总的平方误差:
它与 Burg 方法有相同的性能指标。但是,我们并不为了求 AR 参数而把 Levinson 递推加入上式。可得到一组线性方程:
其中,自相关 rx(l,k)定义为
所得到的剩余最小二乘误差为
所以,可得改进协方差功率谱估计为
元素为 rx(l,k)的相关矩阵不是 Toeplitz 阵,因此,不能利用 Levinson 算法求 解。 但是, 相关矩阵的结构足以设计复杂性与 p2 成正比的有效计算方法。 Marple[9]
[10]
设计了这样的算法,他的算法具有格型结构,利用了 Levinson 类型的阶递推
功率谱估计方法与实现的研究
姓名:崔桂华 学号:SC10023028 Email:cuigh@
一、背景介绍
1.1 科学意义
在许多科学领域和生活实际中,由于各种干扰因素的存在,我们需要处理随 机信号。 常见的随机信号有各种无线电系统及电子装置中的噪声与干扰,建筑物 所承受的风载,船舶航行时所受到的波浪冲击,包括心电图、脑电图和肌电图等 在内的许多生物医学信号等等。 随机信号和确定信号不同,它不能通过一个确定 的数学公式来描述,也不能准确地预测。因此,对随机信号一般只能在统计意义 上研究。 一个随机信号包含了无穷多个样本, 每一个样本都是一个无穷长的时间序列, 因此,要得到一个完整的随机信号是很困难的。即使可以得到,由于在计算机处 理信号时,信号总是有限长,因此存在信号的截短问题。另外,信号从产生到传 送再到采集, 总要受到噪声干扰。对随机信号处理的一个重要任务就是由有限长 且受到干扰的信号中得到信号的某些特征,如信号的均值、方差、自相关函数及 功率谱等,或恢复出没有被干扰的信号。基于随机信号的上述特点,信号特征的 提取或信号的恢复都要通过估计来实现,必须涉及到估计的理论和方法。 功率谱估计在随机信号处理中占有很重要的地位, 这一技术广泛应用于雷达、 声纳、通信、地质勘探、天文和生物医学工程等众多领域。例如在雷达系统,如 何从被目标反射回来时受到严重干扰的微弱的回波信号中, 提取发送的脉冲信号 并通过计算回波到达时间和频率偏移进而确定目标的方位和运动速度, 这就是一 个典型的估计问题。 又如在控制系统,如何从接收到的被噪声干扰的信号中分离 出有用的控制信号。 如果噪声是加性的且与有用信号各占一个频带,则可方便地 采用低通、高通或带通滤波器,将干扰滤除,把有用信号提取出来。如果噪声与 有用信号的频谱互相交叠在一起, 则人们就很难利用上述频率选择滤波器把有用 信号提取出来。为此,必须建立在随机过程理论基础上,从统计观点出发,通过 对有用信号和噪声统计特性的分析,采用更复杂的滤波方法提取特定信息。这种
对功率谱估计常用方法的探讨及应用分析

DSP课程设计对功率谱估计常用方法的探讨及应用分析进行傅里叶变换在频域中研究信号,是研究确定性信号最简单且有效的手段,但在现代信号分析中,对于常见的随机信号,不可能用清楚的数学关系式来描述,其傅里叶变换更不存在,转而可以利用给定的N个样本数据估计一个平稳随机信号的功率谱密度。
功率谱估计是数字信号处理的重要研究内容之一。
功率谱估计可以分为经典功率谱估计和现代功率谱估计。
本文介绍了各种经典功率谱估计方法,不仅从理论上对各种方法的谱估计质量进行了分析比较,而且通过Matlab进行了仿真。
在对经典谱估计进行讨论之后,还分析了现代谱估计即参数谱估计方法,通过观测数据估计参数模型再按照求参数模型输出功率的方法估计信号功率谱。
现代谱估计的内容极其丰富,设计的学科及应用的领域都相当广泛,至今每年都有大量的科研成果出来。
在本文的最后利用现代谱估计的方法讨论了功率谱方法在噪声源信号识别中的应用。
文章还给出了常见谱估计方法的比较,便于深刻理解各种方法的特点,从而在实际工作中做出合理的选择。
1.功率谱方法的发展功率谱估计是随机信号处理的重要内容,其技术渊源很长,而且在过去的40余年中获得了飞速的发展。
涉及到信号与系统、随机信号分析、概率统计、矩阵代数等一系列的基础学科,广泛应用于人民的日常生活及军事、工业、农业活动中,是一个具有强大生命力的研究领域。
本文将简要回顾一下功率谱估计的发展历程,对常用的一些方法进行总结。
功率谱的估计方法有很多,主要有经典谱估计和现代谱估计。
经典谱估计又可以分成两种:一种是BT法,也叫间接法;另一种是直接法又称周期图法。
现代谱估计的方法又大致可分为参数模型谱估计和非参数模型谱估计,前者有AR模型、MA模型、ARMA模型、PRONY模型等,后者有最小方差方法、多分量的MUSIC方法等。
1.1功率谱研究的发展过程功率谱估计是数字信号处理的主要内容之一,主要研究信号在频域中的各种特征,目的是根据有限数据在频域内提取被淹没在噪声中的有用信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 随机信号的经典谱估计方法估计功率谱密度的平滑周期图是一种计算简单的经典方法。
它的主要特点是与任何模型参数无关,是一类非参数化方法[4]。
它的主要问题是:由于假定信号的自相关函数在数据观测区以外等于零,因此估计出来的功率谱很难与信号的真实功率谱相匹配。
在一般情况下,周期图的渐进性能无法给出实际功率谱的一个满意的近似,因而是一种低分辨率的谱估计方法。
本章主要介绍了周期图法、相关法谱估计(BT )、巴特利特(Bartlett)平均周期图的方法和Welch 法这四种方法。
2.1 周期图法周期图法又称直接法。
它是从随机信号x(n)中截取N 长的一段,把它视为能量有限x(n)真实功率谱)(jw x e S 的估计)(jw x e S 的抽样.周期图这一概念早在1899年就提出了,但由于点数N一般比较大,该方法的计算量过大而在当时无法使用。
只是1965年FFT 出现后,此法才变成谱估计的一个常用方法。
周期图法[5]包含了下列两条假设:1.认为随机序列是广义平稳且各态遍历的,可以用其一个样本x(n)中的一段)(n x N 来估计该随机序列的功率谱。
这当然必然带来误差。
2.由于对)(n x N 采用DFT ,就默认)(n x N 在时域是周期的,以及)(k x N 在频域是周期的。
这种方法把随机序列样本x(n)看成是截得一段)(n x N 的周期延拓,这也就是周期图法这个名字的来历。
与相关法相比,相关法在求相关函数)(m R x 时将)(n x N 以外是数据全都看成零,因此相关法认为除)(n x N 外x(n)是全零序列,这种处理方法显然与周期图法不一样。
但是,当相关法被引入基于FFT 的快速相关后,相关法和周期图法开始融合。
通过比较我们发现:如果相关法中M=N ,不加延迟窗,那么就和补充(N-1)个零的周期图法一样了。
简单地可以这样说:周期图法是M=N 时相关法的特例。
因此相关法和周期图法可结合使用。
2.2 相关法谱估计(BT )法这种方法以相关函数为媒介来计算功率谱,所以又叫间接法。
它是1958年由Blackman 和Tukey 提出。
这种方法的具体步骤是:第一步:从无限长随机序列x(n)中截取长度N 的有限长序列列)(n x N 第二步:由N 长序列)(n x N 求(2M-1)点的自相关函数)(m R x ∧序列。
即)()(1)(1m n x n xNm R N n N Nx +=∑-=∧(2-1)这里,m=-(M-1)…,-1,0,1…,M-1,M N ,)(m R x 是双边序列,但是由自相关函数的偶对称性式,只要求出m=0,。
,M-1的傅里叶变换,另一半也就知道了。
第三步:由相关函数的傅式变换求功率谱。
即jwmM M m Xjwx em Re S ----=∧∧∑=)()(1)1( (2-2)以上过程中经历了两次截断,一次是将x(n)截成N 长,称为加数据窗,一次是将x(n)截成(2M-1)长,称为加延迟窗。
因此所得的功率谱仅是近似值,也叫谱估计,式中的)(jw x e S 代表估值。
一般取M<<N ,因为只有当M 较小时,序列傅式变换的点数才较小,功率谱的计算量才不至于大到难以实现,而且谱估计质量也较好。
因此,在FFT 问世之前,相关法是最常用的谱估计方法。
当FFT 问世后,情况有所变化。
因为截断后的)(n x N 可视作能量信号,由相关卷积定理可得)(m R x ∧)]()([1m x m x NN N -*=(2-3)这就将相关化为线性卷积,而线性卷积又可以用快速卷积来实现。
我们可对上式两边取(2N-1)点DFT ,则有2121212)(1)()([1)(K X NK x k x Nm R N N N x ---∧=*=(2-4)于是将时域卷积变为频域乘积,用快速相关求)(m R x ∧的完整方案如下: 1.对N 长)(n x N 的补充(N-1)个零,成为(2N-1)长的。
2.求(2N-1)点的FFT ,得∑-=----=220121212)()(N N mkN N N W n xK X 。
3.求212)(1K X N N -。
由DFT 性质,)(12n x N -是纯实的,)(12k x N -满足共轭偶对称,而212)(1K X NN -一定是实偶的,且以(2N-1)为周期。
4. 求(2N-1)点的IFFT :mkN N N k N x W K X NN m R -----=-∧∑-=121)1(212)(1121)( (2-5)这里212)(1K X NN -是实偶的,m=-(N-1)...0...N-1。
本来IFFT 求和范围是0至2N-2,由于212)(1K X NN -的实偶性与周期性,求和范围改为-(N-1)至(N-1)不影响计算结果。
同理可将m 的范围改为-(N-1)至(N-1)。
上述的快速相关中,补充零的目的是为了能用圆周卷积代替线性卷积,以便进一步采用快速卷积算法。
快速相关输出是-(N-1)至(N-1)的2N-1点,加)(m W M 窗后截取的是-(M-1)至(M-1)的频段,最后作(2M-1)点FFT ,得)(k S x ∧。
我们注意到:如果数据点数与自相关序列点数相同即M=N ,则(2N-1)点的IFFT 后紧跟一个(2N-1)点的FFT ,利用)(m R x ∧的对称性,FT 运算框的计算式变为=)(K S X ∑---=∧1)1()(N N m Xm R1212---N mkN X W (2-6)由于N=M 并假设窗形状是矩形的,第二次()m W M 的截断就不需要了。
比较式(2-5)和式(2-6), ](m)R FFT[k S x x∧=)(,])(1[)( 212K X NIFFT m R N x -∧=正反傅氏变换可以抵消,直接得)(k S x=212)(1K X NN - (2-7)为了实行基2FFT ,也可将(2N-1)点换成2N 点,这样做不影响结果的正确性。
2.3 巴特利特(Bartlett)平均周期图法首先让我们来看一下为什么周期图经过某种平均(或平滑)后会使它的方差当∞→N 时趋于零,达到一致估计的目的。
如果L x x x , , ,21 是不相关的随机变量,每一个具有期望值μ,方差2σ,则可以证明它们的数学平均L x x x x l /)...(21+++=的期望值等于μ,数学平均的方差等于L /2σ,即:[][]μμ=⋅=+++=L Lx x x E Lx E L 1121[][][]222)(][))((x E xE x E x E x Var -=-=[]22212)(1μ-+++=L x x x E L()[]2112222121μ-⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++++=∑∑=≠=L j Lji i j i L x x E x x x E L[][][]∑∑∑∑=≠==≠=⋅=Lj Lji i ijL j ji i jix E x E x x E 1111222)1(μμμμL L L L -=-=所以[][][]⎥⎦⎤⎢⎣⎡-=-⎥⎦⎤⎢⎣⎡-+=∑∑==2122222122211μμμμL x E L L L x E L x Var L i i L i i [][][][][][]{}22222221212])[(])[(])[(1LLxE x E xE x E xE x E L-++-+-=LL L2221σσ==(2-8)由(2-8)可见,L 个平均的方差比每个随机变量的单独方差小L 倍。
当[]0 →∞→x V a r L ,可达到一致谱估计的目的。
因而降低估计量的方差的一种有效方法是将若干个独立估计值进行平均。
把这种方法应用于谱估计通常归功于Bartlett 。
Bartlett 平均周期图的方法是将序列)10( )(-≤≤N n n x 分段求周期图再平均。
设将)(n x 分成L 段,每段有M 个样本,因而LM N =,第i 段样本序列可写成Li M n M iM n x n x i≤≤-≤≤-+=1 ,10 )()(第i 段的周期图为21)(1)(∑-=-=M n nj jiM en xMI ωω如果)( ,m M m xx φ>很小,则可假定各段的周期图)(ωiM I 是互相独立的。
对功率谱密度的概念的讨论,谱估计可定义为L 段周期图的平均,即∑==Li i MxxILP 1)(1)(ˆωω (2-9)于是它的期望值为[][][]∑===Li iM i MxxI E IE LP E 1)()(1)(ˆωωω[]⎰--=ππθωθθπωd eW P P E j B xx xx)()(21)(ˆ)(()[()[⎰-⎥⎦⎤⎢⎣⎡--=ππθθωθωθπd M P Mxx 22/sin 2sin )(21 (2-10)这里L N M /=,因此Bartlett 估计的期望值是真实谱)(ωxx P 与三角窗函数的卷积。
由于三角窗函数不等于δ函数,所以Bartlett 估计也是有偏估计即0≠Bias ,但当∞→N 时,0→Bias。
由于我们假定各段周期图是相互独立的,所以可按式(2-8)得到下式:[][])(1)(ˆωωMxx I Var LP Var =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+≈22s i n )s i n (1)(1ωωωM M P L xx (2-11)由此可见,随着L 的增加[])(ˆωxx P Var 是下降的,当∞→L 时,[]0)(ˆ→ωxxP Var 。
因此Bartlett 估计是一致估计。
比较式(2-10)的[])(ˆωxxP E 与式(2-1)的[])(ωN I E 可见在二种情况的估计量的期望值都是真值)(ωxx P 与窗口函数)(ωj B e W 的卷积形式,但后者将前者WB 中N 改为M ,NL N M <=/。
因而使)(ωj B e W 主瓣的宽度增大。
由于主瓣的宽度愈窄愈接近δ函数,偏倚愈小。
今式(3-10)中)(ωj B e W 的主瓣宽度大于后式中的主瓣宽度,因而[][])()(ˆωωNxx I Bias P Bias >,而主瓣愈宽分辨率就愈差。
因此Bias 可用来说明谱的分辨率,Bias 愈大说明谱分辨率愈差。
一个固定的记录长度N ,周期图分段的数目L 愈大将使方差愈小,但M 也愈小,因而使Bias 愈大,谱分辨率变得愈差。
因此Bartlett 方法中Bias 或谱分辨率和估计量的方差间是有互换关系的。
M 和N 的选择一般是由对所研究的信号的预先了解来指导的。
例如,如果我们知道谱有一个窄峰,同时如果分辨出这个峰是重要的,那么我们必须选择M 足够大。
又从方差的表达式我们可以确定谱估计的可接受的方差所要求的记录长度N=(LM)。