四个数凑24窍门,方法
巧算24点的方法
巧算24点的方法
24点是一个很古老的益智游戏,它来源于中国古代。
比如说,一副牌中有4张牌,每张牌上面都有一个数字,只要用加减乘除四则运算,就可以将这4个数字改变成24,游戏就算结束了。
24点的游戏虽然看起来很简单,但实际上它却是一个非常有趣且具有挑战性的游戏。
24点的游戏有很多种玩法,比如你可以用4个数字,或者5个数字,或者6个数字,以及不同的运算符号,来解决一道24点问题。
但是,无论你是用4个数字来玩24点,还是用6个数字来玩24点,最重要的是,你要学会巧算24点的方法。
那么,该如何才能巧算24点呢?其实,巧算24点的方法包括以下几个步骤:
1.先,要分析该24点问题中出现的数字,找出其中可以让算式简单的数字,比如说相同的数字,这样可以利用乘法把这几个数字相乘,就可以省去多余的计算过程;
2.,要找出可以用加减乘除运算相互转换的数字,比如说用加法和减法可以将一个数字转换成另外的数字;
3.次,要找出算式中可以消除的表达式,比如说将数字相加或者相减之后,可以得到一个数字,这个数字等于算式中的另外一个数字,那么就可以将这两个数字消除,减少一次运算;
4.后,要利用乘法和除法来改变数字的值,来缩小差距,但是要注意不要乱加乱减,以免影响整个算式的答案。
以上就是24点的巧算方法,要想玩24点游戏,熟悉这些技巧是十分必要的。
另外,玩24点的时候,不要忘记运用自己的数学智慧,不断思考,提高自己的游戏能力。
24点,不仅是一个有趣的游戏,还能锻炼孩子们的数学算法思维能力,提高他们的综合能力。
因此,不妨让孩子也参与进来,一起玩24点,让他们在玩游戏中学到知识,拓宽视野,提高自身能力。
速算24点的小窍门
速算24点的小窍门
解题思路:利用3×8=24、4×6=24、12×2=24求解。
把牌面上的四个数想办法凑成3和8、4和6,再相乘求解,如3、3、6、10可组成(10-6÷3)×3=24等,又如2、3、3、7可组成(7+3-2)
×3=24等,这种方法是利用率最大、命中率最高的一种方法。
例题:1555算24点。
解释分析:在该公式中,出现的数字为题目中要求的“1、5、5、6”,先算括号里的(5-1÷5)会得到4.8,乘以5后就会获得24。
扩展资料:
24点具体玩法:
24点具体的玩法是:拿一副牌,抽去大小王后(初练也可以把
J/Q/K/大小王也拿走),剩下1~10这40张牌,用1代替A。
任意抽取4张牌,用加、减、乘、除把牌面上的数算成24。
每张牌
必须用且只能用一次。
如抽出的牌是3、8、8、9,那么算式为(9-
8)×8×3=24。
神奇“24”,快乐学数学
神奇“24”,快乐学数学
“神奇“24””是一种数学游戏,游戏规则是使用4个数字通过四则运算,最终得到结果24。
这个游戏的出现在很大程度上是为了让孩子们对数学产生兴趣。
通过玩这个游戏,孩子们可以提高他们的数学计算能力,培养他们的逻辑思维和解决问题的能力。
玩这个游戏的方法很简单。
给出4个数字,然后玩家需要通过加减乘除这四种运算来得到结果24。
玩家可以自由运用四则运算,但是每个数字只能使用一次。
给出的4个数字是:2、3、4、5。
玩家可以通过以下运算得到结果24:
(4 + 2) * (5 - 3) = 24
这个游戏看似简单,但是要找到路径得到结果24却不容易。
在过程中,玩家需要充分发挥他们的逻辑思维和数学计算能力,思考如何组合这4个数字并使用四则运算,才能得到最终的结果。
“神奇“24””是一款快乐学习数学的游戏。
通过这个游戏,孩子们能够提高他们的数学计算能力,培养他们的逻辑思维和解决问题的能力。
这个游戏也可以增加孩子们对数学的兴趣,让他们从中感受到数学的乐趣。
希望大家都能享受这个游戏带来的乐趣,并且在玩乐中学到更多的知识。
速算24 算法思路
速算24 算法思路速算24是一种数学游戏,目标是使用四则运算(加、减、乘、除)以及括号,将四个给定的数字组合成表达式,使得该表达式的结果为24。
这个游戏可以锻炼玩家的数学思维和快速反应能力。
下面将介绍几种常见的速算24的算法思路。
1. 枚举法枚举法是一种简单而直接的方法,它通过尝试所有可能的组合和运算顺序来找到解。
对于给定的四个数字,我们可以使用嵌套循环来枚举所有可能的运算组合,并计算每个组合的结果。
如果某个组合的结果为24,则找到了解。
虽然这种方法可以确保找到解(如果存在),但在数字较大或需要快速求解的情况下,枚举法可能不太实用。
2. 优先级法优先级法是一种基于四则运算优先级的方法。
我们可以按照先乘除后加减的原则,尝试不同的运算组合。
具体步骤如下:* 首先,将四个数字进行两两组合,得到六个可能的结果。
* 然后,对这六个结果进行加减运算,得到新的数字。
* 最后,对这些新的数字进行乘除运算,直到找到结果为24的表达式。
这种方法通过减少搜索空间来提高效率,但仍然需要进行大量的尝试和计算。
3. 逆向思维法逆向思维法是一种从目标结果出发,逆向推导表达式的方法。
我们可以从24开始,逆向使用四则运算来构建表达式。
具体步骤如下:* 首先,将24进行因式分解,找到所有可能的因子对。
* 然后,对这些因子对进行四则运算的逆操作,例如除法逆操作为乘法,减法逆操作为加法等。
* 通过不断逆向推导,直到找到包含给定四个数字的表达式为止。
逆向思维法能够较快地找到解,但需要一定的数学技巧和经验。
4. 智能搜索法智能搜索法是一种结合搜索算法和数学技巧的方法。
我们可以使用搜索算法(如深度优先搜索或广度优先搜索)在解空间中搜索表达式,并使用数学技巧(如因式分解、同余定理等)来剪枝和优化搜索过程。
具体实现时,可以根据问题的特点和要求选择合适的搜索算法和数学技巧。
这种方法的效率和适用范围较广泛。
例如采用优先级队列以及一些启发性策略来指导搜索过程,可以更快地找到解。
二十四点计算个人总结的特别方法与特别技巧
笫一类;利用舷常见算式逬行凑数;=3x8 =72^3= 4x6 =96 *4―这儿个乘除算式记得越熟右湊数的时候对数字就越敏感!【例】利用加、减、乘、除(可以任意添加括号),用2、7、9、10四个数字计算出24,每个数字必须都使用一次且仅使用一次(下同)。
【解析】第一*步:2、7、9、10中岀现了数字2,考虑是否可臥利用2乂12 = 24进行凑数。
第二步’既然想利用2x12 = 24进行凑数,那么己知4个数中的2就要排除在外,即需用7、9、10凑岀12。
显然9-7+10 = 12,故最后结果为:2x(9-7+10) = 24 【例】3、3、4、9【解析1】第一步:给定4个数字中有3,可以考虑是否可以利用3恣=24进行凑数。
第二步’既然想利用3恣=24进行湊数,那么已久4个数中的一个3就要排除在外,即需用3、4、9凑岀8。
己知有个数字9ttS多1,那么炜剩下的3、4揍岀一个 1 即可。
显然4-3 = 1,故最后结杲为:3x(9-(4-3)) = 3x(9+3-4) = 24 【解析2】第一步:给定4个数字中有4,可以考虑是否可以利用4x6=24进行凑数。
第二扒既热想利用仏6二24逬行歳数.那么己知4个数中的4就夢推除存外.即需用3、3、9凑出6。
显然3+3=6,这样多岀来个9,如何将多出的9消耗掉呢?因为9是3的平方(详见后面的技巧?),即9+3 = 3,故最后结果为:4 "9? 3+3)= 24【例】4. 4. 10. 10【解析】第一步.给定4个数字中有4很想利用4x6沁4进行凑数,但用4, 10, 10很难凑出6,故只能另想办法。
显然,不可能利用3x224或2幻2 = 24进行凑数,于是不妨考虑采用除法逬行凑数。
第二步:己知数中有4,考虑能否利用96十4= 24进行凑数第三步;既然想利用96 + 4= 24进行凑数,那么己知4个数中的一个4就要排除在外, 即需用4、10、10凑出96。
24点游戏规则和解题方法
24点游戏规则和解题方法24点游戏规则和解题方法“巧算24点”的游戏内容如下:一副牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24。
每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9—8)×8×3或3×8+(9—8)或(9—8÷8)×3等。
“算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题。
计算时,我们不可能把牌面上的4个数的不同组合形式——去试,更不能瞎碰乱凑。
这里向大家介绍几种常用的、便于学习掌握的方法:1.利用3×8=24、4×6=24求解。
把牌面上的四个数想办法凑成3和8、4和6,再相乘求解。
如3、3、6、10可组成(10—6÷3)×3=24等。
又如2、3、3、7可组成(7+3—2)×3=24等。
实践证明,这种方法是利用率最大、命中率最高的一种方法。
2.利用0、11的运算特性求解。
如3、4、4、8可组成3×8+4—4=24等。
又如4、5、J、K可组成11×(5—4)+13=24等。
3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d表示牌面上的四个数)①(a—b)×(c+d)如(10—4)×(2+2)=24等。
②(a+b)÷c×d如(10+2)÷2×4=24等。
③(a-b÷c)×d如(3—2÷2)×12=24等。
④(a+b-c)×d如(9+5—2)×2=24等。
⑤a×b+c—d如11×3+l—10=24等。
⑥(a-b)×c+d如(4—l)×6+6=24等。
游戏时,同学们不妨按照上述方法试一试。
4个数字算24点的题目
4个数字算24点的题目4个数字算24点的题目24点是一种非常受欢迎的纸牌游戏,游戏规则简单明了,但是需要玩家有一定的数学基础和计算能力。
在这个游戏中,玩家需要从一副牌中抽取出4张牌,然后通过加减乘除等运算,使得最后的结果等于24。
下面将介绍一些常见的4个数字算24点的题目。
一、例题一:2、3、4、5这道题目的解法非常简单,只需要按照以下步骤进行:1.将2和3相加得到5。
2.将5和4相乘得到20。
3.将20和5相除得到4。
4.将4和5相加得到9。
5.将9和20相减得到11。
6.将11和4相乘得到44。
7.将44和5相加得到49。
8.将49和3相减得到46。
9.将46和2相减得到24。
因此,2、3、4、5这组数字可以用24点的规则得到24这个结果。
二、例题二:3、8、8、9这道题目看似比较复杂,但是只要按照以下步骤进行计算,同样能得到24的答案:1.将3和9相加得到12。
2.将8和8相乘得到64。
3.将64和12相除得到5.3333。
4.将3和8相加得到11。
5.将11和5.3333相乘得到58.6667。
6.将9和8相加得到17。
7.将58.6667和17相减得到41.6667。
8.将41.6667和3相加得到44.6667。
9.将44.6667和8相乘得到357.3333。
10.将357.3333和8相减得到349.3333。
11.将349.3333和9相减得到340.3333。
12.将340.3333和3相乘得到1021。
13.将1021和8相除得到127.625。
14.将127.625和8相减得到119.625。
15.将119.625和9相减得到110.625。
16.将110.625和3相减得到107.625。
17.最后将107.625和8相乘得到860.9999。
因此,3、8、8、9这组数字同样能够用24点的规则算出结果为24。
三、例题三:1、4、6、9这组数字的解法不同于前两题,但同样可行:1.将9除以6得到1.5。
对求24的几个算法的研究
对求24的几个算法的研究
求24是一种数学游戏,目标是使用四个数(可以重复使用)
通过加减乘除运算得到24这个结果。
下面是一些常见的算法
研究方法:
1. 暴力枚举法:将四个数的所有排列组合进行运算,判断是否能得到24。
该方法可以得到所有解,但是运算量较大,不适
用于大规模问题。
2. 回溯法:通过深度优先搜索和剪枝技巧,在运算的过程中剔除不可能得到24的情况,提高效率。
该方法可以找到所有解,并且可以根据需要设定求解剪枝策略。
3. 数学推导法:通过数学推导的方式,分析四个数的性质和运算规律,得出解题的一般方法。
例如,可以利用加法和乘法的结合律,将四个数划分为两组,每组先进行加法或乘法运算,然后再进行两组之间的加法或乘法运算。
这种方法可以减少尝试的组合数量。
4. 逆波兰表达式法:将表达式转化为逆波兰表达式,通过逆波兰表达式的计算规则进行计算,判断最终结果是否为24。
逆
波兰表达式的计算效率较高,适用于大规模问题。
需要注意的是,对于求解24这个游戏,目前还没有找到通用
的解决方案。
不同的数学方法可能在不同的数组情况下效果不同,因此需要结合具体问题选择合适的算法。
算24游戏介绍和技巧
算24把4个整数(一般是正整数)通过加减乘除运算,使最后的计算结果是24的一个数学游戏可以考验人的智力和数学敏感性。
一般技巧:如1,2,3,4这四个数解:可以知道,3x8=24,4x6=24.根据已有的思路和数字,来进行计算3x8=24:先拿出3,让1,2,4等于8,即:1x2x4=8,所以(1x2x4)x3=244x6=24:先拿出4,让1,2,3等于6,即:1+2+3=6,所以(1+2+3)x4=24根据以上算法,用2,3,4,5这四个数怎么算?2x12=24,所以(5+4+3)x2=244x6=24,所以(5+3-2)x4=24相信大家一定懂了,用已有的数先去处以24,再用剩下的三个数计算刚才得到的那个数。
现在通常用扑克牌代表数字来进行运算。
A——1J——11Q——12K——13经电脑的长时间计算,任何4个在1-20之间的数都能算出24.需要计算的可以下载一个算24的插件,很方便适用现在允许用乘方,开方,分数进行运算 (有些一样的拍有可能算不出来,如10,10,10,10。
)“算24点”是一种数学游戏,正如象棋、围棋一样是一种人们喜闻乐见的娱乐活动。
它始于何年何月已无从考究,但它以自己独具的数学魅力和丰富的内涵正逐渐被越来越多的人们所接受。
这种游戏方式简单易学,能健脑益智,是一项极为有益的活动。
“算24点”的游戏内容如下:一副牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24。
每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9—8)×8×3或3×8÷(9—8)或(9—8÷8)×3等。
“算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题。
计算时,我们不可能把牌面上的4个数的不同组合形式——去试,更不能瞎碰乱凑。
这里向大家介绍几种常用的、便于学习掌握的方法:1.利用3×8=24、4×6=24求解。
二十四点计算个人总结的特别方法与特别技巧
二十四点计算个人总结的特别方法与特别技巧笫一类;利用舷常见算式逬行凑数;=3x8 =72^3= 4x6 =96 *4―这儿个乘除算式记得越熟右湊数的时候对数字就越敏感!【例】利用加、减、乘、除(可以任意添加括号),用2、7、9、10四个数字计算出24,每个数字必须都使用一次且仅使用一次(下同)。
【解析】第一*步:2、7、9、10中岀现了数字2,考虑是否可臥利用2乂12 = 24进行凑数。
第二步’既然想利用2x12 = 24进行凑数,那么己知4个数中的2就要排除在外,即需用7、9、10凑岀12。
显然9-7+10 = 12,故最后结果为:2x(9-7+10) = 24 【例】3、3、4、9【解析1】第一步:给定4个数字中有3,可以考虑是否可以利用3恣=24进行凑数。
第二步’既然想利用3恣=24进行湊数,那么已久4个数中的一个3就要排除在外,即需用3、4、9凑岀8。
己知有个数字9ttS多1,那么炜剩下的3、4揍岀一个 1 即可。
显然4-3 = 1,故最后结杲为:3x(9-(4-3)) = 3x(9+3-4) = 24 【解析2】第一步:给定4个数字中有4,可以考虑是否可以利用4x6=24进行凑数。
第二扒既热想利用仏6二24逬行歳数.那么己知4个数中的4就夢推除存外.即需用3、3、9凑出6。
显然3+3=6,这样多岀来个9,如何将多出的9消耗掉呢?因为9是3的平方(详见后面的技巧?),即9+3 = 3,故最后结果为:4 "9? 3+3)= 24【例】4. 4. 10. 10【解析】第一步.给定4个数字中有4很想利用4x6沁4进行凑数,但用4, 10, 10很难凑出6,故只能另想办法。
显然,不可能利用3x224或2幻2 = 24进行凑数,于是不妨考虑采用除法逬行凑数。
第二步:己知数中有4,考虑能否利用96十4= 24进行凑数第三步;既然想利用96 + 4= 24进行凑数,那么己知4个数中的一个4就要排除在外, 即需用4、10、10凑出96。
算24点方法技巧
“算24点”方法技巧“算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题。
计算时,我们不可能把牌面上的4个数的不同组合形式——去试,更不能瞎碰乱凑。
这里向大家介绍几种常用的、便于学习掌握的方法:1.利用3×8=24、4×6=24求解。
把牌面上的四个数想办法凑成3和8、4和6,再相乘求解。
如3、3、6、10可组成(10—6÷3)×3=24等。
又如2、3、3、7可组成(7+3—2)×3=24等。
实践证明,这种方法是利用率最大、命中率最高的一种方法。
2.利用0、11的运算特性求解。
如3、4、4、8可组成3×8+4—4=24等。
又如4、5、J、K可组成11×(5—4)+13=24等。
3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d表示牌面上的四个数)①(a—b)×(c+d)如(10—4)×(2+2)=24等。
②(a+b)÷c×d如(10+2)÷2×4=24等。
③(a-b÷c)×d如(3—2÷2)×12=24等。
④(a+b-c)×d如(9+5—2)×2=24等。
⑤a×b+c—d如11×3+l—10=24等。
⑥(a-b)×c+d如(4—l)×6+6=24等。
例题1:3388:解法8/(3-8/3)=24按第一种方法来算,我们有8就先找3,你可能会问这里面并没有3,其实除以1/3,就是乘3.如何用十以内的数字算24点。
1、用以下几个数字计算24点,3,4,6,101: 3 × (4 - 6 + 10)2: 3 × ((4 - 6) + 10)3: 3 × (4 - (6 - 10))4: 3 × (4 + 10 - 6)5: 3 × ((4 + 10) - 6)7: 3 × 6 - 4 + 108: (3 × 6) - 4 + 10 9: (3 × 6 - 4) + 10 10: ((3 × 6) - 4) + 10 11: 3 × 6 -(4 - 10) 12: (3 × 6) - (4 - 10) 13: 3 × 6 + 10 - 4 14: (3 × 6) + 10 - 4 15: (3 × 6 + 10) - 4 16: ((3 × 6) + 10) - 4 17: 3 × 6 +(10 - 4) 18: (3 × 6) + (10 - 4) 19: 3 × (10 + 4 - 6) 20: 3 × ((10 + 4) - 6) 21: 3 × (10 + (4 - 6)) 22: (3 × (10 - 4)) + 6 23: 3 × (10 - 4) + 6 24: 3 × (10 - 6 + 4) 25: 3 × ((10 - 6) + 4) 26: 3 × (10 - (6 - 4)) 27: 4 + 6 ÷ 3 × 10 28: 4 + (6 ÷ 3) × 10 29: 4 + (6 ÷ 3 × 10) 30: 4 + ((6 ÷ 3) × 10) 31: 4 + (6 ÷ (3 ÷ 10)) 32: 4 + 6 ÷(3 ÷ 10) 33: 4 + 6 × 10 ÷ 3 34: 4 + (6 × 10) ÷ 3 35: 4 + (6 × 10 ÷ 3) 36: 4 + ((6 × 10) ÷ 3) 37: 4 + (6 × (10 ÷ 3)) 38: 4 + 6 ×(10 ÷ 3) 39: (4 - 6 + 10) × 3 40: ((4 - 6) + 10) × 3 41: (4 - (6 - 10)) × 3 42: 4 + 10 ÷ 3 × 6 43: 4 + (10 ÷ 3) × 6 44: 4 + (10 ÷ 3 × 6) 45: 4 + ((10 ÷ 3) × 6) 46: 4 + (10 ÷ (3 ÷ 6)) 47: 4 + 10 ÷(3 ÷ 6)49: ((4 + 10) - 6) × 3 50: (4 + (10 - 6)) × 3 51: 4 + 10 × 6 ÷ 3 52: 4 + (10 × 6) ÷ 3 53: 4 + (10 × 6 ÷ 3) 54: 4 + ((10 × 6) ÷ 3) 55: 4 + (10 × (6 ÷ 3)) 56: 4 + 10 ×(6 ÷ 3) 57: 6 - (3 × (4 - 10)) 58: 6 - 3 ×(4 - 10) 59: 6 × 3 - 4 + 10 60: (6 × 3) - 4 + 10 61: (6 × 3 - 4) + 10 62: ((6 × 3) - 4) + 10 63: 6 × 3 -(4 - 10) 64: (6 × 3) - (4 - 10) 65: 6 + (3 × (10 - 4)) 66: 6 + 3 ×(10 - 4) 67: 6 × 3 + 10 - 4 68: (6 × 3) + 10 - 4 69: (6 × 3 + 10) - 4 70: ((6 × 3) + 10) - 4 71: 6 × 3 +(10 - 4) 72: (6 × 3) + (10 - 4) 73: 6 ÷ 3 × 10 + 4 74: (6 ÷ 3) × 10 + 4 75: (6 ÷ 3 × 10) + 4 76: ((6 ÷ 3) × 10) + 4 77: (6 ÷ (3 ÷ 10)) + 4 78: 6 ÷ (3 ÷ 10) + 4 79: 6 - (4 - 10) × 3 80: 6 - ((4 - 10) × 3) 81: 6 × 10 ÷ 3 + 4 82: (6 × 10) ÷ 3 + 4 83: (6 × 10 ÷ 3) + 4 84: ((6 × 10) ÷ 3) + 4 85: (6 × (10 ÷ 3)) + 4 86: 6 × (10 ÷ 3) + 4 87: 6 + (10 - 4) × 3 88: 6 + ((10 - 4) × 3) 89: 10 + 3 × 6 - 491: (10 + (3 × 6)) - 4 92: 10 + (3 × 6) - 4 93: 10 + (3 × 6 - 4) 94: 10 + ((3 × 6) - 4) 95: 10 ÷ 3 × 6 + 4 96: (10 ÷ 3) × 6 + 4 97: (10 ÷ 3 × 6) + 4 98: ((10 ÷ 3) × 6) + 4 99: (10 ÷ (3 ÷ 6)) + 4 100: 10 ÷ (3 ÷ 6) + 4 101: 10 - 4 + 3 × 6 102: (10 - 4) + 3 × 6 103: 10 - 4 +(3 × 6) 104: (10 - 4) + (3 × 6) 105: 10 - (4 - 3 × 6) 106: 10 - (4 - (3 × 6)) 107: (10 - 4) × 3 + 6 108: ((10 - 4) × 3) + 6 109: (10 + 4 - 6) × 3 110: ((10 + 4) - 6) × 3 111: (10 + (4 - 6)) × 3 112: 10 - 4 + 6 × 3 113: (10 - 4) + 6 × 3 114: 10 - 4 +(6 × 3) 115: (10 - 4) + (6 × 3) 116: 10 - (4 - 6 × 3) 117: 10 - (4 - (6 × 3)) 118: 10 + 6 × 3 - 4 119: (10 + 6 × 3) - 4 120: (10 + (6 × 3)) - 4 121: 10 + (6 × 3) - 4 122: 10 + (6 × 3 - 4) 123: 10 + ((6 × 3) - 4) 124: 10 × 6 ÷ 3 + 4 125: (10 × 6) ÷ 3 + 4 126: (10 × 6 ÷ 3) + 4 127: ((10 × 6) ÷ 3) + 4 128: (10 × (6 ÷ 3)) + 4 129: 10 × (6 ÷ 3) + 4 130: (10 - 6 + 4) × 3 131: ((10 - 6) + 4) × 3132: (10 - (6 - 4)) × 32、用以下几个数字计算24点。
凑24的技巧
凑24的技巧凑24是一种常见的数学游戏,目的是利用给定的四个数字通过加、减、乘、除的运算,得到结果为24。
这个游戏既能锻炼我们的思维能力,又能增加我们对数学的兴趣。
下面我将分享一些凑24的技巧,希望能帮助大家更好地玩这个游戏。
我们需要了解凑24的基本规则。
在游戏中,我们会得到四个数字,我们需要使用这四个数字进行加、减、乘、除的运算,使得最终结果等于24。
每个数字只能使用一次,而且所有运算都必须按照给定的顺序进行。
接下来,我将介绍一些常用的技巧来凑24。
1. 利用括号:将数字分组并使用括号,可以改变运算的顺序,从而得到不同的结果。
比如,对于数字1、2、3、4,我们可以尝试(1+2+3)*4=24,或者(4-2)*(3+1)=24。
2. 利用乘法和除法:在凑24的过程中,乘法和除法往往能够起到关键的作用。
我们可以尝试将数字进行乘法或除法运算,从而得到更大或更小的结果。
比如,对于数字2、3、4、6,我们可以尝试6/(3-2/4)=24。
3. 利用加法和减法:加法和减法也是凑24的重要手段。
我们可以尝试将数字进行加法或减法运算,从而得到目标结果。
比如,对于数字5、5、6、7,我们可以尝试(7-5)*(6+5)=24。
4. 利用小数和分数:有时候,将数字转换为小数或分数可以帮助我们凑出24。
比如,对于数字1、2、3、4,我们可以尝试(4-1/2)*3*2=24。
5. 利用幂运算:幂运算也是凑24的一种技巧。
我们可以尝试将数字进行幂运算,从而得到目标结果。
比如,对于数字2、3、4、5,我们可以尝试4^2-5+3=24。
除了以上的技巧,还有很多其他的方法可以凑出24。
关键是要灵活运用各种运算符号和数字,通过不断尝试和思考,找到能够得到24的运算组合。
同时,要注意运算顺序和运算符号的优先级,确保得到的结果是正确的。
凑24是一款非常有趣和富有挑战性的数学游戏。
通过玩这个游戏,我们可以锻炼我们的逻辑思维和数学能力,培养我们的耐心和毅力。
4个数组成24的规律
四数组合成24的规律
哎,说起这四数组合成24嘞规律,那可真是要动点脑筋哟。
你想嘛,随便给你四个数字,不管它是大是小,是正是负,反正就是要你通过加啊、减啊、乘啊、除啊这些运算,把它们整得加起来或者算出来等于24。
比如说,给你1、2、3、4这四个数,那你就可以这样算:4乘以(1加2加3),这不就刚好是24了嘛。
或者呢,你还可以3乘以4加1加1,或者2乘以3乘4减4,反正方法多得很,就看你会不会变通咯。
再比如说,给你5、5、5、1这四个数,那你就可以5乘以5减5再除以5加5,绕是绕了点,但结果也是24噻。
还有哦,5乘以(5减1除以5),这样也能算出来24。
有些人可能会说,这有啥子难的嘛,给我几个数,我马上就能算出来。
嘿,你可别小看了这个,有时候数字大了或者小了,或者数字之间没啥子明显的规律,那你就得好好琢磨琢磨了。
不过呢,只要你掌握了基本的方法,比如先乘后除、多加少减这些,再加上一点点运气,那基本上就没啥子问题咯。
反正啊,这个四数组合成24的规律,就是要你多练练,多想想,这样才能越来越熟练嘛。
所以啊,大家有空的时候,不妨多试试这个,不仅可以锻炼你的思维能力,还可以增加你的数学兴趣嘞。
算24点方法技巧
“算24点”方法技巧“算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题。
计算时,我们不可能把牌面上的4个数的不同组合形式——去试,更不能瞎碰乱凑。
这里向大家介绍几种常用的、便于学习掌握的方法:1.利用3×8=24、4×6=24求解。
把牌面上的四个数想办法凑成3和8、4和6,再相乘求解。
如3、3、6、10可组成(10—6÷3)×3=24等。
又如2、3、3、7可组成(7+3—2)×3=24等。
实践证明,这种方法是利用率最大、命中率最高的一种方法。
2.利用0、11的运算特性求解。
如3、4、4、8可组成3×8+4—4=24等。
又如4、5、J、K可组成11×(5—4)+13=24等。
3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d表示牌面上的四个数)①(a—b)×(c+d)如(10—4)×(2+2)=24等。
②(a+b)÷c×d如(10+2)÷2×4=24等。
③(a-b÷c)×d如(3—2÷2)×12=24等。
④(a+b-c)×d如(9+5—2)×2=24等。
⑤a×b+c—d如11×3+l—10=24等。
⑥(a-b)×c+d如(4—l)×6+6=24等。
例题1:3388:解法8/(3-8/3)=24按第一种方法来算,我们有8就先找3,你可能会问这里面并没有3,其实除以1/3,就是乘3.如何用十以内的数字算24点。
1、用以下几个数字计算24点,3,4,6,101: 3 × (4 - 6 + 10)2: 3 × ((4 - 6) + 10)3: 3 × (4 - (6 - 10))4: 3 × (4 + 10 - 6)5: 3 × ((4 + 10) - 6)7: 3 × 6 - 4 + 108: (3 × 6) - 4 + 10 9: (3 × 6 - 4) + 10 10: ((3 × 6) - 4) + 10 11: 3 × 6 -(4 - 10) 12: (3 × 6) - (4 - 10) 13: 3 × 6 + 10 - 4 14: (3 × 6) + 10 - 4 15: (3 × 6 + 10) - 4 16: ((3 × 6) + 10) - 4 17: 3 × 6 +(10 - 4) 18: (3 × 6) + (10 - 4) 19: 3 × (10 + 4 - 6) 20: 3 × ((10 + 4) - 6) 21: 3 × (10 + (4 - 6)) 22: (3 × (10 - 4)) + 6 23: 3 × (10 - 4) + 6 24: 3 × (10 - 6 + 4) 25: 3 × ((10 - 6) + 4) 26: 3 × (10 - (6 - 4)) 27: 4 + 6 ÷ 3 × 10 28: 4 + (6 ÷ 3) × 10 29: 4 + (6 ÷ 3 × 10) 30: 4 + ((6 ÷ 3) × 10) 31: 4 + (6 ÷ (3 ÷ 10)) 32: 4 + 6 ÷(3 ÷ 10) 33: 4 + 6 × 10 ÷ 3 34: 4 + (6 × 10) ÷ 3 35: 4 + (6 × 10 ÷ 3) 36: 4 + ((6 × 10) ÷ 3) 37: 4 + (6 × (10 ÷ 3)) 38: 4 + 6 ×(10 ÷ 3) 39: (4 - 6 + 10) × 3 40: ((4 - 6) + 10) × 3 41: (4 - (6 - 10)) × 3 42: 4 + 10 ÷ 3 × 6 43: 4 + (10 ÷ 3) × 6 44: 4 + (10 ÷ 3 × 6) 45: 4 + ((10 ÷ 3) × 6) 46: 4 + (10 ÷ (3 ÷ 6)) 47: 4 + 10 ÷(3 ÷ 6)49: ((4 + 10) - 6) × 3 50: (4 + (10 - 6)) × 3 51: 4 + 10 × 6 ÷ 3 52: 4 + (10 × 6) ÷ 3 53: 4 + (10 × 6 ÷ 3) 54: 4 + ((10 × 6) ÷ 3) 55: 4 + (10 × (6 ÷ 3)) 56: 4 + 10 ×(6 ÷ 3) 57: 6 - (3 × (4 - 10)) 58: 6 - 3 ×(4 - 10) 59: 6 × 3 - 4 + 10 60: (6 × 3) - 4 + 10 61: (6 × 3 - 4) + 10 62: ((6 × 3) - 4) + 10 63: 6 × 3 -(4 - 10) 64: (6 × 3) - (4 - 10) 65: 6 + (3 × (10 - 4)) 66: 6 + 3 ×(10 - 4) 67: 6 × 3 + 10 - 4 68: (6 × 3) + 10 - 4 69: (6 × 3 + 10) - 4 70: ((6 × 3) + 10) - 4 71: 6 × 3 +(10 - 4) 72: (6 × 3) + (10 - 4) 73: 6 ÷ 3 × 10 + 4 74: (6 ÷ 3) × 10 + 4 75: (6 ÷ 3 × 10) + 4 76: ((6 ÷ 3) × 10) + 4 77: (6 ÷ (3 ÷ 10)) + 4 78: 6 ÷ (3 ÷ 10) + 4 79: 6 - (4 - 10) × 3 80: 6 - ((4 - 10) × 3) 81: 6 × 10 ÷ 3 + 4 82: (6 × 10) ÷ 3 + 4 83: (6 × 10 ÷ 3) + 4 84: ((6 × 10) ÷ 3) + 4 85: (6 × (10 ÷ 3)) + 4 86: 6 × (10 ÷ 3) + 4 87: 6 + (10 - 4) × 3 88: 6 + ((10 - 4) × 3) 89: 10 + 3 × 6 - 491: (10 + (3 × 6)) - 4 92: 10 + (3 × 6) - 4 93: 10 + (3 × 6 - 4) 94: 10 + ((3 × 6) - 4) 95: 10 ÷ 3 × 6 + 4 96: (10 ÷ 3) × 6 + 4 97: (10 ÷ 3 × 6) + 4 98: ((10 ÷ 3) × 6) + 4 99: (10 ÷ (3 ÷ 6)) + 4 100: 10 ÷ (3 ÷ 6) + 4 101: 10 - 4 + 3 × 6 102: (10 - 4) + 3 × 6 103: 10 - 4 +(3 × 6) 104: (10 - 4) + (3 × 6) 105: 10 - (4 - 3 × 6) 106: 10 - (4 - (3 × 6)) 107: (10 - 4) × 3 + 6 108: ((10 - 4) × 3) + 6 109: (10 + 4 - 6) × 3 110: ((10 + 4) - 6) × 3 111: (10 + (4 - 6)) × 3 112: 10 - 4 + 6 × 3 113: (10 - 4) + 6 × 3 114: 10 - 4 +(6 × 3) 115: (10 - 4) + (6 × 3) 116: 10 - (4 - 6 × 3) 117: 10 - (4 - (6 × 3)) 118: 10 + 6 × 3 - 4 119: (10 + 6 × 3) - 4 120: (10 + (6 × 3)) - 4 121: 10 + (6 × 3) - 4 122: 10 + (6 × 3 - 4) 123: 10 + ((6 × 3) - 4) 124: 10 × 6 ÷ 3 + 4 125: (10 × 6) ÷ 3 + 4 126: (10 × 6 ÷ 3) + 4 127: ((10 × 6) ÷ 3) + 4 128: (10 × (6 ÷ 3)) + 4 129: 10 × (6 ÷ 3) + 4 130: (10 - 6 + 4) × 3 131: ((10 - 6) + 4) × 3132: (10 - (6 - 4)) × 32、用以下几个数字计算24点。
数学题24点的解题方式
数学题24点的解题方式标题:数学题 24 点的解题方式在数学中,24 点是指通过加、减、乘、除等数学运算,将四个数字转化为 1 到 12 之间的整数,使它们的和等于 24。
这是一个经典的数学问题,有许多不同的解题方式。
以下是其中一些常见的解题方法:1. 乘法方案使用乘法运算,将四个数字分别乘以相应的因子,并将结果相加。
得到一个得到一个整数,其和等于 24。
例如,如果四个数字分别为 2、4、6 和 8,则可以使用以下公式:2 × 4 × 6 × 8 = 96因此,四个数字之和等于 24。
2. 加法方案使用加法运算,将四个数字相加,并得到一个得到一个整数,其和等于 24。
例如,如果四个数字分别为 3、5、7 和 9,则可以使用以下公式:3 + 5 + 7 + 9 = 27因此,四个数字之和等于 24。
3. 减法方案使用减法运算,将四个数字中较大的数字减去较小的数字,并得到一个得到一个整数,其差等于 24。
例如,如果四个数字分别为 8、6、4 和 2,则可以使用以下公式:8 - 6 - 4 - 2 = 0因此,四个数字之和等于 24。
4. 除法方案使用除法运算,将四个数字分别除以相应的因子,并将结果相加。
得到一个得到一个整数,其和等于 24。
例如,如果四个数字分别为 2、4、6 和 8,则可以使用以下公式:2 ÷ 2 = 14 ÷ 4 = 16 ÷ 6 = 18 ÷ 8 = 1因此,四个数字之和等于 24。
除了以上列出的方法之外,还有许多其他解题方式。
这个问题本身也是一种有趣的数学挑战,可以帮助人们提高数学技能和思维敏捷度。
拓展:24 点游戏和扑克牌24 点游戏是一种流行的数学游戏,通常通过乘法、加法、减法等运算,将四个数字转化为 1 到 12 之间的整数,使它们的和等于24。
这个游戏通常需要一些技巧和思考能力,可以锻炼人们的数学能力和思维能力。
4个数24点计算方法与技巧
4个数24点计算方法与技巧4个数24点计算方法与技巧:1. 将4个数(a, b, c, d)按照从小到大的顺序排列,得到的数字序列为(1, 2, 3, 4),共计24点。
2. 可以通过计算以下式子得到4个数的和:a +b +c +d = 4 × (1 + 2 + 3 + 4) = 48或者,也可以通过以下式子得到4个数的差:a -b -c -d = 4 × (-1 + 2 + 3 + 4) = 12这两种方法都可以得到24点。
3. 还可以利用以下公式计算4个数的平均值:a +b +c +d = (a + b + c + d) / 4 = 24将上述公式中的分子和分母都乘以4,可以得到:a +b +c +d = 48 / 4 = 12因此,利用这个公式可以得到4个数的平均值为12点。
4. 可以利用以下公式计算4个数的方差:(a - b)^2 + (c - b)^2 + (d - c)^2 + (a - d)^2 + (b - c)^2 + (d - a)^2 = (a - b)^2 + (c - b)^2 + (d - c)^2 + 6(a - d)^2其中,(a - b)^2表示a和b之间的平方差,(c - b)^2表示c和b之间的平方差,以此类推。
将上述公式中的方差项提取出来,可以得到:(a - b)^2 + (c - b)^2 + (d - c)^2 + 6(a - d)^2 = (1 - 1)^2 + (1 - 1)^2 + (1 - 2)^2 + 6(1 - 3)^2= 0 + 0 + 0 + 6 + 27= 37因此,利用这个公式可以得到4个数的方差为37点。
5. 还可以利用以下公式计算4个数的标准差:的标准差 = √[(a - b)^2 + (c - b)^2 + (d - c)^2] / (4 * √[(a - b)^2 + (c - b)^2 + (d - c)^2])其中,(a - b)^2表示a和b之间的平方差,(c - b)^2表示c和b之间的平方差,以此类推。
24点游戏规则和解题方法
24点游戏规则和解题方法“巧算24点”的游戏内容如下:一副牌中抽去大小王剩下52张,其中J、Q、K、A 分别相当于10、11、12、13(如果初练也可只用1~10这40张牌),任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24。
每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9—8)×8×3或3×8+(9—8)或(9—8÷8)×3等。
“算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题。
计算时,我们不可能把牌面上的4个数的不同组合形式——去试,更不能瞎碰乱凑。
这里向大家介绍几种常用的、便于学习掌握的方法:1.利用3×8=24、4×6=24求解。
把牌面上的四个数想办法凑成3和8、4和6,再相乘求解。
如3、3、6、10可组成(10—6÷3)×3=24等。
又如2、3、3、7可组成(7+3—2)×3=24等。
实践证明,这种方法是利用率最大、命中率最高的一种方法。
2.利用0、11的运算特性求解。
如3、4、4、8可组成3×8+4—4=24等。
又如4、5、J、K可组成11×(5—4)+13=24等。
3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d表示牌面上的四个数)①(a—b)×(c+d)如(10—4)×(2+2)=24等。
②(a+b)÷c×d如(10+2)÷2×4=24等。
③(a-b÷c)×d如(3—2÷2)×12=24等。
④(a+b-c)×d如(9+5—2)×2=24等。
⑤a×b+c—d如11×3+l—10=24等。
⑥(a-b)×c+d如(4—l)×6+6=24等。
四年级叙事今天我和妈妈扑克二十四点
今天我和妈妈扑克二十四点
今天我和妈妈扑克二十四点。
扑克二十四点使我产生了一个疑问:为什么是算二十四点,而不是二十五点、二十六点或别的数呢?妈妈说:“这是一个流传了很久的游戏,大家都习惯了算二十四点。
如果现在和你玩二十五点,那别人跟你比二十四点,你就算不过人家了。
”
二十四点的玩法:拿出四张扑克牌,用加、减、乘、除、平方或者别的我不知道的方法算出来的数要等于二十四。
玩二十四点的窍门:3*8=24、4*6=24、2*12=24。
如果有了三,就把别的数变8或21;如果有了8,就把别的三个数变成3或16;如果有6就把别的三个数变4或18;如果有4,就把别的三个数变成6或20;如果有2,就把别的三个数变成12或22……学会了这些窍门,算二十四点就容易多啦!现在我和妈妈比赛算二十四点,我的速度越来越快了,有时候我比妈妈算得还快!有时我能把一副牌用好几种方法算出二十四点。
扑克二十四点真是一个奇妙的游戏啊!我越来越喜欢这个数字游戏了!。
凑24的技巧
凑24的技巧凑24是一种数学游戏,通过组合四个数字,使用加、减、乘、除等运算符,使得结果等于24。
在这个游戏中,需要一定的技巧和思维能力才能找到解答。
下面将介绍一些凑24的技巧,帮助大家更好地玩这个游戏。
1. 利用乘法和除法:乘法和除法是凑24中常用的运算符。
可以通过两个数的乘积或商来得到24。
例如,可以选择两个数字相乘得到24,如3乘以8等于24;也可以选择两个数字相除得到24,如96除以4等于24。
2. 利用加法和减法:加法和减法也是凑24中常用的运算符。
可以通过两个数的和或差来得到24。
例如,可以选择两个数字相加得到24,如10加上14等于24;也可以选择两个数字相减得到24,如30减去6等于24。
3. 利用括号:括号在凑24中起到改变运算顺序的作用。
通过合理地使用括号,可以改变运算的先后顺序,从而得到24。
例如,可以将两个数字相加后再乘以另外两个数字,如(6加上9)乘以(2加上1)等于24。
4. 利用小数:小数在凑24中也是可以使用的。
通过使用小数,可以增加数字的组合方式,从而增加凑24的可能性。
例如,可以选择两个小数相乘得到24,如0.5乘以48等于24;也可以选择一个小数加上一个整数得到24,如0.5加上23.5等于24。
5. 利用负数:负数在凑24中也是可以使用的。
通过使用负数,可以增加数字的组合方式,从而增加凑24的可能性。
例如,可以选择一个负数加上一个正数得到24,如-8加上32等于24;也可以选择两个负数相乘得到24,如-3乘以-8等于24。
6. 利用多个运算符:在凑24中,可以使用多个运算符来得到24。
通过使用多个运算符,可以增加凑24的可能性。
例如,可以选择一个数加上一个数,再乘以一个数,如(4加上2)乘以6等于24;也可以选择一个数乘以一个数,再除以一个数,如(8乘以3)除以4等于24。
7. 利用特殊数字:在凑24中,可以利用特殊的数字来得到24。
例如,可以选择一个平方数开根号得到24,如√576等于24;也可以选择一个数字的阶乘得到24,如4!等于24。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“巧算24点”的游戏内容如下:一副牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24。
每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9—8)×8×3或3×8+(9—8)或(9—8÷8)×3等。
“算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题。
计算时,我们不可能把牌面上的4个数的不同组合形式——去试,更不能瞎碰乱凑。
这里向大家介绍几种常用的、便于学习掌握的方法: 1.利用3×8=24、4×6=24求解。
把牌面上的四个数想办法凑成3和8、4和6,再相乘求解。
如3、3、6、10可组成(10—6÷3)×3=24等。
又如2、3、3、7可组成(7+3—2)×3=24等。
实践证明,这种方法是利用率最大、命中率最高的一种方法。
2.利用0、11的运算特性求解。
如3、4、4、8可组成3×8+4—4=24等。
又如4、5、J、K可组成11×(5—4)+13=24等。
3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d表示牌面上的四个数)
①(a—b)×(c+d)
如(10—4)×(2+2)=24等。
②(a+b)÷c×d
如(10+2)÷2×4=24等。
③(a-b÷c)×d
如(3—2÷2)×12=24等。
④(a+b-c)×d
如(9+5—2)×2=24等。
⑤a×b+c—d
如11×3+l—10=24等。
⑥(a-b)×c+d
如(4—l)×6+6=24等。
游戏时,同学们不妨按照上述方法试一试。
需要说明的是:经计算机准确计算,一副牌(52张)中,任意抽取4张可有1820种不同组合,其中有458个牌组算不出24点,如A、A、A、5。