(2)典型合金的冷却过程分析
材料科学基础-作业参考答案与解析

材料科学基础练习题参考答案第一章原子排列1. 作图表示立方晶系中的(123),(012),(421)晶面和[102],[211],[346]晶向.附图1-1 有关晶面及晶向2. 分别计算面心立方结构与体心立方结构的{100},{110}和{111}晶面族的面间距, 并指出面间距最大的晶面(设两种结构的点阵常数均为a).解由面心立方和体心立方结构中晶面间的几何关系, 可求得不同晶面族中的面间距如附表1-1所示.附表1-1 立方晶系中的晶面间距晶面{100} {110} {111}面间距FCC2a24a33aBCC2a22a36a显然, FCC中{111}晶面的面间距最大, 而BCC中{110}晶面的面间距最大.注意:对于晶面间距的计算, 不能简单地使用公式, 应考虑组成复合点阵时, 晶面层数会增加.3. 分别计算fcc和bcc中的{100},{110}和{111}晶面族的原子面密度和<100>,<110>和<111>晶向族的原子线密度, 并指出两种结构的差别. (设两种结构的点阵常数均为a) 解原子的面密度是指单位晶面内的原子数; 原子的线密度是指晶面上单位长度所包含的原子数. 据此可求得原子的面密度和线密度如附表1-2所示.附表1-2 立方晶系中原子的面密度和线密度晶面/晶向{100} {110} {111} <100> <110> <111>面/线密度BCC21a22a233a1a22a233aFCC22a22a2433a1a2a33a可见, 在BCC中, 原子密度最大的晶面为{110}, 原子密度最大的晶向为<111>; 在FCC 中, 原子密度最大的晶面为{111}, 原子密度最大的晶向为<110>.4. 在(0110)晶面上绘出[2113]晶向.解详见附图1-2.附图1-2 六方晶系中的晶向5. 在一个简单立方二维晶体中, 画出一个正刃型位错和一个负刃型位错. 试求:(1) 用柏氏回路求出正、负刃型位错的柏氏矢量.(2) 若将正、负刃型位错反向时, 说明其柏氏矢量是否也随之反向.(3) 具体写出该柏氏矢量的方向和大小.(4) 求出此两位错的柏氏矢量和.解正负刃型位错示意图见附图1-3(a)和附图1-4(a).(1) 正负刃型位错的柏氏矢量见附图1-3(b)和附图1-4(b).(2) 显然, 若正、负刃型位错线反向, 则其柏氏矢量也随之反向.(3) 假设二维平面位于YOZ坐标面, 水平方向为Y轴, 则图示正、负刃型位错方向分别为[010]和[010], 大小均为一个原子间距(即点阵常数a).(4) 上述两位错的柏氏矢量大小相等, 方向相反, 故其矢量和等于0.6. 设图1-72所示立方晶体的滑移面ABCD平行于晶体的上下底面, 该滑移面上有一正方形位错环. 如果位错环的各段分别与滑移面各边平行, 其柏氏矢量b // AB, 试解答:(1) 有人认为“此位错环运动离开晶体后, 滑移面上产生的滑移台阶应为4个b”, 这种说法是否正确? 为什么?(2) 指出位错环上各段位错线的类型, 并画出位错移出晶体后, 晶体的外形、滑移方向和滑移量. (设位错环线的方向为顺时针方向)图1-72 滑移面上的正方形位错环 附图1-5 位错环移出晶体引起的滑移解 (1) 这种看法不正确. 在位错环运动移出晶体后, 滑移面上下两部分晶体相对移动的距离是由其柏氏矢量决定的. 位错环的柏氏矢量为b , 故其相对滑移了一个b 的距离.(2) A ′B ′为右螺型位错, C ′D ′为左螺型位错, B ′C ′为正刃型位错, D ′A ′为负刃型位错. 位错运动移出晶体后滑移方向及滑移量见附图1-5.7. 设面心立方晶体中的(111)晶面为滑移面, 位错滑移后的滑移矢量为[110]2a .(1) 在晶胞中画出此柏氏矢量b 的方向并计算出其大小.(2) 在晶胞中画出引起该滑移的刃型位错和螺型位错的位错线方向, 并写出此二位错线的晶向指数.解 (1) 柏氏矢量等于滑移矢量, 因此柏氏矢量的方向为[110], 大小为2/2a .(2) 刃型位错与柏氏矢量垂直, 螺型位错与柏氏矢量平行, 晶向指数分别为[112]和[110], 详见附图1-6.附图1-6 位错线与其柏氏矢量、滑移矢量8. 若面心立方晶体中有[101]2a b =的单位位错及[121]6a b =的不全位错, 此二位错相遇后产生位错反应.(1) 此反应能否进行? 为什么?(2) 写出合成位错的柏氏矢量, 并说明合成位错的性质.解 (1) 能够进行.因为既满足几何条件:[111]3a b b ==∑∑后前,又满足能量条件: . 22222133b a b a =>=∑∑后前. (2) [111]3a b =合, 该位错为弗兰克不全位错. 9. 已知柏氏矢量的大小为b = 0.25nm, 如果对称倾侧晶界的取向差θ = 1° 和10°, 求晶界上位错之间的距离. 从计算结果可得到什么结论?解 根据bD θ≈, 得到θ = 1°,10° 时, D ≈14.3nm, 1.43nm. 由此可知, θ = 10°时位错之间仅隔5~6个原子间距, 位错密度太大, 表明位错模型已经不适用了.第二章 固体中的相结构1. 已知Cd, In, Sn, Sb 等元素在Ag 中的固熔度极限(摩尔分数)分别为0.435, 0.210, 0.130, 0.078; 它们的原子直径分别为0.3042 nm, 0.314 nm, 0.316 nm, 0.3228 nm; Ag 的原子直径为0.2883 nm. 试分析其固熔度极限差异的原因, 并计算它们在固熔度极限时的电子浓度.答: 在原子尺寸因素相近的情况下, 熔质元素在一价贵金属中的固熔度(摩尔分数)受原子价因素的影响较大, 即电子浓度e /a 是决定固熔度(摩尔分数)的一个重要因素, 而且电子浓度存在一个极限值(约为1.4). 电子浓度可用公式A B B B (1)c Z x Z x =-+计算. 式中, Z A , Z B 分别为A, B 组元的价电子数; x B 为B 组元的摩尔分数. 因此, 随着熔质元素价电子数的增加, 极限固熔度会越来越小.Cd, In, Sn, Sb 等元素与Ag 的原子直径相差不超过15%(最小的Cd 为5.5%, 最大的Sb 为11.96%), 满足尺寸相近原则, 这些元素的原子价分别为2, 3, 4, 5价, Ag 为1价, 据此推断它们的固熔度极限越来越小, 实际情况正好反映了这一规律; 根据上面的公式可以计算出它们在固熔度(摩尔分数)极限时的电子浓度分别为1.435, 1.420, 1.390, 1.312.2. 碳可以熔入铁中而形成间隙固熔体, 试分析是α-Fe 还是γ-Fe 能熔入较多的碳. 答: α-Fe 为体心立方结构, 致密度为0.68; γ-Fe 为面心立方结构, 致密度为0.74. 显然, α-Fe 中的间隙总体积高于γ-Fe, 但由于α-Fe 的间隙数量多, 单个间隙半径却较小, 熔入碳原子将会产生较大的畸变, 因此, 碳在γ-Fe 中的固熔度较α-Fe 的大.3. 为什么只有置换固熔体的两个组元之间才能无限互熔, 而间隙固熔体则不能?答: 这是因为形成固熔体时, 熔质原子的熔入会使熔剂结构产生点阵畸变, 从而使体系能量升高. 熔质原子与熔剂原子尺寸相差越大, 点阵畸变的程度也越大, 则畸变能越高, 结构的稳定性越低, 熔解度越小. 一般来说, 间隙固熔体中熔质原子引起的点阵畸变较大,故不能无限互熔, 只能有限熔解.第三章 凝固1. 分析纯金属生长形态与温度梯度的关系.答: 纯金属生长形态是指晶体宏观长大时固-液界面的形貌. 界面形貌取决于界面前沿液相中的温度梯度.(1) 平面状长大: 当液相具有正温度梯度时, 晶体以平直界面方式推移长大. 此时, 界面上任何偶然的、小的凸起深入液相时, 都会使其过冷度减小, 长大速率降低或停止长大, 而被周围部分赶上, 因而能保持平直界面的推移. 长大过程中晶体沿平行温度梯度的方向生长, 或沿散热的反方向生长, 而其它方向的生长则受到限制.(2) 树枝状长大: 当液相具有负温度梯度时, 晶体将以树枝状方式生长. 此时, 界面上偶然的凸起深入液相时, 由于过冷度的增大, 长大速率越来越大; 而它本身生长时又要释放结晶潜热, 不利于近旁的晶体生长, 只能在较远处形成另一凸起. 这就形成了枝晶的一次轴, 在一次轴成长变粗的同时, 由于释放潜热使晶枝侧旁液体中也呈现负温度梯度, 于是在一次轴上又会长出小枝来, 称为二次轴, 在二次轴上又长出三次轴……由此而形成树枝状骨架, 故称为树枝晶(简称枝晶).2. 简述纯金属晶体长大机制及其与固-液界面微观结构的关系.答: 晶体长大机制是指晶体微观长大方式, 即液相原子添加到固相的方式, 它与固-液界面的微观结构有关.(1) 垂直长大方式: 具有粗糙界面的物质, 因界面上约有50% 的原子位置空着, 这些空位都可以接受原子, 故液相原子可以进入空位, 与晶体连接, 界面沿其法线方向垂直推移, 呈连续式长大.(2) 横向(台阶)长大方式: 包括二维晶核台阶长大机制和晶体缺陷台阶长大机制, 具有光滑界面的晶体长大往往采取该方式. 二维晶核模式, 认为其生长主要是利用系统的能量起伏, 使液相原子在界面上通过均匀形核形成一个原子厚度的二维薄层状稳定的原子集团, 然后依靠其周围台阶填充原子, 使二维晶核横向长大, 在该层填满后, 则在新的界面上形成新的二维晶核, 继续填满, 如此反复进行.晶体缺陷方式, 认为晶体生长是利用晶体缺陷存在的永不消失的台阶(如螺型位错的台阶或挛晶的沟槽)长大的.第四章 相图1. 在Al-Mg 合金中, x Mg 为0.15, 计算该合金中镁的w Mg 为多少.解 设Al 的相对原子量为M Al , 镁的相对原子量为M Mg , 按1mol Al-Mg 合金计算, 则镁的质量分数可表示为Mg MgMg Al Al Mg Mg 100%x M w x M x M =⨯+.将x Mg = 0.15, x Al = 0.85, M Mg = 24, M Al = 27代入上式中, 得到w Mg = 13.56%.2. 根据图4-117所示二元共晶相图, 试完成:(1) 分析合金I, II的结晶过程, 并画出冷却曲线.(2) 说明室温下合金I, II的相和组织是什么, 并计算出相和组织组成物的相对量.(3) 如果希望得到共晶组织加上相对量为5%的β初的合金, 求该合金的成分.图4-117 二元共晶相图附图4-1 合金I的冷却曲线附图4-2 合金II的冷却曲线解 (1) 合金I的冷却曲线参见附图4-1, 其结晶过程如下:1以上, 合金处于液相;1~2时, 发生匀晶转变L→α, 即从液相L中析出固熔体α, L和α的成分沿液相线和固相线变化, 达到2时, 凝固过程结束;2时, 为α相;2~3时, 发生脱熔转变, α→βII.合金II的冷却曲线参见附图4-2, 其结晶过程如下:1以上, 处于均匀液相;1~2时, 进行匀晶转变L →β;2时, 两相平衡共存, 0.50.9L β;2~2′ 时, 剩余液相发生共晶转变0.50.20.9L βα+;2~3时, 发生脱熔转变α→βII .(2) 室温下, 合金I 的相组成物为α + β, 组织组成物为α + βII .相组成物相对量计算如下:αβ0.900.20100%82%0.900.050.200.05100%18%0.900.05w w -=⨯=--=⨯=- 组织组成物的相对量与相的一致.室温下, 合金II 的相组成物为α + β, 组织组成物为β初 + (α+β).相组成物相对量计算如下:αβ0.900.80100%12%0.900.050.800.05100%88%0.900.05w w -=⨯=--=⨯=- 组织组成物相对量计算如下:β(α+β)0.800.50100%75%0.900.500.900.80100%25%0.900.50w w -=⨯=--=⨯=-初 (3) 设合金的成分为w B = x , 由题意知该合金为过共晶成分, 于是有β0.50100%5%0.900.50x w -=⨯=-初 所以, x = 0.52, 即该合金的成分为w B = 0.52.3. 计算w C 为0.04的铁碳合金按亚稳态冷却到室温后组织中的珠光体、二次渗碳体和莱氏体的相对量, 并计算组成物珠光体中渗碳体和铁素体及莱氏体中二次渗碳体、共晶渗碳体与共析渗碳体的相对量.解 根据Fe-Fe 3C 相图, w C = 4%的铁碳合金为亚共晶铸铁, 室温下平衡组织为 P + Fe 3C II + L d ′, 其中P 和Fe 3C II 系由初生奥氏体转变而来, 莱氏体则由共晶成分的液相转变而成, 因此莱氏体可由杠杆定律直接计算, 而珠光体和二次渗碳体则可通过两次使用杠杆定律间接计算出来.L d ′ 相对量: d L 4 2.11100%86.3%4.3 2.11w '-=⨯=-. Fe 3C II 相对量: 3II Fe C 4.34 2.110.77100% 3.1%4.3 2.11 6.690.77w --=⨯⨯=--.P 相对量: P 4.34 6.69 2.11100%10.6%4.3 2.11 6.690.77w --=⨯⨯=--. 珠光体中渗碳体和铁素体的相对量的计算则以共析成分点作为支点, 以w C = 0.001%和w C = 6.69%为端点使用杠杆定律计算并与上面计算得到的珠光体相对量级联得到.P 中F 相对量: F P 6.690.77100%9.38%6.690.001w w -=⨯⨯=-. P 中Fe 3C 相对量: 3Fe C 10.6%9.38% 1.22%w =-=.至于莱氏体中共晶渗碳体、二次渗碳体及共析渗碳体的相对量的计算, 也需采取杠杆定律的级联方式, 但必须注意一点, 共晶渗碳体在共晶转变线处计算, 而二次渗碳体及共析渗碳体则在共析转变线处计算.L d ′ 中共晶渗碳体相对量: d Cm L 4.3 2.11100%41.27%6.69 2.11w w '-=⨯⨯=-共晶L d ′ 中二次渗碳体相对量: d Cm L 6.69 4.3 2.110.77100%10.2%6.69 2.11 6.690.77w w '--=⨯⨯⨯=--II L d ′ 中共析渗碳体相对量:d Cm L 6.69 4.3 6.69 2.110.770.0218100% 3.9%6.69 2.11 6.690.77 6.690.0218w w '---=⨯⨯⨯⨯=---共析 4. 根据下列数据绘制Au-V 二元相图. 已知金和钒的熔点分别为1064℃和1920℃. 金与钒可形成中间相β(AuV 3); 钒在金中的固熔体为α, 其室温下的熔解度为w V = 0.19; 金在钒中的固熔体为γ, 其室温下的熔解度为w Au = 0.25. 合金系中有两个包晶转变, 即1400V V V 1522V V V (1) β(0.4)L(0.25)α(0.27)(2) γ(0.52)L(0.345)β(0.45)w w w w w w =+===+==℃℃解 根据已知数据绘制的Au-V 二元相图参见附图4-3.附图4-3 Au-V 二元相图第五章 材料中的扩散1. 设有一条直径为3cm 的厚壁管道, 被厚度为0.001cm 的铁膜隔开, 通过输入氮气以保持在膜片一边氮气浓度为1000 mol/m 3; 膜片另一边氮气浓度为100 mol/m 3. 若氮在铁中700℃时的扩散系数为4×10-7 cm 2 /s, 试计算通过铁膜片的氮原子总数.解 设铁膜片左右两边的氮气浓度分别为c 1, c 2, 则铁膜片处浓度梯度为7421510010009.010 mol /m 110c c c c x x x --∂∆-≈===-⨯∂∆∆⨯ 根据扩散第一定律计算出氮气扩散通量为 722732410(10)(9.010) 3.610 mol/(m s)c J D x---∂=-=-⨯⨯⨯-⨯=⨯∂ 于是, 单位时间通过铁膜片的氮气量为 3-22-63.610(310) 2.5410 mol/s 4J A π-=⨯⨯⨯⨯=⨯最终得到单位时间通过铁膜片的氮原子总数为-62318-1A () 2.5410 6.02102 3.0610 s N J A N =⨯=⨯⨯⨯⨯=⨯第六章 塑性变形1. 铜单晶体拉伸时, 若力轴为 [001] 方向, 临界分切应力为0.64 MPa, 问需要多大的拉伸应力才能使晶体开始塑性变形?解 铜为面心立方金属, 其滑移系为 {111}<110>, 4个 {111} 面构成一个八面体, 详见教材P219中的图6-12.当拉力轴为 [001] 方向时, 所有滑移面与力轴间的夹角相同, 且每个滑移面上的三个滑移方向中有两个与力轴的夹角相同, 另一个为硬取向(λ = 90°). 于是, 取滑移系(111)[101]进行计算.222222222222k s cos 3001111cos 2001(1)01cos cos 60.646 1.57 MPa.m mϕλϕλτσ==++⨯++==++⨯-++=====即至少需要1.57 MPa 的拉伸应力才能使晶体产生塑性变形.2. 什么是滑移、滑移线、滑移带和滑移系? 作图表示α-Fe, Al, Mg 中的最重要滑移系. 那种晶体的塑性最好, 为什么?答: 滑移是晶体在切应力作用下一部分相对于另一部分沿一定的晶面和晶向所作的平行移动; 晶体的滑移是不均匀的, 滑移部分与未滑移部分晶体结构相同. 滑移后在晶体表面留下台阶, 这就是滑移线的本质. 相互平行的一系列滑移线构成所谓滑移带. 晶体发生滑移时, 某一滑移面及其上的一个滑移方向就构成了一个滑移系.附图6-1 三种晶体点阵的主要滑移系α-Fe具有体心立方结构, 主要滑移系可表示为 {110}<111>, 共有6×2 = 12个; Al 具有面心立方结构, 其滑移系可表示为 {111}<110>, 共有4×3 = 12个; Mg具有密排六方结构, 主要滑移系可表示为{0001}1120<>, 共有1×3 = 3个. 晶体的塑性与其滑移系的数量有直接关系, 滑移系越多, 塑性越好; 滑移系数量相同时, 又受滑移方向影响, 滑移方向多者塑性较好, 因此, 对于α-Fe, Al, Mg三种金属, Al的塑性最好, Mg的最差, α-Fe 居中. 三种典型结构晶体的重要滑移系如附图6-1所示.3. 什么是临界分切应力? 影响临界分切应力的主要因素是什么? 单晶体的屈服强度与外力轴方向有关吗? 为什么?答:滑移系开动所需的作用于滑移面上、沿滑移方向的最小分切应力称为临界分切应力.临界分切应力τk的大小主要取决于金属的本性, 与外力无关. 当条件一定时, 各种晶体的临界分切应力各有其定值. 但它是一个组织敏感参数, 金属的纯度、变形速度和温度、金属的加工和热处理状态都对它有很大影响.如前所述, 在一定条件下, 单晶体的临界分切应力保持为定值, 则根据分切应力与外加轴向应力的关系: σs= τk/ m, m为取向因子, 反映了外力轴与滑移系之间的位向关系, 因此, 单晶体的屈服强度与外力轴方向关系密切. m越大, 则屈服强度越小, 越有利于滑移.4. 孪生与滑移主要异同点是什么? 为什么在一般条件下进行塑性变形时锌中容易出现挛晶, 而纯铁中容易出现滑移带?答: 孪生与滑移的异同点如附表6-1所示.附表6-1 晶体滑移与孪生的比较锌为密排六方结构金属, 主要滑移系仅3个, 因此塑性较差, 滑移困难, 往往发生孪生变形, 容易出现挛晶; 纯铁为体心立方结构金属, 滑移系较多, 共有48个, 其中主要滑移系有12个, 因此塑性较好, 往往发生滑移变形, 容易出现滑移带.第七章 回复与再结晶1. 已知锌单晶体的回复激活能为8.37×104J/mol, 将冷变形的锌单晶体在-50 ℃进行回复处理, 如去除加工硬化效应的25% 需要17 d, 问若在5 min 内达到同样效果, 需将温度提高多少摄氏度?解 根据回复动力学, 采用两个不同温度将同一冷变形金属的加工硬化效应回复到同样程度, 回复时间、温度满足下述关系:122111exp t Q t R T T ⎛⎫⎛⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭整理后得到221111ln T t R T Q t =+.将41211223 K,/5/(172460),8.3710 J/mol, 8.314 J/(mol K)4896T t t Q R ==⨯⨯==⨯=⋅代入上式得到2274.7 K T =.因此, 需将温度提高21274.722351.7 T T T ∆=-=-=℃.2. 纯铝在553 ℃ 和627 ℃ 等温退火至完成再结晶分别需要40 h 和1 h, 试求此材料的再结晶激活能.解 再结晶速率v 再与温度T 的关系符合阿累尼乌斯(Arrhenius)公式, 即exp()Q v A RT=-再 其中, Q 为再结晶激活能, R 为气体常数.如果在两个不同温度T 1, T 2进行等温退火, 欲产生同样程度的再结晶所需时间分别为t 1, t 2, 则122112122111exp[()]ln(/)t Q t R T T RTT t t Q T T =--⇒=-依题意, 有T 1 = 553 + 273 = 826 K, T 2 = 627 + 273 = 900 K, t 1 = 40 h, t 2 = 1 h, 则58.314826900ln(40/1)3.0810J/mol 900826Q ⨯⨯⨯=⨯-3. 说明金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能特点与主要区别.答: 金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能特点与主要区别详见附表7-1.附表7-1 金属在冷变形、回复、再结晶及晶粒长大各阶段的显微组织、机械性能第八章固态相变。
合金的结晶过程较为复杂,通常运用合金相图来分析合金结晶...

LE C N
恒温
3)cf:为Sn在Pb中的溶解度线(或α相的固溶线)。温度降低, 固溶体的溶解度下降。从固态α相中析出的β相称为二次β,常 写作βⅡ。这种二次结晶可表示为:α→βⅡ 。 4)eg:为Pb在Sn中溶解度线(或相的固溶线)。Sn含量小于g 点的合金,冷却过程中同样发生二次结晶,析出二次α;即 β→αⅡ。
2)固溶体结晶是在一个温度区间内进行,即 为一个变温结晶过程。
工程材料原理
温 度 L4 A 1083℃ L3 L2 t4
I L1 t3
L L+α t α 1 t2 α α 3 2
B 1452℃
1
L L α
、α 4 3
α
α
Cu
XL X0 Xα Ni % Ni (a) (b) 图3-4 Cu-Ni合金相图
工程材料原理
1. 发生匀晶反应的合金的结晶
匀晶转变:从液相中不断结晶出单相固溶体的过程 称为匀晶转变。 匀晶相图:二组元在液态、固态时均能无限互溶的 二元合金相图就是匀晶相图。这样的二元合金系 称为匀晶系。 属于匀晶系的合金系有Cu-Ni、Nb-Ti、AgAu、Cr-Mo、Fe-Ni、Mo-W等。几乎所有二元合 金相图都包含有匀晶转变部分,因此掌握这一类 相图是学习二元合金相图的基础。
20%Ni
1. 纯金属冷却曲线上有水平台阶,是 TNi 因为凝固时释放的结晶潜热补偿了 冷却时的热量散失,故温度不变; 说明纯金属凝固是恒温过程;
T2. Cu
100%Cu
时间
Cu-Ni合金相图的测绘 冷却曲线
合金冷却出现二次转折,是因为合 金凝固时释放的结晶潜热只能部分 补偿冷却时的热量散失,使冷却速 Cu 20 40 60 80 Ni 率降低,出现第一个拐点,凝固结 Ni % 束后,没有潜热补偿,冷却速率加 快,出现第二个拐点,两个点分别 为凝固开始点和凝固结束点。
TC4钛合金冷却过程中组织变化分析

TC4钛合金冷却过程中组织变化分析李壮,康少酺,于欢欢,姜行,仇大同,于涛,李朝华【摘要】摘要:采用金相显微镜、扫描电镜和HV-50A维氏硬度分析仪研究了TC4钛合金自β相区冷却过程中相组成及微观组织变化。
结果表明,TC4钛合金冷却过程中发生β→α相变。
冷却速率越小,形成α相片层越厚。
TC4钛合金经1 000 ℃固溶后,冷却到850~800 ℃水冷时,析出α相均匀细小,试样硬度出现峰值。
随着冷却温度继续降低,试样硬度开始下降。
TC4钛合金固溶后在冷却过程中的硬度变化,很可能还与Ti2AlV(O)相和Ti2AlV相的析出、长大有关。
【期刊名称】沈阳航空航天大学学报【年(卷),期】2014(000)005【总页数】6【关键词】 TC4钛合金;冷却温度;冷却速率;相;硬度材料工程钛及其合金因具有密度小、比强度高等优点而广泛应用于航空航天、汽车和船舶等行业[1-3]。
TC4于1954年在美国首先研制成功[4],含有α相稳定元素Al和β相稳定元素V,属于Ti-Al-V系典型的α+β型双相热强钛合金,是目前世界范围内应用最为广泛的钛合金之一[5-8]。
TC4钛合金力学行为显著依赖于热机械处理后的显微组织,通过不同的热机械处理可以获得片层、等轴等组织形态,而不同的组织具有不同的力学性能。
目前TC4钛合金的研究多集中于等轴组织的形成及其与热机械工艺和力学性能的关系方面[9],而对在β相区固溶冷却过程中α片层的形成及演化过程的研究很少。
本实验旨在研究TC4合金自β相区冷却过程的相组成及显微组织的演变,期望对TC4合金热处理工艺制定、组织特征控制及力学性能优化提供帮助。
1 试验材料与方法本实验所用TC4钛合金化学成分如表1所示。
采用数控线切割机床将退火后的TC4钛合金原料制备成15个10 mm×10 mm×10 mm正方体试样。
取3个试样为一组在SX-14-14电阻炉中加热后,以二种不同的冷却速率分别冷却至不同温度取出水冷。
《金属材料热处理》案例

案例一:材料的性能并不单纯取决于材料的种类和成分,通过热处理改变材料内部的组织,将大幅度改变材料的性能。
这不,今天我参与了整个淬火的工艺操作,将直径是ϕ100的40Cr钢加工的销轴装炉加热,加热到850℃±10℃,保温180~200分钟,然后出炉。
先放在空气中冷却大约2~3分钟,眼见工件开始由红变黑,然后迅速放入二硝水溶液中快速冷却,直到冷却均匀为止。
改变了以前水淬油冷的方式,这样才能满足工件经过淬火回火后具有高的弹性极限、屈服点、和适当的韧性及抗疲劳能力,特别是硬度要求达到42~47HRC。
案例分析:1、为了提高硬度采取的方法,主要形式是通过加热、保温、冷却。
而冷却起着决定性的作用;2、淬火最理想的冷却曲线应该是:3、最常用的淬火冷却介质是水和油、盐水。
工人师傅没有按照教材中所述用水和油作淬火介质,虽然水是应用最为广泛的淬火介质,它不仅廉价易得,而且具有较强的冷却能力。
但它的冷却特性并不理想。
在需要快冷的650~500℃范围内,它的冷却速度较小;而在Ms点附近要慢冷时,它的冷速又太快,易使零件产生变形,甚至开裂。
因此只能用做尺寸较小、形状简单的碳钢零件的淬火介质。
油只适用于过冷奥氏体的稳定性比较大的一些合金钢或小尺寸的碳钢工件的淬火。
对于40Cr制造的销轴水淬,硬度达不到要求。
4、而工厂用自己配制的盐水(亚硝酸钠、硝酸钠和水按2:3:5的比例配成的二硝水溶液)淬火,容易得到高的硬度和光洁的表面,不容易产生淬不硬的软点,但快冷势必要造成很大的内应力,易使工件变形严重,甚至发生开裂。
为了防止工件开裂,工人师傅采取了慢—快—慢的冷却方式,就是案例中的空气—盐水—水。
这是根据上图中钢的理想淬火冷却曲线自我设计的方案。
只能说此法比以前改进了很多,能够满足该钢的使用要求。
5、存在的问题是:(1)操作中时间的严格控制是很难做到的,只是凭经验;(2)盐水的使用也只是处于摸索和经验阶段,在实际中,直到目前为止,还没有找到一种淬火冷却介质能符合这一理想淬火冷却速度。
45钢热处理空冷过程分析【毕业作品】

任务书设计题目:45钢热处理空冷过程分析1.设计的主要任务及目标建立有限元模型,模拟45钢热处理空冷过程温度场分布;通过实验研究,分析热处理前后45钢组织和力学性能的变化,为优化热处理工艺提高零件质量提供一定的理论依据。
2.设计的基本要求和内容1)设计的基本要求:论文结构完整,层次分明,语言顺畅;避免错别字和错误标点符号;论文格式符合太原工业学院学位论文格式的统一要求。
2)设计内容:模拟45钢热处理空冷过程中温度场随时间的变化关系;研究45钢热处理前后组织及力学性能的变化;与45钢水淬后的组织和力学性能进行比较,分析原因。
3.主要参考文献1)ANSYS有限元分析软件在热分析中的应用[J].冶金能源,2004(05)2)钢件淬火过程温度场的数值模拟[J].热加工工艺技术与材料研究,2008(11)3)ANSYS10.0热分析教程与实例解析4)45钢零件淬火过程温度场分布的数值模拟[J].重庆大学学报,2003(03)5) 材料科学基础(铁碳合金相图与热处理部分)4.进度安排45钢热处理空冷过程分析摘要:45钢是一种十分常见及用量非常高的金属材料,硬度较低,强度较高,塑性和韧性好,切削加工性能较好,综合机械性能比较好。
通过适当的热处理以后可改变钢的内部组织结构,具有一定塑性、韧性和耐磨性。
45钢常用来做用于制作承受负荷较大的小截面调质件和应力较小的大型正火零件,以及对心部强度要求不高的表面淬火零件,如曲轴、传动轴、齿轮、蜗杆、键、销等。
通过ANSYS有限元分析软件来模拟45钢热处理空冷过程中温度场随时间的变化关系,ANSYS结合了材料变温过程材料热物性参数的变化,特别适合钢件正火过程温度场的准确计算。
模拟得到试件温度随正火时间的分布关系图。
对45钢圆柱试样、冲击试样、拉伸试样进行热处理完成金相组织观察、拉伸试验、硬度测试试验,记录数据并比较结果;比较45钢热处理前后组织及力学性能的变化和与45钢水淬后的组织和力学性能的比较,通过实验结果表明:正火由于冷却速度稍快,与退火组织相比,组织中珠光体量相对比较多,而且片层较细密,细化了晶粒,使碳化物分布均匀化,所以组织和性能有所改善,同时消除了材料残余应力。
(仅供参考)北科大材科基实验金属及合金凝固组织的观察和分析

金属及合金凝固组织的观察和分析张文北京科技大学材料学院铸锭组织分为三个区,最外层是细晶区,金属液体浇入铸模后,与温度较低模壁接触的液体会产生强烈的过冷,产生大量的晶核,并向液相内生长。
如果浇铸温度较低,铸锭尺寸不很大,整个液体会很快全部冷却到熔点一下,因此各处都能形核,造成全部等轴细晶粒的组织。
但在一般情况下,只有那些仍然靠近模壁的晶粒长成而形成细晶区。
柱状晶区,金属浇铸后,模壁被金属加热温度不断升高,由于结晶时潜热的释放吗,使模壁处的温度梯度降低。
细晶区前沿不易形核,随着液相温度逐渐降低,已生成的晶体向液体内生长。
等轴晶区,在凝固过程中,开始凝固的等轴激冷晶游离以及枝晶熔断而产生大量游离自由细晶体,它们随溶液对流漂移移到铸锭中心部分。
如果中心部分溶液有过冷,则这些游离细晶体作为籽晶最终长成中心的等轴晶区。
匀晶凝固过程是晶体材料从高温液相冷却下来的凝固转变产物包括多相混合物晶体和单相固溶体两种,其中由液相结晶出单相固溶体的过程称为匀晶转变。
共晶凝固过程是从液相同时结晶处两个固相。
一般把成分在共晶成分左边并有共晶反应的合金称亚共晶合金,而在右边的称过共晶合金,合金成分偏离共晶成分但冷却时仍发生共晶反应的合金,在冷却过程中先结晶出固溶体晶体,然后在生成共晶。
包晶凝固过程是有些合金当凝固到一定温度时,已结晶出来的一定成分的固相与剩余液相发生反应生成另一种固相的恒温转变过程。
1 实验材料及方法1.1实验材料光学显微镜表格 1 铝锭成分表Table 1 Aluminum composition铝锭浇铸条件样品号模壁材料模壁厚度/mm模子温度/℃浇铸温度/℃1砂10室温6802钢105006803钢10室温7804钢10室温680Table 2 Alloy composition样品成分样品成分1-a25%Ni+75%Cu铸造3-a80%Sn + 20%Sb1-b25%Ni+75%Cu 退火3-b35%Sn + 65%Sb2-a70%Pb + 30%Sn4-a51%Bi + 32%Pb +17%Sn 2-b38.1%Pb + 61.9%Sn4-b58%Bi + 16%Pb +26%Sn 2-c20%Pb + 80%Sn4-c65%Bi + 10%Pb +25%Sn1.2实验方法1.用肉眼观察5种浇铸方法所获得的铝锭的横截面和纵截面;2.调节金相显微镜的放大倍数为100倍;3.在显微镜下分别观察1-a至4-c样品,并用手机拍照记录。
工程材料课后答案

1-2什么是强度?在拉伸试验中衡量金属强度的主要指标有哪些?他们在工程应用上有什么意义?强度是指材料在外力作用下,抵抗变形或断裂的能力。
在拉伸试验中衡量金属强度的主要指标有屈服强度和抗拉强度。
屈服强度的意义在于:在一般机械零件在发生少量塑性变形后,零件精度降低或其它零件的相对配合受到影响而造成失效,所以屈服强度就成为零件设计时的主要依据之一。
抗拉强度的意义在于:抗拉强度是表示材料抵抗大量均匀塑性变形的能力。
脆性材料在拉伸过程中,一般不产生颈缩现象,因此,抗拉强度就是材料的断裂强度,它表示材料抵抗断裂的能力。
抗拉强度是零件设计时的重要依据之一。
1-4什么是硬度?指出测定金属硬度的常用方法和各自的优缺点。
硬度是指材料局部抵抗硬物压入其表面的能力。
生产中测定硬度最常用的方法有是压入法,应用较多的布氏硬度洛氏硬度和维氏硬度等试验方法。
布氏硬度试验法的优点:因压痕面积较大,能反映出较大范围内被测试材料的平均硬度,股实验结果较精确,特别适用于测定灰铸铁轴承合金等具有粗大经理或组成相得金属材料的硬度;压痕较大的另一个优点是试验数据稳定,重复性强。
其缺点是对不同材料需要换不同直径的压头和改变试验力,压痕直径的测量也比较麻烦;因压痕大,不以测试成品和薄片金属的硬度。
洛氏硬度试验法的优点是:操作循序简便,硬度值可直接读出;压痕和较小,可在工件上进行试验;采用不同标尺可测定各种软硬不同的金属厚薄不一的式样的硬度,因而广泛用于热处理质量检验。
其缺点是:因压痕较小,对组织比较粗大且不均匀的材料,测得的结果不够准确;此外,用不同标尺测得的硬度值彼此没有联系,不能直接进行比较。
维氏硬度试验法的优点是:不存在布氏硬度试验时要求试验力与压头直径之间满足所规定条件的约束,也不洛氏硬度试验是不同标尺的硬度无法统一的弊端,硬度值较为精确。
唯一缺点是硬度值需要通过测量压痕对角线长度后才能进行计算或查表,因此工作效率比洛氏硬度低得多。
1-5在下面几种情况下,该用什么方法来测试硬度?写出硬度符号。
铅锡共晶相图分析(图文借鉴)

1、相图分析图3-12为一般共晶型的Pb-Sn合金相图。
其中AEB线为液相线,ACEDB线为固相线,A点为铅的熔点(327℃),B点为锡的熔点(232℃)。
相图中有L、α、β三种相,形成三个单相区。
L代表液相,处于液相线以上。
α是Sn溶解在Pb中所形成的固溶体,位于靠近纯组元Pb的封闭区域内。
β是Pb溶解在Sn中所形成的固溶体,位于靠近纯组元Sn的封闭区域内。
在每两个单相区之间,共形成了三个两相区,即L+α、L+β和α+β。
图3-12 Pb-Sn二元合金相图相图中的水平线CED称为共晶线。
在水平线对应的温度(183℃)下,E点成分的液相将同时结晶出C点成分的α固溶体和D点成分的β固溶体:LE⇄ ( αC + βD)。
这种在一定温度下,由一定成分的液相同时结晶出两个成分和结构都不相同的新固相的转变过程称为共晶转变或共晶反应。
共晶反应的产物即两相的机械混合物称为共晶体或共晶组织。
发生共晶反应的温度称为共晶温度,代表共晶温度和共晶成分的点称为共晶点,具有共晶成分的合金称为共晶合金。
在共晶线上,凡成分位于共晶点以左的合金称为亚共晶合金,位于共晶点以右的合金称为过共晶合金。
凡具有共晶线成分的合金液体冷却到共晶温度时都将发生共晶反应。
发生共晶反应时,L、α、β三个相平衡共存,它们的成分固定,但各自的重量在不断变化。
因此,水平线CED是一个三相区。
相图中的CF线和DG线分别为Sn在Pb中和Pb在Sn中的溶解度曲线(即饱和浓度线),称为固溶线。
可以看出,随温度降低,固溶体的溶解度下降。
2、典型合金的结晶过程⑴含Sn量小于C点成分合金的结晶过程(以合金Ⅰ为例)由图3-12可见,该合金液体冷却时,在2点以前为匀晶转变,结晶出单相α固溶体,这种从液相中结晶出来的固相称为一次相或初生相。
匀晶转变完成后,在2、3点之间,为单相α固溶体冷却,合金组织不发生变化。
温度降到3点以下,α固溶体被Sn过饱和,由于晶格不稳,便出现第二相—β相,显然,这是一种固态相变。
合金铸造实验报告总结(3篇)

第1篇一、实验目的本次合金铸造实验旨在通过实际操作,使学生了解和掌握合金铸造的基本原理、工艺流程以及影响铸造质量的因素。
通过实验,使学生能够熟练运用铸造技术,提高实际操作能力,为今后的工作打下坚实的基础。
二、实验内容1. 合金熔炼:了解不同合金的熔点、熔炼方法以及熔炼过程中的注意事项。
2. 合金铸造:学习铸型制作、浇注、冷却、脱模等铸造工艺。
3. 铸造缺陷分析:观察和分析实验中出现的铸造缺陷,如缩孔、裂纹、夹杂物等,了解其产生原因和预防措施。
4. 铸造性能测试:对铸造样品进行力学性能、金相组织等方面的测试,评估铸造质量。
三、实验过程1. 合金熔炼:按照实验要求,选取合适的合金材料,通过电弧炉进行熔炼。
在熔炼过程中,注意控制熔炼温度、熔炼时间以及熔体保护措施,以确保合金成分的均匀性。
2. 铸型制作:根据样品形状和尺寸,选用合适的铸型材料,制作出符合要求的铸型。
在铸型制作过程中,注意铸型的刚度、透气性和尺寸精度。
3. 浇注:将熔炼好的合金液倒入铸型中,注意控制浇注速度和温度,避免产生浇注缺陷。
4. 冷却与脱模:根据合金性质和铸型材料,确定合理的冷却速度。
冷却过程中,注意防止铸件变形和裂纹。
待铸件冷却至室温后,进行脱模。
5. 铸造缺陷分析:对实验中出现的铸造缺陷进行观察和分析,总结产生原因,并提出预防措施。
6. 铸造性能测试:对铸造样品进行力学性能、金相组织等方面的测试,评估铸造质量。
四、实验结果与分析1. 合金熔炼:实验过程中,成功熔炼了多种合金,如铝合金、铜合金等。
通过控制熔炼温度和熔炼时间,确保了合金成分的均匀性。
2. 铸型制作:根据实验要求,制作出符合要求的铸型,保证了铸件的尺寸精度和形状。
3. 铸造缺陷:在实验过程中,出现了一些铸造缺陷,如缩孔、裂纹、夹杂物等。
通过分析,发现这些缺陷主要是由熔炼、铸型制作、浇注、冷却等因素引起的。
针对这些缺陷,提出了相应的预防措施。
4. 铸造性能:对铸造样品进行力学性能、金相组织等方面的测试,结果表明,实验中铸造的合金具有良好的性能。
西北工业大学材料科学基础05-10年真题及答案[1]
![西北工业大学材料科学基础05-10年真题及答案[1]](https://img.taocdn.com/s3/m/62cbbd7102768e9951e738cc.png)
2005年西北工业大学硕士研究生入学试题一、简答题(每题8分,共40分)1. 请简述二元合金结晶的基本条件有哪些。
2. 同素异晶转变和再结晶转变都是以形核长大方式进行的,请问两者之间有何差别?3. 两位错发生交割时产生的扭折和割阶有何区别?4. 请简述扩散的微观机制有哪些?影响扩散的因素又有哪些?5. 请简述回复的机制及其驱动力。
二、计算、作图题:(共60分,每小题12分)1. 在面心立方晶体中,分别画出、和、,指出哪些是滑移面、滑移方向,并就图中情况分析它们能否构成滑移系?若外力方向为[001],请问哪些滑移系可以开动?2. 请判定下列位错反应能否进行,若能够进行,请在晶胞图上做出矢量图。
(1)(2)3. 假设某面心立方晶体可以开动的滑移系为,请回答:(1)给出滑移位错的单位位错柏氏矢量;(2)若滑移位错为纯刃位错,请指出其位错线方向;若滑移位错为纯螺位错,其位错线方向又如何?4. 若将一块铁由室温20℃加热至850℃,然后非常快地冷却到20℃,请计算处理前后空位数变化(设铁中形成1mol空位所需的能量为104675 J,气体常数为8.314J/mol·K)。
5. 已知三元简单共晶的投影图,见附图,(1)请画出AD代表的垂直截面图及各区的相组成(已知TA>TD);(2)请画出X合金平衡冷却时的冷区曲线,及各阶段相变反应。
三、综合分析题:(共50分,每小题25分)1. 请对比分析加工硬化、细晶强化、弥散强化、复相强化和固溶强化的特点和机理。
2. 请根据所附二元共晶相图分析解答下列问题:(1)分析合金I、II的平衡结晶过程,并绘出冷却曲线;(2)说明室温下I、II的相和组织是什么?并计算出相和组织的相对含量;(3)如果希望得到共晶组织和5%的β初的合金,求该合金的成分;(4)分析在快速冷却条件下,I、II两合金获得的组织有何不同。
2005年西北工业大学硕士研究生入学试题参考答案一、简答题(每题8 分,共40 分)1. 请简述二元合金结晶的基本条件有哪些。
相图

相图相图又称为状态图或平衡图,它是表示材料系统中相的状态与温度及成分之间关系的一种图形。
由相图可以知道材料的凝固或熔化温度及系统中可能发生的固态相变或其他转变;材料的性能与相图有一定关系,掌握了有关相图的知识,就可以通过相图预测材料的某些性能。
所以,相图是材料科学工作者必不可少的重要工具。
相、相平衡及相图的制作相相是指一个系统中,具有同一结构、同一聚集状态的均匀部分,不同相之间有明显性,如单相固熔体,其中某个微区成分并不均匀,而存在成分偏聚现象,另外,在同一相的有界面分开的并不一定都是两种相。
合金中的相,“均匀”是指成分、结构及性质要么宏观上完全相同,要么呈连续相平衡与规律相平衡是指某一温度下,系统中各相经很长时间也不互相转变,处于平衡状相平衡的热力学条件要求每个组元在各相中的化学位必须相等。
若是二元合金,则相律:在恒压条件下,相平衡的数学表达式:式中:——自由度数;——平衡相的数目。
相律的应用:确定合金系中可能存在的最多平衡相的数目及结晶进行的条件;判断相图的正确性。
相图的测定方法依据:相变时伴随有性能的突变。
方法:热分析法、膨胀法、硬度法、磁性法、电阻法、X-射线结构分析等。
以热分析法为例,二元相图的制作过程为:1〉配置几组成分不同的合金,如Cu-Ni系(5组)2〉测定上述合金的冷却曲线;3〉找出合金的临界点;4〉把这些临界点描在温度-成分的坐标中;5〉把性质相同的临界点用光滑曲线连接起来,即得到相图,如下图示。
用热分析法建立Cu-Ni相图相图的基本类型:三类基本的二元相图图型二元匀晶相图由液相直接结晶出单相固熔体的过程,称为匀晶转变。
完全具有匀晶转变的相图,称为匀晶相图,如Cu-Ni相图。
相图分析液相线,是指不同成分的液相开始转变为固相的温度连线。
固相线,是指不同成分的液相完全转变为固相的温度连线。
整个相图分为三个相区:L,α+L,α固熔体的平衡凝固平衡凝固,是指系统无限缓慢的冷却,原子扩散非常充分,时时达到相平衡条件的一种凝固方式。
材料科学基础I 5-3 二元匀晶相图

四、匀晶合金的非平衡结晶
匀晶合金在平衡条件下结晶,冷却速 度极其缓慢,先后结晶的固相虽然成分 不同,但是有足够的时间进行均匀化扩 散。所以,室温下的组织是均匀的固溶 体,在光学显微镜下观察,与纯金属十 分相似。
匀晶合金平衡组织示意图
但是,在实际生产中合金的冷却速度很快,远远达不到平衡 的条件。因此,固、液二相中的扩散来不及充分进行,先后结 晶出来的固相中较大的成分差别被保留下来。这种成分差别的 存在,还造成结晶时固相以树枝状形态生长。因此,这种成分 上的不均匀性被称为“树枝状偏析”或枝晶偏析。 采用均匀化热处理(Homogenizing heat treatment)可以消除枝 晶偏析。
为了计算简便,一般取合金总量Q =1。 因上述结果与物理学中的杠杆定律的表达式相似,所以这里 也称为杠杆定律。
三、典型合金冷却过程分析
各种成分的Cu-Ni合金都属于匀晶合金。下面以Cu-53%Ni合 金为例,分别对合金结晶过程中液、固二相的成分变化规律, 二相相对量的计算和微观组织的形成进行分析讨论。
§5-3 二元匀晶相图
二元匀晶(Isomorphous)相图是二元合金相图中图形最简单的
相图。 具有匀晶相图的二元合金系统有Cu-Ni, Fe-Cr, Ag-Au, Nb-Ti,
Cr-Mo, W-Mo等。
右图所示Cu-Ni相图是最常 见的二元匀晶相图,以此相图 为例进行讨论,其它匀晶相图 与此类似。
二元合金在平衡状态下两相共存,如结晶时,可以利用杠杆 定律(Lever rule)计算出某一温度下两相的相对量。 设合金的平均成分为x,合 金的总量为Q,在温度T1时液、 固两相平衡,液相的成分为xL、 质量为QL,固相的成分为xS、 质量为QS。则有:
Q QL QS Q x QL xL QS xS
典型铁碳合金的结晶过程

典型铁碳合金的结晶过程
典型的铁碳合金的结晶过程包括以下几个步骤:
1. 熔化:将合适比例的铁和碳原料进行熔化,通常在高温高压的条件下进行。
熔化后的合金为液态状态。
2. 过冷:将熔融的铁碳合金缓慢冷却,使其温度降至接近其冰点以下。
在过冷过程中,合金会逐渐失去热量,形成过冷液体。
3. 形核:过冷液体中的某些原子开始聚集形成细小的结晶核。
这个过程叫做形核,形成的结晶核通常呈固态。
4. 长大:在形核的基础上,其它的原子会逐渐沉积到结晶核上,导致结晶核与周围液体逐渐分离。
随着时间的推移,结晶核也会逐渐生长。
5. 赋形:当结晶核生长到一定程度时,会与周围的结晶核相互连结,形成完整的晶粒。
晶粒的形状和尺寸取决于铁碳合金的成分和冷却条件。
以上过程中,形核和长大是结晶过程的关键步骤。
形核速率和长大速率受到多种因素的影响,如温度、合金成分、冷却速率等。
通过控制这些因素,可以调控铁碳合金的晶粒尺寸和分布,从而改变合金的力学性能和微观组织特征。
金属工艺学基础知识

120°金刚
石圆锥体 1500N
25~100 20~67
四、铁及铁碳合金组织 1.纯铁的晶体结构
三种常见的金属的晶格类型: 体心立方 面心立方 密排六方
晶体中的原子排列
2.金属的同素异构转变
金属的同素异构转变的慨念
金属在固态下,随着温度的改变其 晶体结构发生变化的现象。
金属的同素异构转变的意义
可以用热处理的方法即可通过加 热、保温、冷却来改变材料的组织, 从而达到改善材料性 能的目的。
δ-Fe
1538cº
体心立方
1394º c
γ -Fe
912º c
面心立方
α- Fe 室温
体心立方
3.铁碳合金组织
(1).铁素体F:C→α-Fe中形成的固溶体。 单相、层片状、体心立方晶格。 (2).奥氏体A:C→γ-Fe中形成的固溶体。 单相、层片状、面心立方晶格。 (3).渗碳体K: Fe3C,硬度极高,塑形、韧性极低,伸长率和 冲击韧度近于零。 (4).珠光体P:F+Fe3C 两相,机械混合物。 0.77%C。 强度高、硬度较高。 (5).莱氏体Ld、Ld′:两相机械混合物,含碳量:4.3%C。
➢ PSK水平线—共析线(A1线) 含碳量为0.77%的奥氏体冷却到此 线时,在727 ℃同时析出铁素体和渗碳体的机械混合物,此反应称 为共析反应。
➢ GS线—(A3线) 是冷却时奥氏体转变为铁素体的开始线。 ➢ ES线—称Acm线 是碳在奥氏体中的溶解度线,实际上是冷却时
由奥氏体中析出二次渗碳体的开始线。
共析点
碳在铁素体中的溶解度
相图中主要线的含义
➢ ACD线—液相线 是不同成分铁碳合金开始结晶的温度线。 ➢ AECF线—固相线 各种成分的合金均处在固体状态。结晶温度终
2014考研西安理工大学《816材料科学基础》真题、典型题解析讲义

1 .指出位错环各部分的位错类型。 2 .若柏氏矢量 b 垂直于位错环所在的水平面,指出位错环各部分的位错类型。 3 .在图中表示出使位错环向外运动所需施加的切应力方向。 4 .该位错环运动出品体后,晶体外形如何变化?
四、F e - F e C相图分析 3
1 .默画 F e - F e C相图,标出各点的含碳量并写出三条水平线上的反应。 3 2 .若有两个钢试样,经组织分析其珠光体的含量相同,能否得出这两种试样是同一种材料?为 什么? 3 .计算含碳量为 4 2 8 %的铁碳合金在 1 1 4 8 ℃温度的平衡分配系数,并说明其在该温度平衡凝固和 非平衡凝固时组织上出现的差别。 4 .分析含碳量为 1 8 %的铁碳合金的平衡结晶过程,并计算其最终组织组成物和相组成物的相对 含量。
西安理工大学《 8 1 6材料科学基础》 真题、 典型题解析
— 3—
考试点( w w w k a o s h i d i a n c o m ) 名师精品课程 电话: 4 0 0 6 8 8 5 3 6 5
第 3讲 2 0 0 8年真题解析 ( 一)
一、名词解释
1 .成分过冷 2 .中间相 3 .离异共晶 4 .反应扩散 5 .动态再结晶
— 7—
考试点( w w w k a o s h i d i a n c o m ) 名师精品课程 电话: 4 0 0 6 8 8 5 3 6 5
( 2 ) 如将 v 冷却后的钢重新加热至 5 3 0 ℃,经保温后冷却后又将得到什么组织?力学性能有何 1 变化? ( 3 ) 论述影响钢的淬透性的因素。 :M + A :T+ M;v :S + T+ M+ A :S + T ;v :S ;v :S 。 3 .( 1 )v 1 残留 ; v 2 3 残留 ; v 4 5 6 ( 2 )S 回火,硬度有所下降,塑性、韧性等上升,综合力学性能提高。 ( 3 ) 影响材料淬透性的因素有: 1 ) 钢的化学成分 ①碳含量:碳含量增加,淬透性增加。 i 、Z r 、C o 外,其他元素的加入会增加淬透性。 ②合金元素:除 T 2 ) 奥氏体晶粒度:奥氏体晶粒度越大,淬透性越大。 3 ) 奥氏体化温度,奥氏体化温度越高,淬透性越大。
(2)典型合金的冷却过程分析

(2)典型合金的冷却过程分析图2-29 典型铁碳合金结晶过程示意图① 共析钢的冷却过程分析如图2-29所示,过Wc=0.77%的点作一条垂直于横轴的垂线(合金线)Ⅰ,与相图分别交于1、2、3(S )点温度,以这三点温度为界,分析其冷却过程。
合金在1点以上全部为液相(L),当缓冷至与AC 线相交的1点温度时,开始从液相中结晶出奥氏体(A),奥氏体的量随温度下降而增多,其成分沿AE 线变化,剩余液相逐渐减少,其成分沿AC 线变化。
冷至2点温度时,液相全部结晶为与原合金成分相同的奥氏体。
2~3点(即S 点)温度范围内为单一奥氏体。
冷至3点(727℃)时,发生共析转变,从奥氏体中同时析出铁素体和渗碳体,构成交替重叠的层片状两相组织,称为珠光体,其共析转变式为:这种在一定温度下,由一定成分的固相同时析出两种一定成分的固相转变,称为共析转变。
共析转变在恒温下进行,该温度称为共析温度;发生共析转变的成分称为共析成分,共析成分是一定的;共析转变后的组织称为共析组织或共析体。
共析转变后的铁素体和渗碳体又称共析铁素体和共析渗碳体。
由于在固态下原子扩散较困难,故共析组织均匀、细密。
在3点以下继续缓冷时,铁素体成分沿PQ线变化,将有少量三次渗碳体(Fe3CⅢ)从铁素体中析出,并与共析渗碳体混在一起,不易分辨,而且在钢中影响不大,故可忽略不计。
共析钢冷却过程如图2-30所示,其室温组织为珠光体。
图2-30 共析钢结晶过程示意图珠光体力学性能介于铁素体与渗碳体之间,即强度较高,硬度适中,有一定塑性。
珠光体的显微组织如图2-31所示②亚共析钢冷却过程分析图2-29中合金Ⅱ为W c=0.45%的亚共析钢。
合金Ⅱ在3点以上的冷却过程与共析钢在3点以上相似。
当合金冷至与GS线相交的3点时,开始从奥氏体中析出铁素体。
在3~4点之间,组织为奥氏体和铁素体,温度缓冷至4点时,剩余奥氏体的碳的质量分数达到共析成分(W c=0.77%),发生共析转变形成珠光体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)典型合金的冷却过程分析
图2-29 典型铁碳合金结晶过程示意图
① 共析钢的冷却过程分析
如图2-29所示,过Wc=0.77%的点作一条垂直于横轴的垂线(合金线)Ⅰ,与相图分别交于1、2、3(S )点温度,以这三点温度为界,分析其冷却过程。
合金在1点以上全部为液相(L),当缓冷至与AC 线相交的1点温度时,开始从液相中结晶出奥氏体(A),奥氏体的量随温度下降而增多,其成分沿AE 线变化,剩余液相逐渐减少,其成分沿AC 线变化。
冷至2点温度时,液相全部结晶为与原合金成分相同的奥氏体。
2~3点(即S 点)温度范围内为单一奥氏体。
冷至3点(727℃)时,发生共析转变,从奥氏体中同时析出铁素体和渗碳体,构成交替重叠的层片状两相组织,称为珠光体,其共析转变式为:
这种在一定温度下,由一定成分的固相同时析出两种一定成分的固相转变,称为共析转变。
共析转变在恒温下进行,该温度称为共析温度;发生共析转变的成分称为共析成分,共析成分是一定的;共析转变后的组织称为共析组织或共析体。
共析转变后的铁素体和渗碳体又称共析
铁素体和共析渗碳体。
由于在固态下原子扩散较困难,故共析组织均匀、细密。
在3点以下继续缓冷时,铁素体成分沿PQ线变化,将有少量三次渗碳体(Fe3CⅢ)从铁素体中析出,并与共析渗碳体混在一起,不易分辨,而且在钢中影响不大,故可忽略不计。
共析钢冷却过程如图2-30所示,其室温组织为珠光体。
图2-30 共析钢结晶过程示意图
珠光体力学性能介于铁素体与渗碳体之间,即强度较高,硬度适中,有一定塑性。
珠光体的显微组织如图2-31所示
②亚共析钢冷却过程分析
图2-29中合金Ⅱ为W c=0.45%的亚共析钢。
合金Ⅱ在3点以上的冷却过程与共析钢在3点以上相似。
当合金冷至与GS线相交的3点时,开始从奥氏体中析出铁素体。
在3~4点之间,组织为奥氏体和铁素体,温度缓冷至4点时,剩余奥氏体的碳的质量分数达到共析成分(W c=0.77%),发生共析转变形成珠光体。
温度继续下降,由铁素体中析出极少量的三次渗碳体(可忽略不计)。
故其室温组织为铁素体和珠光体,其冷却过程如图2-32所示。
图2-32 亚共析钢结晶过程示意图
所有亚共析钢的冷却过程均相似,其室温组织都是由铁素体和珠光体组成。
所不同的是随碳的质量分数的增加,珠光体量增多,铁素体量减少。
亚共析钢的显微组织如图2-33所示,图中白色部分为铁素体,黑色部分为珠光体。
③过共析钢冷却过程分析
图中合金Ⅲ为W c=1.2%的过共析钢。
合金Ⅲ在3点以上的冷却过程与共析钢在3点以上相似。
当合金冷至与ES线相交的3点时,奥氏体中碳的质量分数达到饱和,碳以二次渗碳体Fe3CⅡ的形式析出,呈网状沿奥氏体晶界分布。
继续冷却,二次渗碳体量不断增多,奥氏体量不断减少,剩余奥氏体的成分沿ES线变化。
当冷却到与PSK线相交的4点时,剩余奥氏体碳的质量分数达到共析成分(W c=0.77%),故奥氏体发生共析转变,形成珠光体。
继续冷却,组织基本不变。
其室温组织为珠光体和网状二次渗碳体。
冷却过程如图2-34所示。
图2-34 过共析钢结晶过程示意图
所有过共析钢的室温组织都是由珠光体和网状二次渗碳体组成的。
不同的是随碳的质量分数的增加,网状二次渗碳体量增多,珠光体量减少。
过共析钢的显微组织如图2-35所示,图中呈片状黑白相间的组织为珠光体,白色网状组织为二次渗碳体。
④共晶白口铸铁的冷却过程分析
图2-29中合金Ⅳ为W c=4.3%的共晶白口铸铁。
合金在1点(即C点)温度以上为液相。
缓冷至1点温度(1148℃)时,发生共晶转变,即从一定成分的液相中同时结晶出奥氏体和渗碳体。
共晶转变后的奥氏体和渗碳体又称共晶奥氏体和共晶渗碳体。
由奥氏体和渗碳体组成的共晶体,称为莱氏体,用符号Ld表示,其转变式:
1148℃
Lc P(F P+Fe3C)
莱氏体的性能与渗碳体相似,硬度很高,塑性极差。
继续冷却,从共晶奥氏体中不断析出二次渗碳体,奥氏体中的碳的质量分数沿ES线向共析成分接近,当缓冷至2点时,奥氏体的碳的质量分数达到共析成分,发生共析转变,形成珠光体,二次渗碳体保留至室温。
因此,共晶白口铸铁的室温组织是由珠光体和渗碳体(二次渗碳体和共晶渗碳体)组成的两相组织,即低温莱氏体
图2-36 共晶白口铸铁结晶过程分析
(Ld/)。
共晶白口铸铁的冷却过程如图2-36所示。
其显微组织如图2-37所示,图中黑色部分为珠光体,白色基体为渗碳体(其中共晶渗碳体与二次渗碳体混在一起,无法分辨)。
⑤亚共晶白口铸铁冷却过程分析
图2-29中合金V为W c=3.0%的亚共晶白口铸铁。
亚共晶白口铸铁的冷却过程如图2-38所示,
图2-26 亚共晶白口铸铁结晶过程分析
块状或树枝状为其显微组织如书P41图2-39所示。
图中黑色珠光体,黑白相间的基体为低温莱氏体,二次渗碳体与共晶渗碳体混在一起,无法分辨。
所有亚共晶白口铸铁的室温组织均由珠光体+二次渗碳体+低温莱氏体组成。
不同的是随碳的质量分数增加,组织中低温莱氏体量增多,其它量相对减少。
图2-40 过共晶白口铸铁结晶过程示意图
⑥过共晶白口铸铁冷却过程分析
图2-29中合金Ⅵ为W c=5.0%的过共晶白口铸铁。
过共晶白口铸铁的室温组织为低温莱氏体和
一次渗碳体。
过共晶白口铸铁的冷却过程如图2-40所示,其显微组织如书P41图2-41所示。
图中白色条状为一次渗碳体,黑白相间的基体为低温莱氏体。
所有过共晶白口铸铁的室温组织均由低温莱氏体和一次渗碳体组成。
不同的是随碳的质量分数的增加,组织中一次渗碳体量增多。
(3)碳的质量分数对铁碳合金平衡组织和力学性能的影响
①碳的质量分数对铁碳合金平衡组织的影响
室温时,随碳的质量分数的增加,铁碳合金的组织变化如下:
F+ Fe3CⅢ→F+P→P→P+Fe3CⅡ→P+Fe3CⅡ+ Ld/→Ld/→Ld/+ Fe3CⅠ
②碳的质量分数对铁碳合金性能的影响
如图2-42所示, W c<0.9%时,随着碳的质量分数增加,钢的强度和硬度直线上升,而塑性和韧性不断下降。
这是由于随碳的质量分数的增加,钢珠光体量增多,铁素体量减少所造成的;当钢的W c>0.9%以后,二次渗碳体沿晶界形成较完整的网,因此钢的强度开始明显下降,但硬度仍在增高,塑性和韧性继续降低。
(4)铁碳合金相图的应用。