北师大版六年级下册数学知识点归纳
北师大版小学数学六年级下册总复习公式大全
北师大版小学数学六年级下册总复习公式大全一、平面图形1.长方形的周长和面积长方形的周长=(长+宽)×2 c=(a+b)×2 长方形的周长÷2-长=宽c÷2-a=b 长方形的周长÷2-宽=长c÷2-b=a长方形的面积=长×宽S=ab 长方形的面积÷长=宽S÷a=b 长方形的面积÷宽=长S÷b=b2.正方形的周长和面积正方形的周长=边长×4 c=4a 正方形的周长÷4=边长c÷4=a 正方形的面积=边长×边长S=a.a= a23.平行四边形的面积平行四边形的面积=底×高S=ah平行四边形的面积÷底=高S÷a=h 平行四边形的面积÷高=底S÷h=a4.三角形(具有稳定性)三角形的面积=底×高÷2S=ah÷2 三角形的面积×2÷底=高S×2÷a=h 三角形的面积×2÷高=底S×2÷h=a 三角形的内角和=180度。
三角形三边的关系:三角形任意两条边的和要大于第三条边,任意一条边的长要大于其它两边的差,小于两边的和。
5.梯形的面积梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 6.圆形直径=半径×2 d=2r半径=直径÷2 r= d÷2 2 直径=圆的周长÷圆周率d=c÷π半径=圆的周长÷圆周率÷2 r=c÷π÷2 圆的周长=直径×圆周率c=πd圆的周长==半径×2×圆周率c =2πr半圆的周长=周长的一半+直径半圆的周长=半径×5.14 (π+2=5.14)圆的面积=圆周率×半径2S=πr2 *圆的面积=周长的一半×半径二、立体图形1.长方体:长方体的周长=(长+宽+高)×4 C=4(a+b+h)长方体的周长÷4-宽-高=长C÷4-b -h=a 长方体的周长÷4-长-高=宽C÷4-a-h=b 长方体的周长÷4-长-宽=高C÷4-a-b=h 长方体的体积=长×宽×高公式:V=abh 长方体的体积÷宽÷高=长V÷b÷h=a 长方体的体积÷长÷高=宽V÷a÷h=b 长方体的体积÷长÷宽=高V÷a÷b=h 长方体(或正方体)的体积÷底面积=高V÷S=h 长方体(或正方体)的体积÷高=底面积V÷h=S 正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:l=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
北师大版六年级下册数学期末复习重点知识要点归纳
北师大版六年级(下册)数学知识要点归纳第一单元圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。
3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。
4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。
圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。
圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
5、圆柱的体积:一个圆柱所占空间的大小。
6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。
所以圆的面积=π×半径×半径=π×半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。
最新-北师大版小学数学六年级(全册)知识点归纳 精品
北师大版小学数学六年级(全册)知识点第一单元圆1、使学生认识圆的特征:圆的半径、直径、圆心。
认识在同圆内半径和直径的关系。
知道圆是轴对称图形,有无数条对称轴,而这些对称轴都过圆心。
知道生活中有了圆才使我们的生活更美好。
2、认识同心圆、等圆。
知道圆的位置由圆心决定,圆的大小由半径或直径决定。
等圆的半径相等,位置不同;而同心圆的半径不同,位置相同。
3、使学生知道圆的周长和圆周率的含义,掌握圆的周长的计算公式,能够正确地计算圆的周长.介绍祖冲之在圆周率研究上的成就,渗透爱国主义教育。
在运用上,要能根据圆的周长算直径或半径,会算半圆的周长:圆的周长×1/2+直径。
会求组合图形的周长。
4、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
5、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
会灵活运用圆的面积公式。
已知圆的周长会算圆的面积,会求组合图形的面积。
会算圆环的面积,并且知道在周长相等的情况下,正方形、长方形、圆三种图形中,圆的面积最大。
6、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
第二单元百分数的应用本单元重点讲解百分数在生活中的应用,知识点为:1、知道百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
百分数通常不写成分数形式,而用百分号“%”表示;百分数有时也定义为分母是100的分数,但百分数与分数是有区别的:分数既可表示具体的量,又可表示两个数量间的倍比关系;然而百分数只能表示两个数量间的倍比关系;所以是不名数,也就是不能带单位的数。
2、在具体情景中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
3、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。
4、知道出勤率、出粉率、成活率等百分数的意义及在实际生活中的应用,会计算这种百分数。
北师大版六年级数学下册知识点归纳
北师大版六年级数学下册知识点归纳北师大版六年级数学下册主要包含了有理数、图形和变量、分数和小数、运算法则和计算、长度、面积和体积、数据和统计这几个知识点。
下面将对每个知识点进行归纳:一、有理数1. 正数和负数:正数是大于零的数,负数是小于零的数,0既不是正数也不是负数。
2. 数轴:用数轴表示有理数。
数轴上,正数在0的右边,负数在0的左边。
3. 比较和排序:可以通过数轴上的大小关系进行比较和排序。
二、图形和变量1. 坐标系:直角坐标系由x轴和y轴组成。
坐标系中,x轴是水平的,y轴是竖直的,它们都通过原点O。
2. 点与坐标:用点在坐标系中的位置来表示其坐标。
3. 图形的比较:可以通过图形的面积、周长和形状进行比较。
三、分数和小数1. 分数的概念:分数由一个分子和一个分母组成,分子表示整体的部分,分母表示被分成的份数。
2. 分数的大小比较:可以通过分数的大小关系进行比较和排序。
3. 小数的概念:小数是整数和分数的结合,整数部分位于小数点的左侧,小数部分位于小数点的右侧,如0.5、3.14等。
4. 分数和小数的转换:可以将分数转换为小数,也可以将小数转换为分数。
四、运算法则和计算1. 加法和减法运算:可以进行有理数的加法和减法运算。
2. 乘法和除法运算:可以进行有理数的乘法和除法运算。
3. 运算规律:加法和乘法满足交换律和结合律,减法和除法不满足交换律和结合律。
4. 计算顺序:在多个运算符存在的表达式中,先进行括号内的运算,再进行乘法和除法运算,最后进行加法和减法运算。
五、长度、面积和体积1. 长度的测量:用尺子、卷尺等工具可以测量线段的长度。
2. 面积的测量:用平方单位可以测量平面图形的面积。
3. 体积的测量:用立方单位可以测量立体图形的体积。
六、数据和统计1. 数据的收集:可以通过调查、观察等方式收集数据。
2. 数据的展示:可以用列表、频数表、条形图等方式展示数据。
3. 平均数和范围:可以通过计算平均数和范围来描述数据的中心和变化程度。
北师大版六年级数学下册知识点归纳总结
北师大版六年级数学下册知识点归纳总结目录1. 第一单元 (3)1.1 分数的概念与表示方法 (3)1.2 分数的基本性质 (4)1.3 同分母分数的比较 (5)1.4 异分母分数的转换 (6)2. 第二单元 (7)2.1 小数的概念与表示方法 (7)2.2 小数的性质 (8)2.3 小数与分数之间的联系与区别 (8)2.4 小数的四则运算 (9)3. 第三单元 (10)3.1 百分数的含义和表示方法 (10)3.2 百分数与小数的关系 (11)3.3 百分数在实际生活中的应用 (12)3.4 百分数与其他比的转换 (14)4. 第四单元 (14)4.1 方程的意义及类型 (16)4.2 解一元一次方程的方法 (17)4.3 方程的应用实例 (17)4.4 实际问题中的方程求解策略 (18)5. 第五单元 (19)5.1 平面图形的面积计算 (19)5.2 平面图形的周长计算 (21)5.3 立体图形的体积计算 (21)5.4 立体图形的表面积计算 (23)6. 第六单元 (24)6.1 数据的收集方法 (24)6.2 数据整理的方法与步骤 (26)6.3 如何制作统计表和统计图 (27)6.4 数据分析与解读 (29)7. 第七单元 (29)7.1 概率的含义及表示方法 (30)7.2 事件发生的可能性大小 (31)7.3 简单随机抽样的原理和方法 (32)7.4 概率在现实生活中的应用 (33)8. 第八单元 (35)8.1 图形的平移与旋转 (35)8.2 轴对称图形的性质 (36)8.3 中心对称图形的性质 (37)8.4 几何图形变换与对称的应用 (37)9. 第九单元 (38)9.1 实际问题中的数据收集与分析 (39)9.2 综合运用概率知识解决实际问题 (40)9.3 统计与概率综合题的典型例题解析 (41)10. 第十单元 (42)10.1 数学综合应用题的类型与解题思路 (43)10.2 数学综合应用题的解题技巧 (44)10.3 数学综合应用题的实践案例分析 (45)1. 第一单元自然数的认识与整数的认识。
六年级数学下册小升初数学复习第一章知识点(北师大版)
第一章数和数的运算考点1 数的认识整数的知识结构图一.整数和自然数数物体的时候,用来表示物体个数的0,1,2,3,4···叫做自然数。
0是最小的自然数。
一个物体也没有用0表示。
没有最大的自然数。
自然数的个数是无限的。
1是自然数的单位。
自然数是整数的一部分,在小学里,学习的整数都是自然数。
二.十进制计数法一(个)、十、百、千、万······都叫计数单位。
其中‘‘一’’是计数单位的基本单位。
10个一是十,10个十是一百,······,10个1百亿是一千亿,······,相邻两个计数单位之间的进率都是十。
这种计数的方法叫做十进制计数法。
三.整数的读法读数时,要从高位读起,一级一级往下读,属于亿级和万级的要读出级名,每级末尾的0都不读,其他数位一个0或连续几个0都只能读一个0。
四.整数的写法写数时,都是从高位起,一级一级往下写,哪个数位上一个单位也没有就在那一位上写0。
五.整数的改写为了读写方便,常把一个比较大的多位数,写成用‘‘万’’或‘‘亿’做单位的数;有时也可以根据需要省略这个数某一位后面的尾数,写成近似数。
省略一般根据‘‘四舍五入’’法。
六.整数大小的比较比较整数的大小时,先看位数,位数多的数就大;位数相同,从高位看起,相同数位上的数大的那个数就大。
小数的知识结构图一.小数的意义把整数‘‘1’’平均分成10份.100份.1000份······,这样的一份或几份分别是十分之几.百分之几.千分之几······,可以用小数表示。
小数点右边第一位叫十分位,计数单位是十分之一(0.1),第二位叫百分位,计数单位是百分之一(0.01)······。
北师大版六年级数学下册知识点归纳
北师大版六年级数学下册知识点归纳The document was prepared on January 2, 2021圆柱和圆锥一、面的旋转1.“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2.圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
3.圆锥的特征:(1)圆锥的底面是一个圆。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
二、圆柱的表面积1.沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。
(如果不是沿高剪开,有可能还会是平行四边形)2.圆柱的侧面积=底面周长×高,用字母表示为:S侧=ch。
3.圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πd h;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πr h4.圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2=或S表=2πrh+2πr25.圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
三、圆柱的体积1.圆柱的体积:一个圆柱所占空间的大小。
2.圆柱的体积=底面积×高。
如果用V表示圆柱的体积,S表示底面积,h表示高,那么V=Sh。
3.圆柱体积公式的应用:(1)计算圆柱体积时,如果题中给出了底面积和高,可用公式:V=Sh。
(2)已知圆柱的底面半径和高,求体积,可用公式:V=πr2h;(3)已知圆柱的底面直径和高,求体积,可用公式:V=π(d/2)2h;(4)已知圆柱的底面周长和高,求体积,可用公式:V=π(C/2π)2h;圆柱形容器的容积=底面积×高,用字母表示是V=Sh。
北师大版六年级下册数学总复习
北师大版六年级下册数学总复习2021—2022学年度第二学期北师大版六年级数学还可以表示起点、分数与代数界点等。
“”是最小的自然数。
一、整数的范围整数包括自然数和负整数,或者说整数由正整数、XXX负整数组成。
1.自然数。
自然数的意义:我们在数物体的时候,用来表示物体个数的0,1,2,3,4,5,…叫作自然数.自然数的个数是无限的,没有最大的自然数。
的含义:“”表示一个物体也没有,在计数中起占位作用,表示该数位上没有计数单位。
“+”号一般可以省略不2.正数。
写。
正数的定义:以前学过的8,16,200,…这样的数叫作正数。
正数的写法和读法:正数前面也可以加“+”号,例如:8读作:正八。
数字越大的负数反而越小;3.负数。
既不是正数,也不是负数。
负数的界说:像-1,-5,-132,…如许的数叫作负数。
“-”叫负号。
负数的写法和读法:负数前面加“-”号,例如:15读作:负十五。
4.整数与天然数的接洽及区别。
自然数全是整数,整数不全是自然数,还包括负整数。
比较整数的方法根据整数5.整数的大小比较:比较两个整数的大小,要看它们的的位数选择。
位数,如果位数不同,那么位数多的数就大;如果位数相同,就从最高位比起,最高位上的数大的就大,如果最高位上的数不异,就比较下一位上的数的大小,直到比出大小为止。
6.因数与倍数。
因数和倍数是彼此依存的。
意义:整数a除以整数b,所得的商是一个整数,而没有不克不及单独存在。
余数,我们就说a叫作b的倍数,b叫作a的因数。
因数与倍数的特点:一个数的因数的个数是有限的,最大的因数是它本身;一个数的倍数的个数是无限的,最小的倍数是它本身。
判断一个数是奇数还是偶7.奇数与偶数。
意义:个位上的数是1,3,5,7,9的数叫作奇数;个位上的数,就看这个数能否被2整除。
数是2,4,6,8,0的数叫作偶数。
奇数与偶数的特点:奇数都不克不及被2整除;偶数都能被2整除。
8.质数与合数。
1既不是质数,也不是合意义:一个数的因数只有1和它本身两个因数,这样的数,叫作质数,也叫作素数;一个数的因数如果除了1和它本数。
北师大版六年级数学下册知识点
北师大版六年级数学下册知识点第一单元《圆柱与圆锥》知识点点动成线,线动成面,面动成体。
圆柱的上、下两个面叫做圆柱的底面。
它们是大小相等的两个圆。
侧面是一个曲面。
沿圆柱的高剪开,圆柱的侧面展开图是一个长方形或正方形(底面周长和高相等时,展开是一个正方形),如果斜着剪,圆柱的侧面展开图是平行四边形。
圆柱两个底面之间的距离叫做高,圆柱有无数条高。
圆锥只有一个底面,是一个圆形。
侧面是一个曲面,圆锥侧面展开是一个扇形。
圆锥的顶点到底面圆心的距离是圆锥的高,圆锥只有一条高。
把圆柱沿底面直径切开,切面是长方形或正方形。
当底面直径与高相等时是正方形。
把圆柱垂直于高切下去,切面是个圆形。
把圆锥沿高切下去,切面是个三角形。
圆柱的侧面积=底面周长×高,字母公式是S=Ch=πdh=2πrh 。
C=S ÷h h=S ÷C圆柱的表面积=侧面积+底面积,在计算时要注意它有几个底面。
圆柱的体积=底面积×高,字母公式是V=Sh=πr 2 h S=V ÷h h=V ÷S圆柱的体积等于和它等底等高的圆锥体积的3倍。
圆锥体积=31×底面积×高 V=31Sh S=V ×3÷h h=V ×3÷S第二单元《比例》知识点表示两个比相等的式子叫作比例。
两端的两项叫作比例的外项,中间的两项叫作比例的内项在比例里,两个内项的积等于两个外项的积。
图上距离和实际距离的比,叫作这幅图的比例尺。
比例尺是一个最简单的整数比,它没有计量单位,也不能是一个具体的数。
图上距离︰实际距离=比例尺 图上距离=实际距离×比例尺实际距离=图上距离÷比例尺比例尺的分类:按形式分,分为线段比例尺和数值比例尺。
按用途分,分为缩小比例尺和放大比例尺。
图形放大前后对应线段长的比相等。
图形缩小前后对应线段长的比相等。
放大或者缩小,只改变图形的大小,不改变图形的形状。
北师大版小学数学六年级下册总复习公式大全
新北师大版小学六年级数学下册总复习公式大全一、单位换算(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米(4)1吨=1000千克 1千克= 1000克= 1公斤 = 2市斤(5)1公顷=10000平方米 1平方千米=100公顷(6)1升=1立方分米=1000毫升 1毫升=1立方厘米(7)1元=10角 1角=10分 1元=100分(8)1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1小时=3600秒 1季度=3个月 1年=4季度二、小学数学几何形体周长面积体积计算公式长方形的周长=(长+宽)×2 c=(a+b)×2 正方形的周长=边长×4 c=4a长方形的面积=长×宽 s=ab 正方形的面积=边长×边长 s=a.a三角形的面积=底×高÷2 s=ah÷2 平行四边形的面积=底×高 s=ah梯形的面积=(上底+下底)×高÷2 s=(a+b)h÷2直径=半径×2 d=2r 半径=直径÷2 r= d÷2 长方体的棱长总和=(长+宽+高)×4圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 正方体的棱长总和=棱长×12圆的面积=圆周率×半径×半径 s=πrr 长方体的表面积=(长×宽+长×高+宽×高)×2 内角和:三角形的内角和=180度。
(完整版)北师大版小学六年级下册数学总复习知识点归纳
小学六年级数学总复习知识点归纳第一章数和数的运算一概念(一)整数1 、整数的意义自然数和0都是整数。
2、自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3、计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除:倍数和因数是相互依存的。
因为35能被7整除,所以35是7 的倍数,7是35的约数。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
2的倍数:个位上是0、2、4、6、8的数,都是2的倍数,5的倍数:个位上是0或5的数,都是5的倍数。
3的倍数:一个数的各位上的数的和是3的倍数,这个数就是3的倍数。
9的倍数:一个数各位数上的和是9的倍数,这个数就是9的倍数。
是3的倍数的数不一定是9的倍数,是9的倍数的数一定是3的倍数。
6、是2的倍数的数叫做偶数。
不是2的倍数的数叫做奇数。
0也是偶数。
自然数按是不是2的倍数的特征可分为奇数和偶数。
7、质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
1既不是质数也不是合数,自然数除了0、1外,不是质数就是合数。
如果把自然数按其因数的个数的不同分类,可分为质数、合数和0、1。
8、公因数只有1的两个数,叫做互质数。
成互质关系的两个数,有下列几种情况:(1)1和任何自然数互质。
(2)相邻的两个自然数互质。
(3)两个不同的质数互质。
北师大版六年级数学下册知识点归纳总结
(北师大版)六年级数学下册知识点归纳总结第一单元圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。
3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。
4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。
圆柱的侧面积=底面周长×高用字母表示为:S侧=Ch。
圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh。
圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2 或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
5、圆柱的体积:一个圆柱所占空间的大小。
6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。
所以:圆的面积=π×半径×半径=π×半径²。
北师大版六年级下册数学知识点
北师大版六年级下册数学知识点数学属于形式科学,而不是自然科学。
不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
下面是小编整理的北师大版六年级下册数学知识点,仅供参考希望能够帮助到大家。
北师大版六年级下册数学知识点1.在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。
2.初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3.能借助数轴初步学会比较正数、0和负数之间的大小。
4.像-16、-500、-3/8、-0.4…这样的数叫做负数。
-3/8读作负八分之三。
16,200,3/8,6.3…这样的数叫做正数。
正数前面可以加“+”号,也可以省去“+”号。
+6.3读作正六点三。
0既不是正数,也不是负数。
5.16℃读作十六摄氏度,表示零上16℃;-16℃读作负十六摄氏度,表示零下16℃6.如果2000表示存入2000元,那么-500表示支出了500元。
向东走3m记作+3,向西4m记作-4。
7.在数轴上,从左到右的顺序就是数从小到大的顺序。
0是正数和负数的分界点,所有的负数都在0的左边,也就是负数都比0小,而正数都比0大,负数都比正数小。
负号后面的数越大,这个数就越小。
如:-8 数的运算顺序1、小数四则运算的运算顺序和整数四则运算顺序相同。
2、分数四则运算的运算顺序和整数四则运算顺序相同。
3、没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。
4、有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。
5、第一级运算:加法和减法叫做第一级运算。
6、第二级运算:乘法和除法叫做第二级运算。
数学正方形的性质知识点1、边:两组对边分别平行;四条边都相等;邻边互相垂直。
2、内角:四个角都是90°,内角和为360°。
3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角。
4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴)。
(完整版)北师大版小学数学六年级下册知识点汇总
北师大版小学数学六年级(下册)知识点第一单元、圆柱和圆锥一、面的旋转1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
3、圆锥的特征:(1)圆锥的底面是一个圆。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
二、圆柱的表面积1、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。
(如果不是沿高剪开,有可能还会是平行四边形)2、圆柱的侧面积=底面周长×高,用字母表示为:S 侧=ch 。
3、圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S 侧=ch ;(2)已知底面直径和高,求侧面积,可运用公式:S 侧=πdh ;(3)已知底面半径和高,求侧面积,可运用公式:S 侧=2πrh4、圆柱表面积的计算方法:如果用S 侧表示一个圆柱的侧面积,S 底表示底面积,d 表示底面直径,r 表示底面半径,h 表示高,那么这个圆柱的表面积为:S 表=S 侧+2S 底 或 S 表=πdh+2π)2d (² 或S 表=2πrh+2πr 25、圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
三、圆柱的体积1、圆柱的体积:一个圆柱所占空间的大小。
2、圆柱的体积=底面积×高。
如果用V 表示圆柱的体积,S 表示底面积,h 表示高,那么V =Sh 。
3、圆柱体积公式的应用:(1)计算圆柱体积时,如果题中给出了底面积和高,可用公式:V =Sh 。
(2)已知圆柱的底面半径和高,求体积,可用公式:V =πr 2 h ;(3)已知圆柱的底面直径和高,求体积,可用公式:V =π(d ÷2)2 h ;(4)已知圆柱的底面周长和高,求体积,可用公式:V =π(C ÷π÷2)2 h ; 、圆柱形容器的容积=底面积×高,用字母表示是V =Sh 。
北师大版小学六年级数学知识点
一、数的认识与应用
1.复习整数的概念,能够在数轴上表示和比较整数。
2.复习小数与整数的比较,能够读写和比较小数。
3.掌握小数和分数之间的转化关系,并能够进行分数和小数的互化。
二、小数的认识与应用
1.复习小数的概念,能够利用小数进行加、减、乘、除运算。
2.掌握小数与小数之间的比较,能够判断大小。
3.学会利用小数进行单位换算,如米和厘米、千克和克的换算。
三、长度、质量和容量单位换算
1.复习长度、质量和容量的基本单位及其符号,如米、千克和升,并能够进行换算。
2.学会利用图形和实物进行长度、质量和容量单位的换算。
四、多边形
1.掌握三角形、四边形、五边形、六边形等不规则多边形的命名和性质。
2.能够根据图形的特点进行分类,并能够分别计算各个多边形的边长和面积。
五、图形的对称
1.复习图形的对称性的概念,能够判断图形是否对称。
2.学会利用折纸对称的方法完成图形的折叠和对称。
六、数学语言的表达
1.学习利用数学语言和符号进行数学问题的描述和解答。
2.掌握常用数学语言和符号的意义和运用,如“是…的几倍”、“小
数点后几位”、“取整数部分”等。
以上是北师大版小学六年级数学知识点的大致内容。
通过学习这些知
识点,学生能够进一步加深对数学概念和运算的理解,提高数学应用能力,为进入中学阶段的学习打下坚实的基础。
北师大版六下数学《总复习.图形与几何》
线段是构成图形的基本图形。
三角形、四边形、梯形、平行四边形等都是平面上的线段图形,各条线段首尾顺次连接;圆是平面上的曲线图形。
正方体是长、宽、高都相等的长方体。
圆锥的体积是与它等底等高的圆柱体积的 。
围成一个图形的所有边长的总和叫作这个图形的周长。
物体的表面或围成的平面图形的大小,叫作它的面积。
长方体:由6个长方形围成的立体图形,有8个顶点,12条棱。
圆柱:由完全相同的两个圆和一个曲面组成。
圆锥:由一个圆和一个曲面组成。
2.平面图形的周长和面积。
长方形的周长=(长+宽)×2,即C=(a+b)×2;面积=长×宽,即S=a×b,用字母“a”“b”分别表示长方形的长和宽。
正方形的周长=边长×4,即C=a×4;面积=边长×边长,即S=a2,用字母“a”表示正方形的边长。
四边形是由四条边围成的平面图形。
平行四边形(两组对边平行)→长方形(有一个角是直角)
梯形(只有一组对边平行)
直角梯形:有一个角是直角的梯形。等腰梯形:两条腰相等。
圆:一条线段围绕其中一个端点旋转一周,就形成一个圆。
扇形:由两条半径和弧AB所围成的图形叫扇形。
二、立体图形的分类及概念
1.图形的特点。
正方体:由6个正方形围成的立体图形,有8个顶点,12条棱。
特点:轴对称图形的对称轴相对的部分到对称轴的距离相等,方向相反;平移后的图形大小、形状和方向都不变;旋转后的图形形状和大小不变,方向改变。
五、图形与位置
表示方法:可以用方向、角度和路程来描述物体的位置;还可以用数对来表示物体的位置;可以用方向,角度和路程描述行驶的路线。
用数对表示物体的位置:第一个数表示列,第二个数表示行。
完整版)新北师大版小学六年级数学总复习知识点归纳
完整版)新北师大版小学六年级数学总复习知识点归纳小学六年级数学知识点总结一、常用数量关系式1.每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数2.速度×时间=路程,路程÷速度=时间,路程÷时间=速度3.单价×数量=总价,总价÷单价=数量,总价÷数量=单价4.工作效率×工作时间=工作总量,工作总量÷工作效率=工作时间,工作总量÷工作时间=工作效率5.加数+加数=和,和-一个加数=另一个加数6.被减数-减数=差,被减数-差=减数,差+减数=被减数7.因数×因数=积,积÷一个因数=另一个因数8.被除数÷除数=商,被除数÷商=除数,商×除数=被除数二、小学数学图形计算公式1.正方形(C:周长,S:面积,a:边长)周长=边长×4,C=4a面积=边长×边长,S=a×a正方体(V:体积,a:棱长)表面积=棱长×棱长×6,S表=a×a×6体积=棱长×棱长×棱长,V=a×a×a2.长方形(C:周长,S:面积,a:长,b:宽)周长=(长+宽)×2,C=2(a+b)面积=长×宽,S=ab长方体(V:体积,S:面积,a:长,b:宽,h:高)表面积=(长×宽+长×高+宽×高)×2,S=2(ab+ah+bh) 体积=长×宽×高,V=abh3.三角形(S:面积,a:底,h:高)面积=底×高÷2,S=ah÷2三角形高=面积×2÷底,三角形底=面积×2÷高4.平行四边形(S:面积,a:底,h:高)面积=底×高,S=ah5.梯形(S:面积,a:上底,b:下底,h:高)面积=(上底+下底)×高÷2,S=(a+b)×h÷26.圆形(S:面积,C:周长,d:直径,r:半径)周长=直径×π=2×π×半径,C=πd=2πr面积=半径×半径×π7.圆柱体8.圆锥体9.总数÷总份数=平均数10.相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间11.利润与折扣问题三、常用单位换算1.长度单位换算1千米=1000米,1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米2.面积单位换算1平方千米=100公顷,1公顷=平方米,1平方米=100平方分米,1平方分米=100平方厘米,1平方厘米=100平方毫米3.体(容)积单位换算1立方米=1000立方分米,1立方分米=1000立方厘米,1立方分米=1升,1立方厘米=1毫升,1立方米=1000升4.重量单位换算1吨等于1000千克,1千克等于1000克,1千克等于1公斤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版小学数学六年级(下册)知识点第一单元、圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。
3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。
4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。
圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。
圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S 侧+2S底或S表=πdh+πd2/2 或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
5、圆柱的体积:一个圆柱所占空间的大小。
6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。
所以圆的面积=π×半径×半径=π×半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。
因此,圆柱的体积=底面积×高如果用V表示圆柱的体积,S表示底面积,h表示高,那么V=Sh 。
例题:填空:圆柱体积公式推导过程是利用(转化)的数学思想,在此过程中(形状)变了,(体积)没变。
拼成图形的高于圆柱的(高)相等,他们的底面积(相等)所以圆柱的体积公式为(底面积×高)圆柱体积公式的应用:(1)计算圆柱体积时,如果题中给出了底面积和高,可用公式:V=Sh。
(2)已知圆柱的底面半径和高,求体积,可用公式:V=πr2h;(3)已知圆柱的底面直径和高,求体积,可用公式:V=π(d/2)2h;(4)已知圆柱的底面周长和高,求体积,可用公式:V=π(C/2π)2h;圆柱形容器的容积=底面积×高,用字母表示是V=Sh。
6、圆柱形容器公式的应用与圆柱体积公式的应用计算方法相同。
7、圆锥的体积:一个圆锥所占空间的大小。
圆锥的体积=1/3×底面积×高如果用V表示圆锥的体积,S表示底面积,h表示高,则字母公式为:1/3Sh圆锥体积公式的应用:(1)求圆锥体积时,如果题中给出底面积和高这两个条件,可以直接运用“v= 1/3Sh”这一公式。
(2)求圆锥体积时,如果题中给出底面半径和高这两个条件,可以运用1/3πr ²h(3)求圆锥体积时,如果题中给出底面直径和高这两个条件,可以运用1/3π(d/2)²h(4)求圆锥体积时,如果题中给出底面周长和高这两个条件,可以运用1/3π(c/2r)²h补充复习五年级下册知识:1、体积:物体所占空间的大小叫作物体的体积。
容积:容器所能容纳物体的体积叫做物体的容积。
2、常用单位:体积单位:米3 (m3) 分米3(dm3) 厘米3 (cm3)容积单位:升(L) 毫升(ml)补充知识点:冰箱的容积用“升”作单位;我们饮用的自来水用“立方米”作单位。
单位换算:(相邻单位之间的进率为1000)(小单位化成大单位要除以进率,大单位化成小单位要乘以进率。
可以概括为:小化大除一下,大化小乘一下)1米3=1000分米3 1分米3=1000厘米3 1升=1000毫升1升=1分米3 1毫升=1厘米3单名数与复名数之间的互化:单名数:由一个数和一个单位名称组成的名数叫做单名数。
复名数:由两个或两个以上的数及单位名称组成的名数叫做复名数。
复名数化为单名数:8米320分米3=8020分米3=8.20米3单名数化为复名数:3800毫升=3升800毫升25.7立方分米=25立方分米700立方厘米第二单元、比例1、比例:表示两个比相等的式子叫做比例。
2、比例中各部分的名称组成比例的四个数,叫做比例的项;两端的两项叫做比例的外项;中间的两项叫做比例的内项。
3、比例的基本性质在比例里,两个外项的积等于两个外项的积。
4、判断两个比能否组成比例的方法(1)求比值;(2)化简比;(3)比例的基本性质5、解比例的方法根据比例的基本性质解比例。
先把比例写成两个外项的积的等于两个内项的积的形式(即方程),再通过方程求未知项的值。
如x:6=2:8,可以先写成8X=2×6 ,再解方程。
6、比例尺图上距离和实际距离的比叫作这幅图的比例尺。
比例尺是一个最简单的整数比,它没有计量单位,也不能是一个具体的数。
比例尺=图上距离÷实际距离;图上距离=实际距离×比例尺;实际距离=图上距离÷比例尺7、比例尺的分类:比例尺根据实际距离是缩小还是扩大,分为缩小比例尺和放大比例尺。
根据表现形式的不同,比例尺还可分为线段比例尺和数值比例尺。
8、已知比例尺和图上距离求实际距离,可以根据比例尺的意义用图上距离直接乘(除以)缩小(放大)的倍数。
也可以用除法计算,即图上距离÷比例尺=实际距离。
一定注意结果要换算成合适的单位。
9、前项为1的比例尺即缩小比例尺,就是把实际距离缩小到原来的几分之一画在图上,所以求图上距离可以用实际距离除以缩小的倍数。
也可以直接用实际距离乘比例尺。
一定注意单位的换算。
10、求比例尺就是求图上距离和实际距离的比,单位不同要换算成统一单位后再进行计算。
11、根据比例尺画图时,要先根据实际距离与纸张的大小确定出平面图的比例尺,再根据比例尺求出图上距离,根据图上距离即可以画出相应的平面图,最后再在平面图上标明比例尺就可以了。
12、图形的放大和缩小:按一定的比例把图形放大或缩小,是把图形的各边放大或缩小。
图中的各边与实际中相对应的各边的比相等。
这样放大或缩小后的图形与原图形的形状一样,不会改变。
第三单元、图形的运动本册的图形变换知识在原来基础上进一步加深,要求能在方格纸上画出平移、旋转、轴对称后的图形,具体:第一种旋转:要说明绕哪个点,顺时针还是逆时针,旋转多少度(90度、180度、270度)。
例如:将图形B绕点O 顺时针/逆时针旋转90°得到图形C;绕中心点旋转的方向:顺时针:即顺着钟表时针走的方向,从上往右走,再往下,最后向上。
逆时针:和顺时针的方向相反,从上往左走,再往下,最后向上。
第二种平移:要说明向什么方向(上、下、左、右)平移几个。
例如:将图第三种作对称图形:要说明是关于哪条直线作哪个图形的对称图形。
例如:以直线MN 为对称轴,作图形C的轴对称图形D。
数学好玩1、神奇的莫比乌斯带2、用“数对”确定位置:先横向观察,在第几位就在小括号里先写几,再点上逗号;然后再纵向观察,在第几位,就在小括号里面写上几。
例如:小青的位置在第三组,第二个座位,用数对表示为(3,2)。
2、根据数对说出相应的实际位置:例如:某个同学在(5,6)这个位置,他的实际位置是,班上(从左往右数)第五组第六个座位。
第四单元、正比例和反比例1、变化的量生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。
2、正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以表示为:=k(一定)。
3、应用正比例的意义判断两种量是否成正比例:有些相关联的量,虽然也是一种量随着另一种量的变化而变化,但它们相对应的数的比值不一定,就不成正比例,如被减数与差,正方形的面积与边长等。
4、正比例的图像是一条直线。
5、反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积,反比例的关系式可以表示为:x·y=k(一定)。
6、判断两个量是不是成反比例:要先想这两个量是不是相关联的量;再运用数量关系式进行判断,看这两个量的积是否一定;最后作出结论。
7、当两个变量成反比例关系时,所绘成的图像是一条光滑曲线。
8、一幅图放大或缩小,只有按照相同的比来画,画的图才像。