弹性力学试卷及答案
弹性力学试题及答案
弹性力学试题及答案一、选择题(每题10分,共40分)1. 在弹性力学中,下列哪个物理量表示应变能密度?A. 应力B. 应变C. 位移D. 应力能密度答案:D2. 在平面应力状态下,下列哪个方程是正确的?A. σ_x + σ_y = 0B. σ_x + σ_y = σ_zC. σ_x + σ_y = τ_xyD. σ_x + σ_y = 0答案:D3. 在弹性体中,应力与应变之间的关系可以用下列哪个关系式表示?A. σ = EεB. σ = GγC. τ = μγD. σ = λε答案:A4. 在弹性力学中,下列哪个方程表示平衡方程?A. σ_x + σ_y + σ_z = 0B. ε_x + ε_y +ε_z = 0 C. τ_xy = τ_yx D. σ_x + σ_y + σ_z = F答案:D二、填空题(每题10分,共30分)1. 弹性力学中的基本假设有:连续性假设、线性假设和________假设。
答案:各向同性2. 在三维应力状态下,应力分量可以表示为:σ_x, σ_y, σ_z, τ_xy, τ_xz, τ_yz。
其中,τ_xy表示________面上的切应力。
答案:xOy3. 在弹性力学中,位移与应变之间的关系可以用________方程表示。
答案:几何方程三、计算题(每题30分,共90分)1. 已知一弹性体在平面应力状态下的应力分量为:σ_x = 100 MPa,σ_y = 50 MPa,τ_xy = 25 MPa。
弹性模量E = 200 GPa,泊松比μ = 0.3。
求应变分量ε_x, ε_y, γ_xy。
解:首先,利用胡克定律计算应变分量:ε_x = σ_x / E = 100 MPa / 200 GPa = 0.0005ε_y = σ_y / E = 50 MPa / 200 GPa = 0.00025γ_xy = τ_xy / G = 25 MPa / (E / 2(1 + μ)) = 25 MPa / (200 GPa / 2(1 + 0.3)) = 0.000375答案:ε_x = 0.0005,ε_y = 0.00025,γ_xy = 0.0003752. 一弹性体在三维应力状态下的应力分量为:σ_x = 120 MPa,σ_y = 80 MPa,σ_z = 40 MPa,τ_xy = 30 MPa,τ_xz = 20 MPa,τ_yz = 10 MPa。
(完整版)《弹性力学》试题参考答案
《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。
2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中, 的物理意义是 杆端截面上剪应力对转轴的矩等于M dxdy D=⎰⎰2ϕ杆截面内的扭矩M 。
4.平面问题的应力函数解法中,Airy 应力函数在边界上值的物理意义为 边界上某一点(基准ϕ点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为: ,。
0,=+i j ij X σ)(21,,i j j i ij u u +=ε二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。
ϕ题二(2)图(a ) (b )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x ⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。
试求薄板面积的改变量。
S∆题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为。
由得,l ∆q E)1(1με-=)1(2222με-+=+=∆Eb a q b a l 设板在力P 作用下的面积改变为,由功的互等定理有:S ∆lP S q ∆⋅=∆⋅将代入得:l ∆221b a P ES +-=∆μ显然,与板的形状无关,仅与E 、、l 有关。
弹性力学100题
一、单项选择题1.弹性力学建立的基本方程多是偏微分方程,还必须结合( C )求解这些微分方程,以求得具体问题的应力、应变、位移。
A .相容方程B .近似方法C .边界条件D .附加假定2.根据圣维南原理,作用在物体一小部分边界上的力系可以用( B )的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。
A .几何上等效B .静力上等效C .平衡D .任意3.弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。
A .平衡方程、几何方程、物理方程完全相同B .平衡方程、几何方程相同,物理方程不同C .平衡方程、物理方程相同,几何方程不同D .平衡方程相同,物理方程、几何方程不同4.不计体力,在极坐标中按应力求解平面问题时,应力函数必须满足( A )①区域内的相容方程;②边界上的应力边界条件;③满足变分方程;④如果为多连体,考虑多连体中的位移单值条件。
A. ①②④B. ②③④C. ①②③D. ①②③④5.如下图1所示三角形薄板,按三结点三角形单元划分后,对于与局部编码ijm 对应的整体编码,以下叙述正确的是( D )。
① I 单元的整体编码为162② II 单元的整体编码为426③ II 单元的整体编码为246④ III 单元的整体编码为243⑤ IV 单元的整体编码为564图1A. ①③B. ②④C. ①④D. ③⑤ 6.平面应变问题的微元体处于( C )A.单向应力状态B.双向应力状态C.三向应力状态,且z 是一主应力D.纯剪切应力状态7.圆弧曲梁纯弯时,( C )A.应力分量和位移分量都是轴对称的 463521I III II IVB.应力分量和位移分量都不是轴对称的C.应力分量是轴对称的,位移分量不是轴对称的D.位移分量是轴对称的,应力分量不是轴对称的8.下左图2中所示密度为ρ的矩形截面柱,应力分量为:0,,0=+==xy y x B Ay τσσ对图(a )和图(b)两种情况由边界条件确定的常数A 及B 的关系是( C )A.A 相同,B 也相同B.A 不相同,B 也不相同C.A 相同,B 不相同D.A 不相同,B 相同图 2 图 39、上右图3示单元体剪应变γ应该表示为( B )10、设有平面应力状态x ay dx dy cx by ax xy y x γτσσ---=+=+=,,,其中,d c b a ,,,均为常数,γ为容重。
弹性力学网考考试题及答案
弹性力学网考考试题及答案一、单项选择题(每题2分,共20分)1. 弹性力学中,应力状态的基本方程是()。
A. 平衡方程B. 几何方程C. 物理方程D. 相容方程答案:A2. 弹性力学中,平面应力问题是指()。
A. 应力分量σx、σy、τxy均不为零B. 应力分量σx、σy、τxy中有一个为零C. 应力分量σx、σy、τxy中有两个为零D. 应力分量σx、σy、τxy中有三个为零答案:C3. 在弹性力学中,圣维南原理适用于()。
A. 静力平衡问题B. 热弹性问题C. 动力学问题D. 流体力学问题答案:A4. 弹性力学中,平面应变问题是指()。
A. 应变分量εx、εy、γxy均不为零B. 应变分量εx、εy、γxy中有一个为零C. 应变分量εx、εy、γxy中有两个为零D. 应变分量εx、εy、γxy中有三个为零答案:B5. 弹性力学中,主应力和主应变之间的关系是()。
A. 线性关系B. 非线性关系C. 没有关系D. 取决于材料的性质答案:A6. 弹性力学中,莫尔圆在σ-τ平面上表示的是()。
A. 应力状态B. 应变状态C. 位移场D. 速度场答案:A7. 弹性力学中,平面应力问题和平面应变问题的区别在于()。
A. 应力分量的数量B. 应变分量的数量C. 位移分量的数量D. 材料的性质答案:B8. 弹性力学中,三向应力状态下的应力分量不包括()。
A. σxB. σyC. σzD. τxy答案:D9. 弹性力学中,应力集中现象通常发生在()。
A. 光滑表面B. 尖锐转角C. 平坦区域D. 均匀区域答案:B10. 弹性力学中,弹性模量E和泊松比μ之间的关系是()。
A. E = 2G(1+μ)B. E = 3G(1-2μ)C. E = 3G(1+2μ)D. E = 2G(1-μ)答案:A二、多项选择题(每题3分,共15分)11. 弹性力学中,下列哪些方程是基本方程?()A. 平衡方程B. 几何方程C. 物理方程D. 相容方程答案:ABCD12. 弹性力学中,下列哪些因素会影响材料的弹性模量E?()A. 材料种类B. 温度C. 应力状态D. 应变状态答案:AB13. 弹性力学中,下列哪些是平面应力问题的特点?()A. 应力分量σz为零B. 应变分量εz不为零C. 位移分量w为零D. 位移分量u和v不为零答案:AC14. 弹性力学中,下列哪些是平面应变问题的特点?()A. 应变分量εz为零B. 应力分量σz不为零C. 位移分量w不为零D. 位移分量u和v不为零答案:AD15. 弹性力学中,下列哪些是应力集中现象的影响因素?()A. 材料性质B. 几何形状C. 载荷类型D. 边界条件答案:BCD三、判断题(每题2分,共20分)16. 弹性力学中,平衡方程是描述物体内部力的平衡状态的方程。
弹性力学期末考试试题及答案
弹性力学期末考试试题及答案一、名词解释(每题5分,共25分)1. 弹性力2. 弹簧常数3. 应力4. 应变5. 胡克定律6. 弹性模量7. 弹性体的形变8. 弹性位移9. 弹性能量10. 弹性碰撞二、选择题(每题2分,共20分)1. 以下哪种材料不属于弹性材料?A. 钢铁B. 橡胶C. 玻璃D. 水2. 在弹性限度内,弹性力与形变量之间的关系遵循哪一定律?A. 平方律B. 立方律C. 直线律D. 反比律3. 一弹簧的弹簧常数为50N/m,当一个力作用于弹簧上使其压缩0.1m时,弹簧的弹性势能为多少?A. 0.5JB. 1JC. 2JD. 5J4. 下列哪种情况下,弹簧的弹性力最大?A. 弹簧处于自然长度时B. 弹簧被压缩时C. 弹簧被拉伸时D. 弹簧被压缩或拉伸到极限时5. 两个相同的弹性球碰撞,如果它们的弹性系数不同,那么碰撞后它们的速度关系是?A. 速度大小不变,方向相反B. 速度大小不变,方向相同C. 速度大小发生变化,方向相反D. 速度大小发生变化,方向相同三、填空题(每题5分,共25分)1. 一弹性体的形变是指其_________的变化。
2. 在弹性碰撞中,两个物体的速度满足_________定律。
3. 弹簧的弹簧常数_________,表示弹簧的_________。
4. 当一个力作用于弹性体上时,该力与弹性体的_________之比称为应力。
5. 弹性模量是衡量材料_________的物理量。
四、计算题(共40分)1. 一弹簧的弹簧常数为200N/m,当一个力作用于弹簧上使其压缩0.5m时,求弹簧的弹性势能。
(5分)2. 质量为2kg的物体从静止开始沿斜面滑下,斜面与水平面的夹角为30°,斜面长度为10m,摩擦系数为0.2。
求物体滑到斜面底部时的速度。
(5分)3. 两个弹性球A和B,质量分别为m1和m2,弹性系数分别为k1和k2。
它们从静止开始相互碰撞,求碰撞后A和B的速度。
弹性力学试题及答案
《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。
2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。
4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。
二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。
题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++=)(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比已知。
试求薄板面积的改变量S ∆。
题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。
由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。
弹性力学试题及答案
《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中:平衡微分方程, 应力边界条件。
2.一组可能的应力分量应满足:平衡微分方程,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中,的物理意义是杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M.4.平面问题的应力函数解法中,Airy应力函数在边界上值的物理意义为边界上某一点(基准点)到任一点外力的矩。
5.弹性力学平衡微分方程、几何方程的张量表示为:,。
二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。
题二(2)图(a)(b)3.图示矩形弹性薄板,沿对角线方向作用一对拉力P,板的几何尺寸如图,材料的弹性模量E、泊松比 已知.试求薄板面积的改变量.题二(3)图设当各边界受均布压力q时,两力作用点的相对位移为。
由得,设板在力P作用下的面积改变为,由功的互等定理有:将代入得:显然,与板的形状无关,仅与E、、l有关。
4.图示曲杆,在边界上作用有均布拉应力q,在自由端作用有水平集中力P.试写出其边界条件(除固定端外)。
题二(4)图(1);(2)(3)5.试简述拉甫(Love)位移函数法、伽辽金(Galerkin)位移函数法求解空间弹性力学问题的基本思想,并指出各自的适用性Love、Galerkin位移函数法求解空间弹性力学问题的基本思想:(1)变求多个位移函数或为求一些特殊函数,如调和函数、重调和函数。
(2)变求多个函数为求单个函数(特殊函数)。
《弹性力学》试题答案
ϕ题二(2)图+ 2cy(b )⎨⎧=++= )(),(),(323θθϕϕf r r cxy y bx ax y x 题二(3)图题二(4)图;题三(1)图,可近似视为半平面体边界受一集中力偶题三(2)图,截面惯性矩为123h I =,由材料力学计算公式有My2-==σ题二(3)图。
抗弯刚度为EI,在自由端受集中力题二(3)图4.图示弹性薄板,作用一对拉力P 。
试由功的互等定理证明:薄板的面积改变量S ∆与板的形状无关,仅与材料的弹性模量E 、泊松比 、两力P 作用点间的距离l 有关。
题二(4)图5.下面给出平面问题(单连通域)的一组应变分量,试判断它们是否可能。
),(22y x C x +=ε,2Cy y =εCxy xy 2=γ。
6.等截面直杆扭转问题的应力函数解法中,应力函数),(y x ϕ应满足:GK22-=∇ϕ 式中:G 为剪切弹性模量;K 为杆件单位长度扭转角。
试说明该方程的物理意义。
三、计算题1.图示无限大薄板,在夹角为90°的凹口边界上作用有均匀分布剪应力q 。
已知其应力函数为:)2cos (2B A r +=θϕ 不计体力,试求其应力分量。
(13分)题三(1)图2.图示矩形截面杆,长为l ,截面高为h ,宽为单位1,受偏心拉力N ,偏心距为 e ,不计杆的体力。
试用应力函数23By Ay +=ϕ求杆的应力分量,并与材料力学结果比较。
θθαττ(12分)题三(2)图3.图示简支梁,其跨度为l ,抗弯刚度EI 为常数,受有线性分布载荷q 作用。
试求:(1)用三角函数形式和多项式写出梁挠度(w )近似函数的表达式;(2)在上述梁挠度(w )近似函数中任选一种,用最小势能原理或Ritz 法求梁挠度(w )的近似解(取2项待定系数)。
(13分)题三(3)图4.图示微小四面体OABC ,OA = OB = OC ,D 为AB 的中点。
设O 点的应变张量为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=03.001.0001.002.0005.00005.001.0ij ε试求D 点处单位矢量v 、t 方向的线应变。
本科弹性力学试题及答案
本科弹性力学试题及答案一、选择题(每题2分,共20分)1. 弹性力学中,下列哪一项不是基本假设?A. 连续性假设B. 均匀性假设C. 各向异性假设D. 小变形假设答案:C2. 在弹性力学中,下列哪一项不是应力的类型?A. 正应力B. 剪应力C. 拉应力D. 弯应力答案:D3. 弹性模量E和泊松比μ之间存在以下哪种关系?A. E = 2G(1+μ)B. E = 3G(1-2μ)C. E = 3G(1+μ)D. E = 2G(1-μ)答案:C4. 弹性力学中的圣维南原理适用于以下哪种情况?A. 仅适用于平面应力问题B. 仅适用于平面应变问题C. 适用于平面应力和平面应变问题D. 不适用于任何情况答案:C5. 弹性力学中,下列哪一项不是位移场的基本方程?A. 几何方程B. 物理方程C. 运动方程D. 边界条件答案:D6. 弹性力学中,下列哪一项不是平面应力问题的特点?A. 应力分量σz=0B. 应变分量εz≠0C. 应力分量τxz=τyz=0D. 应变分量γxz=γyz=0答案:B7. 弹性力学中,下列哪一项不是平面应变问题的特点?A. 应力分量σz≠0B. 应变分量εz=0C. 应力分量τxz=τyz=0D. 应变分量γxz=γyz=0答案:A8. 弹性力学中,下列哪一项不是应力集中的类型?A. 几何不连续引起的应力集中B. 材料不连续引起的应力集中C. 载荷不连续引起的应力集中D. 温度不连续引起的应力集中答案:D9. 弹性力学中,下列哪一项不是弹性常数?A. 杨氏模量EB. 泊松比μC. 剪切模量GD. 体积模量K答案:D10. 弹性力学中,下列哪一项不是弹性体的基本性质?A. 均匀性B. 连续性C. 各向同性D. 各向异性答案:D二、填空题(每题2分,共20分)1. 弹性力学中,应力状态的基本方程包括______、______和______。
答案:几何方程、物理方程、平衡方程2. 弹性力学中,应变能密度W与应力分量和应变分量的关系为W=______。
弹性力学试题及答案
弹性力学试题及答案一、选择题(每题5分,共20分)1. 弹性力学中,描述材料弹性特性的基本物理量是()。
A. 应力B. 应变C. 弹性模量D. 泊松比答案:C2. 在弹性力学中,下列哪项不是胡克定律的内容?()A. 应力与应变成正比B. 材料是均匀的C. 材料是各向同性的D. 材料是线性的答案:B3. 弹性模量E和泊松比ν之间的关系是()。
A. E = 2(1 + ν)B. E = 3(1 - 2ν)C. E = 3(1 + ν)D. E = 2(1 - ν)答案:D4. 根据弹性力学理论,下列哪种情况下材料会发生塑性变形?()A. 应力小于材料的弹性极限B. 应力达到材料的弹性极限C. 应力超过材料的屈服强度D. 应力小于材料的屈服强度答案:C二、填空题(每题5分,共20分)1. 弹性力学中,应力的定义是单位面积上的______力。
答案:内2. 弹性力学的基本假设之一是______连续性假设。
答案:材料3. 弹性力学中,应变的量纲是______。
答案:无4. 弹性力学中,当外力撤去后,材料能恢复原状的性质称为______。
答案:弹性三、简答题(每题10分,共30分)1. 简述弹性力学中应力和应变的区别。
答案:应力是描述材料内部单位面积上受到的内力,而应变是描述材料在受力后形状和尺寸的变化程度。
2. 解释弹性力学中的杨氏模量和剪切模量。
答案:杨氏模量(E)是描述材料在拉伸或压缩过程中应力与应变比值的物理量,反映了材料的刚度;剪切模量(G)是描述材料在剪切应力作用下剪切应变与剪切应力比值的物理量,反映了材料抵抗剪切变形的能力。
3. 弹性力学中,如何理解材料的各向异性和各向同性?答案:各向异性是指材料的物理性质(如弹性模量、热膨胀系数等)在不同方向上具有不同的值;而各向同性则是指材料的物理性质在各个方向上都是相同的。
四、计算题(每题15分,共30分)1. 已知一圆柱形试件,其直径为50mm,长度为100mm,材料的弹性模量E=210GPa,泊松比ν=0.3。
弹性力学试题参考答案
《弹性力学》试题参考答案(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。
2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中, M dxdy D=⎰⎰ 2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。
4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。
二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。
题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 已知。
试求薄板面积的改变量S ∆。
题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。
由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。
弹性力学试题及答案
《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。
2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。
4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。
二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。
题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。
试求薄板面积的改变量S ∆。
题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。
由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。
弹性力学100题
一、单项选择题1.弹性力学建立的基本方程多是偏微分方程,还必须结合( C )求解这些微分方程,以求得具体问题的应力、应变、位移。
A .相容方程B .近似方法C .边界条件D .附加假定2.根据圣维南原理,作用在物体一小部分边界上的力系可以用( B )的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。
A .几何上等效B .静力上等效C .平衡D .任意3.弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。
A .平衡方程、几何方程、物理方程完全相同B .平衡方程、几何方程相同,物理方程不同C .平衡方程、物理方程相同,几何方程不同D .平衡方程相同,物理方程、几何方程不同4.不计体力,在极坐标中按应力求解平面问题时,应力函数必须满足( A )①区域内的相容方程;②边界上的应力边界条件;③满足变分方程;④如果为多连体,考虑多连体中的位移单值条件。
A. ①②④B. ②③④C. ①②③D. ①②③④5.如下图1所示三角形薄板,按三结点三角形单元划分后,对于与局部编码ijm 对应的整体编码,以下叙述正确的是( D )。
① I 单元的整体编码为162② II 单元的整体编码为426③ II 单元的整体编码为246④ III 单元的整体编码为243⑤ IV 单元的整体编码为564图1A. ①③B. ②④C. ①④D. ③⑤ 6.平面应变问题的微元体处于( C )A.单向应力状态B.双向应力状态C.三向应力状态,且z 是一主应力D.纯剪切应力状态7.圆弧曲梁纯弯时,( C )A.应力分量和位移分量都是轴对称的 463521I III II IVB.应力分量和位移分量都不是轴对称的C.应力分量是轴对称的,位移分量不是轴对称的D.位移分量是轴对称的,应力分量不是轴对称的8.下左图2中所示密度为ρ的矩形截面柱,应力分量为:0,,0=+==xy y x B Ay τσσ对图(a )和图(b)两种情况由边界条件确定的常数A 及B 的关系是( C )A.A 相同,B 也相同B.A 不相同,B 也不相同C.A 相同,B 不相同D.A 不相同,B 相同图 2 图 39、上右图3示单元体剪应变γ应该表示为( B )10、设有平面应力状态x ay dx dy cx by ax xy y x γτσσ---=+=+=,,,其中,d c b a ,,,均为常数,γ为容重。
弹性力学试卷及答案4套
弹性力学试卷(1)1. 土体是由固体颗粒、水和气体三相物质组成的碎散颗粒集合体,是否是连续介质? 在建筑物地基沉降问题中,可否作为连续介质处理?(15分)2. 试用圣维南原理,列出题2图所示的两个问题中OA边的三个积分的应力边界条件,并比较两者的面力是否是静力等效?(15分)3. 根据所给的一点应力分量,试求1σ,2σ,3σ。
400,1000,2000-==-=xyyxτσσ.(20分)4. 已知单位厚度矩形截面悬臂梁的自由端受力F作用而发生横向弯曲(题4图),力F的分布规律为)4(222yhIFp--=,由材料力学求得应力分量为IyxlFx)(--=σ,)4(22yhIFxy--=τz====yxzzyττσσ式中I为截面惯性矩,试检查该应力分量是否满足平衡方程和边界条件(20分)5. 试考察应力函数)43(2223yhhFxyΦ-=能满足相容方程,并求出应力分量(不计体力),画出题5图所示矩形体边界上的面力分布(在次要边界上画出面力的主矢量和主矩),指出该应力函数所能解决的问题。
6.试考察应力函数ϕρcos363aq=Φ能解决题6图所示弹性体的何种受力问题?(20分)弹性力学试卷(3)1. “单一成分构成的物体是均匀体,也是各向同性体”,此话是否正确?(15分)2.试列出题2-8图所示问题的全部边界条件。
在其端部边界题2题2题4y题5题 6上,应用圣维南原理列出三个积分的应力边界条件。
(15分) 3. 根据所给的一点应力分量,试求1σ,2σ,3σ。
1010,50,100===xy y x τσσ.(20分)4. 检验下列应力分量是否是题4图所示问题的解答:q b y x 22=σ,0===yx xy yττσ。
(20分)5. 试证)2(10)134(4332332h y h y qy h y h y qx Φ-+-+-=能满足相容方程,并考察它在题5图所示矩形板和坐标系中能解决什么问题(设矩形板的长度为L ,深度为h ,体力不计)。
弹性力学试题及答案
弹性力学试题及答案一、选择题(每题2分,共20分)1. 弹性力学中的胡克定律描述的是:A. 应力与位移的关系B. 应力与应变的关系C. 应变与位移的关系D. 位移与力的关系2. 以下哪个不是弹性力学的基本假设?A. 连续性假设B. 均匀性假设C. 各向同性假设D. 各向异性假设3. 弹性模量和泊松比的关系是:A. E = 2G(1+ν)B. E = 3K(1-2ν)C. E = 3K(1+ν)D. E = 2G(1-ν)4. 以下哪种材料可以看作是各向同性材料?A. 木材B. 钢筋混凝土C. 单晶硅D. 多晶硅5. 应力集中现象通常发生在:A. 均匀受力区域B. 材料的中间区域C. 材料的边缘或孔洞附近D. 材料的内部二、简答题(每题10分,共30分)6. 简述平面应力和平面应变的区别。
7. 解释什么是圣维南原理,并简述其应用。
8. 描述弹性力学中的主应力和主应变的概念及其意义。
三、计算题(每题25分,共50分)9. 一个长方体材料块,尺寸为L×W×H,受到均匀压力p作用于其顶面,求其内部任意一点处的应力状态。
10. 已知某材料的弹性模量E=200 GPa,泊松比ν=0.3,求其剪切模量G。
答案一、选择题1. 答案:B(应力与应变的关系)2. 答案:D(各向异性假设)3. 答案:A(E = 2G(1+ν))4. 答案:D(多晶硅)5. 答案:C(材料的边缘或孔洞附近)二、简答题6. 答案:平面应力是指材料的一个方向(通常是厚度方向)的应力为零,而平面应变是指材料的一个方向(通常是厚度方向)的应变为零。
平面应力通常用于薄板或薄膜,而平面应变用于长厚比很大的结构。
7. 答案:圣维南原理指出,在远离力作用区域的地方,局部应力分布对整个结构的应力状态影响很小。
这个原理常用于简化复杂结构的应力分析。
8. 答案:主应力是材料内部某一点应力张量的最大值,主应变是材料内部某一点应变张量的最大值。
弹性力学期末考试卷及答案
平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:面力、体力的作用面平行于 xy 平面,外
力沿板厚均匀分布,只有平面应力分量 x , y , xy 存在,且仅为 x,y 的函数。
平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:面力、体力的作用面平行于 xy 平面,
B q 2b
考察次要边界 y 0 的边界条件,应用圣维南原理,三个积分的应力边界条件为
(j)
b 2
b 2
b 2 y
dx
y0
b 2
6Dx 2E dx 2Eb 0 ;
得 E0
b 2
b 2 y
xdx
y0
b 2
6Dx 2E
b 2
xdx Db3 2
0,
得 D0
b 2
ql 2
2. (10 分)试考察应力函数 cxy3 , c 0 ,能满足相容方程,并求出应力分量(不计体力),画出
图 5-2 所示矩形体边界上的面力分布,并在次要边界上表示出面力的主矢和主矩。
图 5-2
解:(1)相容条件:将
cxy3 代入相容方程
4 x4
2
4 x2y 2
4 y 4
0 ,显然满足。
外力沿 z 轴无变化,只有平面应变分量 x , y , xy 存在,且仅为 x,y 的函数。
3. (8 分)常体力情况下,按应力求解平面问题可进一步简化为按应力函数 求解,应力函数 必须满
足哪些条件?
答:(1)相容方程: 4 0
(2)应力边界条件(假定全部为应力边界条件, s
s
):
;体力和面力符号
弹性力学期末考试卷及答案
名词解释(共10分,每小题5分)1.弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。
2. 圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。
一. 填空(共20分,每空1分)1.边界条件表示在边界上位移与约束,或应力与面力之间的关系式,它可以分为位移边界条件、应力边界条件和混合边界条件。
2.体力是作用于物体体积内的力,以单位体积力来度量,体力分量的量纲为L-2MT-2;面力是作用于物体表面上力,以单位表面面积上的力度量,面力的量纲为L-1MT-2;体力和面力符号的规定为以沿坐标轴正向为正,属外力;应力是作用于截面单位面积的力,属内力,应力的量纲为L-1MT-2,应力符号的规定为:正面正向、负面负向为正,反之为负。
3.小孔口应力集中现象中有两个特点:一是孔附近的应力高度集中,即孔附近的应力远大于远处的应力,或远大于无孔时的应力。
二是应力集中的局部性,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。
4. 弹性力学中,正面是指外法向方向沿坐标轴正向的面,负面是指外法向方向沿坐标轴负向的面。
5. 利用有限单元法求解弹性力学问题时,简单来说包含结构离散化、单元分析、整体分析三个主要步骤。
二. 绘图题(共10分,每小题5分)分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标下扇面正的应力分量。
图3-1图3-2三. 简答题(24分)1. (8分)弹性力学中引用了哪五个基本假定?五个基本假定在建立弹性力学基本方程时有什么用途?答:弹性力学中主要引用的五个基本假定及各假定用途为:(答出标注的内容即可给满分)1)连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
弹性力学试卷及答案
精品文档一、概念题(32分)1、 如图所示三角形截面水坝,其右侧受重度为γ的水压力作用,左侧为自由面。
试列出下述问题的边界条件解:1)右边界(x=0)11 2)左边界(x=ytg β)1 1由: 222、何谓逆解法和半逆解法。
答:1. 所谓逆解法,就是先设定各种形式、满足相容方程的应力函数,利用公式求出应力分量,然后根据应力边界条件考察在各种形状的弹性体上,这些应力分量对应于什么样的面力,从而得知设定的应力函数可以解决什么问题。
4 2. 所谓半逆解法,就是针对所要求解的问题,根据弹性体的边界形状与受力情况,假设部分或全部应力分量为某种形式的函数,从而推出应力函数,然后考察该应力函数是否满足相容方程,以及原来假设的应力分量和由这个应力函数求出的其余应力分量,是否满足应力边界条件和位移单值条件。
如果相容方程和各方面的条件都能满足,就可得到正确解答;如果某一方面不能满足,就需要另作假设,重新考察。
43、已知一点的应力状态,试求主应力的大小及其作用的方向。
200,0,400x y xy MPa MPa σστ===-解:根据公式122x y σσσσ+= 2 和公式11tan xxyσσατ-=,求出主应力和主应力方向: 22000512.31312.322MPa σσ+==- 2000yx x xy x σγτ=-===()()cos ,cos cos ,cos()2sin l n x m n y βπββ====+=-()()()()x y l m x xy s s l m xy y s sf f σττσ+=+=⎫⎪⎬⎪⎭()()()()cos sin 0cos sin 0x xy s s xy y s s σβτβτβσβ-=+=⎫⎪⎬⎪⎭精品文档512200tan 0.7808,3757'11400αα-==-=- 24、最小势能原理等价于 以位移表示的平衡微分 (3) 方程和 应力 (3) 边界条件,选择位移函数仅需满足 位移 (2) 边界条件。
弹性力学100题
一、单项选择题1.弹性力学建立的基本方程多是偏微分方程,还必须结合( C )求解这些微分方程,以求得具体问题的应力、应变、位移。
A.相容方程 B.近似方法 C.边界条件 D.附加假定2.根据圣维南原理,作用在物体一小部分边界上的力系可以用( B )的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。
A.几何上等效 B.静力上等效 C.平衡 D.任意3.弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。
A.平衡方程、几何方程、物理方程完全相同B.平衡方程、几何方程相同,物理方程不同C.平衡方程、物理方程相同,几何方程不同D.平衡方程相同,物理方程、几何方程不同4.不计体力,在极坐标中按应力求解平面问题时,应力函数必须满足( A )①区域内的相容方程;②边界上的应力边界条件;③满足变分方程;④如果为多连体,考虑多连体中的位移单值条件。
A.①②④B. ②③④C. ①②③D. ①②③④5.如下图1所示三角形薄板,按三结点三角形单元划分后,对于与局部编码ijm对应的整体编码,以下叙述正确的是( D )。
① I单元的整体编码为162② II单元的整体编码为426③ II单元的整体编码为246④ III单元的整体编码为243⑤ IV单元的整体编码为564图1A. ①③B. ②④C. ①④D. ③⑤6.平面应变问题的微元体处于( C )A.单向应力状态B.双向应力状态是一主应力 D.纯剪切应力状态C.三向应力状态,且z7.圆弧曲梁纯弯时,( C )A.应力分量和位移分量都是轴对称的B.应力分量和位移分量都不是轴对称的C.应力分量是轴对称的,位移分量不是轴对称的D.位移分量是轴对称的,应力分量不是轴对称的8.下左图2中所示密度为ρ的矩形截面柱,应力分量为:0,,0=+==xy y x B Ay τσσ对图(a )和图(b)两种情况由边界条件确定的常数A 及B 的关系是( C )A.A 相同,B 也相同B.A 不相同,B 也不相同C.A 相同,B 不相同D.A 不相同,B 相同图 2 图 39、上右图3示单元体剪应变γ应该表示为( B )10、设有平面应力状态x ay dx dy cx by ax xy y x γτσσ---=+=+=,,,其中,d c b a ,,,均为常数,γ为容重。
弹性力学试题及答案
弹性力学试题及答案题目一:弹性力学基础知识试题:1. 弹性力学是研究什么样的物体的变形与应力关系?答案:弹性力学是研究具有弹性的物体(即能够恢复原状的物体)的变形与应力关系的学科。
2. 弹性力学中的“应力”是指什么?答案:应力是物体内部相邻两部分之间的相互作用力与其接触面积之比。
3. 弹性力学中的“应变”是指什么?答案:应变是物体在受力作用下发生形变的程度。
正应变表示物体在拉伸力作用下的伸长程度与原始长度之比,负应变表示物体在压缩力作用下的压缩程度与原始长度之比。
4. 弹性力学中的“胡克定律”是什么?答案:胡克定律描述了弹簧的弹性特性。
根据胡克定律,当弹簧的变形量(即伸长或缩短的长度)与施加在弹簧上的力成正比时,弹簧的弹性变形是符合弹性恢复原状的规律的。
题目二:弹性系数计算试题:1. 弹性模量是用来衡量什么的物理量?答案:弹性模量是衡量物体在受力作用下发生弹性形变的硬度和刚度的物理量。
2. 如何计算刚体材料的弹性模量?答案:刚体材料的弹性模量可以通过应力与应变之间的关系来计算。
弹性模量E等于应力σ与应变ε之比。
3. 如何计算各向同性材料的体积弹性模量(Poisson比)?答案:各向同性材料的体积弹性模量(Poisson比)可以通过材料的横向应变与纵向应变之比来计算。
Poisson比v等于横向应变ε横与纵向应变ε纵之比。
4. 如何计算材料的剪切弹性模量?答案:材料的剪切弹性模量G(也称剪切模量或切变模量)可以通过材料的剪应力与剪应变之比来计算。
题目三:弹性体的应力分析试题:1. 弹性体的应力状态可以用什么来表示?答案:弹性体的应力状态可以用应力张量来表示。
2. 什么是平面应力状态和轴对称应力状态?答案:平面应力状态是指在某一平面上的应力分量仅存在拉伸(或压缩)和剪切,而垂直于该平面的应力分量为零的应力状态。
轴对称应力状态是指应力分量只与径向位置有关,而与角度无关的应力状态。
3. 弹性体的应力因子有哪些?答案:弹性体的应力因子包括主应力、主应力差、偏应力、平均应力、最大剪应力、最大剪应力平面等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、概念题(32分)
1、 如图所示三角形截面水坝,其右侧受重度为的水压力作用,左侧为
自由面。
试列出下述问题的边界条件
解:1)右边界(x=0) 1
1 2)左边界(x=ytg
)
1
1 由: 2
2
2、何谓逆解法和半逆解法。
答:1. 所谓逆解法,就是先设定各种形式、满足相容方程的应力函
数,利用公式求出应力分量,然后根据应力边界条件考察在各种形状的弹性体上,这些应力分量对应于什么样的面力,从而得知设定的应力函数可以解决什么问题。
4
2. 所谓半逆解法,就是针对所要求解的问题,根据弹性体的边界形状与受力情况,假设部分或全部应力分量为某种形式的函数,从而推出应力函数,然后考察该应力函数是否满足相容方程,以及原来假设的应力分量和由这个应力函数求出的其余应力分量,是否满足应力边界条件和位移单值条件。
如果相容方程和各方面的条件都能满足,就可得到正确解答;如果某一方面不能满足,就需要另作假设,重新考察。
4
3、已知一点的应力状态,试求主应力的大小及其作用的方向。
200,0,400x y xy MPa MPa σστ===-
解:根据公式2
12
2
2
2
x y x y xy σσσσστσ+-⎛⎫=+ ⎪⎝
⎭
2 和公式11tan x
xy
σσ
ατ-=
,求出主应力和主应力方向: 2 ()220002000512.321400312.3222MPa σσ+-=+-=-⎛⎫ ⎪⎝⎭ 2 512200tan 0.7808,3757'11400
αα-==-=-o
2
4、最小势能原理等价于 以位移表示的平衡微分 (3) 方程和 应力 (3) 边界条件,选择位移函数仅需满足 位移 (2) 边界条件。
二、图示悬臂梁,长度为l , 高度为h ,l >>h ,在梁上边界受均布荷载。
试检验应力函数 523322ΦAy Bx y Cy Dx Ex y =++++
能否成为此问题的解,如果可以,试求出应力分量。
(20分)
y
y
y
n
x
000y x x xy x σγτ=-===()
()
cos ,cos cos ,cos()2sin l n x m n y βπββ====+=-()
()
()
()
x y l m x xy s s
l m xy y s s f f σττσ+=+=⎫⎪⎬
⎪⎭(
)
()()()cos sin 0cos sin 0x xy s s xy y s s σβτβτβσβ-=+=⎫⎪⎬
⎪⎭
解:将应力函数代入到兼容方程
444204224x x y y
∂Φ∂Φ∂Φ
++=∂∂∂∂ 得到,当5B A =-时Φ可作为应力函数 5
根据 2
22
22x
y
y x
xy x y
σ
στ∂
Φ
=
∂∂
Φ
=
∂∂Φ
=-
∂∂ 3
求得应力表达式:
32206632222(62)Ay Bx y Cy
x
By D Ey
y Bxy Ex xy σστ=++=++=-+⎧⎪⎪⎨⎪⎪⎩ 3
由应力边界条件确定常数
()()(),0,0
222q y y xy y h y h y h σστ=-===-==±
端部的边界条件
()()22
0,02200h h dy ydy x x h h x x σσ==⎰⎰--== 5
解得333,,,,51044q q q q q
A B C D E h h h h
==-=-=-= 2 三、应力分量(不计体力)为2
2
3
462253134322
31422h y
x q x y h h q y
y y h h q x y xy h h σστ=--=--+=--⎛
⎫
⎪
⎪⎝⎭
⎛
⎫ ⎪ ⎪⎝⎭⎛⎫ ⎪ ⎪⎝⎭
2
三、已知轴对称平面应力问题,应力和位移分量的表达式为:(23分)
C A
22
+=
ρσρ, C A
22
+-
=ρσϕ, 0==ϕρρϕττ
⎥⎦
⎤⎢⎣⎡-++-=
ρμρμρC A
E u )1(2)1(1 0=ϕu
.有一个内、外半径分别为a 和b 的圆筒,筒外受均布压力q 作用,求其应力,位移及圆筒厚度的改变值。
解:1.本题为位移轴对称平面问题,位移与ϕ无关,因此应力表达式为: 222,2,0A A C C ρϕρϕϕρσσττρρ=+=-+== ( l h )
1(1)2(1)0
A
u C E u ρϕμμρρ⎡⎤=-++-⎢⎥
⎣⎦= 2.有边界条件确定常数,求出应力分量
()
()
0,q a b
σσρ
ρρρ==-== 4
22
202A
C a A C q b ⎧+=⎪⎪⎨
⎪+=-⎪⎩ 2 ()
222
,22222qa b qb A C b a b a
==--- 4
(
)(
)
(
)(
)
2
22
2
212
2
22222
2
2
2
212
2
22220
qb a qb
a b a
b a qb a qb
a b a
b a ρσρρρρσϕρρτρϕ-=-=--+=-+=--=⎛⎫ ⎪ ⎪⎝⎭
⎛⎫ ⎪ ⎪⎝⎭
3
圆环的径向位移(平面应变情况下)将E 换成2
1μ-E ,μμ-1 2
()()()()2
2
12222221qb a a E b a u ρ
μμρρμρ--++---⎡⎤=⎢⎥⎣
⎦ 4
1. 圆环内、外半径变化,壁厚的改变值
∆
分别为
()()
()
2
22122qab
u a E b a μρρ-=-
=- 2
()
()
()
()
22
122
22()221qb u a b a b b Eb b a μμρρμ-=-++-=--⎡⎤⎢⎥⎣
⎦ 2 ()
()
()()()()()2
1()1(121()
qb u u a b a b b a E b a qb a b E a b μ
μ
ρρρρμμμ-∆=-=
-+
+==+-+=+-+⎡⎤
⎢⎥⎣⎦
⎡⎤⎣⎦ 2
4、弹性力学中的几个基本假设为:物体是 ; 物体是 ; 物体是 ; 物体的位移和变形是 。
(8分)
三 、已知图(a )示集中力作用下半平面体内应力分量为:(15分)
()
()
()
2
22
22
22
2
2
22
3
2,
2,
2y
x y
x p
y
x xy p
y
x x p
xy y x +-
=+-
=+-
=πτπσπσ
试求图(b)示3个集中力作用下半平面体内应力分布
1、什么是平面应力问题什么是平面应变问题两者的异同之处。
5.试列出下图所示的全部边界条件。
解:在2
h
y±
=边界上()()
1
2
,0q
h
y
yx
h
y
y
-
=
=
=
=
τ
σ
()()0
,
2
2
=
=
-
=
-
=h
y
yx
h
y
y
qτ
σ
在x=0的次要边界上
列出3个积分的应力边界条件()
N
F
dy
h
h x
x
-
=
⎰-=
2
20
σ
()M
ydy
h
h x
x
-
=
⎰-=
2
20
σ
()
⎰-=-=
2
h
h S
x
xy
F
dy
τ。